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Chapter 1

The regression estimation problem

In this chapter we introduce the problem of regression function estimation and describe
important properties of regression estimates. Furthermore, provide an overview of vari-
ous approaches to nonparametric regression estimates.

1.1 Why to estimate a regression function?
In regression analysis one considers a random vector (X, Y ), where X is Rd-valued and
Y is R-valued, and one is interested how the value of the so-called response variable Y
depends on the value of the observation vector X. This means that one wants to find a
(measurable) function f : Rd → R, such that f(X) is a “good approximation of Y ,” that
is, f(X) should be close to Y in some sense, which is equivalent to making |f(X) − Y |
“small.” Since X and Y are random vectors, |f(X) − Y | is random as well, therefore it
is not clear what “small |f(X)−Y |” means. We can resolve this problem by introducing
the so-called L2 risk or mean squared error of f ,

E|f(X)− Y |2,

and requiring it to be as small as possible.
There are two reasons for considering the L2 risk. First, as we will see in the sequel,

this simplifies the mathematical treatment of the whole problem. For example, as is
shown below, the function which minimizes the L2 risk can be derived explicitly. Second,
and more important, trying to minimize the L2 risk leads naturally to estimates which
can be computed rapidly.

So we are interested in a (measurable) function m∗ : Rd → R such that

E|m∗(X)− Y |2 = min
f :Rd→R

E|f(X)− Y |2.
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Such a function can be obtained explicitly as follows. Let

m(x) = E{Y |X = x}

be the regression function. We will show that the regression function minimizes the L2

risk. Indeed, for an arbitrary f : Rd → R, one has

E|f(X)− Y |2 = E|f(X)−m(X) +m(X)− Y |2

= E|f(X)−m(X)|2 + E|m(X)− Y |2,

where we have used

E {(f(X)−m(X))(m(X)− Y )}
= E

{
E
{

(f(X)−m(X))(m(X)− Y )
∣∣X}}

= E {(f(X)−m(X))E{m(X)− Y |X}}
= E {(f(X)−m(X))(m(X)−m(X))}
= 0.

Hence,

E|f(X)− Y |2 =

∫
Rd
|f(x)−m(x)|2µ(dx) + E|m(X)− Y |2, (1.1)

where µ denotes the distribution of X. The first term is called the L2 error of f . It
is always nonnegative and is zero if f(x) = m(x). Therefore, m∗(x) = m(x), i.e., the
optimal approximation (with respect to the L2 risk) of Y by a function of X is given by
m(X).

In applications the distribution of (X, Y ) (and hence also the regression function) is
usually unknown. Therefore it is impossible to predict Y using m(X). But it is often
possible to observe data according to the distribution of (X, Y ) and to estimate the
regression function from these data.

To be more precise, denote by (X, Y ), (X1, Y1), (X2, Y2), . . . independent and iden-
tically distributed (i.i.d.) random variables with EY 2 < ∞. Let Dn be the set of data
defined by

Dn = {(X1, Y1), . . . , (Xn, Yn)} .

In the regression function estimation problem one wants to use the data Dn in order
to construct an estimate mn : Rd → R of the regression function m. Here mn(x) =
mn(x, Dn) is a measurable function of x and the data. For simplicity, we will suppress
Dn in the notation and write mn(x) instead of mn(x, Dn).
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In general, estimates will not be equal to the regression function. To compare dif-
ferent estimates, we need an error criterion which measures the difference between the
regression function and an arbitrary estimate mn. One of the key points we would
like to make is that the motivation for introducing the regression function leads natu-
rally to an L2 error criterion for measuring the performance of the regression function
estimate. Recall that the main goal was to find a function f such that the L2 risk
E|f(X) − Y |2 is small. The minimal value of this L2 risk is E|m(X) − Y |2, and it is
achieved by the regression function m. Similarly to (1.1), one can show that the L2 risk
E{|mn(X)− Y |2|Dn} of an estimate mn satisfies

E
{
|mn(X)− Y |2|Dn

}
=

∫
Rd
|mn(x)−m(x)|2µ(dx) + E|m(X)− Y |2. (1.2)

Thus the L2 risk of an estimate mn is close to the optimal value if and only if the L2

error

‖mn −m‖2 =

∫
Rd
|mn(x)−m(x)|2µ(dx) (1.3)

is close to zero. Therefore we will use the L2 error (1.3) in order to measure the quality
of an estimate and we will study estimates for which this L2 error is small.

The classical approach for estimating a regression function is the so-called parametric
regression estimation. Here one assumes that the structure of the regression function is
known and depends only on finitely many parameters, and one uses the data to estimate
the (unknown) values of these parameters.

The linear regression estimate is an example of such an estimate. In linear regression
one assumes that the regression function is a linear combination of the components of
x = (x(1), . . . , x(d))T , i.e.,

m(x(1), . . . , x(d)) = a0 +
d∑
i=1

aix
(i) ((x(1), . . . , x(d))T ∈ Rd)

for some unknown a0, . . . , ad ∈ R. Then one uses the data to estimate these parame-
ters, e.g., by applying the principle of least squares, where one chooses the coefficients
a0, . . . , ad of the linear function such that it best fits the given data:

(â0, . . . , âd) = arg min
a0,...,ad∈Rd

 1

n

n∑
j=1

∣∣∣∣∣Yj − a0 −
d∑
i=1

aiX
(i)
j

∣∣∣∣∣
2
 .
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Figure 1.1: Simulated data points.

Here X(i)
j denotes the ith component of Xj and z = arg minx∈D f(x) is the abbreviation

for z ∈ D and f(z) = minx∈D f(x). Finally one defines the estimate by

m̂n(x) = â0 +
d∑
i=1

âix
(i).

Parametric estimates usually depend only on a few parameters, therefore they are suit-
able even for small sample sizes n, if the parametric model is appropriately chosen.
Furthermore, they are often easy to interpret. For instance in a linear model (when
m(x) is a linear function) the absolute value of the coefficient âi indicates how much
influence the ith component of X has on the value of Y , and the sign of âi describes the
nature of this influence (increasing or decreasing the value of Y ).

However, parametric estimates have a big drawback. Regardless of the data, a para-
metric estimate cannot approximate the regression function better than the best function
which has the assumed parametric structure. For example, a linear regression estimate
will produce a large error for every sample size if the true underlying regression function
is not linear and cannot be well approximated by linear functions.

For univariate X = X one can often use a plot of the data to choose a proper
parametric estimate. But this is not always possible, as we now illustrate using simulated
data. These data will be used throughout the book. They consist of n = 200 points such
that X is standard normal restricted to [−1, 1], i.e., the density of X is proportional to
the standard normal density on [−1, 1] and is zero elsewhere. The regression function is

4
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Figure 1.2: Data points and regression function.

piecewise polynomial:

m(x) =


(x+ 2)2/2 if − 1 ≤ x < −0.5,
x/2 + 0.875 if − 0.5 ≤ x < 0,
−5(x− 0.2)2 + 1.075 if 0 < x ≤ 0.5,
x+ 0.125 if 0.5 ≤ x < 1.

GivenX, the conditional distribution of Y−m(X) is normal with mean zero and standard
deviation

σ(X) = 0.2− 0.1 cos(2πX).

Figure 1.1 shows the data points. In this example the human eye is not able to see from
the data points what the regression function looks like. In Figure 1.2 the data points are
shown together with the regression function.

In Figure 1.3 a linear estimate is constructed for these simulated data. Obviously, a
linear function does not approximate the regression function well.

Furthermore, for multivariate X, there is no easy way to visualize the data. Thus,
especially for multivariate X, it is not clear how to choose a proper form of a parametric
estimate, and a wrong form will lead to a bad estimate. This inflexibility concerning
the structure of the regression function is avoided by so-called nonparametric regression
estimates.

We will now define the modes of convergence of the regression estimates that we will
study in this book.
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Figure 1.3: Linear regression estimate.

The first and weakest property an estimate should have is that, as the sample size
grows, it should converge to the estimated quantity, i.e., the error of the estimate should
converge to zero for a sample size tending to infinity. Estimates which have this property
are called consistent.

To measure the error of a regression estimate, we use the L2 error∫
|mn(x)−m(x)|2µ(dx).

The estimate mn depends on the data Dn, therefore the L2 error is a random variable.
We are interested in the convergence of the expectation of this random variable to zero
as well as in the almost sure (a.s.) convergence of this random variable to zero.

Definition 1.1. A sequence of regression function estimates {mn} is called weakly
consistent for a certain distribution of (X, Y ), if

lim
n→∞

E
{∫

(mn(x)−m(x))2µ(dx)

}
= 0.

Definition 1.2. A sequence of regression function estimates {mn} is called strongly
consistent for a certain distribution of (X, Y ), if

lim
n→∞

∫
(mn(x)−m(x))2µ(dx) = 0 with probability one.
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It may be that a regression function estimate is consistent for a certain class of
distributions of (X, Y ), but not consistent for others. It is clearly desirable to have
estimates that are consistent for a large class of distributions. In the next chapters we
are interested in properties of mn that are valid for all distributions of (X, Y ), that
is, in distribution-free or universal properties. The concept of universal consistency is
important in nonparametric regression because the mere use of a nonparametric estimate
is normally a consequence of the partial or total lack of information about the distribution
of (X, Y ). Since in many situations we do not have any prior information about the
distribution, it is essential to have estimates that perform well for all distributions. This
very strong requirement of universal goodness is formulated as follows:

Definition 1.3. A sequence of regression function estimates {mn} is called weakly
universally consistent if it is weakly consistent for all distributions of (X, Y ) with
E{Y 2} <∞.

Definition 1.4. A sequence of regression function estimates {mn} is called strongly
universally consistent if it is strongly consistent for all distributions of (X, Y ) with
E{Y 2} <∞.

We will later give many examples of estimates that are weakly and strongly universally
consistent.

If an estimate is universally consistent, then, regardless of the true underlying distri-
bution of (X, Y ), the L2 error of the estimate converges to zero for a sample size tending
to infinity. But this says nothing about how fast this happens. Clearly, it is desirable to
have estimates for which the L2 error converges to zero as fast as possible.

To decide about the rate of convergence of an estimate mn, we will look at the
expectation of the L2 error,

E
∫
|mn(x)−m(x)|2µ(dx). (1.4)

A natural question to ask is whether there exist estimates for which (1.4) converges
to zero at some fixed, nontrivial rate for all distributions of (X, Y ). Unfortunately, such
estimates do not exist, i.e., for any estimate the rate of convergence may be arbitrarily
slow. In order to get nontrivial rates of convergence, one has to restrict the class of
distributions, e.g., by imposing some smoothness assumptions on the regression function.

7



1.2 How to estimate a regression function?
In this section we describe two principles of nonparametric regression: local averaging
and empirical error minimization.

Recall that the regression function is defined by a conditional expectation

m(x) = E{Y | X = x}.

If x is an atom of X, i.e., P{X = x} > 0 then the conditional expectation is defined
by the conventional way:

E{Y | X = x} =
E{Y I{X=x}}
P{X = x}

,

where IA denotes the indicator function of set A. In this definition one can estimate the
numerator by

1

n

n∑
i=1

Yi I{Xi=x},

while the denominator’s estimate is

1

n

n∑
i=1

I{Xi=x},

so the obvious regression estimate can be

mn(x) =

∑n
i=1 Yi I{Xi=x}∑n
i=1 I{Xi=x}

.

In the general case of P{X = x} = 0 we can refer to the measure theoretic definition of
conditional expectation (cf. Appendix of Devroye, Györfi, and Lugosi (1996)). However,
this definition is useless from the point of view of statistics. One can derive an estimate
from the property

E{Y | X = x} = lim
h→0

E{Y I{‖X−x‖≤h}}
P{‖X− x‖ ≤ h}

so the following estimate can be introduced:

mn(x) =

∑n
i=1 Yi I{‖Xi−x‖≤h}∑n
i=1 I{‖Xi−x‖≤h}

.

This estimate is called naive kernel estimate.

8



We can generalize this idea by local averaging, i.e., estimation of m(x) is the average
of those Yi, where Xi is “close” to x. Such an estimate can be written as

mn(x) =
n∑
i=1

Wn,i(x) · Yi,

where the weights Wn,i(x) = Wn,i(x,X1, . . . ,Xn) ∈ R depend on X1, . . . ,Xn. Usually
the weights are nonnegative and Wn,i(x) is “small” if Xi is “far” from x.

Examples of such an estimates are the partitioning estimate, the kernel estimate and
the k-nearest neighbor estimate.

For nonparametric regression estimation, the other principle is the empirical error
minimization estimates, where there is a class Fn of functions, and the estimate is defined
by.

mn(·) = arg min
f∈Fn

{
1

n

n∑
i=1

|f(Xi)− Yi|2
}
. (1.5)

Hence it minimizes the empirical L2 risk

1

n

n∑
i=1

|f(Xi)− Yi|2 (1.6)

over Fn. Observe that it doesn’t make sense to minimize (1.6) over all (measurable)
functions f , because this may lead to a function which interpolates the data and hence
is not a reasonable estimate. Thus one has to restrict the set of functions over which
one minimizes the empirical L2 risk. Examples of possible choices of the set Fn are sets
of piecewise polynomials or sets of smooth piecewise polynomials (splines). The use of
spline spaces ensures that the estimate is a smooth function. An important member of
least squares estimates is the generalized linear estimates. Let {φj}∞j=1 be real-valued
functions defined on Rd and let Fn be defined by

Fn =

{
f ; f =

`n∑
j=1

cjφj

}
.

Then the generalized linear estimate is defined by

mn(·) = arg min
f∈Fn

{
1

n

n∑
i=1

(f(Xi)− Yi)2

}

= arg min
c1,...,c`n

 1

n

n∑
i=1

(
`n∑
j=1

cjφj(Xi)− Yi

)2
 .
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Figure 1.4: The estimate on the right seems to be more reasonable than the estimate on
the left, which interpolates the data.

For least squares estimates, other example can be the neural networks or radial basis
functions or orthogonal series estimates.

Let mn be an arbitrary estimate. For any x ∈ Rd we can write the expected squared
error of mn at x as

E{|mn(x)−m(x)|2}
= E{|mn(x)− E{mn(x)}|2}+ |E{mn(x)} −m(x)|2

= Var(mn(x)) + |bias(mn(x))|2.

Here Var(mn(x)) is the variance of the random variable mn(x) and bias(mn(x)) is the
difference between the expectation of mn(x) and m(x). This also leads to a similar
decomposition of the expected L2 error:

E
{∫
|mn(x)−m(x)|2µ(dx)

}
=

∫
E{|mn(x)−m(x)|2}µ(dx)

=

∫
Var(mn(x))µ(dx) +

∫
|bias(mn(x))|2µ(dx).

The importance of these decompositions is that the integrated variance and the integrated
squared bias depend in opposite ways on the wiggliness of an estimate. If one increases
the wiggliness of an estimate, then usually the integrated bias will decrease, but the
integrated variance will increase (so-called bias–variance tradeoff).

In Figure 1.5 this is illustrated for the kernel estimate, where one has, under some
regularity conditions on the underlying distribution and for the naive kernel,∫

Rd
Var(mn(x))µ(dx) = c1

1

nhd
+ o

(
1

nhd

)
10
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Figure 1.5: Bias–variance tradeoff.

and ∫
Rd
|bias(mn(x))|2µ(dx) = c2h

2 + o
(
h2
)
.

Here h denotes the bandwidth of the kernel estimate which controls the wiggliness of
the estimate, c1 is some constant depending on the conditional variance Var{Y |X = x},
the regression function is assumed to be Lipschitz continuous, and c2 is some constant
depending on the Lipschitz constant.

The value h∗ of the bandwidth for which the sum of the integrated variance and the
squared bias is minimal depends on c1 and c2. Since the underlying distribution, and
hence also c1 and c2, are unknown in an application, it is important to have methods
which choose the bandwidth automatically using only the data Dn.
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Chapter 2

Partitioning estimates

2.1 Introduction

In the next chapters we briefly review the most important local averaging regression
estimates. Concerning further details see Györfi et al. (2002).

The partitioning estimate, called a regressogram, was introduced by Tukey (1947;
1961) and studied by Collomb (1977), Bosq and Lecoutre (1987), and Lecoutre (1980).
Concerning its consistency, see Devroye and Györfi (1983) and Györfi (1991). Beirlant
and Györfi (1998) proved the asymptotic normality of the L2 error, while Györfi, Schäfer,
and Walk (2002) showed its relative stability.

Let Pn = {An,1, An,2, . . .} be a partition of Rd and for each x ∈ Rd let An(x) denote
the cell of Pn containing x. The partitioning estimate (histogram) of the regression
function is defined as

mn(x) =

∑n
i=1 YiI{Xi∈An(x)}∑n
i=1 I{Xi∈An(x)}

with 0/0 = 0 by definition. This means that the partitioning estimate is a local averaging
estimate such for a given x we take the average of those Yi’s for which Xi belongs to the
same cell into which x falls.

The simplest version of this estimate is obtained for d = 1 and when the cells An,j
are intervals of size h = hn. Figures 2.1 – 2.3 show the estimates for various choices
of h for our simulated data introduced in Chapter 1. In the first figure h is too small
(undersmoothing, large variance), in the second choice it is about right, while in the
third it is too large (oversmoothing, large bias).

For d > 1 one can use, e.g., a cubic partition, where the cells An,j are cubes of
volume hdn, or a rectangle partition which consists of rectangles An,j with side lengths

13
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Figure 2.1: Undersmoothing: h = 0.03, L2 error = 0.062433.

hn1, . . . , hnd. For the sake of illustration we generated two-dimensional data when the
actual distribution is a correlated normal distribution. The partition in Figure 2.4 is
cubic, and the partition in Figure 2.5 is made of rectangles.

Cubic and rectangle partitions are particularly attractive from the computational
point of view, because the set An(x) can be determined for each x in constant time,
provided that we use an appropriate data structure. In most cases, partitioning estimates
are computationally superior to the other nonparametric estimates, particularly if the
search for An(x) is organized using binary decision trees (cf. Friedman (1977)).

The partitions may depend on the data. Figure 2.6 shows such a partition, where each
cell contains an equal number of points. This partition consists of so-called statistically
equivalent blocks.

Another advantage of the partitioning estimate is that it can be represented or com-
pressed very efficiently. Instead of storing all data Dn, one should only know the estimate
for each nonempty cell, i.e., for cells An,j for which µn(An,j) > 0, where µn denotes the
empirical distribution. The number of nonempty cells is much smaller than n. (Cf.
Lugosi, Nobel (1996).)

2.2 Stone’s Theorem

In the next section we will prove the weak universal consistency of partitioning estimates.
In the proof we will use Stone’s theorem (Theorem 2.1 below) which is a powerful tool

14



for proving weak consistency for local averaging regression function estimates. It will
also be applied to prove the weak universal consistency of kernel and nearest neighbor
estimates in Chapters 3 and 4.

Local averaging regression function estimates take the form

mn(x) =
n∑
i=1

Wni(x) · Yi,

where the weights Wn,i(x) = Wn,i(x,X1, . . . ,Xn) ∈ R are depending on X1, . . . ,Xn.
Usually the weights are nonnegative and Wn,i(x) is “small” if Xi is “far” from x.

The next theorem states conditions on the weights which guarantee the weak universal
consistency of the local averaging estimates.

Theorem 2.1. (Stone’s theorem, Stone (1977)). Assume that the following con-
ditions are satisfied for any distribution of X:

(i) There is a constant c such that for every nonnegative measurable function f sat-
isfying Ef(X) <∞ and any n,

E

{
n∑
i=1

|Wn,i(X)|f(Xi)

}
≤ cEf(X).

-

6

−1 −0.5 0.5 1

0.5

Figure 2.2: Good choice: h = 0.1, L2 error = 0.003642.
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-

6

−1 −0.5 0.5 1

0.5

Figure 2.3: Oversmoothing: h = 0.5, L2 error = 0.013208.

(ii) There is a D ≥ 1 such that

P

{
n∑
i=1

|Wn,i(X)| ≤ D

}
= 1,

for all n.

Figure 2.4: Cubic partition.
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Figure 2.5: Rectangle partition.

(iii) For all a > 0,

lim
n→∞

E

{
n∑
i=1

|Wn,i(X)|I{‖Xi−X‖>a}

}
= 0.

(iv)

n∑
i=1

Wn,i(X)→ 1

in probability.

Figure 2.6: Statistically equivalent blocks.
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(v)

lim
n→∞

E

{
n∑
i=1

Wn,i(X)2

}
= 0.

Then the corresponding regression function estimate mn is weakly universally consistent,
i.e.,

lim
n→∞

E
{∫

(mn(x)−m(x))2µ(dx)

}
= 0

for all distributions of (X, Y ) with EY 2 <∞.

For nonnegative weights and noiseless data (i.e., Y = m(X) ≥ 0) condition (i) says
that the mean value of the estimate is bounded above by some constant times the mean
value of the regression function. Conditions (ii) and (iv) state that the sum of the weights
is bounded and is asymptotically 1. Condition (iii) ensures that the estimate at a point
x is asymptotically influenced only by the data close to x. Condition (v) states that
asymptotically all weights become small.

One can verify that under conditions (ii), (iii), (iv), and (v) alone weak consistency
holds if the regression function is uniformly continuous and the conditional variance
function σ2(x) is bounded. Condition (i) makes the extension possible. For nonnegative
weights conditions (i), (iii), and (v) are necessary.

Definition 2.1. The weights {Wn,i} are called normal if
∑n

i=1 Wn,i(x) = 1. The weights
{Wn,i} are called subprobability weights if they are nonnegative and sum up to ≤ 1. They
are called probability weights if they are nonnegative and sum up to 1.

Obviously for subprobability weights condition (ii) is satisfied, and for probability
weights conditions (ii) and (iv) are satisfied.
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Proof of Theorem 2.1. Because of (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2 we have that

E{mn(X)−m(X)}2 ≤ 3E


(

n∑
i=1

Wn,i(X)(Yi −m(Xi))

)2


+ 3E


(

n∑
i=1

Wn,i(X)(m(Xi)−m(X))

)2


+ 3E


((

n∑
i=1

Wn,i(X)− 1

)
m(X)

)2


= 3In + 3Jn + 3Ln.

By the Cauchy–Schwarz inequality, and condition (ii),

Jn ≤ E


(

n∑
i=1

√
|Wn,i(X)|

√
|Wn,i(X)| |m(Xi)−m(X)|

)2


≤ E

{(
n∑
i=1

|Wn,i(X)|

)(
n∑
i=1

|Wn,i(X)|(m(Xi)−m(X))2

)}

≤ DE

{
n∑
i=1

|Wn,i(X)|(m(Xi)−m(X))2

}
= DJ ′n.

The set of bounded and uniformly continuous functions is dense in L2, therefore for ε > 0
we can choose m̃ bounded and uniformly continuous such that

E{(m(X)− m̃(X))2} < ε.
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Then

J ′n ≤ 3E

{
n∑
i=1

|Wn,i(X)|(m(Xi)− m̃(Xi))
2

}

+ 3E

{
n∑
i=1

|Wn,i(X)|(m̃(Xi)− m̃(X))2

}

+ 3E

{
n∑
i=1

|Wn,i(X)|(m̃(X)−m(X))2

}
= 3Jn1 + 3Jn2 + 3Jn3.

For arbitrary δ > 0,

Jn2 = E

{
n∑
i=1

|Wn,i(X)| · (m̃(Xi)− m̃(X))2I{‖Xi−X‖>δ}

}

+E

{
n∑
i=1

|Wn,i(X)| · (m̃(Xi)− m̃(X))2I{‖Xi−X‖≤δ}

}

≤ E

{
n∑
i=1

|Wn,i(X)| · (2m̃(Xi)
2 + 2m̃(X)2)I{‖Xi−X‖>δ}

}

+E

{
n∑
i=1

|Wn,i(X)| · (m̃(Xi)− m̃(X))2I{‖Xi−X‖≤δ}

}

≤ 4 · sup
u∈Rd
|m̃(u)|2 · E

{
n∑
i=1

|Wn,i(X)| · I{‖Xi−X‖>δ}

}

+D ·

(
sup

u,v∈Rd : ‖u−v‖≤δ
|m̃(u)− m̃(v)|

)2

.

By (iii),

lim sup
n→∞

Jn2 ≤ D ·

(
sup

u,v∈Rd : ‖u−v‖≤δ
|m̃(u)− m̃(v)|

)2

.

Using m̃ uniformly continuous we get, with δ → 0,

Jn2 → 0.
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By (ii),
Jn3 ≤ DE{(m̃(X)−m(X))2} < Dε,

moreover, by (i),
lim sup
n→∞

Jn1 ≤ cE{(m̃(X)−m(X))2} ≤ cε,

so
lim sup
n→∞

J ′n ≤ 3cε+ 3Dε.

Put
σ2(x) = E{(Y −m(X))2|X = x},

then EY 2 <∞ implies that Eσ2(X) <∞, and

In = E


(

n∑
i=1

Wn,i(X)(Yi −m(Xi))

)2


=
n∑
i=1

n∑
j=1

E{Wn,i(X)Wn,j(X)(Yi −m(Xi))(Yj −m(Xj))}.

For i 6= j,

E {Wn,i(X)Wn,j(X)(Yi −m(Xi))(Yj −m(Xj))}
= E {E {Wn,i(X)Wn,j(X)(Yi −m(Xi))(Yj −m(Xj))|X1, . . . , Xn, Yi}}
= E {Wn,i(X)Wn,j(X)(Yi −m(Xi))E {(Yj −m(Xj))|X1, . . . , Xn, Yi}}
= E {Wn,i(X)Wn,j(X)(Yi −m(Xi))(m(Xj)−m(Xj))}
= 0,

hence,

In = E

{
n∑
i=1

Wn,i(X)2(Yi −m(Xi))
2

}

= E

{
n∑
i=1

Wn,i(X)2σ2(Xi)

}
.

If σ2(x) is bounded then (v) implies that In → 0. Again, for general σ2(x) and ε > 0,
there exists bounded σ̃2(x) ≤ L such that

E{|σ̃2(X)− σ2(X)|} < ε.
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Then, by (ii),

In ≤ E

{
n∑
i=1

Wn,i(X)2σ̃2(Xi)

}
+ E

{
n∑
i=1

Wn,i(X)2|σ2(Xi)− σ̃2(Xi)|

}

≤ LE

{
n∑
i=1

Wn,i(X)2

}
+DE

{
n∑
i=1

|Wn,i(X)||σ2(Xi)− σ̃2(Xi)|

}
,

therefore, by (i) and (v),

lim sup
n→∞

In ≤ cDE{|σ̃2(X)− σ2(X)|} < cDε.

Concerning the third term

Ln = E


((

n∑
i=1

Wn,i(X)− 1

)
m(X)

)2
→ 0

by conditions (ii), (iv), and by the dominated convergence theorem. 2

2.3 Consistency
The purpose of this section is to prove the weak universal consistency of the partitioning
estimates. This is the first such result that we mention. Later we will prove the same
property for other estimates, too. The next theorem provides sufficient conditions for
the weak universal consistency of the partitioning estimate. The first condition ensures
that the cells of the underlying partition shrink to zero inside a bounded set, so the
estimate is local in this sense. The second condition means that the number of cells
inside a bounded set is small with respect to n, which implies that with large probability
each cell contains many data points.

Theorem 2.2. If for each sphere S centered at the origin

lim
n→∞

max
j:An,j∩S 6=∅

diam(An,j) = 0 (2.1)

and
lim
n→∞

|{j : An,j ∩ S 6= ∅}|
n

= 0 (2.2)

then the partitioning regression function estimate is weakly universally consistent.
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For cubic partitions,

lim
n→∞

hn = 0 and lim
n→∞

nhdn =∞

imply (2.1) and (2.2).
In order to prove Theorem 2.2 we will verify the conditions of Stone’s theorem. For

this we need the following technical lemma. An integer-valued random variable B(n, p)
is said to be binomially distributed with parameters n and 0 ≤ p ≤ 1 if

P{B(n, p) = k} =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

Lemma 2.1. Let the random variable B(n, p) be binomially distributed with parameters
n and p. Then:

(i)

E
{

1

1 +B(n, p)

}
≤ 1

(n+ 1)p
,

(ii)

E
{

1

B(n, p)
I{B(n,p)>0}

}
≤ 2

(n+ 1)p
.

Proof. Part (i) follows from the following simple calculation:

E
{

1

1 +B(n, p)

}
=

n∑
k=0

1

k + 1

(
n

k

)
pk(1− p)n−k

=
1

(n+ 1)p

n∑
k=0

(
n+ 1

k + 1

)
pk+1(1− p)n−k

≤ 1

(n+ 1)p

n+1∑
k=0

(
n+ 1

k

)
pk(1− p)n−k+1

=
1

(n+ 1)p
(p+ (1− p))n+1

=
1

(n+ 1)p
.
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For (ii) we have

E
{

1

B(n, p)
I{B(n,p)>0}

}
≤ E

{
2

1 +B(n, p)

}
≤ 2

(n+ 1)p

by (i). 2

Proof of Theorem 2.2. The proof proceeds by checking the conditions of Stone’s
theorem (Theorem 2.1). Note that if 0/0 = 0 by definition, then

Wn,i(x) = I{Xi∈An(x)}/
n∑
l=1

I{Xl∈An(x)}.

To verify (i), it suffices to show that there is a constant c > 0, such that for any
nonnegative function f with Ef(X) <∞,

E

{
n∑
i=1

f(Xi)
I{Xi∈An(X)}∑n
l=1 I{Xl∈An(X)}

}
≤ cEf(X).

Observe that

E

{
n∑
i=1

f(Xi)
I{Xi∈An(X)}∑n
l=1 I{Xl∈An(X)}

}

=
n∑
i=1

E

{
f(Xi)

I{Xi∈An(X)}

1 +
∑

l 6=i I{Xl∈An(X)}

}

= nE

{
f(X1)I{X1∈An(X)}

1

1 +
∑

l 6=1 I{Xl∈An(X)}

}

= nE
{
E
{
f(X1)I{X1∈An(X)}

1

1 +
∑n

l=2 I{Xl∈An(X)}

∣∣∣∣X,X1

}}
= nE

{
f(X1)I{X1∈An(X)}E

{
1

1 +
∑n

l=2 I{Xl∈An(X)}

∣∣∣∣X,X1

}}
= nE

{
f(X1)I{X1∈An(X)}E

{
1

1 +
∑n

l=2 I{Xl∈An(X)}

∣∣∣∣X}}
by the independence of the random variables X,X1, . . . ,Xn. Using Lemma 2.1, the
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expected value above can be bounded by

nE
{
f(X1)I{X1∈An(X)}

1

nµ(An(X))

}
=

∑
j

P{X ∈ Anj}
∫
Anj

f(u)µ(du)
1

µ(Anj)

=

∫
Rd
f(u)µ(du) = Ef(X).

Therefore, the condition is satisfied with c = 1. The weights are sub-probability weights,
so (ii) is satisfied. To see that condition (iii) is satisfied first choose a ball S centered
at the origin, and then by condition (2.1) a large n such that for An,j ∩ S 6= ∅ we have
diam(An,j) < a. Thus X ∈ S and ‖Xi −X‖ > a imply Xi /∈ An(X), therefore

I{X∈S}
n∑
i=1

Wn,i(X)I{‖Xi−X‖>a}

= I{X∈S}
∑n

i=1 I{Xi∈An(X),‖X−Xi‖>a}

nµn(An(X))

= I{X∈S}
∑n

i=1 I{Xi∈An(X),Xi /∈An(X),‖X−Xi‖>a}

nµn(An(X))

= 0.

Thus

lim sup
n

E
n∑
i=1

Wn,i(X)I{‖Xi−X‖>a} ≤ µ(Sc).

Concerning (iv) note that

P

{
n∑
i=1

Wn,i(X) 6= 1

}
= P {µn(An(X)) = 0}

=
∑
j

P {X ∈ An,j, µn(An,j) = 0}

=
∑
j

µ(An,j)(1− µ(An,j))
n

≤
∑

j:An,j∩S=∅

µ(An,j) +
∑

j:An,j∩S 6=∅

µ(An,j)(1− µ(An,j))
n.
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Elementary inequalities

x(1− x)n ≤ xe−nx ≤ 1

en
(0 ≤ x ≤ 1)

yield

P

{
n∑
i=1

Wn,i(X) 6= 1

}
≤ µ(Sc) +

1

en
|{j : An,j ∩ S 6= ∅}| .

The first term on the right-hand side can be made arbitrarily small by the choice of S,
while the second term goes to zero by (2.2). To prove that condition (v) holds, observe
that

n∑
i=1

Wn,i(x)2 =

{
1∑n

l=1 I{Xl∈An(x)}
if µn(An(x)) > 0,

0 if µn(An(x)) = 0.

Then we have

E

{
n∑
i=1

Wn,i(X)2

}

≤ P{X ∈ Sc}+
∑

j:An,j∩S 6=∅

E
{
I{X∈An,j}

1

nµn(An,j)
I{µn(An,j)>0}

}

≤ µ(Sc) +
∑

j:An,j∩S 6=∅

µ(An,j)
2

nµ(An,j)

(by Lemma 2.1)

= µ(Sc) +
2

n
|{j : An,j ∩ S 6= ∅}| .

A similar argument to the previous one concludes the proof. 2

2.4 Rate of convergence
In this section we bound the rate of convergence of E‖mn−m‖2 for cubic partitions and
regression functions which are Lipschitz continuous.

Theorem 2.3. (Györfi et al. (2002) ). For a cubic partition with side length hn
assume that

Var(Y |X = x) ≤ σ2, x ∈ Rd,
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|m(x)−m(z)| ≤ C‖x− z‖, x, z ∈ Rd, (2.3)

and that X has a compact support S. Then

E‖mn −m‖2 ≤ ĉ
σ2 + supz∈S |m(z)|2

n · hdn
+ d · C2 · h2

n,

where ĉ depends only on d and on the diameter of S, thus for

hn = c′
(
σ2 + supz∈S |m(z)|2

C2

)1/(d+2)

n−1/(d+2)

we get

E‖mn −m‖2 ≤ c′′
(
σ2 + sup

z∈S
|m(z)|2

)2/(d+2)

C2d/(d+2)n−2/(d+2).

Proof. Set

m̂n(x) = E{mn(x)|X1, . . . ,Xn} =

∑n
i=1m(Xi)I{Xi∈An(x)}

nµn(An(x))
.

Then

E{(mn(x)−m(x))2|X1, . . . ,Xn}
= E{(mn(x)− m̂n(x))2|X1, . . . ,Xn}+ (m̂n(x)−m(x))2. (2.4)

We have

E{(mn(x)− m̂n(x))2|X1, . . . ,Xn}

= E

{(∑n
i=1(Yi −m(Xi))I{Xi∈An(x)}

nµn(An(x))

)2 ∣∣∣X1, . . . ,Xn

}

=

∑n
i=1 Var(Yi|Xi)I{Xi∈An(x)}

(nµn(An(x)))2

≤ σ2

nµn(An(x))
I{nµn(An(x))>0}.
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By Jensen’s inequality

(m̂n(x)−m(x))2 =

(∑n
i=1(m(Xi)−m(x))I{Xi∈An(x)}

nµn(An(x))

)2

I{nµn(An(x))>0}

+m(x)2I{nµn(An(x))=0}

≤
∑n

i=1(m(Xi)−m(x))2I{Xi∈An(x)}

nµn(An(x))
I{nµn(An(x))>0}

+m(x)2I{nµn(An(x))=0}

≤ d · C2h2
nI{nµn(An(x))>0} +m(x)2I{nµn(An(x))=0}

(by (2.3) and max
z∈An(x)

‖x− z‖2 ≤ d · h2
n)

≤ d · C2h2
n +m(x)2I{nµn(An(x))=0}.

Without loss of generality assume that S is a cube and the union of An,1, . . . , An,ln is S.
Then

ln ≤
c̃

hdn

for some constant c̃ proportional to the volume of S and, by Lemma 2.1 and (2.4),

E
{∫

(mn(x)−m(x))2µ(dx)

}
= E

{∫
(mn(x)− m̂n(x))2µ(dx)

}
+ E

{∫
(m̂n(x)−m(x))2µ(dx)

}

=
ln∑
j=1

E

{∫
An,j

(mn(x)− m̂n(x))2µ(dx)

}

+
ln∑
j=1

E

{∫
An,j

(m̂n(x)−m(x))2µ(dx)

}
.
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Thus,

E
{∫

(mn(x)−m(x))2µ(dx)

}

≤
ln∑
j=1

E
{
σ2µ(An,j)

nµn(An,j)
I{µn(An,j)>0}

}
+ dC2h2

n

+
ln∑
j=1

E

{∫
An,j

m(x)2µ(dx)I{µn(An,j)=0}

}

≤
ln∑
j=1

2σ2µ(An,j)

nµ(An,j)
+ dC2h2

n +
ln∑
j=1

∫
An,j

m(x)2µ(dx)P{µn(An,j) = 0}

≤ ln
2σ2

n
+ dC2h2

n + sup
z∈S

{
m(z)2

} ln∑
j=1

µ(An,j)(1− µ(An,j))
n

≤ ln
2σ2

n
+ dC2h2

n + ln
supz∈Sm(z)2

n
sup
j
nµ(An,j)e

−nµ(An,j)

≤ ln
2σ2

n
+ dC2h2

n + ln
supz∈Sm(z)2e−1

n

(since supz ze
−z = e−1)

≤ (2σ2 + supz∈Sm(z)2e−1)c̃

nhdn
+ dC2h2

n.

2

29



30



Chapter 3

Kernel estimates

3.1 Introduction
Kernel-based rules are derived from the kernel estimate in density estimation originally
studied by Parzen (1962), Rosenblatt (1956), Akaike (1954), and Cacoullos (1965); and in
regression estimation, introduced by Nadaraya (1964; 1970), andWatson (1964). For par-
ticular choices ofK, rules of this sort have been proposed by Fix and Hodges (1951; 1952),
Sebestyen (1962), Van Ryzin (1966), and Meisel (1969). Statistical analysis of these rules
and/or the corresponding regression function estimate can be found in Nadaraya (1964;
1970), Rejtő and Révész (1973), Devroye and Wagner (1976; 1980a; 1980b), Greblicki
(1974; 1978b; 1978a), Krzyżak and Pawlak (1984), and Devroye and Krzyżak (1989).
Usage of Cauchy kernels in discrimination is investigated by Arkadjew and Braverman
(1966), Hand (1981), and Coomans and Broeckaert (1986).

Several authors studied the pointwise properties of the kernel estimates, i.e., the
pointwise optimality of the locally polynomial kernel estimates under some regularity
conditions on m and µ: Stone (1977; 1980), Katkovnik (1979; 1983; 1985), Korostelev
and Tsybakov (1993), Cleveland (1979), Härdle (1990), Fan and Gijbels (1992; 1995), Fan
(1993), Tsybakov (1986), and Fan, Hu, and Truong (1994). Kernel regression estimate
without bandwidth, called Hilbert kernel estimate, was investigated by Devroye, Györfi,
and Krzyżak (1998).

The kernel estimate of a regression function takes the form

mn(x) =

∑n
i=1 YiK

(
x−Xi

hn

)
∑n

i=1K
(

x−Xi

hn

) ,

if the denominator is nonzero, and 0 otherwise. Here the bandwidth hn > 0 depends
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only on the sample size n, and the function K : Rd → [0,∞) is called a kernel. (See
Figure 3.1 for some examples.) Usually K(x) is “large” if ‖x‖ is “small,” therefore the
kernel estimate again is a local averaging estimate.

Figures 3.2–3.5 show the kernel estimate for the naive kernel (K(x) = I{‖x‖≤1}) and
for the Epanechnikov kernel (K(x) = (1 − ‖x‖2)+) using various choices for hn for our
simulated data introduced in Chapter 1.

Figure 3.6 shows the L2 error as a function of h.

3.2 Consistency
In this section we use Stone’s theorem (Theorem 2.1) in order to prove the weak universal
consistency of kernel estimates under general conditions on h and K.

Theorem 3.1. Assume that there are balls S0,r of radius r and balls S0,R of radius R
centered at the origin (0 < r ≤ R), and constant b > 0 such that

I{x∈S0,R} ≥ K(x) ≥ bI{x∈S0,r}

(boxed kernel), and consider the kernel estimate mn. If hn → 0 and nhdn →∞, then the
kernel estimate is weakly universally consistent.

As one can see in Figure 3.7, the weak consistency holds for a bounded kernel with
compact support such that it is bounded away from zero at the origin. The bandwidth
must converge to zero but not too fast.

Proof. Put
Kh(x) = K(x/h).

We check the conditions of Theorem 2.1 for the weights

Wn,i(x) =
Kh(x−Xi)∑n
j=1Kh(x−Xj)

.

-

6
K(x) = I{||x||≤1}

x
-

6K(x) = (1− x2)+

x
-

6K(x) = e−x
2

x

Figure 3.1: Examples for univariate kernels.
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6

−1 −0.5 0.5 1

0.5

Figure 3.2: Kernel estimate for the naive kernel: h = 0.1, L2 error = 0.004.

Condition (i) means that

E

{∑n
i=1 Kh(X−Xi)f(Xi)∑n

j=1Kh(X−Xj)

}
≤ cE{f(X)}

-

6

−1 −0.5 0.5 1

0.5

Figure 3.3: Undersmoothing for the Epanechnikov kernel: h = 0.03, L2 error = 0.032.
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−1 −0.5 0.5 1

0.5

Figure 3.4: Kernel estimate for the Epanechnikov kernel: h = 0.1, L2 error = 0.004.

with c > 0. Because of

E

{∑n
i=1Kh(X−Xi)f(Xi)∑n

j=1 Kh(X−Xj)

}

= nE

{
Kh(X−X1)f(X1)∑n

j=1Kh(X−Xj)

}

= nE

{
Kh(X−X1)f(X1)

Kh(X−X1) +
∑n

j=2Kh(X−Xj)

}

= n

∫
f(u)

[
E

{∫
Kh(x− u)

Kh(x− u) +
∑n

j=2Kh(x−Xj)
µ(dx)

}]
µ(du)
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Figure 3.5: Oversmoothing for the Epanechnikov kernel: h = 0.5, L2 error = 0.013.
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Figure 3.6: The L2 error for the Epanechnikov kernel as a function of h.

it suffices to show that, for all u and n,

E

{∫
Kh(x− u)

Kh(x− u) +
∑n

j=2 Kh(x−Xj)
µ(dx)

}
≤ c

n
.

The compact support of K can be covered by finitely many balls, with translates of
S0,r/2, where r > 0 is the constant appearing in the condition on the kernel K, and with
centers xi, i = 1, 2, . . . ,M . Then, for all x and u,

Kh(x− u) ≤
M∑
k=1

I{x∈u+hxk+S0,rh/2}.

Furthermore, x ∈ u + hxk + S0,rh/2 implies that

u + hxk + S0,rh/2 ⊂ x + S0,rh.

-

6K(x)

x

1

b

−r r−R R

Figure 3.7: Boxed kernel.
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Now, by these two inequalities,

E

{∫
Kh(x− u)

Kh(x− u) +
∑n

j=2 Kh(x−Xj)
µ(dx)

}

≤
M∑
k=1

E

{∫
u+hxk+S0,rh/2

Kh(x− u)

Kh(x− u) +
∑n

j=2Kh(x−Xj)
µ(dx)

}

≤
M∑
k=1

E

{∫
u+hxk+S0,rh/2

1

1 +
∑n

j=2Kh(x−Xj)
µ(dx)

}

≤ 1

b

M∑
k=1

E

{∫
u+hxk+S0,rh/2

1

1 +
∑n

j=2 I{Xj∈x+S0,rh}
µ(dx)

}

≤ 1

b

M∑
k=1

E

{∫
u+hxk+S0,rh/2

1

1 +
∑n

j=2 I{Xj∈u+hxk+S0,rh/2}
µ(dx)

}

=
1

b

M∑
k=1

E

{
µ(u + hxk + S0,rh/2)

1 +
∑n

j=2 I{Xj∈u+hxk+S0,rh/2}

}

≤ 1

b

M∑
k=1

µ(u + hxk + S0,rh/2)

nµ(u + hxk + S0,rh/2)

(by Lemma 2.1)

≤ M

nb
.

The condition (ii) holds since the weights are subprobability weights.
Concerning (iii) notice that, for hnR < a,

n∑
i=1

|Wn,i(X)|I{‖Xi−X‖>a} =

∑n
i=1Khn(X−Xi)I{‖Xi−X‖>a}∑n

i=1Khn(X−Xi)
= 0.

In order to show (iv), mention that

1−
n∑
i=1

Wn,i(X) = I{∑n
i=1Khn (X−Xi)=0},
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therefore,

P

{
1 6=

n∑
i=1

Wn,i(X)

}
= P

{
n∑
i=1

Khn(X−Xi) = 0

}

≤ P

{
n∑
i=1

I{Xi 6∈SX,rhn} = 0

}
= P {µn(SX,rhn) = 0}

=

∫
(1− µ(Sx,rhn))nµ(dx).

Choose a sphere S centered at the origin, then

P

{
1 6=

n∑
i=1

Wn,i(X)

}

≤
∫
S

e−nµ(Sx,rhn )µ(dx) + µ(Sc)

=

∫
S

nµ(Sx,rhn)e−nµ(Sx,rhn ) 1

nµ(Sx,rhn)
µ(dx) + µ(Sc)

= max
u

ue−u
∫
S

1

nµ(Sx,rhn)
µ(dx) + µ(Sc).

By the choice of S, the second term can be small. For the first term we can find
z1, . . . , zMn such that the union of Sz1,rhn/2, . . . , SzMn ,rhn/2

covers S, and

Mn ≤
c̃

hdn
.

Then ∫
S

1

nµ(Sx,rhn)
µ(dx) ≤

Mn∑
j=1

∫ I{x∈Szj ,rhn/2
}

nµ(Sx,rhn)
µ(dx)

≤
Mn∑
j=1

∫ I{x∈Szj ,rhn/2
}

nµ(Szj ,rhn/2)
µ(dx)

≤ Mn

n

≤ c̃

nhdn
→ 0. (3.1)
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Concerning (v), since K(x) ≤ 1 we get that, for any δ > 0,

n∑
i=1

Wn,i(X)2 =

∑n
i=1Khn(X−Xi)

2

(
∑n

i=1Khn(X−Xi))2

≤
∑n

i=1 Khn(X−Xi)

(
∑n

i=1Khn(X−Xi))2

≤ min

{
δ,

1∑n
i=1 Khn(X−Xi)

}
≤ min

{
δ,

1∑n
i=1 bI{Xi∈SX,rhn}

}
≤ δ +

1∑n
i=1 bI{Xi∈SX,rhn}

I{∑n
i=1 I{Xi∈SX,rhn}>0

},
therefore it is enough to show that

E
{

1∑n
i=1 I{Xi∈SX,rhn}

I{∑n
i=1 I{Xi∈SX,rhn}>0

}}→ 0.

Let S be as above, then

E
{

1∑n
i=1 I{Xi∈SX,rhn}

I{∑n
i=1 I{Xi∈SX,rhn}>0

}}
≤ E

{
1∑n

i=1 I{Xi∈SX,rhn}
I{∑n

i=1 I{Xi∈SX,rhn}>0
}I{X∈S}

}
+ µ(Sc)

≤ 2E
{

1

(n+ 1)µ(SX,hn)
I{X∈S}

}
+ µ(Sc)

(by Lemma 2.1)

→ µ(Sc)

as above. 2

3.3 Rate of convergence
In this section we bound the rate of convergence of E‖mn −m‖2 for a naive kernel and
a Lipschitz continuous regression function.
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Theorem 3.2. (Györfi et al. (2002) ). For a kernel estimate with a naive kernel
assume that

Var(Y |X = x) ≤ σ2, x ∈ Rd,

and
|m(x)−m(z)| ≤ C‖x− z‖, x, z ∈ Rd,

and X has a compact support S∗. Then

E‖mn −m‖2 ≤ ĉ
σ2 + supz∈S∗ |m(z)|2

n · hdn
+ C2h2

n,

where ĉ depends only on the diameter of S∗ and on d, thus for

hn = c′
(
σ2 + supz∈S∗ |m(z)|2

C2

)1/(d+2)

n−
1
d+2

we have

E‖mn −m‖2 ≤ c′′
(
σ2 + sup

z∈S∗
|m(z)|2

)2/(d+2)

C2d/(d+2)n−2/(d+2).

Proof. We proceed similarly to Theorem 2.3. Put

m̂n(x) =

∑n
i=1m(Xi)I{Xi∈Sx,hn}

nµn(Sx,hn)
,

then we have the decomposition (2.4). If Bn(x) = {nµn(Sx,hn) > 0}, then

E{(mn(x)− m̂n(x))2|X1, . . . ,Xn}

= E

{(∑n
i=1(Yi −m(Xi))I{Xi∈Sx,hn}

nµn(Sx,hn)

)2

|X1, . . . ,Xn

}

=

∑n
i=1 Var(Yi|Xi)I{Xi∈Sx,hn}

(nµn(Sx,hn))2

≤ σ2

nµn(Sx,hn)
IBn(x).
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By Jensen’s inequality and the Lipschitz property of m,

(m̂n(x)−m(x))2

=

(∑n
i=1(m(Xi)−m(x))I{Xi∈Sx,hn}

nµn(Sx,hn)

)2

IBn(x) +m(x)2IBn(x)c

≤
∑n

i=1(m(Xi)−m(x))2I{Xi∈Sx,hn}

nµn(Sx,hn)
IBn(x) +m(x)2IBn(x)c

≤ C2h2
nIBn(x) +m(x)2IBn(x)c

≤ C2h2
n +m(x)2IBn(x)c .

Using this, together with Lemma 2.1,

E
{∫

(mn(x)−m(x))2µ(dx)

}
= E

{∫
(mn(x)− m̂n(x))2µ(dx)

}
+ E

{∫
(m̂n(x)−m(x))2µ(dx)

}
≤

∫
S∗

E
{

σ2

nµn(Sx,hn)
I{µn(Sx,hn )>0}

}
µ(dx) + C2h2

n

+

∫
S∗

E
{
m(x)2I{µn(Sx,hn )=0}

}
µ(dx)

≤
∫
S∗

2σ2

nµ(Sx,hn)
µ(dx) + C2h2

n +

∫
S∗
m(x)2(1− µ(Sx,hn))nµ(dx)

≤
∫
S∗

2σ2

nµ(Sx,hn)
µ(dx) + C2h2

n + sup
z∈S∗

m(z)2

∫
S∗
e−nµ(Sx,hn )µ(dx)

≤ 2σ2

∫
S∗

1

nµ(Sx,hn)
µ(dx) + C2h2

n

+ sup
z∈S∗

m(z)2 max
u

ue−u
∫
S∗

1

nµ(Sx,hn)
µ(dx).

Now we refer to (3.1) such that there the set S is a sphere containing S∗. Combining
these inequalities the proof is complete. 2
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Chapter 4

k-nearest-neighbor estimates

4.1 Introduction

The k-nearest neighbor rule, since its conception in 1951 and 1952 (Fix and Hodges
(1951; 1952; 1991a; 1991b)), has attracted many followers and continues to be studied
by many researchers. For surveys of various aspects of the nearest neighbor or related
methods, see Beck (1979), Biau and Devroye (2015), Bhattacharya and Mack (1987),
Bickel and Breiman (1983), Cheng (1995), Collomb (1979; 1980; 1981), Cover (1968),
Cover and Hart (1967), Dasarathy (1991), Devijver (1980), Devroye (1978; 1981a; 1981b;
1982), Devroye and Györfi (1985), Devroye et al. (1994), Devroye and Wagner (1982),
Fritz (1974), Guerre (2000) Györfi (1978) Györfi and Györfi (1975; 1978), Kulkarni and
Posner (1995), Mack (1981), Stone (1977), Stute (1984), and Zhao (1987).

Storing the n data pairs in an array and searching for the k nearest neighbors may
take time proportional to nkd if done in a naive manner—the “d” accounts for the cost
of one distance computation. This complexity may be reduced in terms of one or more
of the three factors involved. Typically, with k and d fixed, O(n1/d) worst-case time
(Papadimitriou and Bentley (1980)) and O(log n) expected time (Friedman, Bentley,
and Finkel (1977)) may be achieved. Multidimensional search trees that partition the
space and guide the search are invaluable—for this approach, see Fukunaga and Narendra
(1975), Friedman, Bentley, and Finkel (1977), Niemann and Goppert (1988), Kim and
Park (1986), and Broder (1990). We refer to a survey in Dasarathy (1991) for more
references. Other approaches are described by Yunck (1976), Friedman, Baskett, and
Shustek (1975), Vidal (1986), Sethi (1981), and Faragó, Linder, and Lugosi (1993).
Generally, with preprocessing, one may considerably reduce the overall complexity in
terms of n and d.
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We fix x ∈ Rd, and reorder the data (X1, Y1), . . . , (Xn, Yn) according to increasing
values of ‖Xi − x‖. The reordered data sequence is denoted by

(X(1,n)(x), Y(1,n)(x)), . . . , (X(n,n)(x), Y(n,n)(x))

or by
(X(1,n), Y(1,n)), . . . , (X(n,n), Y(n,n))

if no confusion is possible. X(k,n)(x) is called the kth nearest neighbor (k-NN) of x.
The kn-NN regression function estimate is defined by

mn(x) =
1

kn

kn∑
i=1

Y(i,n)(x).

If Xi and Xj are equidistant from x, i.e., ‖Xi − x‖ = ‖Xj − x‖, then we have a tie.
There are several rules for tie breaking. For example, Xi might be declared “closer” if
i < j, i.e., the tie breaking is done by indices. For the sake of simplicity we assume that
ties occur with probability 0. In principle, this is an assumption on µ, so the statements
are formally not universal, but adding a component to the observation vector X we can
automatically satisfy this condition as follows: Let (X, Z) be a random vector, where Z
is independent of (X, Y ) and uniformly distributed on [0, 1]. We also artificially enlarge
the data set by introducing Z1, Z2, . . . , Zn, where the Zi’s are i.i.d. uniform [0, 1] as well.
Thus, each (Xi, Zi) is distributed as (X, Z). Then ties occur with probability 0. In
the sequel we shall assume that X has such a component and, therefore, for each x the
random variable ‖X−x‖2 is absolutely continuous, since it is a sum of two independent
random variables such that one of the two is absolutely continuous.

Figures 4.1 – 4.3 show kn-NN estimates for various choices of kn for our simulated
data introduced in Chapter 1. Figure 4.4 shows the L2 error as a function of kn.

4.2 Consistency

In this section we use Stone’s theorem (Theorem 2.1) in order to prove weak universal
consistency of the k-NN estimate. The main result is the following theorem:

Theorem 4.1. If kn → ∞, kn/n → 0, then the kn-NN regression function estimate is
weakly consistent for all distributions of (X, Y ) where ties occur with probability zero and
EY 2 <∞.
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According to Theorem 4.1 the number of nearest neighbors (kn), over which one
averages in order to estimate the regression function, should on the one hand converge
to infinity but should, on the other hand, be small with respect to the sample size n. To
verify the conditions of Stone’s theorem we need several lemmas.

We will use Lemma 4.1 to verify condition (iii) of Stone’s theorem. Denote the
probability measure for X by µ, and let Sx,ε be the closed ball centered at x of radius
ε > 0. The collection of all x with µ(Sx,ε) > 0 for all ε > 0 is called the support of X or
µ. This set plays a key role because of the following property:

Lemma 4.1. If x ∈ support(µ) and limn→∞ kn/n = 0, then

‖X(kn,n)(x)− x‖ → 0

with probability one.

Proof. Take ε > 0. By definition, x ∈ support(µ) implies that µ(Sx,ε) > 0. Observe
that

{‖X(kn,n)(x)− x‖ > ε} =

{
1

n

n∑
i=1

I{Xi∈Sx,ε} <
kn
n

}
.

By the strong law of large numbers,

1

n

n∑
i=1

I{Xi∈Sx,ε} → µ(Sx,ε) > 0

-

6

−1 −0.5 0.5 1

0.5

Figure 4.1: Undersmoothing: kn = 3, L2 error =0.011703.
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Figure 4.2: Good choice: kn = 12, L2 error =0.004247.

with probability one, while, by assumption,

kn
n
→ 0.

Therefore, ‖X(kn,n)(x)− x‖ → 0 with probability one. 2

The next two lemmas will enable us to establish condition (i) of Stone’s theorem.

-

6

−1 −0.5 0.5 1

0.5

Figure 4.3: Oversmoothing: kn = 50, L2 error =0.009931.
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Figure 4.4: L2 error of the k-NN estimate as a function of k.

Lemma 4.2. Let
Ba(x

′) =
{
x : µ(Sx,‖x−x′‖) ≤ a

}
.

Then, for all x′ ∈ Rd,
µ(Ba(x

′)) ≤ γda,

where γd depends on the dimension d only.

Proof. Let Cj ⊂ Rd be a cone of angle π/3 and centered at 0. It is a property of cones
that if u,u′ ∈ Cj and ‖u‖ < ‖u′‖, then ‖u−u′‖ < ‖u′‖ (cf. Figure 4.5). Let C1, . . . , Cγd

O

u

u′
‖u− u′‖

‖u′‖

‖u‖

Figure 4.5: The cone property.
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be a collection of such cones with different central directions such that their union covers
Rd:

γd⋃
j=1

Cj = Rd.

Then

µ(Ba(x
′)) ≤

γd∑
i=1

µ({x′ + Ci} ∩Ba(x
′)).

Let x∗ ∈ {x′ + Ci} ∩Ba(x
′). Then, by the property of cones mentioned above, we have

µ({x′ + Ci} ∩ Sx′,‖x′−x∗‖ ∩Ba(x
′)) ≤ µ(Sx∗,‖x′−x∗‖) ≤ a,

where we use the fact that x∗ ∈ Ba(x
′). Since x∗ is arbitrary,

µ({x′ + Ci} ∩Ba(x
′)) ≤ a,

which completes the proof of the lemma. 2

An immediate consequence of the lemma is that the number of points amongX1, . . . ,Xn,
such that X is one of their k nearest neighbors, is not more than a constant times k.

Corollary 4.1. Assume that ties occur with probability zero. Then

n∑
i=1

I{X is among the k NNs of Xi in {X1,...,Xi−1,X,Xi+1,...,Xn}} ≤ kγd

a.s.

Proof. Apply Lemma 4.2 with a = k/n and let µ be the empirical measure µn of
X1, . . . ,Xn, i.e., for each Borel set A ⊆ Rd, µn(A) = (1/n)

∑n
i=1 I{Xi∈A}. Then

Bk/n(X) =
{
x : µn(Sx,‖x−X‖) ≤ k/n

}
and

Xi ∈ Bk/n(X)

⇔ µn(SXi,‖Xi−X‖) ≤ k/n

⇔ X is among the k NNs of Xi in {X1, . . . ,Xi−1,X,Xi+1, . . . ,Xn}
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a.s., where for the second ⇔ we applied the condition that ties occur with probability
zero. This, together with Lemma 4.2, yields

n∑
i=1

I{X is among the k NNs of Xi in {X1,...,Xi−1,X,Xi+1,...,Xn}}

=
n∑
i=1

I{Xi∈Bk/n(X)}

= n · µn(Bk/n(X))

≤ kγd

a.s. 2

Lemma 4.3. Assume that ties occur with probability zero. Then for any integrable func-
tion f , any n, and any k ≤ n,

k∑
i=1

E
{
|f(X(i,n)(X))|

}
≤ kγdE{|f(X)|},

where γd depends upon the dimension only.

Proof. If f is a nonnegative function,

k∑
i=1

E
{
f(X(i,n)(X))

}
= E

{
n∑
i=1

I{Xi is among the k NNs of X in {X1,...,Xn}}f(Xi)

}

= E

{
f(X)

n∑
i=1

I{X is among the k NNs of Xi in {X1,...,Xi−1,X,Xi+1,...,Xn}}

}
(by exchanging X and Xi)

≤ E{f(X)kγd},

by Corollary 4.1. This concludes the proof of the lemma. 2

Proof of Theorem 4.1. We proceed by checking the conditions of Stone’s weak
convergence theorem (Theorem 2.1) under the condition that ties occur with probability
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zero. The weight Wn,i(X) in Theorem 2.1 equals 1/kn if Xi is among the kn nearest
neighbors of X, and equals 0 otherwise, thus the weights are probability weights, and
(ii) and (iv) are automatically satisfied. Condition (v) is obvious since kn → ∞. For
condition (iii) observe that, for each ε > 0,

E

{
n∑
i=1

Wn,i(X)I{‖Xi−X‖>ε}

}

=

∫
E

{
n∑
i=1

Wn,i(x)I{‖Xi−x‖>ε}

}
µ(dx)

=

∫
E

{
1

kn

kn∑
i=1

I{‖X(i,n)(x)−x‖>ε}

}
µ(dx)→ 0

holds whenever ∫
P
{
‖X(kn,n)(x)− x‖ > ε

}
µ(dx)→ 0, (4.1)

where X(kn,n)(x) denotes the knth nearest neighbor of x among X1, . . . ,Xn. For x ∈
support(µ), kn/n→ 0, together with Lemma 4.1, implies

P
{
‖X(kn,n)(x)− x‖ > ε

}
→ 0 (n→∞).

This together with the dominated convergence theorem implies (4.1). Finally, we consider
condition (i). It suffices to show that for any nonnegative measurable function f with
E{f(X)} <∞, and any n,

E

{
n∑
i=1

1

kn
I{Xi is among the kn NNs of X}f(Xi)

}
≤ c · E {f(X)}

for some constant c. But we have shown in Lemma 4.3 that this inequality always holds
with c = γd. Thus, condition (i) is verified. 2

4.3 Rate of convergence

In this section we bound the rate of convergence of E‖mn−m‖2 for a kn-nearest neighbor
estimate.
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Theorem 4.2. (Györfi et al. (2002) ). Assume that X is bounded,

σ2(x) = Var(Y |X = x) ≤ σ2 (x ∈ Rd)

and
|m(x)−m(z)| ≤ C‖x− z‖ (x, z ∈ Rd).

Assume that d ≥ 3. Let mn be the kn-NN estimate. Then

E‖mn −m‖2 ≤ σ2

kn
+ c1 · C2

(
kn
n

)2/d

,

thus for kn = c′ (σ2/C2)
d/(2+d)

n
2
d+2 ,

E‖mn −m‖2 ≤ c′′σ
4
d+2C

2d
2+dn−

2
d+2 .

For the proof of Theorem 4.2 we need the rate of convergence of nearest neighbor
distances.

Lemma 4.4. Assume that X is bounded. If d ≥ 3, then

E{‖X(1,n)(X)−X‖2} ≤ c̃

n2/d
.

Proof. For fixed ε > 0,

P{‖X(1,n)(X)−X‖ > ε} = E{(1− µ(SX,ε))
n}.

Let A1, . . . , AN(ε) be a cubic partition of the bounded support of µ such that the Aj’s
have diameter ε and

N(ε) ≤ c

εd
.

If x ∈ Aj, then Aj ⊂ Sx,ε, therefore

E{(1− µ(SX,ε))
n} =

N(ε)∑
j=1

∫
Aj

(1− µ(Sx,ε))
nµ(dx)

≤
N(ε)∑
j=1

∫
Aj

(1− µ(Aj))
nµ(dx)

=

N(ε)∑
j=1

µ(Aj)(1− µ(Aj))
n.
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Obviously,

N(ε)∑
j=1

µ(Aj)(1− µ(Aj))
n ≤

N(ε)∑
j=1

max
z
z(1− z)n

≤
N(ε)∑
j=1

max
z
ze−nz

=
e−1N(ε)

n
.

If L stands for the diameter of the support of µ, then

E{‖X(1,n)(X)−X‖2} =

∫ ∞
0

P{‖X(1,n)(X)−X‖2 > ε} dε

=

∫ L2

0

P{‖X(1,n)(X)−X‖ >
√
ε} dε

≤
∫ L2

0

min

{
1,
e−1N(

√
ε)

n

}
dε

≤
∫ L2

0

min
{

1,
c

en
ε−d/2

}
dε

=

∫ (c/(en))2/d

0

1 dε+
c

en

∫ L2

(c/(en))2/d
ε−d/2dε

≤ c̃

n2/d

for d ≥ 3. 2

Proof of Theorem 4.2. We have the decomposition

E{(mn(x)−m(x))2} = E{(mn(x)− E{mn(x)|X1, . . . ,Xn})2}
+E{(E{mn(x)|X1, . . . ,Xn} −m(x))2}

= I1(x) + I2(x).
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The first term is easier:

I1(x) = E


(

1

kn

kn∑
i=1

(
Y(i,n)(x)−m(X(i,n)(x))

))2


= E

{
1

k2
n

kn∑
i=1

σ2(X(i,n)(x))

}

≤ σ2

kn
.

For the second term

I2(x) = E


(

1

kn

kn∑
i=1

(m(X(i,n)(x))−m(x))

)2


≤ E


(

1

kn

kn∑
i=1

|m(X(i,n)(x))−m(x)|

)2


≤ E


(

1

kn

kn∑
i=1

C‖X(i,n)(x)− x‖

)2
 .

Put N = knb nkn c. Split the data X1, . . . ,Xn into kn + 1 segments such that the first kn
segments have length b n

kn
c, and let X̃x

j be the first nearest neighbor of x from the jth
segment. Then X̃x

1 , . . . , X̃x
kn

are kn different elements of {X1, . . . ,Xn}, which implies

kn∑
i=1

‖X(i,n)(x)− x‖ ≤
kn∑
j=1

‖X̃x
j − x‖,
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therefore, by Jensen’s inequality,

I2(x) ≤ C2E


(

1

kn

kn∑
j=1

‖X̃x
j − x‖

)2


≤ C2 1

kn

kn∑
j=1

E
{
‖X̃x

j − x‖2
}

= C2E
{
‖X̃x

1 − x‖2
}

= C2E
{
‖X(1,b n

kn
c)(x)− x‖2

}
.

Thus, by Lemma 4.4,

1

C2

⌊ n
kn

⌋2/d
∫
I2(x)µ(dx) ≤

⌊ n
kn

⌋2/d

E
{
‖X(1,b n

kn
c)(X)−X‖2

}
≤ const.

2
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Chapter 5

Splitting the sample

In the previous chapters the parameters of the estimates with the optimal rate of con-
vergence depend on the unknown distribution of (X, Y ), especially on the smoothness of
the regression function. In this and in the following chapter we present data-dependent
choices of the smoothing parameters. We show that for bounded Y the estimates with
parameters chosen in such an adaptive way achieve the optimal rate of convergence.

5.1 Best random choice of a parameter
Let Dn = {(X1, Y1), . . . , (Xn, Yn)} be the sample as before. Assume a finite set Qn of
parameters such that for every parameter h ∈ Qn there is a regression function estimate
m

(h)
n (·) = m

(h)
n (·, Dn). Let ĥ = ĥ(Dn) ∈ Qn be such that∫
|m(ĥ)

n (x)−m(x)|2µ(dx) = min
h∈Qn

∫
|m(h)

n (x)−m(x)|2µ(dx),

where ĥ is called the best random choice of the parameter. Obviously, ĥ is not an
estimate, it depends on the unknown m and µ.

This best random choice can be approximated by splitting the data. Let Dnl =
{(X1, Y1), . . . , (Xnl , Ynl)} be the learning (training) data of size nl andDn\Dnl the testing
data of size nt (n = nl + nt ≥ 2). For every parameter h ∈ Qn let m(h)

nl (·) = m
(h)
nl (·, Dnl)

be an estimate of m depending only on the learning data Dnl of the sample Dn. Use the
testing data to choose a parameter H = H(Dn) ∈ Qn:

1

nt

nl+nt∑
i=nl+1

|m(H)
nl

(Xi)− Yi|2 = min
h∈Qn

1

nt

nl+nt∑
i=nl+1

|m(h)
nl

(Xi)− Yi|2. (5.1)
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Define the estimate by

mn(x) = mn(x,Dn) = m(H)
nl

(x,Dnl). (5.2)

We show that H approximates the best random choice ĥ in the sense that E
∫
|mn(x)−

m(x)|2µ(dx) approximates E
∫
|m(ĥ)

nl (x)−m(x)|2µ(dx).

Theorem 5.1. (Györfi, Kohler, Krzyzak, Walk (2002) ) Let 0 < L < ∞. As-
sume

|Y | ≤ L a.s. (5.3)

and
max
h∈Qn

‖m(h)
nl
‖∞ ≤ L a.s. (5.4)

Then, for any δ > 0,

E
∫
|mn(x)−m(x)|2µ(dx)

≤ (1 + δ)E
∫
|m(ĥ)

nl
(x)−m(x)|2µ(dx) + c

1 + log(|Qn|)
nt

, (5.5)

where ĥ = ĥ(Dnl) and c = L2(16/δ + 35 + 19δ).

The only assumption on the underlying distribution in Theorem 5.1 is the bounded-
ness of |Y | (cf. (5.3)). It can be applied to any estimate which is bounded in supremum
norm by the same bound as the data (cf. (5.4)). We can always truncate an estimate at
±L, which implies that (5.4) holds. If (5.3) holds, then the regression function will be
bounded in absoulte value by L, too, and hence the L2 error of the truncated estimate
will be less than or equal to the L2 error of the original estimate, so the truncation has
no negative consequence in view of the error of the estimate.

In the next section we will apply this theorem to partitioning, kernel, and nearest
neighbor estimates. We will choose Qn and nt such that the second term on the right-
hand side of (5.5) is less than the first term. This implies that the expected L2 error of
the estimate is bounded by some constant times the expected L2 error of an estimate,
which is applied to a data set of size nl (rather than n) and where the parameter is chosen
in an optimal way for this data set. Observe that this is not only true asymptotically,
but true for each finite sample size.
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5.2 Partitioning, kernel, and nearest neighbor estimates

In Theorems 2.3, 3.2, and 4.2 we showed that partitioning, kernel, and nearest neighbor
estimates are able to achieve the minimax lower bound for the estimation of (p, C)-
smooth regression functions if p = 1 and if the parameters are chosen depending on C
(the Lipschitz constant of the regression function). Obviously, the value of C will be
unknown in an application, therefore, one cannot use estimates where the parameters
depend on C in applications. In the sequel we show that, in the case of bounded data,
one can also derive similar bounds for estimates where the parameters are chosen by
splitting the sample.

We start with the kernel estimate. Let m(h)
n be the kernel estimate with naive kernel

and bandwidth h. We choose the finite set Qn of bandwidths such that we can approach
the choice of the bandwidth in Theorem 3.2 up to some factor less than some constant,
e.g., up to factor 2. This can be done, e.g., by setting

Qn =
{

2k : k ∈ {−n,−(n− 1), . . . , 0, . . . , n− 1, n}
}
.

Theorems 5.1 and 3.2 imply

Corollary 5.1. (Györfi, Kohler, Krzyzak, Walk (2002) ) Assume that X is
bounded,

|m(x)−m(z)| ≤ C · ‖x− z‖ (x, z ∈ Rd)

and |Y | ≤ L a.s. Set

nl =
⌈n

2

⌉
and nt = n− nl.

Let mn be the kernel estimate with naive kernel and bandwidth h ∈ Qn chosen as in
Theorem 5.1, where Qn is defined as above. Then (log n)(d+2)/(2d)n−1/2 ≤ C implies, for
n ≥ 2,

E
∫
|mn(x)−m(x)|2µ(dx) ≤ c1C

2d/(d+2)n−2/(d+2)

for some constant c1 which depends only on L, d, and the diameter of the support of X.

Proof. Without loss of generality we can assume C ≤ n1/d (otherwise, the assertion is
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trivial because of boundedness of Y ). Theorems 5.1 and 3.2 imply

E
∫
|mn(x)−m(x)|2µ(dx)

≤ 2 min
h∈Qn

E
∫
|m(h)

nl
(x)−m(x)|2µ(dx) + c · 1 + log(|Qn|)

nt

≤ 2 min
h∈Qn

(
ĉ · 2L2

nlhd
+ C2h2

)
+ c · 1 + log(2n+ 1)

nt

≤ 2

(
ĉ · 2L2

nlhdn
+ C2h2

n

)
+ c · 1 + log(2n+ 1)

nt
,

where hn ∈ Qn is chosen such that

C−2/(d+2)n−1/(d+2) ≤ hn ≤ 2C−2/(d+2)n−1/(d+2).

The choices of hn, nl, and nt together with C ≥ (log n)(d+2)/(2d)n−1/2 imply

E
∫
|mn(x)−m(x)|2µ(dx)

≤ c̃ · C2d/(d+2)n−2/(d+2) + 4c · 1 + log(2n+ 1)

n

≤ c1 · C2d/(d+2)n−2/(d+2).

2

Similarly, one can show the following result concerning the partitioning estimate:

Corollary 5.2. (Györfi, Kohler, Krzyzak, Walk (2002) ) Assume that X is
bounded,

|m(x)−m(z)| ≤ C · ‖x− z‖ (x, z ∈ Rd)

and |Y | ≤ L a.s. Set
nl =

⌈n
2

⌉
and nt = n− nl.

Let mn be the partitioning estimate with cubic partition and grid size h ∈ Qn chosen as
in Theorem 5.1, where Qn is defined as above. Then (log n)(d+2)/(2d)n−1/2 ≤ C implies,
for n ≥ 2,

E
∫
|mn(x)−m(x)|2µ(dx) ≤ c2C

2d/(d+2)n−2/(d+2)

for some constant c2 which depends only on L, d, and the diameter of the support of X.
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Finally we consider the k-nearest neighbor estimates. Here we can setQn = {1, . . . , n},
so the optimal value from Theorem 4.2 is contained in Qn. Immediately from Theorems
5.1 and 4.2 we can conclude

Corollary 5.3. (Györfi, Kohler, Krzyzak, Walk (2002) ) Assume that X is
bounded,

|m(x)−m(z)| ≤ C · ‖x− z‖ (x, z ∈ Rd)

and |Y | ≤ L a.s. Set
nl =

⌈n
2

⌉
and nt = n− nl.

Let mn be the k-nearest neighbor estimate with k ∈ Qn = {1, . . . , nl} chosen as in
Theorem 5.1. Then (log n)(d+2)/(2d)n−1/2 ≤ C together with d ≥ 3 implies, for n ≥ 2,

E
∫
|mn(x)−m(x)|2µ(dx) ≤ c3C

2d/(d+2)n−2/(d+2)

for some constant c3 which depends only on L, d, and the diameter of the support of X.

Here we use for each component of X the same smoothing parameter. But the
results can be extended to optimal scaling, where one uses for each component a different
smoothing parameter. Splitting of the data can be used to approximate the optimal
scaling parameters, which depend on the underlying distribution.

In Corollaries 5.1–5.3 the expected L2 error of the estimates is bounded from above
up to a constant by the corresponding minimax lower bound for (p, C)-smooth regres-
sion functions, if p = 1. We would like to mention two important aspects of these
results: First, the definition of the estimates does not depend on C, therefore they adapt
automatically to the unknown smoothness of the regression function measured by the
Lipschitz constant C. Second, the bounds are valid for finite sample size. So we are able
to approach the minimax lower bound not only asymptotically but even for finite sample
sizes.

Approaching the minimax lower bound for fixed sample size by some constant does
not imply that one can get asymptotically the minimax rate of convergence with the
optimal constant in front of n−2p/(2p+d). But as we show in the next theorem, this goal
can also be reached by splitting the sample:

Theorem 5.2. (Györfi, Kohler, Krzyzak, Walk (2002) ) Under the conditions
of Theorem 5.1 assume that

log |Qn| ≤ c̃ log n
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and
E
{

min
h∈Qn

∫
|m(h)

n (x)−m(x)|2µ(dx)

}
≤ Copt(1 + o(1))n−γ

for some 0 < γ < 1. Choose γ < γ′ < 1 and set

nt =
⌈
nγ
′
⌉

and nl = n− nt.

Then
E
∫
|mn(x)−m(x)|2µ(dx) ≤ Copt(1 + o(1))n−γ.

Proof. Theorem 5.1 implies that

E
∫
|mn(x)−m(x)|2µ(dx)

≤ (1 + δ)E
{

min
h∈Qn

∫
|m(h)

nl
(x)−m(x)|2µ(dx)

}
+ c

1 + log(|Qn|)
nt

≤ (1 + δ)Copt(1 + o(1))n−γl + c
1 + c̃ log n

nt

≤ (1 + δ)Copt(1 + o(1))(1− o(1))−γn−γ + c
1 + c̃ log n

nγ′

(since nl = n− dnγ′e and n− nγ′ = (1− n−(1−γ′)) · n )

= (1 + δ)Copt(1 + o(1))n−γ.

Since δ > 0 is arbitrary we get that

E
∫
|mn(x)−m(x)|2µ(dx) ≤ Copt(1 + o(1))n−γ.

2
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Chapter 6

Cross-validation

6.1 Best deterministic choice of the parameter
Let Dn = {(X1, Y1), . . . , (Xn, Yn)} be the sample as before. Assume a finite set Qn of
parameters such that for every parameter h ∈ Qn there is a regression function estimate
m

(h)
n (·) = m

(h)
n (·, Dn). Let h̄n ∈ Qn be such that

E
{∫
|m(h̄n)

n (x)−m(x)|2µ(dx)

}
= min

h∈Qn
E
{∫
|m(h)

n (x)−m(x)|2µ(dx)

}
,

where h̄n is called the best deterministic choice of the parameter. Obviously, h̄n is not
an estimate, it depends on the unknown distribution of (X, Y ), in particular on m and
µ.

This best deterministic choice can be approximated by cross-validation. For every
parameter h ∈ Qn letm(h)

n andm(h)
n,i be the regression estimates fromDn andDn\(Xi, Yi),

respectively, where

Dn\(Xi, Yi) = {(X1, Y1), . . . , (Xi−1, Yi−1), (Xi+1, Yi+1), . . . , (Xn, Yn)}.

The cross-validation selection of h is

H = Hn = arg min
h∈Qn

1

n

n∑
i=1

(m
(h)
n,i (Xi)− Yi)2.

Define the cross-validation regression estimate by

mn(x) = m(H)
n (x). (6.1)
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Throughout this chapter we use the notation

∆(h)
n = E

∫
|m(h)

n (x)−m(x)|2µ(dx).

In the sequel we show that Hn approximates the best deterministic choice h̄ = h̄n−1 for
sample size n− 1 in the sense that E

{
∆

(Hn)
n−1

}
approximates ∆

(h̄n−1)
n−1 with an asymptoti-

cally small correction term.

6.2 Partitioning and kernel estimates

Theorem 6.1 yields relations between E
{

∆
(Hn)
n−1

}
and ∆

(h̄n−1)
n−1 .

Theorem 6.1. (Györfi, Kohler, Krzyzak, Walk (2002) ) Let |Y | ≤ L < ∞.
Choose m(h)

n of the form

m(h)
n (x) =

∑n
j=1 YjKh(x,Xj)∑n
j=1Kh(x,Xj)

where the binary valued function Kh : Rd × Rd → {0, 1} with Kh(x, x) = 1 fulfills the
covering assumption (C) that a constant ρ > 0 depending only on {Kh;h ∈ ∪nQn} exists
with ∫

Kh(x, z)∫
Kh(x, t)µ(dt)

µ(dx) ≤ ρ

for all z ∈ Rd, all h ∈ ∪nQn, and all probability measures µ.
(a)

E
{

∆
(Hn)
n−1

}
≤ ∆

(h̄n−1)
n−1 + c

√
log(|Qn|)

n

for some constant c depending only on L and ρ.
(b) For any δ > 0

E
{
4(Hn)
n−1

}
≤ (1 + δ)4(hn−1)

n−1 +c
|Qn|
n

log n,

where c depends only on δ, L, and ρ.

The covering assumption (C) in Theorem 6.1 is fulfilled for kernel estimates using
naive kernel and partitioning estimates (see below). Before we consider the application of
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Theorem 6.1 to these estimates in detail, we give some comments concerning convergence
order.

Neglecting log n, the correction terms in parts (a) and (b) are both of the order n−1/2

if |Qn| = O(n1/2). One is interested that the correction term is less than 4(hn−1)
n−1 . For

Lipschitz-continuous m one has

4(hn−1)
n−1 = O

(
n−2/(d+2)

)
in naive kernel estimation and cubic partitioning estimation according to Theorems 3.2
and 2.3, respectively. In this case, for d ≥ 3 and log(|Qn|) = O(log n), i.e., |Qn| ≤ ns for
some s > 0, or for log(|Qn|) = O(nt) for some 0 < t < (d − 2)/(d + 2), part (a) yields
the desired result, and for d ≥ 1 and log(|Qn|) ≤ c∗ log n with c∗ < d/(d + 2), part (b)
yields the desired result. The latter also holds if

4(hn−1)
n−1 = O(n−γ)

with γ < 1 near to 1, if c∗ is chosen sufficiently small.
Now we give more detailed applications of Theorem 6.1 to kernel and partitioning

estimates. Let Ph be a partition of Rd, and denote by m
(h)
n the partitioning estimate

for this partition and sample size n. Because of the proof of Theorem 2.2 the covering
assumption (C) is satisfied with ρ = 1:∫

I{z∈An(x)}

µ(An(x))
µ(dx) =

∫
I{z∈An(x)}

µ(An(z))
µ(dx)

=
µ(An(z))

µ(An(z))

= 1.

Or, let

m(h)
n (x) =

∑n
j=1 YjK

(
x−Xj
h

)
∑n

j=1 K
(
x−Xj
h

) .

be the kernel estimate with bandwidth h and naive kernel K. The covering assumption
is satisfied with a ρ depending on d only.

For these estimates Theorem 6.1, together with Theorems 3.2 and 2.3, implies

Corollary 6.1. (Györfi, Kohler, Krzyzak, Walk (2002) ) Assume that X is
bounded,

|m(x)−m(z)| ≤ C · ‖x− z‖ (x, z ∈ Rd)
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and |Y | ≤ L a.s.
Let mn be the partitioning estimate with cubic partitioning and grid size h ∈ Qn cho-

sen as in Theorem 6.1, or let mn be the kernel estimate with naive kernel and bandwidth
h ∈ Qn chosen as in Theorem 6.1. Let d ≥ 3,

Qn =
{

2k : k ∈ {−n,−(n− 1), . . . , 0, . . . , n− 1, n}
}

and
(log n)(d+2)/(4d)n−(d−2)/(4d) ≤ C,

or, let d ≥ 1,
Qn =

{
d2−n1/4+ke : k ∈ {1, 2, . . . , 2dn1/4e}

}
and

(log n)(d+2)/(2d)n−(3d−2)/(8d) ≤ C.

Then, in each of the four cases,

E
{

∆
(Hn)
n−1

}
≤ c1C

2d/(d+2)n−2/(d+2)

for some constant c1 which depends only on L, d, and the diameter of the support of X.

As in the previous chapter the results can be extended to optimal scaling and adapting
to the optimal constant in front of n−2/(d+2).

6.3 Nearest neighbor estimates

Theorem 6.1 cannot be applied for a nearest neighbor estimate. Let m(k)
n be the k-NN

estimate for sample size n ≥ 2. Then h = k can be considered as a parameter, and we
choose Qn = {1, . . . , n}. Let mn denote the cross-validation nearest neighbor estimate,
i.e., put

H = Hn = arg min
h

1

n

n∑
i=1

(m
(h)
n,i (Xi)− Yi)2

and
mn = m(H)

n .

For the nearest neighbor estimate again we have covering (Corollary 4.1) with ρ = γd.
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Theorem 6.2. (Györfi, Kohler, Krzyzak, Walk (2002) ) Assume that |Y | ≤ L.
Then, for the cross-validation nearest neighbor estimate mn,

E{∆(Hn)
n−1 } ≤ ∆

(h̄n−1)
n−1 + c

√
log n

n

for some constant c depending only on L and γd.

Theorems 6.2 and 4.2 imply

Corollary 6.2. (Györfi, Kohler, Krzyzak, Walk (2002) ) Assume that X is
bounded,

|m(x)−m(z)| ≤ C · ‖x− z‖ (x, z ∈ Rd)

and |Y | ≤ L a.s. Let mn be the k-nearest neighbor estimate with k chosen as in Theorem
6.2. Then for d ≥ 3 and

(log n)(d+2)/(4d)n−(d−2)/(4d) ≤ C,

one has

E{∆(Hn)
n−1 } ≤ c1C

2d/(d+2)n−2/(d+2)

for some constant c1 which depends only on L, d, and the diameter of the support of X.
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Chapter 7

Estimating the residual variance

7.1 Introduction
In this chapter we study the problem of estimating the smallest achievable mean-squared
error in regression function estimation in multivariate problems. We introduce and an-
alyze a nearest neighbor-based estimate of the second moment of the regression func-
tion. The second moment of the regression function is closely tied to the best possible
achievable mean squared error. It is shown that the estimate is asymptotically normally
distributed. It is remarkable that the asymptotic variance only depends on conditional
moments of the regression function but not on its smoothness. Moreover, the non-
asymptotic variance is bounded by a constant that is independent of the dimension.
We also establish a non-asymptotic exponential concentration inequality. We illustrate
these results studying variable selection. In particular, we construct and analyze a test
for deciding whether a component of the observational vector has predictive power.

The formal setup is as follows. Let (X, Y ) be a pair of random variables such that
X = (X(1), . . . , X(d)) takes values in Rd and Y is a real-valued random variable with
E[Y 2] <∞. We denote by µ the distribution of the observation vector X, that is, for all
measurable sets A ⊂ Rd, µ(A) = P{X ∈ A}. Then the regression function

m(x) = E[Y | X = x] (7.1)

is well defined for µ-almost all x. The center of our investigations is the functional

L∗ = E
[
(m(X)− Y )2

]
.

The importance of this functional stems from the fact that for each measurable function
g : Rd → R one has

E
[
(g(X)− Y )2

]
= L∗ + E

[
(m(X)− g(X))2

]
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and, in particular,
L∗ = min

g
E
[
(g(X)− Y )2

]
,

where the minimum is taken over all measurable functions g : Rd → R. In other words,
L∗ is the minimal mean squared error of any “predictor” of Y based on observing X. L∗
is often referred to as the residual variance.

In regression analysis the residual variance L∗ is of obvious interest as it provides a
lower bound for the performance of any regression function estimator. In this chapter we
study the problem of estimating L∗ based on data consisting of independent, identically
distributed (i.i.d.) copies of the pair (X, Y ). It is convenient to assume that the number
of samples is even and the 2n samples are split into two halves as

Dn = {(X1, Y1), . . . , (Xn, Yn)} and D′n = {(X′1, Y ′1), . . . , (X′n, Y
′
n)}

such that the 2n+ 1 pairs (X, Y ), (X1, Y1), . . . , (Xn, Yn), (X′1, Y
′

1), . . . , (X′n, Y
′
n) are inde-

pendent and identically distributed.
An estimator L̂n of L∗ is simply a function of the data Dn, D

′
n. We are interested in

“nonparametric” estimators of L∗ that work under minimal assumptions on the underly-
ing distribution. In particular, a desirable feature of any estimate is that it is strongly
universally consistent, that is, L̂n → L∗ with probability one, for all possible distributions
of (X, Y ) with EY 2 < ∞. Such estimators may be constructed, for example, by con-
structing a strongly universally consistent regression function estimator mn based on the
data Dn (i.e., a function mn is such that E[(mn(X)−Y )2|Dn]→ L∗ with probability one
for all distributions) and estimating its mean squared error by (1/n)

∑n
i=1(mn(X′i)−Y ′i )2.

(For a detailed theory of universally consistent regression function estimation see Györfi
et al. (2002).) However, the rate of convergence of such estimators is determined by
the rate of convergence of the mean squared error of mn which can be quite slow even
under regularity assumptions on the underlying distribution. Estimating the entire re-
gression function m(x) is, intuitively, “harder” than estimating the value of L∗. Indeed,
nearest-neighbor-based estimators of L∗ have been constructed and analyzed by De-
vroye, Ferrario, Györfi, and Walk (2013), Devroye, Schäfer, Györfi, and Walk (2003),
Evans and Jones (2008), Liitiäinen, Corona, and Lendasse (2008), (2010), Liitiäinen,
Verleysen, Corona, and Lendasse (2009), and Ferrario and Walk (2012). These estimates
have been shown to have a faster rate of convergence—under some natural assumptions–
than estimates based on estimating the error of consistent regression function estimators.
Moreover, the estimate in Devroye, Ferrario, Györfi, and Walk (2013) is strongly univer-
sally consistent.

In this chapter we introduce yet another universally consistent nearest-neighbor-based
estimator of L∗. The advantage of this estimator, apart from sharing the fast rates of
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convergence of previously defined estimators, is that its random fluctuations may be
bounded by dimension-, and distribution-independent quantities. In particular, we prove
a central limit theorem and a distribution-free upper bound for the variance for the new
estimator that show that it is concentrated around its expected value in an interval of
width O(1/

√
n), independently of the dimension. The established concentration property

is crucial in a variable-selection procedure that we discuss as an application. In particular,
we design a test for deciding whether exclusion of a certain component of X increases
L∗ or not.

The chapter is organized as follows. In Section 7.2 we introduce a novel estimate of L∗
and establish some of its properties such as asymptotic normality and a non-asymptotic
concentration inequality. The central limit theorem holds without any smoothness con-
dition on the regression function, and the asymptotic variance depends only on the
conditional moments of Y (Theorem 7.1). We prove a non-asymptotic bound on the
variance that does not depend on the dimension of X (Theorem 7.2), and show an ex-
ponential concentration inequality for the centered estimate (Theorem 7.3). All these
results are universal in the sense that we only assume that X has a density and Y is
bounded.

In Section 7.3 we briefly describe how the results method based on the results of
Section 7.2 may be relevant for variable selection. Finally, the proofs are presented in
Section 7.4.

7.2 A nearest-neighbor based estimate and its asymp-
totic normality

Denoting the second moment of the regression function by

S∗ = E
[
m(X)2

]
,

we have
L∗ = E

[
Y 2
]
− S∗ ,

and therefore estimating L∗ is essentially equivalent to estimating S∗ (as the “easy” part
E [Y 2] may be estimated by, e.g., (1/n)

∑n
i=1 Y

2
i whose behavior is well understood).

Next we introduce a nearest neighbor-based estimator of S∗. Based on the data
Dn, we start by constructing a nearest-neighbor (1-NN) regression function estimator as
follows. Let X1,n(x) be the first nearest neighbor of x among X1, . . . ,Xn (with respect
to the Euclidean distance in Rd) and let Y1,n(x) be its label. (In order to rigorously
define the nearest neighbor, we assume that ties are broken in order to favor points with
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smaller index. Since we assume the distribution of X to be absolutely continuous, this
issue is immaterial since ties occur with probability zero.) The 1-NN estimator of the
regression function m is defined as

mn(x) = Y1,n(x) .

The proposed estimate of S∗ is

Sn =
1

n

n∑
i=1

Y ′imn(X′i) .

By a straightforward adjustment of the arguments of Devroye, Ferrario, Györfi, and
Walk (2013), one may show that Sn is a strongly universal consistent estimate of S∗,
that is,

lim
n
Sn = S∗

with probability one for any distribution of (X, Y ) with E[Y 2] <∞. Note that the con-
sistent functional estimate Sn is based on a non-consistent regression function estimate
mn.

Next we establish asymptotic normality of Sn under the condition that the response
variable Y is bounded. In order to describe the asymptotic variance, we introduce the
dimension-dependent constant α(d) as follows.

Let Bx,r denote the closed ball of radius r > 0 centered at x in Rd and let λ denote
the Lebesgue measure on Rd. Let V be a random vector uniformly distributed in B0,1.
Define 1 = (1, 0, 0, . . . , 0) ∈ Rd and let B = B1,1

⋃
BV,‖V ‖. Introduce the random variable

W =
λ(B)

λ(B0,1)

and define
α(d) = E

[
2

W 2

]
. (7.2)

Theorem 7.1. (Devroye, Györfi, Lugosi, and Walk (2018)) Assume that µ has
a density and that there exists a constant L > 0 such that

P{|Y | < L} = 1 . (7.3)

Denote
M2(X) = E[Y 2 | X]
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and define

σ2
1 =

∫
M2(x)2µ(dx)−

(∫
m(x)2µ(dx)

)2

and
σ2

2 = α(d)

(∫
M2(x)m(x)2µ(dx)−

∫
m(x)4µ(dx)

)
.

If σ1 > 0, then √
n (Sn − E{Sn}) /σ

D→ N(0, 1) ,

where
σ2 = σ2

1 + σ2
2 .

The dependence of the asymptotic variance on the dimension d is weak, merely via the
constant α(d). Given X1, . . . ,Xn, Devroye, Györfi, Lugosi, and Walk (2017) considered
the probability measures of the Voronoi cells. They proved that the asymptotic variance
of n-times the probability measure of the Voronoi cell is equal to α(d) − 1. Thus, this
asymptotic variance is universal in the sense that it does not depend on the underlying
density. A few values are α(1) = 1.5, α(2) ≈ 1.28, α(3) ≈ 1.18. In general, 1 ≤ α(d) ≤ 2
and α(d) → 1 exponentially fast as d → ∞. Thus, by (7.3) we have σ2 ≤ 3L4, and
therefore Theorem 7.1 implies that

lim sup
n→∞

nVar(Sn) ≤ 3L4.

The next theorem shows that, up to a constant factor, this bound holds non-asymptotically.

Theorem 7.2. (Devroye, Györfi, Lugosi, and Walk (2018)) Assume that µ has
a density and that |Y | < L. Then for all n ≥ 1,

Var(Sn) ≤ 9 · L4

n
.

The next result is a non-asymptotic exponential inequality that extends Theorem 7.2.
It implies that for all t > 0,

P
{√

n|Sn − ESn| > t
}
≤ ce−(t/(cL2))

2/3

for a universal constant c > 0. It is an interesting open question whether the right-hand
side can be improved to e−(t/(cL2))

2

. This would give a non-asymptotic analog of the
central limit theorem of Theorem 7.1.
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Theorem 7.3. (Devroye, Györfi, Lugosi, and Walk (2018)) Assume that µ has
a density and that |Y | < L. Write

Sn − E [Sn] = Un + Vn

with
Un = Sn − E [Sn | Dn] and Vn := E [Sn | Dn]− E [Sn] .

Then for every n ≥ 1 and ε > 0, we have

P {|Un| > ε} ≤ 2e−nε
2/(2L4)

and

P{|Vn| ≥ ε} ≤ 2e−n
1/3ε2/3/(42eL4)1/3+1 . (7.4)

The proofs of Theorems 7.1, 7.2 and 7.3 are presented in Section 7.4.

7.3 Illustration: testing for dimension reduction

In standard nonparametric regression design, one considers a finite number of real-valued
features X(i), i ∈ I ⊂ {1, . . . , d} for predicting the value of a response variable Y . A first
question one may try to answer is whether these features suffice to explain Y . In case
they do, an estimation method can be applied on the basis of the features already under
consideration. Otherwise more or different features need to be considered. The quality
of a subvector {X(i), i ∈ I} of X is measured by the minimum mean squared error

L∗(I) := E
[
Y − E[Y | X(i) : i ∈ I]

]2
that can be achieved using the features as explanatory variables. L∗(I) depends upon
the unknown distribution of (Y,X(i) : i ∈ I).

Thus, even before a regression function estimate is chosen, one may be interested in
estimating L∗. For possible dimensionality reduction, one needs, in general, to test the
hypothesis

L∗ = L∗(I) (7.5)

for a particular (proper) subset I of {1, . . . , d}. A natural way of approaching this
testing problem is by estimating both L∗ and L∗(I), and accept the hypothesis if the two
estimates are close to each other (De Brabanter, Ferrario and Györfi (2014)).
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Introduce the notation

S∗(I) := E
[
E[Y | X(i), i ∈ I]2

]
.

Then the hypothesis (7.5) is equivalent to

S∗ = S∗(I) .

Without loss of generality, consider the case I = {1, . . . , d−1}, that is, the case when
one tests whether the last component X(d) of the observation vector (X(1), . . . , X(d)) is
ineffective. Let the transformation T be defined by

T ((x(1), . . . , x(d))) = (x(1), . . . , x(d−1)) .

Thus, dropping the component X(d) from the observation vector X = (X(1), . . . , X(d))
leads to the observation vector

X̂ = T (X) = (X(1), . . . , X(d−1))

of dimension d− 1.
Using the notation

m(X) = E[Y | X] and m̃(T (X)) = E[Y | T (X)]

and
S∗ = E[m(X)2] and Ŝ∗ = E[m̃(T (X))2] ,

the null-hypothesis Ŝ∗ = S∗ is equivalent to

m(X) = m̃(T (X)) with probability one. (7.6)

We propose to approach this testing problem by considering the nearest-neighbor
estimate defined in Section 7.2. Let Sn be the estimate of S∗ using the sample

D2n = {(X1, Y1), . . . , (X2n, Y2n)} .

Assume that an independent sample of size 2n is available:

D2n = {(X1, Y 1), . . . , (X2n, Y 2n)} .

We use D2n to construct an estimate S̃n of Ŝ∗. S̃n is defined as the nearest-neighbor
estimate computed from the sample

{(T (X1), Y 1), . . . , (T (X2n), Y 2n)} .
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The proposed test is based of the test statistic

Tn = Sn − S̃n

and accepts the null hypothesis (7.6) if and only if

Tn ≤ an := ωn
(
n−1/2 + n−2/d

)
where ωn is an increasing unbounded sequence such that an → 0. Under the alterna-
tive hypothesis, according to the consistency result of Devroye, Ferrario, Györfi, and
Walk (2013), for bounded Y ,

Tn → S∗ − Ŝ∗ > 0 with probability one, (7.7)

and this convergence is universal, that is, it holds without any conditions. Thus, since
an → 0, if Ŝ∗ 6= S∗, then, with probability one, the test does not make any mistake for
a sufficiently large n.

Theorem 7.1 implies that

√
n (Sn − ESn) /σ

D→ N(0, 1)

and √
n
(
S̃n − ES̃n

)
/σ̃

D→ N(0, 1)

with σ2, σ̃2 < 3L4. Since Sn and S̃n are independent, we have

√
n(Tn − ETn)/(

√
σ2 + σ̃2)

D→ N(0, 1) . (7.8)

In order to understand the behavior of the test, one needs to study the difference of the
biases of the estimates

ETn = ESn − ES̃n
under the null hypothesis (7.6). In this case we have

ESn − ES̃n = (ESn − E{m(X)2})− (ES̃n − E{m̃(T (X))2}) .

If m̃ and f are Lipschitz continuous and f is bounded away from 0, then, by Devroye,
Ferrario, Györfi, and Walk (2013),

n2/d(ESn − E{m(X)2}) = O(1)
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when d ≥ 2 and
n2/(d−1)(ES̃n − E{m̃(T (X))2}) = O(1)

when d ≥ 3.
Thus, under the null hypothesis (7.6),

ETn = O(n−2/d) , (7.9)

for d ≥ 2. Note that for d ≤ 4, the bias is at most of the order of the random fluctuations
of the test statistic. However, for d > 4 the bias may dominate. Such a dependence on
the dimension is inevitable under fully nonparametric conditions like the ones assumed
here.

Under the null hypothesis, (7.8) and (7.9) imply that the probability of error may be
bounded as

P{Tn > an} ≤ P{Tn − ETn > ωn · n−1/2}+ I{ETn>ωn·n−2/d} → 0 .

Thus, the test is consistent.
The condition that the density f is bounded away from zero may be avoided at the

price of a worse rate of convergence. In particular, if m is C-Lipschitz and X is bounded,
then

n1/d|ESn − E[m(X)2]|
= n1/d|E[m(X)mn(X)]− E[m(X)2]|
= n1/d|E[m(X)m(X1,n(X))]− E[m(X)2]|
≤ n1/dLCE‖X1,n(X)−X‖
= O(1) (by a packing argument of Liitiäinen et al. (2010, Theorem 3.2)

and by Biau and Devroye (2015, Theorem 2.1)).

In this case the threshold should be larger:

an := ωn
(
n−1/2 + n−1/d

)
One may prove that the test is not only consistent in the sense that P{Tn > an} →

0 under the null hypothesis but also in the sense that lim supn→∞ I{Tn>an} = 0 with
probability one. For a discussion and references on the notion of strong consistency we
refer the reader to Devroye and Lugosi (2002), Biau and Györfi (2005), Gretton and
Györfi (2010).
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The proof of strong consistency under the alternative hypothesis follows simply from
(7.7). Under the null hypothesis it follows from Theorem 7.3. Indeed, Theorem 7.3
implies that

P {|Tn − ETn| > ε} ≤ 2e−nε
2/(2L4) + 2e−n

1/3ε2/3/(42eL4)1/3+1 .

For δ > 3/2, choose
an := (lnn)δn−1/2 + ωn · n−2/d

with increasing unbounded ωn = o(n2/d). Then, under the null hypothesis
∞∑
n=1

P{Tn > an} ≤
∞∑
n=1

(
P{Tn − ETn > (lnn)δn−1/2}+ I{ETn>ωn·n−2/d}

)
≤

∞∑
n=1

(
2e−(lnn)2δ/(2L4) + 2e−(lnn)2δ/3/(42eL4)1/3+1 + I{ETn>ωn·n−2/d}

)
<∞ ,

and so the Borel-Cantelli Lemma implies that the test makes error only finitely many
times almost surely.

Remark. In applications, one would like to test not only if a given component of X
carries predictive information but rather test the same for each of the d variables. In
such cases, one faces a multiple testing problem with d dependent tests. In order to
analyze such multiple testing procedures, say, by the Bonferroni approach, one needs a
uniform control over the fluctuations of the test statistic. In such cases a non-asymptotic
concentration inequality of Theorem 7.3 is particularly useful.

7.4 Proofs
In the proofs below we use two lemmas on the measure of Voronoi cells. Let

An(Xj) = {x ∈ Rd : Xj is the nearest neighbor of x among X1, . . . ,Xn}

(j = 1, . . . , n), be the cells of the Voronoi partition of Rd.

Lemma 7.1. (Devroye, Györfi, Lugosi, and Walk (2018)) If µ has a density,
then

nkE
[
µ(An(X1))k

]
≤ k! ,

k = 1, 2, . . .
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Proof. Devroye, Györfi, Lugosi, and Walk (2017) proved that there exists a positive
constant ck such that

nkE
[
µ(An(X1))k

]
≤ ck ,

and nµ(An(X1)) converges in distribution to a random variable Z such that

E
[
Zk
]
≤ k! ,

k = 1, 2, . . . This lemma is on the same non-asymptotic bound. We show that

E
{
µ(An(X1))k

}
(7.10)

≤ P {Xn+1, . . . ,Xn+k are the nearest neighbors of X1 among X2, . . . ,Xn+k} ,

which implies that

E
{

(nµ(An(X1)))k
]
≤ nk(

n+k−1
k

) ≤ k! .

Recall that Bx,r denotes the closed ball of radius r > 0 centered at x and note that

E
{
µ(An(X1))k

}
= P {Xn+1, . . . ,Xn+k ∈ An(X1)}

= E
[
(1− µ(BXn+1,‖Xn+1−X1‖ ∪ · · · ∪BXn+k,‖Xn+k−X1‖))

n−1
]

≤ E
[
(1−max{µ(BXn+1,‖Xn+1−X1‖), . . . , µ(BXn+k,‖Xn+k−X1‖)})n−1

]
,

and

P {Xn+1 . . . ,Xn+k are the nearest neighbors of X1 among X2, . . . ,Xn+k}

= E
[
(1−max{µ(BX1,‖Xn+1−X1‖), . . . , µ(BX1,‖Xn+k−X1‖)})n−1

]
.

(7.10) follows from comparing the right-hand sides of the two equations above. On the
one hand,

P
{

max{µ(BX1,‖Xn+1−X1‖), . . . , µ(BX1,‖Xn+k−X1‖)} ≤ z
}

= P
{
µ(BX1,‖Xn+1−X1‖) ≤ z, . . . , µ(BX1,‖Xn+k−X1‖) ≤ z

}
= E

[
P
{
µ(BX1,‖Xn+1−X1‖) ≤ z, . . . , µ(BX1,‖Xn+k−X1‖) ≤ z | X1

}]
= E

[
P
{
µ(BX1,‖Xn+1−X1‖) ≤ z | X1

}
· . . . · P

{
µ(BX1,‖Xn+k−X1‖) ≤ z | X1

}]
= E

[
P
{
µ(BX1,‖Xn+1−X1‖) ≤ z | X1

}k]
= zk ,
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while on the other hand,

P
{

max{µ(BXn+1,‖Xn+1−X1‖), . . . , µ(BXn+k,‖Xn+k−X1‖)} ≤ z
}

= P
{
µ(BXn+1,‖Xn+1−X1‖) ≤ z, . . . , µ(BXn+k,‖Xn+k−X1‖) ≤ z

}
= E

[
P
{
µ(BXn+1,‖Xn+1−X1‖) ≤ z, . . . , µ(BXn+k,‖Xn+k−X1‖) ≤ z | X1

}]
= E

[
P
{
µ(BXn+1,‖Xn+1−X1‖) ≤ z | X1

}
· . . . · P

{
µ(BXn+k,‖Xn+k−X1‖) ≤ z | X1

}]
= E

[
P
{
µ(BXn+1,‖Xn+1−X1‖) ≤ z | X1

}k]
≥ E

[
P
{
µ(BXn+1,‖Xn+1−X1‖) ≤ z | X1

}]k
= P

{
µ(BXn+1,‖Xn+1−X1‖) ≤ z

}k
= zk .

2

Lemma 7.2. (Devroye, Györfi, Lugosi, and Walk (2017)) Assume that µ has a
density. Then

n2E
[
µ(An(X1))2 | X1 = x

]
→ α(d)

for µ-almost all x, where αd is defined in (7.2).

Proof of Theorem 7.2

We prove the variance bound of Theorem 7.2 first. The proof relies of the following
version of the Efron-Stein inequality, see, for example, Boucheron et al. (2010, Theorem
3.1).

Lemma 7.3. (Efron-Stein inequality) Let Z = (Z1, . . . , Zn) be a collection of indepen-
dent random variables taking values in some measurable set A and denote by Z(i) =
(Z1, . . . , Zi−1, Zi+1, . . . , Zn) the collection with the i-th random variable dropped. Let
f : An → R and g : An−1 → R be measurable real-valued functions. Then

Var(f(Z)) ≤ E

[
n∑
i=1

(
f(Z)− g(Z(i))

)2

]
.

By the decomposition

Sn = Sn − E [Sn | Dn] + E [Sn | Dn] ,
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we have that

Var(Sn) = E
[
(Sn − E [Sn | Dn])2

]
+ Var(E [Sn | Dn]) .

Conditionally on Dn, Sn is an average of independent, identically distributed (i.i.d.)
random variables bounded by L2, and therefore

E
[
(Sn − E [Sn | Dn])2

]
≤ L4

n
.

Notice that we may write

mn(x) =
n∑
j=1

YjI{x∈An(Xj)} .

Then

E [Sn | Dn] =

∫
m(x)mn(x)µ(dx) =

n∑
j=1

Yj

∫
An(Xj)

m(x)µ(dx) .

Putting Ln = E [Sn | Dn], this implies

Ln =
n∑
i=1

YiE{IX∈An(Xi)m(X) | Dn} .

Considering Ln as a function of the n i.i.d. pairs (Xi, Yi)
n
i=1, we may use the Efron-Stein

inequality to bound the variance of Ln. Define L(j)
n as Ln when (Xj, Yj) is omitted from

the sample. By Lemma 7.3,

Var(Ln) ≤ E

[
n∑
j=1

(
Ln − L(j)

n

)2

]
= nE

[(
Ln − L(1)

n

)2
]
.

Let {A′n(X2), . . . , A′n(Xn)} be the Voronoi partition, whenX1 is omitted from the sample.
Then

|Ln − L(1)
n | =

∣∣∣∣∣Y1

∫
An(X1)

m(x)µ(dx)−
n∑
i=2

Yi

∫
A′n(Xi)\An(Xi)

m(x)µ(dx)

∣∣∣∣∣
≤ L2

(
µ(An(X1)) +

n∑
i=2

µ(A′n(Xi) \ An(Xi))

)
= 2L2µ(An(X1)) .
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Thus, Lemma 7.1 implies

Var(Ln) ≤ 4nL4E
[
µ(An(X1))2

]
≤ 8L4/n

leading to

Var (E [Sn | Dn]) ≤ 8L4

n
,

and therefore to the desired bound

Var(Sn) ≤ 9L4

n
.

Proof of Theorem 7.1

Introduce the notation
√
n (Sn − ESn) = Un + Vn +Wn ,

where
Un =

√
n (Sn − E[Sn | Dn])

and
Vn =

√
n (E[Sn | Dn]− E[Sn | X1, . . . ,Xn])

and
Wn =

√
n (E[Sn | X1, . . . ,Xn]− ESn) .

We prove Theorem 7.1 by showing that, for any u, v ∈ R,

P{Un ≤ u, Vn ≤ v} → Φ

(
u

σ1

)
Φ

(
v

σ2

)
, (7.11)

where Φ denotes the standard normal distribution function, and that

Var(Wn)→ 0. (7.12)

Györfi and Walk (2015) proved that∣∣∣∣P{Un ≤ u, Vn ≤ v} − Φ

(
u

σ1

)
Φ

(
v

σ2

)∣∣∣∣
≤ E

∣∣∣∣P{Un ≤ u | Dn} − Φ

(
u

σ1

)∣∣∣∣+

∣∣∣∣P{Vn ≤ v} − Φ

(
v

σ2

)∣∣∣∣ .
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Thus, (7.11) holds if

P{Un ≤ u | Dn} → Φ

(
u

σ1

)
in probability (7.13)

and
P{Vn ≤ v} → Φ

(
v

σ2

)
. (7.14)

Proof of (7.13).
Let’s start with the decomposition

Un =
√
n

(
1

n

n∑
i=1

(Y ′imn(X′i)− E[Y ′imn(X′i) | Dn])

)

=
1√
n

n∑
i=1

(Y ′imn(X′i)− E[Y ′imn(X′i) | Dn]) .

Next we apply a Berry-Esseen type central limit theorem (see Theorem 14 in Petrov
(1975)). For a universal constant c > 0, we have∣∣∣∣∣P{Un ≤ u | Dn} − Φ

(
u√

Var(Y ′1mn(X′1) | Dn)

)∣∣∣∣∣ ≤ c√
n

E[|Y ′1mn(X′1)|3 | Dn]√
Var(Y ′1mn(X′1) | Dn)

3 .

Since
E[Y ′1mn(X′1) | Dn] =

∫
m(x)mn(x)µ(dx) , (7.15)

we have

Var(Y ′1mn(X′1) | Dn) = E[Y ′1
2
mn(X′1)2 | Dn]− E[Y ′1mn(X′1) | Dn]2

=

∫
M2(x)mn(x)2µ(dx)−

(∫
m(x)mn(x)µ(dx)

)2

.

We need to show that ∫
M2(x)mn(x)2µ(dx)→

∫
M2(x)2µ(dx) (7.16)

in probability and ∫
m(x)mn(x)µ(dx)→

∫
m(x)2µ(dx) (7.17)
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in probability. Since mn(x) = Yj if x ∈ An(Xj), we get that

∫
M2(x)mn(x)2µ(dx) =

n∑
j=1

∫
An(Xj)

M2(x)mn(x)2µ(dx)

=
n∑
j=1

Y 2
j

∫
An(Xj)

M2(x)µ(dx) .

We use this to prove (7.16). Indeed,

∫
M2(x)mn(x)2µ(dx)−

∫
M2(x)2µ(dx)

=
n∑
j=1

Y 2
j

∫
An(Xj)

M2(x)µ(dx)−
n∑
j=1

∫
An(Xj)

M2(x)2µ(dx)

=
n∑
j=1

(Y 2
j −M2(Xj))

∫
An(Xj)

M2(x)µ(dx)

+
n∑
j=1

∫
An(Xj)

M2(x)(M2(Xj)−M2(x))µ(dx) .

Thus,

E
[∣∣∣∣∫ M2(x)mn(x)2µ(dx)−

∫
M2(x)2µ(dx)

∣∣∣∣]
≤ E

[∣∣∣∣∣
n∑
j=1

(Y 2
j −M2(Xj))

∫
An(Xj)

M2(x)µ(dx)

∣∣∣∣∣
]

+ E

[∣∣∣∣∣
n∑
j=1

∫
An(Xj)

M2(x)(M2(Xj)−M2(x))µ(dx)

∣∣∣∣∣
]
,
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and so

E
[∣∣∣∣∫ M2(x)mn(x)2µ(dx)−

∫
M2(x)2µ(dx)

∣∣∣∣]

≤

√√√√Var

(
n∑
j=1

(Y 2
j −M2(Xj))

∫
An(Xj)

M2(x)µ(dx)

)

+ E

[
n∑
j=1

∫
An(Xj)

M2(x)|M2(Xj)−M2(x)|µ(dx)

]

≤

√√√√nE

[
(Y 2

1 −M2(X1))2

(∫
An(X1)

M2(x)µ(dx)

)2
]

+ nE
[∫

An(X1)

M2(x)|M2(X1)−M2(x)|µ(dx)

]
≤ L4

√
nE [µ(An(X1))2] + L2nE

[∫
An(X1)

|M2(X1)−M2(x)|µ(dx)

]
To complete the proof of (7.16), it suffices to show that the sum above converges to zero
as n→∞. To this end, note that Lemma 7.1 implies that

nE
[
µ(An(X1))2

]
≤ c2/n→ 0 ,

and furthermore

nE
[∫

An(X1)

|M2(X1)−M2(x)|µ(dx)

]
= nE

[∫
An(X1)

|M2(X1,n(x))−M2(x)|µ(dx)

]
= E

[∫
|M2(X1,n(x))−M2(x)|µ(dx)

]
.

It remains to show that

E
[∫
|M2(X1,n(x))−M2(x)|µ(dx)

]
→ 0 . (7.18)

Fix any ε > 0 and choose a bounded continuous function M̃2 such that∫
|M2(x)− M̃2(x)|µ(dx) < ε .
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Then, with M∗
2 = M2 − M̃2, one has

E
[∫
|M2(X1,n(x))−M2(x)|µ(dx)

]
≤ E

[∫
|M̃2(X1,n(x))− M̃2(x)|µ(dx)

]
+ E

[∫
|M∗

2 (X1,n(x))|µ(dx)

]
+

∫
|M∗

2 (x)|µ(dx) . (7.19)

The first term on the right-hand side converges to 0 by the dominated convergence
theorem, since, by Lemma 6.1 in Györfi et al. (2002),

X1,n(x)→ x a.s. for µ-almost all x .

To bound the second term, we introduce some notation. A set C ⊂ Rd is a cone of angle
π/3 centered at 0 if there exists an x ∈ Rd with ‖x‖ = 1 such that

C =

{
y ∈ Rd :

(x,y)

‖y‖
≥ cos(π/6)

}
.

Let γd be the minimal number of cones C1, . . . , Cγd of angle π/3 centered at 0 such that
their union covers Rd. The second term on the right-hand side of (7.19) is bounded by

γd

∫
|M∗

2 (x)|µ(dx) ≤ γdε

by Lemma 6.3 in Györfi et al. (2002). Thus, (7.18) is proved and hence so is (7.16). For
the proof of (7.17), we have that∫

m(x)mn(x)µ(dx) =
n∑
j=1

∫
An(Xj))

m(x)mn(x)µ(dx)

=
n∑
j=1

Yj

∫
An(Xj))

m(x)µ(dx). (7.20)

Similarly, the derivation for (7.16) implies that

E
[∣∣∣∣∫ m(x)mn(x)µ(dx)−

∫
m(x)2µ(dx)

∣∣∣∣]
≤ L2

√
nE [µ(An(X1))2] + LnE

[∫
An(X1)

|m(X1)−m(x)|µ(dx)

]
→ 0,
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and so (7.17) is proved, too. Thus,

Var(Y ′1mn(X′1) | Dn)→ σ2
1

in probability. Moreover,

E[|Y ′1mn(X′1)|3 | Dn] ≤ L6.

These relations imply (7.13).

Proof of (7.12).
(7.15) and (7.20) imply that

E[Sn | Dn] = E[Y ′1mn(X′1) | Dn] =

∫
m(x)mn(x)µ(dx) =

n∑
j=1

Yj

∫
An(Xj)

m(x)µ(dx) .

Hence

E[Sn | X1, . . . ,Xn] =
n∑
j=1

m(Xj)

∫
An(Xj)

m(x)µ(dx) =

∫
m(x)m(X1,n(x))µ(dx).

We prove (7.12) by a slight extension of the proof of Theorem 7.2. Set

Ln :=
√
n

∫
m(x)m(X1,n(x))µ(dx) =

√
n

n∑
j=1

m(Xj)

∫
An(Xj)

m(x)µ(dx) .

Define L(j)
n as Ln when Xj is dropped. As in the proof of Theorem 7.2,

Var(Wn) = Var(Ln) ≤ E

[
n∑
j=1

(
Ln − L(j)

n

)2

]
= nE

[(
Ln − L(1)

n

)2
]
.

Then

L(1)
n =

√
n

n∑
j=2

m(Xj)

∫
A′n(Xj)

m(x)µ(dx) ,

and so

Ln − L(1)
n =

√
nm(X1)

∫
An(X1)

m(x)µ(dx)−
√
n

n∑
j=2

m(Xj)

∫
A′n(Xj)\An(Xj)

m(x)µ(dx)

=
√
n

(∫
An(X1)

m(X1,n(x))m(x)µ(dx)−
∫
An(X1)

m(X2,n(x))m(x)µ(dx)

)
,
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where X2,n(x) denotes the second nearest neighbor of x among X1, . . . ,Xn. Therefore

|Ln − L(1)
n | ≤

√
nL

∫
An(X1)

|m(X1,n(x))−m(X2,n(x))|µ(dx)

by (7.3). Hence,

Var(Wn) ≤ L2E

[(
n

∫
An(X1)

|m(X1,n(x))−m(X2,n(x))|µ(dx)

)2
]
. (7.21)

As it is well known, for a real-valued random variable Z, by Hölder’s inequality,

E
[
Z2
]

= E
[
|Z|2/3|Z|4/3

]
≤ E [|Z|]2/3 E

[
Z4
]1/3

. (7.22)

One has

E
[
n

∫
An(X1)

|m(X1,n(x))−m(X2,n(x))|µ(dx)

]
≤ E

[
n

∫
An(X1)

|m(X1,n(x))−m(x)|µ(dx)

]
+ E

[
n

∫
An(X1)

|m(X2,n(x))−m(x)|µ(dx)

]
= E

[∫
|m(X1,n(x))−m(x)|µ(dx)

]
+ E

[∫
|m(X2,n(x))−m(x)|µ(dx)

]
→ 0 (7.23)

as n→∞, where the latter can be shown as the limit relation (7.18). Furthermore

E

[(
n

∫
An(X1)

|m(X1,n(x))−m(X2,n(x))|µ(dx)

)4
]
≤ 16L4E

[
n4µ(An(X1))4

]
≤ 16L4c4 (7.24)

by (7.3) and Lemma 7.1. With the notation

Z = n

∫
An(X1)

|m(X1,n(x))−m(X2,n(x))|µ(dx)

(7.21), (7.22), (7.23) and (7.24) imply (7.12).

Proof of (7.14).
For

Vn =

∑n
j=1 Vn,j√
n
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with

Vn,j = n(Yj −m(Xj))

∫
An(Xj)

m(x)µ(dx) ,

notice that the triangular array Vn,j, n = 1, 2, . . . , j = 1, . . . , n is (row-wise) exchange-
able, for which there is a classical central limit theorem:

Theorem 7.4. (Blum et al. (1958), Weber (1980)) Let {Vn,j} be a triangular array
of exchangeable random variables with zero mean and finite variance. Assume that

(i)

E[Vn,1Vn,2] = o(1/n) ,

(ii)

lim
n→∞

max{|Vn,j|; j = 1, . . . , n}/
√
n = 0

in probability,

(iii)

lim
n→∞

1

n

n∑
j=1

V 2
n,j = σ2

in probability.

Then ∑n
j=1 Vn,j√
n

is asymptotically normal with mean zero and variance σ2.

Condition (i) of Theorem 7.4 is satisfied since

E[Vn,1Vn,2] = 0.
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Condition (ii) of Theorem 7.4 follows from (7.3), Lemma 7.1 and Jensen’s inequality:

nE
[
max
j
µ(An(Xj)

]
≤ nE

(∑
j

µ(An(Xj)
3

)1/3


≤ n

(
E

[∑
j

µ(An(Xj)
3

])1/3

≤ n
(
n
c3

n3

)1/3

= o(
√
n) .

Condition (iii) in Theorem 7.4 is fulfilled if

lim
n→∞

E[V 2
n,1] = σ2

2 (7.25)

and

Var

(
1

n

n∑
j=1

V 2
n,j

)
→ 0. (7.26)

We have that

lim
n→∞

E[V 2
n,1] = lim

n→∞
n2E

[
(Y1 −m(X1))2

(∫
An(X1)

m(x)µ(dx)

)2
]

= lim
n→∞

n2E
[
(Y1 −m(X1))2m(X1)2µ(An(X1))2

]
(7.27)

= lim
n→∞

n2E
[
(M2(X1)m(X1)2 −m(X1)4)µ(An(X1))2

]
.
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(7.27) follows from

n2
∣∣∣E[(Y1 −m(X1))2

(∫
An(X1)

m(x)µ(dx)

)2
]

− E
[
(Y1 −m(X1))2m(X1)2µ(An(X1))2

] ∣∣∣
≤ n24L2E

[∣∣∣∣∣
(∫

An(X1)

m(x)µ(dx)

)2

−m(X1)2µ(An(X1))2

∣∣∣∣∣
]

≤ n28L3E
[∣∣∣∣∫

An(X1)

m(x)µ(dx)−m(X1)µ(An(X1))

∣∣∣∣µ(An(X1))

]

= n28L3E

[∣∣∣∣∣
∫
An(X1)

m(x)µ(dx)

µ(An(X1))
−m(X1)

∣∣∣∣∣µ(An(X1))2

]

≤ n28L3

√√√√√E

∣∣∣∣∣
∫
An(X1)

m(x)µ(dx)

µ(An(X1))
−m(X1)

∣∣∣∣∣
2
√E [µ(An(X1))4]

≤ 8L3√c4

√√√√√E

∣∣∣∣∣
∫
An(X1)

m(x)µ(dx)

µ(An(X1))
−m(X1)

∣∣∣∣∣
2
 .

The expression on the right-hand side converges to zero. To show this, fix an arbitrary
ε > 0 and choose a decomposition m = m∗ + m∗∗ such that m∗ is Lipschitz continuous
with bounded support and E[m∗∗(X)2] < ε. Then it suffices to show the limit relation
for m∗. But this follows from the fact that diam(An(X1))→ 0 in probability (Devroye,
Györfi, Lugosi, and Walk (2017, Section 5)). Lemma 7.2 implies that

E
[
n2µ(An(X1))2 | X1

]
→ α(d) with probability one. (7.28)

Set
Zn = (M2(X1)m(X1)2 −m(X1)4)E

[
n2µ(An(X1))2 | X1

]
.

By (7.3) and Lemma 7.1 for k = 4 together with Jensen’s inequality for conditional
expectations we obtain

E[Z2
n] ≤ L8c4

and thus uniform integrability of {Zn}, i.e.,

lim
K→∞

sup
n

E[ZnI{Zn>K}] = 0.
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Then (7.28) yields

n2E
[
(M2(X1)m(X1)2 −m(X1)4)µ(An(X1))2

]
= E

[
(M2(X1)m(X1)2 −m(X1)4)E

[
n2µ(An(X1))2 | X1

]]
→ α(d)E

[
M2(X1)m(X1)2 −m(X1)4

]
= σ2

2 ,

verifying (7.25).
One may check (7.26) similarly to (7.12). Indeed, put

Ln :=
1

n

n∑
j=1

V 2
n,j = n

n∑
j=1

(Yj −m(Xj))
2

(∫
An(Xj)

m(x)µ(dx)

)2

.

Thus,

|Ln − L(1)
n |

≤ n(Y1 −m(X1))2

(∫
An(X1)

m(x)µ(dx)

)2

+ n
n∑
j=2

(Yj −m(Xj))
2

∣∣∣∣∣∣
(∫

An(Xj)

m(x)µ(dx)

)2

−

(∫
A′n(Xj)

m(x)µ(dx)

)2
∣∣∣∣∣∣ .

Therefore

|Ln − L(1)
n |

≤ 4L4nµ(An(X1))2

+ 4L2n

n∑
j=2

(Yj −m(Xj))
2

∣∣∣∣∣
∫
An(Xj)

m(x)µ(dx) +

∫
A′n(Xj)

m(x)µ(dx)

∣∣∣∣∣
·

∣∣∣∣∣
∫
A′n(Xj)\An(Xj)

m(x)µ(dx)

∣∣∣∣∣
≤ 4L4nµ(An(X1))2 + 8L4n

n∑
j=2

µ(A′n(Xj))µ(A′n(Xj) \ An(Xj))

≤ 4L4nµ(An(X1))2 + 8L4n

(
max
j=2,...n

µ(A′n(Xj))

)
µ(An(X1)) ,
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which implies that

Var

(
1

n

n∑
j=1

V 2
n,j

)

≤ nE
[(
Ln − L(1)

n

)2
]

≤ 32L8n3E
[
µ(An(X1))4

]
+ 128L8n3

√
E
[

max
j=2,...n

µ(A′n(Xj))4

]√
E [µ(An(X1))4]

≤ 32L8c4/n+ 128L8n

√√√√E

[
n∑
j=2

µ(A′n(Xj))4

]
√
c4

by Lemma 7.1. Noticing that

E

[
n∑
j=2

µ(A′n(Xj))
4

]
= (n− 1)E

[
µ(A′n(X2))4

]
= O(n−3)

by Lemma 7.1, we obtain (7.26).

Proof of Theorem 7.3

As we mentioned in the proof (7.13), for given Dn, Sn is an average of i.i.d. random
variables bounded by L2. Therefore, by the Hoeffding inequality, one has

P {|Un| > ε | Dn} ≤ 2e−nε
2/(2L4) .

For the term Vn, apply the extension of the Efron-Stein inequality for the centered
higher moments, which is a slight modification of Theorem 15.5 in Boucheron et al.
(2010):

Lemma 7.4. (Devroye, Györfi, Lugosi, and Walk (2018)) Let Z = (Z1, . . . , Zn)
be a collection of independent random variables taking values in some measurable set A
and denote by Z(i) = (Z1, . . . , Zi−1, Zi+1, . . . , Zn) the collection with the i-th random
variable dropped. Let f : An → R be a measurable real-valued function and the function
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gi : An−1 → R is obtained from f by dropping the i-th argument, i = 1, . . . , n. Then for
any integer q ≥ 1,

E
[
(f(Z)− Ef(Z))2q

]
≤ (cq)q

(
E

[(
n∑
i=1

(
f(Z)− gi(Z(i))

)2

)q]

+ E

[(
n∑
i=1

E
[(
f(Z)− gi(Z(i))

)2 | Z1, . . . , Zi−1, Zi−1, . . . , Zn

])q])
, (7.29)

with a universal constant c < 5.1.

Proof. If Z1, . . . , Zn, Z
′
1, . . . , Z

′
n are i.i.d. and

Z ′(i) = (Z1, . . . , Zi−1, Z
′
i, Zi+1, . . . , Zn)

then from Theorem 15.5 in (2010) one gets

E
[
(f(Z)− Ef(Z))2q

+

]
≤ (2κq)qE

[(
V +
)q]

,

and

E
[
(f(Z)− Ef(Z))2q

−
]
≤ (2κq)qE

[(
V −
)q]

,

with κ =
√
e/(2(

√
e− 1)) < 1.271 and with

V + ≤
n∑
i=1

E
{

(f(Z)− f(Z ′(i)))2 | Z1, . . . , Zn
}

≤ 2
n∑
i=1

(
(f(Z)− gi(Z(i)))2 + E

[
(gi(Z

(i))− f(Z ′(i)))2 | Z1, . . . , Zn
])

and

V − ≤ 2
n∑
i=1

(
(f(Z)− gi(Z(i)))2 + E

[
(gi(Z

(i))− f(Z ′(i)))2 | Z1, . . . , Zn
])

.

Therefore, cr-inequality implies

E
[
(f(Z)− Ef(Z))2q

]
≤ 2(2κq)q2q−1E

[(
n∑
i=1

(f(Z)− gi(Z(i)))2

)q

+

(
n∑
i=1

E
[
(gi(Z

(i))− f(Z ′(i)))2 | Z1, . . . , Zn
])q]

.
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By the equality

E
[
(gi(Z

(i))− f(Z ′(i)))2 | Z1, . . . , Zn
]

= E
[
(gi(Z

(i))− f(Z))2 | Z1, . . . , Zi−1, Zi−1, . . . , Zn
]
,

the lemma is proved. 2

Notice that

mn(x) =
n∑
j=1

YjI{x∈An(Xj)} .

Then

Ln := E [Sn | Dn] =

∫
m(x)mn(x)µ(dx) =

n∑
j=1

Yj

∫
An(Xj)

m(x)µ(dx) .

Consider now Ln as a function of n i.i.d. vectors (X1, Y1), . . . , (Xn, Yn). Define L(i)
n as

Ln when the pair (Xi, Yi) is dropped. As in the proof of Theorem 7.1

Ln − L(i)
n =

∫
An(Xi)

(Y1,n(x)− Y2,n(x))m(x)µ(dx) ,

where Y2,n(x) denotes the label of the second nearest neighbor X2,n(x) of x among
X1, . . . ,Xn. Thus,

(
Ln − L(i)

n

)2
=

(∫
An(Xi)

(Y1,n(x)− Y2,n(x))m(x)µ(dx)

)2

≤ (2L2)2 (µ(An(Xi)))
2 .

(7.29) implies that

E[|Ln − E[Ln]|2q] ≤ (cq)q(2L2)2q
(
E

[(
n∑
i=1

µ(An(Xi))
2

)q]

+ E

[(
n∑
i=1

E[µ(An(Xi))
2 | X1, . . . ,Xi−1,Xi−1, . . . ,Xn]

)q])
.

(7.30)

Because of
n∑
i=1

µ(An(Xi)) = 1,
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the Jensen inequality implies that(
n∑
i=1

µ(An(Xi))
2

)q

≤
n∑
i=1

µ(An(Xi))
q+1 ,

and so from Lemma 7.1 we get

E

[(
n∑
i=1

µ(An(Xi))
2

)q]
≤ E

[
n∑
i=1

µ(An(Xi))
q+1

]
≤ n−q(q + 1)! . (7.31)

Apply the Jensen inequality twice and Lemma 7.1:

E

[(
n∑
i=1

E[µ(An(Xi))
2 | X1, . . . ,Xi−1,Xi−1, . . . ,Xn]

)q]

= E

[(
1

n

n∑
i=1

nE[µ(An(Xi))
2 | X1, . . . ,Xi−1,Xi−1, . . . ,Xn]

)q]

≤ E

[
1

n

n∑
i=1

(
nE[µ(An(Xi))

2 | X1, . . . ,Xi−1,Xi−1, . . . ,Xn]
)q]

= E
[(
nE[µ(An(X1))2 | X2, . . . ,Xn]

)q]
≤ n−qE

[
(nµ(An(X1)))2q]

≤ n−q(2q)! . (7.32)

(7.30), (7.31) and (7.32) imply that

P{|Vn| ≥ ε} = P{|Ln − E[Ln]| ≥ ε}

≤ E[|Ln − E[Ln]|2q]
ε2q

≤ 2ε−2q(cq)q(2L2)2qn−q(2q)!

≤ 2ε−2q(cq)q(2L2)2q(2q)2qe−2q/3n−q

≤ 2

(
q3

nε2/(42L4)

)q
,

because c · 4 · 4 · e−2/3 < 42. We assume that nε2/(42eL4) ≥ 1, otherwise the bound (7.4)
is trivial. Put

q = b[nε2/(42eL4)]1/3c ≥ 1 .
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Thus,

P{|Vn| ≥ ε} ≤ 2

(
b[nε2/(42eL4)]1/3c3

nε2/(42L4)

)b[nε2/(42eL4)]1/3c

≤ 2e−n
1/3ε2/3/(42eL4)1/3+1 .
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Chapter 8

Prediction of time series for squared
loss

8.1 The prediction problem
We study the problem of sequential prediction of a real valued sequence. At each time
instant t = 1, 2, . . ., the predictor is asked to guess the value of the next outcome yt of
a sequence of real numbers y1, y2, . . . with knowledge of the pasts yt−1

1 = (y1, . . . , yt−1)
(where y0

1 denotes the empty string) and the side information vectors xt1 = (x1, . . . ,xt),
where xt ∈ Rd . Thus, the predictor’s estimate, at time t, is based on the value of xt1
and yt−1

1 . A prediction strategy is a sequence g = {gt}∞t=1 of functions

gt :
(
Rd
)t × Rt−1 → R

so that the prediction formed at time t is gt(xt1, y
t−1
1 ).

In this study we assume that (x1, y1), (x2, y2), . . . are realizations of the random vari-
ables (X1, Y1), (X2, Y2), . . . such that {(Xn, Yn)}∞−∞ is a stationary and ergodic process.

After n time instants, the normalized cumulative prediction error is

Ln(g) =
1

n

n∑
t=1

(gt(X
t
1, Y

t−1
1 )− Yt)2.

Our aim to achieve small Ln(g) when n is large.
For this prediction problem, an example can be the forecasting daily relative prices yt

of an asset, while the side information vector xt may contain some information on other
assets in the past days or the trading volume in the previous day or some news related
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to the actual assets, etc. This is a widely investigated research problem. However, in the
vast majority of the corresponding literature the side information is not included in the
model, moreover, a parametric model (AR, MA, ARMA, ARIMA, ARCH, GARCH, etc.)
is fitted to the stochastic process {Yt}, its parameters are estimated, and a prediction
is derived from the parameter estimates. Formally, this approach means that there is a
parameter θ such that the best predictor has the form

E{Yt | Y t−1
1 } = gt(θ, Y

t−1
1 ),

for a function gt. The parameter θ is estimated from the past data Y t−1
1 , and the estimate

is denoted by θ̂. Then the data-driven predictor is

gt(θ̂, Y
t−1

1 ).

Here we don’t assume any parametric model, so our results are fully nonparametric.
This modelling is important for financial data when the process is only approximately
governed by stochastic differential equations, so the parametric modelling can be weak,
moreover the error criterion of the parameter estimate (usually the maximum likelihood
estimate) has no relation to the mean square error of the prediction derived. The main
aim of this research is to construct predictors, called universally consistent predictors,
which are consistent for all stationary time series. Such universal feature can be proven
using the recent principles of nonparametric statistics and machine learning algorithms.

The results below are given in an autoregressive framework, that is, the value Yt is
predicted based on Xt

1 and Y t−1
1 . The fundamental limit for the predictability of the

sequence can be determined based on a result of Algoet (1994), who showed that for any
prediction strategy g and stationary ergodic process {(Xn, Yn)}∞−∞,

lim inf
n→∞

Ln(g) ≥ L∗ almost surely, (8.1)

where
L∗ = E

(
Y0 − EY0

∣∣X0
−∞, Y

−1
−∞
)2

is the minimal mean squared error of any prediction for the value of Y0 based on the
infinite past X0

−∞, Y
−1
−∞.

This lower bound gives sense to the following definition:
Definition 8.1. A prediction strategy g is called universally consistent with respect to a
class C of stationary and ergodic processes {(Xn, Yn)}∞−∞, if for each process in the class,

lim
n→∞

Ln(g) = L∗ almost surely.

Next we introduce several simple prediction strategies which build on a methodology
worked out in recent years for prediction of individual sequences, see Cesa-Bianchi and
Lugosi (2006) for a survey.
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8.2 Universally consistent predictions: bounded Y

8.2.1 Partition-based prediction strategies

In this section we introduce our first prediction strategy for bounded ergodic processes.
We assume throughout the section that |Y0| is bounded by a constant B > 0, with
probability one, and the bound B is known.

The prediction strategy is defined, at each time instant, as a convex combination of
elementary predictors, where the weighting coefficients depend on the past performance
of each elementary predictor.

We define an infinite array of elementary predictors h(k,`), k, ` = 1, 2, . . . as fol-
lows. Let P` = {A`,j, j = 1, 2, . . . ,m`} be a sequence of finite partitions of R, and let
Q` = {B`,j, j = 1, 2, . . . ,m′`} be a sequence of finite partitions of Rd. Introduce the
corresponding quantizers:

F`(y) = j, if y ∈ A`,j
and

G`(x) = j, if x ∈ B`,j .

With some abuse of notation, for any n and yn1 ∈ Rn, we write F`(yn1 ) for the se-
quence F`(y1), . . . , F`(yn), and similarly, for xn1 ∈ (Rd)n, we write G`(x

n
1 ) for the sequence

G`(x1), . . . , G`(xn).
Fix positive integers k, `, and for each k + 1-long string z of positive integers, and

for each k-long string s of positive integers, define the partitioning regression function
estimate

Ê(k,`)
n (xn1 , y

n−1
1 , z, s) =

∑
{k<t<n:G`(x

t
t−k)=z, F`(y

t−1
t−k)=s} yt∣∣{k < t < n : G`(xtt−k) = z, F`(y

t−1
t−k) = s}

∣∣ ,
for all n > k + 1 where 0/0 is defined to be 0.

Define the elementary predictor h(k,`) by

h(k,`)
n (xn1 , y

n−1
1 ) = Ê(k,`)

n (xn1 , y
n−1
1 , G`(x

n
n−k), F`(y

n−1
n−k)),

for n = 1, 2, . . . . That is, h(k,`)
n quantizes the sequence xn1 , y

n−1
1 according to the partitions

Q` and P`, and looks for all appearances of the last seen quantized strings G`(x
n
n−k) of

length k + 1 and F`(y
n−1
n−k) of length k in the past. Then it predicts according to the

average of the yt’s following the string.
In contrast to the nonparametric regression estimation problem from i.i.d. data, for

ergodic observations, it is impossible to choose k = kn and ` = `n such that the corre-
sponding predictor is universally consistent for the class of bounded ergodic processes.

97



The very important new principle is the combination or aggregation of elementary predic-
tors (cf. Cesa-Bianchi and Lugosi (2006)). The proposed prediction algorithm proceeds
as follows: let {qk,`} be a probability distribution on the set of all pairs (k, `) of positive
integers such that for all k, `, qk,` > 0. Put c = 8B2, and define the weights

wt,k,` = qk,`e
−(t−1)Lt−1(h(k,`))/c (8.2)

and their normalized values
pt,k,` =

wt,k,`
Wt

, (8.3)

where

Wt =
∞∑

i,j=1

wt,i,j . (8.4)

The prediction strategy g is defined by

gt(x
t
1, y

t−1
1 ) =

∞∑
k,`=1

pt,k,`h
(k,`)(xt1, y

t−1
1 ) , t = 1, 2, . . . (8.5)

i.e., the prediction gt is the convex linear combination of the elementary predictors such
that an elementary predictor has non-negligible weight in the combination if it has good
performance until time t− 1.

Theorem 8.1. (Györfi and Lugosi (2002)) Assume that
(a) the sequences of partition P` is nested, that is, any cell of P`+1 is a subset of a cell
of P`, ` = 1, 2, . . .;
(b) the sequences of partition Q` is nested;
(c) the sequences of partition P` is asymptotically fine, that is, for each sphere S centered
at the origin

lim
`→∞

max
A∈P`, A∩S 6=∅

diam(A) = 0;

(d) the sequences of partition Q` is asymptotically fine;
Then the prediction scheme g defined above is universal with respect to the class of all
stationary and ergodic processes {(Xn, Yn)}∞−∞ such that |Y0| ≤ B.

One of the main ingredients of the proof is the following lemma, whose proof is a
straightforward extension of standard arguments in the prediction theory of individual
sequences, see, for example, Kivinen and Warmuth (1999).
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Lemma 8.1. Let h̃1, h̃2, . . . be a sequence of prediction strategies (experts), and let {qk}
be a probability distribution on the set of positive integers. Assume that h̃i(xn1 , y

n−1
1 ) ∈

[−B,B] and yn1 ∈ [−B,B]n. Define

wt,k = qke
−(t−1)Lt−1(h̃k)/c

with c ≥ 8B2, and
vt,k =

wt,k∑∞
i=1wt,i

.

If the prediction strategy g̃ is defined by

g̃t(x
t
1, y

t−1
1 ) =

∞∑
k=1

vt,kh̃k(x
t
1, y

t−1
1 ) t = 1, 2, . . .

then for every n ≥ 1,

Ln(g̃) ≤ inf
k

(
Ln(h̃k)−

c ln qk
n

)
.

Here − ln 0 is treated as ∞.

Proof. Introduce
W1 = 1

and

Wt =
∞∑
k=1

wt,k

for t > 1. Note that

Wt+1 =
∞∑
k=1

wt,ke
−(yt−h̃k(xt1,y

t−1
1 ))

2
/c = Wt

∞∑
k=1

vt,ke
−(yt−h̃k(xt1,y

t−1
1 ))

2
/c,

so that

−c ln
Wt+1

Wt

= −c ln

(
∞∑
k=1

vt,ke
−(yt−h̃k(xt1,y

t−1
1 ))

2
/c

)
.

Introduce the function
Ft(z) = e−(yt−z)2/c
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Because of c ≥ 8B2, the function Ft is concave on [−B,B], therefore Jensen’s inequality
implies that [

∞∑
k=1

vt,k

(
yt − h̃k(xt1, yt−1

1 )
)]2

≤ −c ln
Wt+1

Wt

(8.6)

Thus,

nLn(g̃) =
n∑
t=1

(
yt − g̃(xt1, y

t−1
1 )

)2

=
n∑
t=1

[
∞∑
k=1

vt,k

(
yt − h̃k(xt1, yt−1

1 )
)]2

≤ −c
n∑
t=1

ln
Wt+1

Wt

= −c lnWn+1

and therefore

nLn(g̃) ≤ −c ln

(
∞∑
k=1

wn+1,k

)

= −c ln

(
∞∑
k=1

qke
−nLn(h̃k)/c

)

≤ −c ln

(
sup
k
qke
−nLn(h̃k)/c

)
= inf

k

(
−c ln qk + nLn(h̃k)

)
,

which concludes the proof. 2

Another main ingredient of the proof of Theorem 8.1 is known as Breiman’s general-
ized ergodic theorem, see also Algoet (1994) and Györfi et al. (2002).

Lemma 8.2. (Breiman (1957)). Let Z = {Zi}∞−∞ be a stationary and ergodic process.
Let T denote the left shift operator. Let fi be a sequence of real-valued functions such that
for some function f , fi(Z) → f(Z) almost surely. Assume that E{supi |fi(Z)|} < ∞.
Then

lim
t→∞

1

n

n∑
i=1

fi(T
iZ) = E{f(Z)} almost surely.
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Proof of Theorem 8.1. Because of (8.1), it is enough to show that

lim sup
n→∞

Ln(g) ≤ L∗ a.s.

By a double application of the ergodic theorem, as n→∞, almost surely,

Ê(k,`)
n (Xn

1 , Y
n−1

1 , z, s) =

1
n

∑
{k<i<n:G`(X

t
t−k)=z, F`(Y

t−1
t−k )=s} Yi

1
n

∣∣{k < i < n : G`(Xt
t−k) = z, F`(Y

t−1
t−k ) = s}

∣∣
→

E{Y0I{G`(X0
−k)=z, F`(Y

−1
−k )=s}}

P{G`(X0
−k) = z, F`(Y

−1
−k ) = s}

= E{Y0|G`(X
0
−k) = z, F`(Y

−1
−k ) = s},

and therefore

lim
n→∞

sup
z

sup
s
|Ê(k,`)

n (Xn
1 , Y

n−1
1 , z, s)− E{Y0|G`(X

0
−k) = z, F`(Y

−1
−k ) = s}| = 0

almost surely. Thus, by Lemma 8.2, as n→∞, almost surely,

Ln(h(k,`)) =
1

n

n∑
i=1

(h(k,`)(Xi
1, Y

i−1
1 )− Yi)2

=
1

n

n∑
i=1

(Ê(k,`)
n (Xi

1, Y
i−1

1 , G`(X
i
i−k), F`(Y

i−1
i−k ))− Yi)2

→ E{(Y0 − E{Y0|G`(X
0
−k), F`(Y

−1
−k )})2}

def
= εk,`.

Since the partitions P` and Q` are nested, E
{
Y0|G`(X

0
−k), F`(Y

−1
−k )
}

is a martingale
indexed by the pair (k, `). Thus, the martingale convergence theorem (see, e.g., Stout
(1974)) and assumption (c) and (d) for the sequence of partitions implies that

inf εk,` = lim
k,`→∞

εk,` = E
{(
Y0 − E{Y0|X0

−∞, Y
−1
−∞}

)2
}

= L∗.

Now by Lemma 8.1,

Ln(g) ≤ inf
k,`

(
Ln(h(k,`))− c ln qk,`

n

)
, (8.7)
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and therefore, almost surely,

lim sup
n→∞

Ln(g) ≤ lim sup
n→∞

inf
k,`

(
Ln(h(k,`))− c ln qk,`

n

)
≤ inf

k,`
lim sup
n→∞

(
Ln(h(k,`))− c ln qk,`

n

)
≤ inf

k,`
lim sup
n→∞

Ln(h(k,`))

= inf
k,`
εk,`

= lim
k,`→∞

εk,`

= L∗

and the proof of the theorem is finished. 2

8.2.2 Kernel-based prediction strategies

We introduce in this section a class of kernel-based prediction strategies for stationary
and ergodic sequences. The main advantage of this approach in contrast to the partition-
based strategy is that it replaces the rigid discretization of the past appearances by more
flexible rules. This also often leads to faster algorithms in practical applications.

To simplify the notation, we start with the simple “moving-window” scheme, corre-
sponding to a naiv kernel function. Just like before, we define an array of experts h(k,`),
where k and ` are positive integers. We associate to each pair (k, `) two radii rk,` > 0
and r′k,` > 0 such that, for any fixed k

lim
`→∞

rk,` = 0, (8.8)

and
lim
`→∞

r′k,` = 0. (8.9)

Finally, let the location of the matches be

J (k,`)
n =

{
k < t < n : ‖xtt−k − xnn−k‖ ≤ rk,`, ‖yt−1

t−k − y
n−1
n−k‖ ≤ r′k,`

}
Then the elementary expert h(k,`)

n at time n is defined by

h(k,`)
n (xn1 , y

n−1
1 ) =

∑
{t∈J(k,`)

n } yt

|J (k,`)
n |

, n > k + 1, (8.10)
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where 0/0 is defined to be 0. The pool of experts is mixed the same way as in the case
of the partition-based strategy (cf. (8.2), (8.3), (8.4) and (8.5)).

Theorem 8.2. Suppose that (8.8) and (8.9) are verified. Then the kernel-based strategy
defined above is universally consistent with respect to the class of all stationary and
ergodic processes {(Xn, Yn)}∞−∞ such that |Y0| ≤ B.

8.2.3 Nearest neighbor-based prediction strategy

This strategy is yet more robust with respect to the kernel strategy and thus also with
respect to the partition strategy. Since it does not suffer from scaling problem as partition
and kernel-based strategies where the quantizer and the radius has to be carefully chosen
to obtain “good” performance. As well as this, in practical applications it runs extremely
fast compared with the kernel and partition schemes as it is much less likely to get bogged
down in calculations for certain experts.

To introduce the strategy, we start again by defining an infinite array of experts h(k,`),
where k and ` are positive integers. Just like before, k is the length of the past observation
vectors being scanned by the elementary expert and, for each `, choose p` ∈ (0, 1) such
that

lim
`→∞

p` = 0 , (8.11)

and set
¯̀= bp`nc

(where b.c is the floor function). At time n, for fixed k and ` (n > k+ ¯̀+ 1), the expert
searches for the ¯̀ nearest neighbors (NN) of the last seen observation xnn−k and yn−1

n−k in
the past and predicts accordingly. More precisely, let

J (k,`)
n =

{
k < t < n : (xtt−k, y

t−1
t−k) is among the ¯̀NN of (xnn−k, y

n−1
n−k) in

(xk+1
1 , yk1), . . . , (xn−1

n−k−1, y
n−2
n−k−1)

}
and introduce the elementary predictor

h(k,`)
n (xn1 , y

n−1
1 ) =

∑
{t∈J(k,`)

n } yt

|J (k,`)
n |

if the sum is nonvoid, and 0 otherwise. Finally, the experts are mixed as before (cf.
(8.2), (8.3), (8.4) and (8.5)).
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Theorem 8.3. Suppose that (8.11) is verified and that for each vector s the random
variable

‖(Xk+1
1 , Y k

1 )− s‖

has a continuous distribution function. Then the nearest neighbor strategy defined above
is universally consistent with respect to the class of all stationary and ergodic processes
{(Xn, Yn)}∞−∞ such that |Y0| ≤ B.

8.2.4 Generalized linear estimates

This section is devoted to an alternative way of defining a universal predictor for sta-
tionary and ergodic processes. It is in effect an extension of the approach presented in
Györfi and Lugosi (2002). Once again, we apply the method described in the previous
sections to combine elementary predictors, but now we use elementary predictors which
are generalized linear predictors. More precisely, we define an infinite array of elementary
experts h(k,`), k, ` = 1, 2, . . . as follows. Let {φ(k)

j }`j=1 be real-valued functions defined on
(Rd)

(k+1) × Rk. The elementary predictor h(k,`)
n generates a prediction of form

h(k,`)
n (xn1 , y

n−1
1 ) =

∑̀
j=1

cn,jφ
(k)
j (xnn−k, y

n−1
n−k) ,

where the coefficients cn,j are calculated according to the past observations xn1 , y
n−1
1 .

More precisely, the coefficients cn,j are defined as the real numbers which minimize the
criterion

n−1∑
t=k+1

(∑̀
j=1

cjφ
(k)
j (xtt−k, y

t−1
t−k)− yt

)2

(8.12)

if n > k+1, and the all-zero vector otherwise. It can be shown using a recursive technique
(see e.g., Tsypkin (1971), Györfi (1984) and Györfi and Lugosi (2002)) that the cn,j can
be calculated with small computational complexity.

The experts are mixed via an exponential weighting, which is defined the same way
as earlier (cf. (8.2), (8.3), (8.4) and (8.5)).

Theorem 8.4. (Györfi and Lugosi (2002)) Suppose that |φ(k)
j | ≤ 1 and, for any

fixed k, suppose that the set{∑̀
j=1

cjφ
(k)
j ; (c1, . . . , c`), ` = 1, 2, . . .

}
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is dense in the set of continuous functions of d(k + 1) + k variables. Then the general-
ized linear strategy defined above is universally consistent with respect to the class of all
stationary and ergodic processes {(Xn, Yn)}∞−∞ such that |Y0| ≤ B.

8.3 Universally consistent predictions: unbounded Y

8.3.1 Partition-based prediction strategies

Let Ê(k,`)
n (xn1 , y

n−1
1 , z, s) be defined as in Section 8.2.1. Introduce the truncation function

Tm(z) =


m if z > m
z if |z| < m
−m if z < −m,

Define the elementary predictor h(k,`) by

h(k,`)
n (xn1 , y

n−1
1 ) = Tnδ

(
Ê(k,`)
n (xn1 , y

n−1
1 , G`(x

n
n−k), F`(y

n−1
n−k))

)
,

where
0 < δ < 1/8,

for n = 1, 2, . . . . That is, h(k,`)
n is the truncation of the elementary predictor introduced

in Section 8.2.1.
The proposed prediction algorithm proceeds as follows: let {qk,`} be a probability

distribution on the set of all pairs (k, `) of positive integers such that for all k, `, qk,` > 0.
For a time dependent learning parameter ηt > 0, define the weights

wt,k,` = qk,`e
−(t−1)Lt−1(h(k,`))/

√
t (8.13)

and their normalized values
pt,k,` =

wt,k,`
Wt

, (8.14)

where

Wt =
∞∑

i,j=1

wt,i,j . (8.15)

The prediction strategy g is defined by

gt(x
t
1, y

t−1
1 ) =

∞∑
k,`=1

pt,k,`h
(k,`)(xt1, y

t−1
1 ) , t = 1, 2, . . . (8.16)

105



Theorem 8.5. (Györfi and Ottucsák (2007)) Assume that the conditions (a), (b),
(c) and (d) of Theorem 8.1 are satisfied. Then the prediction scheme g defined above
is universally consistent with respect to the class of all stationary and ergodic processes
{(Xn, Yn)}∞−∞ such that

E{Y 4
1 } <∞.

Here we describe a result, which is used in the analysis.

Lemma 8.3. (Györfi and Ottucsák (2007)) Let h(1), h(2), . . . be a sequence of pre-
diction strategies (experts). Let {qk} be a probability distribution on the set of positive
integers. Denote the normalized loss of the expert h = (h1, h2, . . . ) by

Ln(h) =
1

n

n∑
t=1

λt(h),

where
λt(h) = λ(ht, Yt)

and the loss function λ is convex in its first argument h. Define

wt,k = qke
−ηt(t−1)Lt−1(h(k))

where ηt > 0 is monotonically decreasing, and

pt,k =
wt,k
Wt

where

Wt =
∞∑
k=1

wt,k .

If the prediction strategy g = (g1, g2, . . . ) is defined by

gt =
∞∑
k=1

pt,kh
(k)
t t = 1, 2, . . .

then for every n ≥ 1,

Ln(g) ≤ inf
k

(
Ln(h(k))− ln qk

nηn+1

)
+

1

2n

n∑
t=1

ηt

∞∑
k=1

pt,kλ
2
t (h

(k)).
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Proof. Introduce some notations:

w′t,k = qke
−ηt−1(t−1)Lt−1(h(k)),

which is the weight wt,k, where ηt is replaced by ηt−1 and the sum of these are

W ′
t =

∞∑
k=1

w′t,k.

We start the proof with the following chain of bounds:

1

ηt
ln
W ′
t+1

Wt

=
1

ηt
ln

∑∞
k=1wt,ke

−ηtλt(h(k))

Wt

=
1

ηt
ln
∞∑
k=1

pt,ke
−ηtλt(h(k))

≤ 1

ηt
ln
∞∑
k=1

pt,k

(
1− ηtλt(h(k)) +

η2
t

2
λ2
t (h

(k))

)

because of e−x ≤ 1− x+ x2/2 for x ≥ 0. Moreover,

1

ηt
ln
W ′
t+1

Wt

≤ 1

ηt
ln

(
1− ηt

∞∑
k=1

pt,kλt(h
(k)) +

η2
t

2

∞∑
k=1

pt,kλ
2
t (h

(k))

)

≤ −
∞∑
k=1

pt,kλt(h
(k)) +

ηt
2

∞∑
k=1

pt,kλ
2
t (h

(k)) (8.17)

= −
∞∑
k=1

pt,kλ(h
(k)
t , Yt) +

ηt
2

∞∑
k=1

pt,kλ
2
t (h

(k))

≤ −λ

(
∞∑
k=1

pt,kh
(k)
t , Yt

)
+
ηt
2

∞∑
k=1

pt,kλ
2
t (h

(k)) (8.18)

= −λt(g) +
ηt
2

∞∑
k=1

pt,kλ
2
t (h

(k)) (8.19)
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where (8.17) follows from the fact that ln(1+x) ≤ x for all x > −1 and in (8.18) we used
the convexity of the loss λ(h, y) in its first argument h. From (8.19) after rearranging
we obtain

λt(g) ≤ − 1

ηt
ln
W ′
t+1

Wt

+
ηt
2

∞∑
k=1

pt,kλ
2
t (h

(k)) .

Then write a telescope formula:

1

ηt
lnWt −

1

ηt
lnW ′

t+1 =

(
1

ηt
lnWt −

1

ηt+1

lnWt+1

)
+

(
1

ηt+1

lnWt+1 −
1

ηt
lnW ′

t+1

)
= (At) + (Bt).

We have that

n∑
t=1

At =
n∑
t=1

(
1

ηt
lnWt −

1

ηt+1

lnWt+1

)
=

1

η1

lnW1 −
1

ηn+1

lnWn+1

= − 1

ηn+1

ln
∞∑
k=1

qke
−ηn+1nLn(h(k))

≤ − 1

ηn+1

ln sup
k
qke
−ηn+1nLn(h(k))

= − 1

ηn+1

sup
k

(
ln qk − ηn+1nLn(h(k))

)
= inf

k

(
nLn(h(k))− ln qk

ηn+1

)
.
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ηt+1

ηt
≤ 1, therefore applying Jensen’s inequality for concave function, we get that

Wt+1 =
∞∑
i=1

qie
−ηt+1tLt(h(i))

=
∞∑
i=1

qi

(
e−ηttLt(h

(i))
) ηt+1

ηt

≤

(
∞∑
i=1

qie
−ηttLt(h(i))

) ηt+1
ηt

=
(
W ′
t+1

) ηt+1
ηt .

Thus,

Bt =
1

ηt+1

lnWt+1 −
1

ηt
lnW ′

t+1

≤ 1

ηt+1

ηt+1

ηt
lnW ′

t+1 −
1

ηt
lnW ′

t+1

= 0.

We can summarize the bounds:

Ln(g) ≤ inf
k

(
Ln(h(k))− ln qk

nηn+1

)
+

1

2n

n∑
t=1

ηt

∞∑
k=1

pt,kλ
2
t (h

(k)) .

2

Proof of Theorem 8.5. Because of (8.1), it is enough to show that

lim sup
n→∞

Ln(g) ≤ L∗ a.s.

Because of the proof of Theorem 8.1, as n→∞, a.s.,

Ê(k,`)
n (Xn

1 , Y
n−1

1 , z, s)→ E{Y0 | G`(X
0
−k) = z, F`(Y

−1
−k ) = s},

and therefore for all z and s

Tnδ
(
Ê(k,`)
n (Xn

1 , Y
n−1

1 , z, s)
)
→ E{Y0 | G`(X

0
−k) = z, F`(Y

−1
−k ) = s}.
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By Lemma 8.2, as n→∞, almost surely,

Ln(h(k,`))

=
1

n

n∑
t=1

(h(k,`)(Xt
1, Y

t−1
1 )− Yt)2

=
1

n

n∑
t=1

(
Ttδ
(
Ê

(k,`)
t (Xt

1, Y
t−1

1 , G`(X
t
t−k), F`(Y

t−1
t−k ))

)
−Yt

)2

→E{(Y0 − E{Y0 | G`(X
0
−k), F`(Y

−1
−k )})2}

def
= εk,`.

In the same way as in the proof of Theorem 8.1, we get that

inf
k,l
εk,l = lim

k,`→∞
εk,` = E

{(
Y0 − E{Y0|X0

−∞, Y
−1
−∞}

)2
}

= L∗.

Apply Lemma 8.3 with choice ηt = 1√
t
and for the squared loss λt(h) = (ht − Yt)2, then

the square loss is convex in its first argument h, so

Ln(g) ≤ inf
k,`

(
Ln(h(k,`))− 2 ln qk,`√

n

)
+

1

2n

n∑
t=1

1√
t

∞∑
k,`=1

pt,k,`
(
h(k,`)(Xt

1, Y
t−1

1 )− Yt
)4
. (8.20)

On the one hand, almost surely,

lim sup
n→∞

inf
k,`

(
Ln(h(k,`))− 2 ln qk,`√

n

)
≤ inf

k,`
lim sup
n→∞

(
Ln(h(k,`))− 2 ln qk,`√

n

)
= inf

k,`
lim sup
n→∞

Ln(h(k,`))

= inf
k,`
εk,`

= lim
k,`→∞

εk,`

= L∗.
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On the other hand,

1

n

n∑
t=1

1√
t

∑
k,`

pt,k,`(h
(k,`)(Xt

1, Y
t−1

1 )− Yt)4

≤ 8

n

n∑
t=1

1√
t

∑
k,`

pt,k,`
(
h(k,`)(Xt

1, Y
t−1

1 )4 + Y 4
t

)
≤ 8

n

n∑
t=1

1√
t

∑
k,`

pt,k,`
(
t4δ + Y 4

t

)
=

8

n

n∑
t=1

t4δ + Y 4
t√

t
,

therefore, almost surely,

lim sup
n→∞

1

n

n∑
t=1

1√
t

∑
k,`

pt,k,`(h
(k,`)(Xt

1, Y
t−1

1 )− Yt)4

≤ lim sup
n→∞

8

n

n∑
t=1

Y 4
t√
t

= 0,

where we applied that E{Y 4
1 } < ∞ and 0 < δ < 1

8
. Summarizing these bounds, we get

that, almost surely,
lim sup
n→∞

Ln(g) ≤ L∗

and the proof of the theorem is finished. 2

8.3.2 Kernel-based prediction strategies

Apply the notations of Section 8.2.2. Then the elementary expert h(k,`)
n at time n is

defined by

h(k,`)
n (xn1 , y

n−1
1 ) = Tmin{nδ,`}

(∑
{t∈J(k,`)

n } yt

|J (k,`)
n |

)
, n > k + 1,

where 0/0 is defined to be 0 and 0 < δ < 1/8. The pool of experts is mixed the same
way as in the case of the partition-based strategy (cf. (8.13), (8.14), (8.15) and (8.16)).
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Theorem 8.6. (Biau et al (2010)) Suppose that (8.8) and (8.9) are verified. Then
the kernel-based strategy defined above is universally consistent with respect to the class
of all stationary and ergodic processes {(Xn, Yn)}∞−∞ such that

E{Y 4
0 } <∞.

8.3.3 Nearest neighbor-based prediction strategy

Apply the notations of Section 8.2.3. Then the elementary expert h(k,`)
n at time n is

defined by

h(k,`)
n (xn1 , y

n−1
1 ) = Tmin{nδ,`}

(∑
{t∈J(k,`)

n } yt

|J (k,`)
n |

)
, n > k + 1,

if the sum is nonvoid, and 0 otherwise and 0 < δ < 1/8. The pool of experts is mixed
the same way as in the case of the histogram-based strategy (cf. (8.13), (8.14), (8.15)
and (8.16)).

Theorem 8.7. (Biau et al (2010)) Suppose that (8.11) is verified, and that for each
vector s the random variable

‖(Xk+1
1 , Y k

1 )− s‖

has a continuous distribution function. Then the nearest neighbor strategy defined above
is universally consistent with respect to the class of all stationary and ergodic processes
{(Xn, Yn)}∞−∞ such that

E{Y 4
0 } <∞.

8.3.4 Generalized linear estimates

Apply the notations of Section 8.2.4. The elementary predictor h(k,`)
n generates a predic-

tion of form

h(k,`)
n (xn1 , y

n−1
1 ) = Tmin{nδ,`}

(∑̀
j=1

cn,jφ
(k)
j (xnn−k, y

n−1
n−k)

)
,

with 0 < δ < 1/8. The pool of experts is mixed the same way as in the case of the
histogram-based strategy (cf. (8.13), (8.14), (8.15) and (8.16)).
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Theorem 8.8. (Biau et al (2010)) Suppose that |φ(k)
j | ≤ 1 and, for any fixed k,

suppose that the set {∑̀
j=1

cjφ
(k)
j ; (c1, . . . , c`), ` = 1, 2, . . .

}

is dense in the set of continuous functions of d(k + 1) + k variables. Then the general-
ized linear strategy defined above is universally consistent with respect to the class of all
stationary and ergodic processes {(Xn, Yn)}∞−∞ such that

E{Y 4
0 } <∞.

8.3.5 Prediction of gaussian processes

We consider in this section the classical problem of gaussian time series prediction. In
this context, parametric models based on distribution assumptions and structural con-
ditions such as AR(p), MA(q), ARMA(p,q) and ARIMA(p,d,q) are usually fitted to the
data. However, in the spirit of modern nonparametric inference, we try to avoid such
restrictions on the process structure. Thus, we only assume that we observe a string re-
alization yn−1

1 of a zero mean, stationary and ergodic, gaussian process {Yn}∞−∞, and try
to predict yn, the value of the process at time n. Note that there is no side information
vectors xn1 in this purely time series prediction framework.

For Gaussian time series and for any integer k > 0, E{Yn | Y n−1
n−k } is a linear function

of Y n−1
n−k :

E{Yn | Y n−1
n−k } =

k∑
j=1

c
(k)
j Yn−j, (8.21)

where the coefficients c(k)
j minimize the risk

E


(

k∑
j=1

cjY−j − Y0

)2
 ,

therefore the main ingredient is the estimate of the coefficients c(k)
1 , . . . , c

(k)
k from the data

Y n−1
1 . Such an estimate is called elementary predictor, it is denoted by h̃(k) generating

a prediction of form

h̃(k)(Y n−1
1 ) =

k∑
j=1

C
(k)
n,jYn−j
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such that the coefficients C(k)
n,j minimize the empirical risk

n−1∑
i=k+1

(
k∑
j=1

cjYi−j − Yi

)2

if n > k, and the all-zero vector otherwise. Even though the minimum always exists, it
is not unique in general, and therefore the minimum is not well-defined. It is shown by
Györfi (1984) that there is a unique vector C(k)

n = (C
(k)
n,1, . . . , C

(k)
n,k) such that

n−1∑
i=k+1

(
k∑
j=1

C
(k)
n,jYi−j − Yi

)2

= min
(c1,...,ck)

n−1∑
i=k+1

(
k∑
j=1

cjYi−j − Yi

)2

,

and it has the smallest Euclidean norm among the minimizer vectors.
We set

Ta(z) =


a if z > a;
z if |z| < a;
−a if z < −a.

and
h(k)
n (yn−1

1 ) = Tmin{nδ,k}

(
h̃(k)
n (yn−1

1 )
)
,

where 0 < δ < 1
8
, and combine these experts as before. Precisely, let {qk} be an arbitrarily

probability distribution over the positive integers such that for all k, qk > 0, define the
weights

wk,n = qke
−(n−1)Ln−1(h

(k)
n )/

√
n

and their normalized values
pk,n =

wk,n∑∞
i=1wi,n

.

The prediction strategy g at time n is defined by

gn(yn−1
1 ) =

∞∑
k=1

pk,nh
(k)
n (yn−1

1 ), n = 1, 2, . . .

Theorem 8.9. (Biau et al (2010)) The prediction strategy g defined above is univer-
sally consistent with respect to the class of all stationary and ergodic zero-mean gaussian
processes {Yn}∞−∞.

The following corollary shows that the strategy g provides asymptotically a good
estimate of the regression function in the following sense:
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Corollary 8.1. (Biau et al (2010)) Under the conditions of Theorem 8.9,

lim
n→∞

1

n

n∑
t=1

(
E{Yt | Y t−1

1 } − g(Y t−1
1 )

)2
= 0 almost surely.

Corollary 8.1 is expressed in terms of an almost sure Cesáro consistency. It is an open
problem to know whether there exists a prediction rule g such that

lim
n→∞

(
E{Yn|Y n−1

1 } − g(Y n−1
1 )

)
= 0 almost surely (8.22)

for all stationary and ergodic gaussian processes.
Schäfer (2002) investigated the following predictor: choose Ln ↑ ∞, then his predictor

is

ḡn(Y n−1
1 ) =

kn∑
j=1

C
(kn)
n,j TLn(Yn−j).

Schäfer (2002) proved that, under some conditions on the Gaussian process, we have
that

lim
n→∞

(
E{Yn | Y n−1

n−kn} − ḡn(Y n−1
1 )

)
= 0 a.s.

His conditions include that the process has the MA(∞) representation

∞∑
j=0

a∗jZn−j, (8.23)

with i.i.d. Gaussian innovations {Zn} and with

∞∑
i=1

|a∗i |2 <∞, (8.24)

such that
∞∑
i=1

|a∗i | <∞, (8.25)

and therefore it is purely nondeterministic and the spectral density exists. Moreover, he
assumed that

E{Yn | Y n−1
−∞ } − E

{
Yn|Y n−1

n−kn

}
→ 0
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a.s. For example, he proved the strong consistency with kn = n1/4 if the spectral density
is bounded away from zero. The question left is how to avoid these conditions such that
we pose conditions only on the covariances.

Györfi, Sanchetta (2014) studied the open problem (8.22). For fixed k, an elementary
predictor

h̃(k)(Y n−1
1 ) =

k∑
j=1

C
(k)
n,jYn−j

cannot be consistent. In order to get consistent predictions there are three main princi-
ples:

• k is a deterministic function of n,

• k depends on the data Y n−1
1 ,

• aggregate the elementary predictors {h̃(k)(Y n−1
1 ), k = 1, 2, . . . , n− 2}.

For a deterministic sequence kn, n = 1, 2, . . . , consider the predictor

g̃n(Y n−1
1 ) = h̃(kn)(Y n−1

1 ) =
kn∑
j=1

C
(kn)
n,j Yn−j.

We guess that the following is true:

Conjecture 8.1. For any deterministic sequence kn, there is a stationary, ergodic Gaus-
sian process such that the prediction error

E{Yn | Y n−1
1 } −

kn∑
j=1

C
(kn)
n,j Yn−j

does not converge to 0 a.s.

For the prediction error E{Yn | Y n−1
1 } − g̃n(Y n−1

1 ) we have the decomposition

E{Yn | Y n−1
1 } − g̃n(Y n−1

1 ) = In + Jn,

where
In = E{Yn | Y n−1

1 } − E
{
Yn|Y n−1

n−kn

}
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is the approximation error, and

Jn = E
{
Yn|Y n−1

n−kn

}
− g̃n(Y n−1

1 ) =
kn∑
j=1

(c
(kn)
j − C(kn)

n,j )Yn−j

is the estimation error. In order to have small approximation error, we need kn → ∞,
while the control of the estimation error is possible if this convergence to ∞ is slow.

The approximation error tends to zero in L2 without any condition:

Proposition 8.1. (Györfi, Sanchetta (2014)) For any sequence kn → ∞ and for
any stationary process {Yn}∞−∞,

lim
n→∞

E{(In)2} = 0.

However, concerning the strong convergence of the approximation error, we have a
negative finding:

Proposition 8.2. (Györfi, Sanchetta (2014)) Put kn = (lnn)1−δ with 0 < δ < 1.
Then for the MA(1) process defined by

Yn = Zn − Zn−1, (8.26)

where the innovations {Zn} are i.i.d. standard Gaussian, the approximation error does
not converge to zero a.s.

Under some condition on the covariances r(j), j = 1, 2, . . . , one may get positive
result on the approximation error.

Proposition 8.3. (Györfi, Sanchetta (2014)) Assume that for all n > k,
n−1∑
j=k+1

c
(n−1)
j r(j) ≤ C1k

−γ,

and
k∑
j=1

(c
(n−1)
j − c(k)

j )r(j) ≤ C2k
−γ, (8.27)

with γ > 0. If
kn = (lnn)(1+δ)/γ (8.28)

(δ > 0), then for the approximation error, we have that

In = E{Yn | Y n−1
1 } − E

{
Yn|Y n−1

n−kn

}
→ 0

a.s.
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The partial autocorrelation function of Yn is α (j) := c
(j)
j where c(j)

j is as defined
before, i.e. the jth coefficient from the AR(j) approximation of Yn. It is possible to
explicitly bound the approximation error In using α (j).

Proposition 8.4. (Györfi, Sanchetta (2014)) Suppose that

∞∑
j=k+1

α2(j) ≤ ck−γ

with γ > 0, c > 0. For the choice (8.28), we have that

In = E{Yn | Y n−1
1 } − E

{
Yn|Y n−1

n−kn

}
→ 0

a.s.

The estimation error is even more interesting. Under some conditions on the covari-
ances, Györfi and Sanchetta (2014) had some positive results on the strong convergence
of the estimation error. However, they guessed the following:

Conjecture 8.2. There is a stationary, ergodic Gaussian process and a fixed k such that
the estimation error

Jn =
k∑
j=1

(c
(k)
j − C

(k)
n,j )Yn−j

does not converge to 0 a.s.
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Chapter 9

Estimation and prediction for pinball
loss

9.1 The absolute loss
In the previous chapters we studied the squared loss

`(ŷ, y) = (y − ŷ)2. (9.1)

In some applications the squared loss is too sensitive for large error values, therefore we
introduce the absolute loss:

`(ŷ, y) = |y − ŷ|. (9.2)

The absolute loss or the related l1 norm became an important quantity for high-
dimensional statistics and for compressed sensing, see Bühlmann and van de Geer (2011),
Candés, Romberg and Tao (2006), Donoho (2006), Elad (2010), Eldar and Kutyniok
(2012). Another application of the l1 norm is in the photogrammetry, see Förstner,
Wrobel (2016), Kraus (2007), Luhmann, et al. (2013).

Similarly to the previous chapters, we are given a random vector (X, Y ), where the
observation vector X takes values in Rd, and the label Y is real valued. For absolute
loss, we search for the function f : Rd → R such that |f(X)− Y | is “small”, i.e., let the
L1 error or the mean absolute error

E{|f(X)− Y |}

take the smallest value. It means that we want to construct the function r∗ : Rd → R,
for which

E{|r∗(X)− Y |} = min
f :Rd→R

E{|f(X)− Y |}. (9.3)
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For the squared loss, we applied the Steiner theorem for conditional distributions and
so got the optimal function, called regression function. For absolute loss, the problem is
a bit more involved.

Consider the following optimization task:

E{|yopt − Y |} = min
y∈R

E{|y − Y |}!

Because of the absolute value, the expression

E{|y − Y |}

is not differentiable at each point y. However, it is convex, therefore the right and left
derivatives exist. At the point yopt the right derivative is non-negative, while the left
derivative is non-positive.

If the function is differentiable at y, then calculating formally the derivative, one can
guess yopt.

d

dy
E{|y − Y |} = E

{
d

dy
|y − Y |

}
= E {sign(y − Y )}
= P {Y ≤ y} − P {Y > y}
= 2(P {Y ≤ y} − 1/2).

Thus yopt is the solution of the equation

P {Y ≤ y} = 1/2,

i.e., yopt is the median of the random variable Y . Let

F (y) = P {Y ≤ y}

be the distribution function of the random variable Y . Then

yopt = F−1(1/2),

which is the median of the random variable Y . A formal proof of the optimality can be
found in Stroock (2011).

Here we have two problems: one the one hand the inverse does not exist, in general,
on the other hand it may not be unique. However, one can define the inverse uniquely:

F−1(u) = max{y;F (y) ≤ u}. (9.4)
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Now, consider the task (9.3). Introduce the conditional distribution function

F (y | x) = P {Y ≤ y | X = x} . (9.5)

Because of

E{|f(X)− Y |} = E{E{|f(X)− Y | | X}} =

∫
E{|f(x)− Y | | X = x}µ(dx),

we have that
r∗(x) = F−1(1/2 | x), (9.6)

which is the conditional median of the random variable Y , given X = x.

9.2 The pinball loss

Before studying the estimation of the function r∗(x), we generalize the concept of absolute
loss. In many real life applications the loss is different depending, whether or not f(X)
overestimates Y . For example, if Y is a future price of an asset, then overestimating
Y the loss is much larger than for underestimating. This type of costs shows up for
inventory problems, see Toomey (2000), Prékopa (2006). The other important practical
example is the prediction of electricity consumption, cf. Abu-Shikhah, Elkarmi and
Aloquili (2011), Alfares and Nazeeruddin (2002), Almeshaiei and Soltan (2011), Aung
et al. (2012), Ba et al. (2012), Bozic, Stojanovic and Stajic (2010), Bruhns, Deurveilher
and Roy (2005), Cancelo, Espasa and Grafe (2008), Devaine et al. (2013), Dordonnat et
al. (2008), Elattar, Goulermas and Wu (2010), Feinberg and Genethliou (2005), Gaillard
and Goude (2011), Misiti et al. (2010), Nagi et al. (2008), Pierrot and Goude (2011),
Sevlian and Rajagopal (2018), Taylor and McSharry (2008).

Put 0 < τ < 1. If x+ denotes the positive part of x, then the generalization of the
absolute loss is defined by

`τ (ŷ, y) = τ(y − ŷ)+ + (1− τ)(ŷ − y)+. (9.7)

This loss is called τ -pinball loss, see Steinwart and Christmann (2011). Our optimization
task is as follows:

τE{(Y − r∗(X))+}+ (1− τ)E{(r∗(X)− Y )+}
= min

f :Rd→R
[τE{(Y − f(X))+}+ (1− τ)E{(f(X)− Y )+}]. (9.8)
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For the notation
C+ =

τ

(1− τ)
,

(9.8) is equivalent to

C+E{(Y − r∗(X))+}+ E{(r∗(X)− Y )+}
= min

f :Rd→R
[C+E{(Y − f(X))+}+ E{(f(X)− Y )+}]. (9.9)

Similarly to the previous section, start with a special optimization problem:

C+E{(Y − yopt)+}+ E{(yopt − Y )+} = min
y∈R

[C+E{(Y − y)+}+ E{(y − Y )+}].

Again search for yopt calculating the derivative:

d

dy
[C+E{(Y − y)+}+ E{(y − Y )+}] = C+E

{
d

dy
(Y − y)+

}
+ E

{
d

dy
(y − Y )+

}
= −C+E {IY >y}+ E {IY≤y}
= −C+P {Y > y}+ P {Y ≤ y}
= (1 + C+)P {Y ≤ y} − C+.

Therefore
yopt = F−1

(
C+

1 + C+

)
= F−1 (τ) ,

which is the quantile of the random variable Y at level τ . Concerning a formal proof of
optimality, see Biau and Patra (2011).

It implies the solution of (9.8):

r∗(x) = F−1 (τ | x) (9.10)

and so r∗(x) is the conditional quantile of the random variable Y at level τ , given X = x.
The function r∗(x) is called quantile regression function.

9.3 Estimates of quantile regression function
In an application the distribution of (X, Y ) is unknown and so we cannot calculate the
quantile regression function. Assume we are given data

Dn = {(X1, Y1), . . . , (Xn, Yn), }
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which is a sequence of i.i.d. pairs of random variables.
From the definition (9.5) it is obvious, that for any fixed y, the function F (y | x)

is a regression function, which can be estimated from the data Dn. Let Fn(y | x) an
arbitrary regression estimate depending on x and Dn. From Fn(y | x) we derive a
quantile regression estimate:

rn(x) = F−1
n (τ | x) .

(See Bhattacharya and Gangopadhyay (1990), Caner (2002), Chaudhuri (1991), Dette
and Volgushev (2008), Hall and Müller (2003), Koenker (2005), Lejeune and Sarda
(1988), Stone (1977).)

For a sequence of real numbers z1, ..., zN let

Qτ (z1, ..., zN)

be the quantile of the sequence z1, ..., zN at level τ .
For the partition Pn = {An,1, An,2, . . .}, we slightly modify the partitioning estimate

defined in Chapter 2 such that

Fn(y | x) =

{ ∑n
i=1 I{Yi≤y}I{Xi∈An(x)}∑n

i=1 I{Xi∈An(x)}
, if

∑n
i=1 I{Xi∈An(x)} > 0,

I{ 1
n

∑n
i=1 Yi≤y}

otherwise,

where An(x) denotes the An,j of the partition Pn into which x falls. If
∑n

i=1 I{Xi∈An(x)} >
0, then let Yn,1(x), . . . , Yn,N(x) be the subsequence of Y1, . . . , Yn, for which Xi ∈ An(x).
(Here N =

∑n
i=1 I{Xi∈An(x)}.) Then the partitioning based quantile estimate is given by

rn(x) =

{
Qτ (Yn,1(x), . . . , Yn,N(x)), if

∑n
i=1 I{Xi∈An(x)} > 0,

Qτ (Y1, . . . , Yn) otherwise. (9.11)

Because of computational complexity, we introduce the kernel based quantile regres-
sion estimate only in the special case of naive kernel. Put

Fn(y | x) =


∑n
i=1 I{Yi≤y}I{Xi∈Sx,hn}∑n

i=1 I{Xi∈Sx,hn}
, if

∑n
i=1 I{Xi∈Sx,hn} > 0,

I{ 1
n

∑n
i=1 Yi≤y}

otherwise.

If
∑n

i=1 I{Xi∈Sx,hn} > 0, then let Yn,1(x), . . . , Yn,N(x) be the subsequence of Y1, . . . , Yn, for
which Xi ∈ Sx,hn . (Here N =

∑n
i=1 I{Xi∈Sx,hn}.) Then with these notations, the kernel

based quantile regression estimate rn(x) is defined by (9.11).
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Using the notations of Chapter 4 we define kn nearest neighbor quantile regression
estimate. Put

Fn(y | x) =
1

kn

kn∑
i=1

I{Y(i,n)(x)≤y}.

Then nearest neighbor quantile regression estimate is

rn(x) = Qτ (Y(1,n)(x), . . . , Y(kn,n)(x)).

9.4 Aggregation of finitely many elementary predic-
tors

Introduce the notations

`τ (ŷt, yt) = τE{(yt − ŷt))+}+ (1− τ)E{(ŷt − yt)+} (9.12)

and

Ln(g) =
1

n

n∑
t=1

`τ (gt(x
t
1, y

t−1
1 ), yt).

Theorem 9.1. (Cesa-Bianchi, Lugosi (2006)) Let h̃1, h̃2, . . . , h̃K be a sequence of
predictions. Assume that the cost function ` is convex in the first argument, and

0 ≤ `τ (h̃k(x
n
1 , y

n−1
1 ), yn) ≤ B.

Introduce the weights

wt,k =
1

K
e−η(t−1)Lt−1(h̃k)

and their normalizations
vt,k =

wt,k∑K
i=1wt,i

.

If the aggregated prediction g̃ is defined by

g̃t(x
t
1, y

t−1
1 ) =

K∑
k=1

vt,kh̃k(x
t
1, y

t−1
1 ) t = 1, 2, . . . ,

then for each n ≥ 1,

Ln(g̃) ≤ min
1≤k≤K

Ln(h̃k) +
lnK

nη
+
ηB2

8
.

124



Thus, for the choice

η =

√
8

B

√
lnK

n
,

we get

Ln(g̃) ≤ min
1≤k≤K

Ln(h̃k) +

√
2 lnK

n
B.

Proof. For the proof of this theorem we apply the Hoeffding (1963) lemma. If for a
random variable Z, a ≤ Z ≤ b, then for any real number s, one gets

E {exp (s · (Z − EZ))} ≤ exp

(
s2(b− a)2

8

)
. (9.13)

Put
Y = Z − EZ.

Then Y ∈ [a− EZ, b− EZ] =: [a′, b′], a′ − b′ = a− b, and EY = 0. We show, that

E {exp(sY )} ≤ exp

(
s2(b− a)2

8

)
. (9.14)

Because of the convexity of esx,

esx ≤ x− a
b− a

esb +
b− x
b− a

esa ha a ≤ x ≤ b,

therefore

E{exp(sY )} ≤ E{Y } − a
b− a

esb +
b− E{Y }
b− a

esa

= esa
(

1 +
a

b− a
− a

b− a
es(b−a)

)
( since E{Y } = 0).

Put
p = − a

b− a
,

then

E{exp(sY )} ≤ (1− p+ p · es(b−a))e−s p (b−a) = eΦ(s(b−a)),
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where
Φ(u) = ln

(
(1− p+ peu)e−pu

)
= ln (1− p+ peu)− pu.

Calculate the Taylor series of Φ! Because of

Φ(0) = 0,

Φ′(u) =
peu

1− p+ peu
− p, therefore Φ′(0) = 0

and

Φ′′(u) =
(1− p+ peu)peu − peupeu

(1− p+ peu)2
=

(1− p)peu

(1− p+ peu)2

≤ (1− p)peu

4(1− p)peu
=

1

4
.

Thus, for any u > 0,

Φ(u) = Φ(0) + Φ′(0)u+
1

2
Φ′′(η)u2 ≤ 1

8
u2

with some η ∈ [0, u]. We get, that

E{exp(sY )} ≤ eΦ(s(b−a)) ≤ exp

(
1

8
s2(b− a)2

)
,

which proves (9.14). The Hoeffding lemma implies, that

lnE {exp (s · Z)} ≤ sE {Z}+
s2(b− a)2

8
. (9.15)

Put
W1 = 1

and

Wt =
K∑
k=1

wt,k

for t > 1. Then on the one hand

ln
Wn

W1

= ln

(
K∑
k=1

e−η(n−1)Ln−1(h̃k)

)
− lnK

≥ ln

(
max

1≤k≤K
e−η(n−1)Ln−1(h̃k)

)
− lnK

= −η(n− 1) min
1≤k≤K

Ln−1(h̃k)− lnK,
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and on the other hand (9.15) implies that

ln
Wt+1

Wt

= ln

∑K
k=1 e

−ηtLt(h̃k)∑K
k=1 e

−η(t−1)Lt−1(h̃k)

= ln

∑K
k=1 e

−η(t−1)Lt−1(h̃k)e−η`τ (h̃k,t(x
t
1,y

t−1
1 ),yt)∑K

k=1 e
−η(t−1)Lt−1(h̃k)

= ln

∑K
k=1 wt,ke

−η`τ (h̃k,t(x
t
1,y

t−1
1 ),yt)∑K

k=1 wt,k

≤ −η
∑K

k=1wt,k`τ (h̃k,t(x
t
1, y

t−1
1 ), yt)∑K

k=1wt,k
+
η2B2

8

≤ −η`τ

(∑K
k=1 wt,kh̃k,t(x

t
1, y

t−1
1 )∑K

k=1wt,k
, yt

)
+
η2B2

8

= −η`τ
(
g̃t(x

t
1, y

t−1
1 ), yt

)
+
η2B2

8
,

where the second inequality follows from the Jensen inequality, because we assume, that
the cost function `τ is convex in the first argument. Thus,

ln
Wn

W1

=
n−1∑
t=1

ln
Wt+1

Wt

≤ −η
n−1∑
t=1

`τ
(
g̃t(x

t
1, y

t−1
1 ), yt

)
+ (n− 1)

η2B2

8

= −η(n− 1)Ln−1(g̃) + (n− 1)
η2B2

8
.

Combining the two inequalities for ln Wn

W1
, we get that

−η(n− 1) min
1≤k≤K

Ln−1(h̃k)− lnK ≤ −η(n− 1)Ln−1(g̃) + (n− 1)
η2B2

8
,

and the theorem is proved. 2

The Theorem 9.1 holds for any sequence {xn, yn}. In the theory of machine learning
one says, that for any individual sequence we have a worst case inequality. For particular
cases this inequality can be improved, while there are results for the good choice of η.

127



9.5 Prediction of time series for pinball loss
With the notation of Section 8.2.1, put

J (k,`)
n =

{
k < t < n : G`(x

t
t−k) = G`(x

n
n−k), F`(y

t−1
t−k) = F`(y

n−1
n−k)

}
.

Define the elementary predictor h(k,`) by

h(k,`)
n (xn1 , y

n−1
1 ) =

{
Qτ (yi, i ∈ J (k,`)

n ), if J
(k,`)
n 6= ∅,

Qτ (y1, . . . , yn−1) otherwise.

According to (8.13), (8.14), (8.15) and (8.16), aggregate the elementary predictors, which
is called as partitioning based predictor for pinball loss. Then the expert lemma for
unbounded yis (Lemma 8.3) implies, that the partitioning based predictor universally
consistent for the class of stationary and ergodic time series with E{Y 2} < ∞ and for
pinball loss.

The kernel based predictor is defined as before such that J (k,`)
n was introduced in

Section 3, and the same consistency result can be formulated as for partitioning based
predictor.

For the nearest neighbor predictor, J (k,`)
n is defined in Section 8.2.3, and its consistency

was proved by Biau and Patra (2011).
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Chapter 10

Prediction of time series for 0− 1 loss

10.1 Bayes decision

For the statistical inference, a d-dimensional observation vector X is given, and based on
X, the statistician has to make an inference on a random variable Y , which takes finitely
many values, i.e., it takes values from the set {1, 2, . . . ,M}. In fact, the inference is a
decision formulated by a decision function

g : Rd → {1, 2, . . . ,M}.

If g(X) 6= Y then the decision makes error.
In the formulation of the Bayes decision problem, introduce a cost function C(y, y′) ≥

0, which is the cost if the label Y = y and the decision g(X) = y′. For a decision function
g, the risk is the expectation of the cost:

R(g) = E{C(Y, g(X))}.

In Bayes decision problem, the aim is to minimize the risk, i.e., the goal is to find a
function g∗ : Rd → {1, 2, . . . ,M} such that

R(g∗) = min
g:Rd→{1,2,...,M}

R(g), (10.1)

where g∗ is called the Bayes decision function, and R∗ = R(g∗) is the Bayes risk.
For the posteriori probabilities, introduce the notations:

Py(X) = P{Y = y | X}.
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Let the decision function g∗ be defined by

g∗(X) = arg min
y′

M∑
y=1

C(y, y′)Py(X).

If arg min is not unique then choose the smallest y′, which minimizes∑m
y=1 C(y, y′)Py(X). This definition implies that for any decision function g,

m∑
y=1

C(y, g∗(X))Py(X) ≤
M∑
y=1

C(y, g(X))Py(X). (10.2)

Theorem 10.1. For any decision function g, we have that

R(g∗) ≤ R(g).

Proof. For a decision function g, let’s calculate the risk.

R(g) = E{C(Y, g(X))}
= E{E{C(Y, g(X)) | X}}

= E

{
m∑
y=1

M∑
y′=1

C(y, y′)P{Y = y, g(X) = y′ | X}

}

= E

{
m∑
y=1

M∑
y′=1

C(y, y′)I{g(X)=y′}P{Y = y | X}

}

= E

{
M∑
y=1

C(y, g(X))Py(X)

}
.

(10.2) implies that

R(g) = E

{
M∑
y=1

C(y, g(X))Py(X)

}

≥ E

{
M∑
y=1

C(y, g∗(X))Py(X)

}
= R(g∗).
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2

Concerning the cost function, the most frequently studied example is the so called
0− 1 loss:

C(y, y′) =

{
1 if y 6= y′,
0 if y = y′.

For the 0− 1 loss, the corresponding risk is the error probability:

R(g) = E{C(Y, g(X))} = E{I{Y 6=g(X)}} = P{Y 6= g(X)},
and the Bayes decision is of form

g∗(X) = arg min
y′

M∑
y=1

C(y, y′)Py(X) = arg min
y′

∑
y 6=y′

Py(X) = arg max
y′

Py′(X),

which is called maximum posteriori decision, too.

If the distribution of the observation vector X has density, then the Bayes decision
has an equivalent formulation. Introduce the notations for density of X by

P{X ∈ B} =

∫
B

f(x)dx

and for the conditional densities by

P{X ∈ B | Y = y} =

∫
B

fy(x)dx

and for a priori probabilities
qy = P{Y = y},

then it is easy to check that

Py(X) = P{Y = y | X = x} =
qyfy(x)

f(x)

and therefore

g∗(x) = arg min
y′

M∑
y=1

C(y, y′)Py(x)

= arg min
y′

M∑
y=1

C(y, y′)
qyfy(x)

f(x)

= arg min
y′

M∑
y=1

C(y, y′)qyfy(x).
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From the proof of Theorem 10.1 we may derive a formula for the optimal risk:

R(g∗) = E

{
min
y′

M∑
y=1

C(y, y′)Py(X)

}
.

If X has density then

R(g∗) = E

{
min
y′

M∑
y=1

C(y, y′)
qyfy(X)

f(X)

}

=

∫
Rd

min
y′

M∑
y=1

C(y, y′)
qyfy(x)

f(x)
f(x)dx

=

∫
Rd

min
y′

M∑
y=1

C(y, y′)qyfy(x)dx.

For the 0− 1 loss, we get that

R(g∗) = E
{

min
y′

(1− Py′(X))

}
,

which has the form, for densities,

R(g∗) =

∫
Rd

min
y′

(f(x)− qy′fy′(x))dx = 1−
∫
Rd

max
y′

qy′fy′(x)dx.

For M = 2, we have that

R(g∗) = E {min(P1(X), P2(X))} ,

and, for densities,

R(g∗) =

∫
Rd

min(q1f1(x), q2f2(x))dx.

Figure 10.1 illustrates the Bayes decision, while the red area in Figure 10.2 is equal to
the Bayes error probability.
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Figure 10.1: Bayes decision.

Figure 10.2: Bayes error probability.

10.2 Approximation of Bayes decision
In practice, the posteriori probabilities {Py(X)} are unknown. If we are given some
approximations {P̂y(X)}, from which one may derive some approximate decision

ĝ(X) = arg min
y′

M∑
y=1

C(y, y′)P̂y(X)

then the question is how well R(ĝ) approximates R∗.

Lemma 10.1. Put Cmax = maxy,y′ C(y, y′), then

0 ≤ R(ĝ)−R(g∗) ≤ 2Cmax

M∑
y=1

E
{
|Py(X)− P̂y(X)|

}
.
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Proof. We have that

R(ĝ)−R(g∗) = E

{
M∑
y=1

C(y, ĝ(X))Py(X)

}
− E

{
M∑
y=1

C(y, g∗(X))Py(X)

}

= E

{
M∑
y=1

C(y, ĝ(X))Py(X)−
M∑
y=1

C(y, ĝ(X))P̂y(X)

}

+E

{
M∑
y=1

C(y, ĝ(X))P̂y(X)−
M∑
y=1

C(y, g∗(X))P̂y(X)

}

+E

{
M∑
y=1

C(y, g∗(X))P̂y(X)−
M∑
y=1

C(y, g∗(X))Py(X)

}
.

The definition of ĝ implies that

M∑
y=1

C(y, ĝ(X))P̂y(X)−
M∑
y=1

C(y, g∗(X))P̂y(X) ≤ 0,

therefore

R(ĝ)−R(g∗) ≤ E

{
M∑
y=1

C(y, ĝ(X))|Py(X)− P̂y(X)|

}

+E

{
M∑
y=1

C(y, g∗(X))|P̂y(X)− Py(X)|

}

≤ 2Cmax

M∑
y=1

E
{
|Py(X)− P̂y(X)|

}
.

2

In the special case of the approximate maximum posteriori decision the inequality in
Lemma 10.1 can be slightly improved:

0 ≤ R(ĝ)−R(g∗) ≤
M∑
y=1

E
{
|Py(X)− P̂y(X)|

}
.
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Based on this relation, one can introduce efficient pattern recognition rules. The a
posteriori probabilities are the regression functions

P{Y = y|X = x} = E{I{Y=y}|X = x} = m(y)(x).

Given data Dn = {(X1, Y1), . . . , (Xn, Yn)}, estimates m(y)
n of m(y) can be constructed

from the data set
D(y)
n = {(X1, I{Y1=y}), . . . , (Xn, I{Yn=y})},

and one can use a plug-in estimate

gn(x) = arg max
1≤y≤M

m(y)
n (x) (10.3)

to estimate g∗. If the estimates m(y)
n are close to the a posteriori probabilities, then

again the error of the plug-in estimate is close to the optimal error. (For the details, see
Devroye, Györfi, and Lugosi (1996).)

10.3 Pattern recognition for time series
In this section we apply the ideas of Chapter 8 to the seemingly more difficult pattern
recognition problem for time series. The setup is the following: let {(Xn, Yn)}∞−∞ be a
stationary and ergodic sequence of pairs taking values in Rd×{0, 1}. The problem is to
predict the value of Yn given the data (Xn

1 , Y
n−1

1 ).
We may formalize the prediction (classification) problem as follows. The strategy of

the classifier is a sequence f = {ft}∞t=1 of decision functions

ft :
(
Rd
)t × {0, 1}t−1 → {0, 1}

so that the classification formed at time t is ft(Xt
1, Y

t−1
1 ). The normalized cumulative

0− 1 loss for any fixed pair of sequences Xn
1 , Y

n
1 is now

Rn(f) =
1

n

n∑
t=1

I{ft(Xt
1,Y

t−1
1 )6=Yt}.

In this case there is a fundamental limit for the predictability of the sequence, i.e.,
Algoet (1994) proved that for any classification strategy f and stationary ergodic process
{(Xn, Yn)}∞n=−∞,

lim inf
n→∞

Rn(f) ≥ R∗ a.s., (10.4)
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where

R∗= E
{

min
(
P{Y0 = 1|X0

−∞, Y
−1
−∞},P{Y0 = 0|X0

−∞, Y
−1
−∞}

)}
,

therefore the following definition is meaningful:

Definition 10.1. A classification strategy f is called universally consistent if for all
stationary and ergodic processes {Xn, Yn}∞−∞,

lim
n→∞

Rn(f) = R∗ almost surely.

Therefore, universally consistent strategies asymptotically achieve the best possible
loss for all ergodic processes. We present a simple (non-randomized) on-line classifi-
cation strategy, and prove its universal consistency. Consider the prediction scheme
gt(X

t
1, Y

t−1
1 ) introduced in Sections 8.2.1 or 8.2.2 or 8.2.3 or 8.2.4, and then introduce

the corresponding classification scheme:

ft(X
t
1, Y

t−1
1 ) =

{
1 if gt(Xt

1, Y
t−1

1 ) > 1/2
0 otherwise.

The main result of this section is the universal consistency of this simple classification
scheme:

Theorem 10.2. (Györfi and Ottucsák (2007)) Assume that the conditions of The-
orems 8.1 or 8.2 or 8.3 or 8.4 are satisfied. Then the classification scheme f defined
above satisfies

lim
n→∞

Rn(f) = R∗ almost surely

for any stationary and ergodic process {(Xn, Yn)}∞n=−∞.

In order to prove Theorem 10.2 we derive a corollary of Theorem 8.1, which shows
that asymptotically, the predictor gt defined by (8.5) predicts as well as the optimal
predictor given by the regression function E{Yt|Y t−1

−∞ }. In fact, gt gives a good estimate
of the regression function in the following (Cesáro) sense:

Corollary 10.1. Under the conditions of Theorem 8.1

lim
n→∞

1

n

n∑
i=1

(
E{Yi|Xi

−∞, Y
i−1
−∞} − gi(Xi

1, Y
i−1

1 )
)2

= 0 almost surely.
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Proof. By Theorem 8.1,

lim
n→∞

1

n

n∑
i=1

(
Yi − gi(Xi

1, Y
i−1

1 )
)2

= L∗ almost surely.

Consider the following decomposition:(
Yi − gi(Xi

1, Y
i−1

1 )
)2

=
(
Yi − E{Yi|Xi

−∞, Y
i−1
−∞}

)2

+2
(
Yi − E{Yi|Xi

−∞, Y
i−1
−∞}

) (
E{Yi|Xi

−∞, Y
i−1
−∞} − gi(Xi

1, Y
i−1

1 )
)

+
(
E{Yi|Xi

−∞, Y
i−1
−∞} − gi(Xi

1, Y
i−1

1 )
)2
.

Then the ergodic theorem implies that

lim
n→∞

1

n

n∑
i=1

(
Yi − E{Yi|Xi

−∞, Y
i−1
−∞}

)2
= L∗ almost surely.

It remains to show that

lim
n→∞

1

n

n∑
i=1

(
Yi − E{Yi|Xi

−∞, Y
i−1
−∞}

) (
E{Yi|Y i−1

−∞} − gi(Xi
1, Y

i−1
1 )

)
= 0. (10.5)

almost surely. But this is a straightforward consequence of Kolmogorov’s classical strong
law of large numbers for martingale differences due to Chow (1965) (see also Stout (1974,
Theorem 3.3.1)). It states that if {Zi} is a martingale difference sequence with

∞∑
n=1

EZ2
n

n2
<∞, (10.6)

then

lim
n→∞

1

n

n∑
i=1

Zi = 0 almost surely.

Thus, (10.5) is implied by Chow’s theorem since the martingale differences
Zi =

(
Yi − E{Yi|Xi

−∞, Y
i−1
−∞}

) (
E{Yi|Xi

−∞, Y
i−1
−∞} − gi(Xi

1, Y
i−1

1 )
)
are bounded by 4B2.

2

Proof of Theorem 10.2 Because of (10.4) we have to show that

lim sup
n→∞

Rn(f) ≤ R∗ a.s.
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By Corollary 10.1,

lim
n→∞

1

n

n∑
t=1

(
E{Yt | Xt

−∞, Y
t−1
−∞ } − gt(Xt

1, Y
t−1

1 )
)2

= 0 a.s. (10.7)

Introduce the Bayes classification scheme using the infinite past:

f ∗t (Xt
−∞, Y

t−1
−∞ ) =

{
1 if P{Yt = 1 | Xt

−∞, Y
t−1
−∞ } > 1/2

0 otherwise,

and its normalized cumulative 0− 1 loss:

Rn(f ∗) =
1

n

n∑
t=1

I{f∗t (Xt
−∞,Y

t−1
−∞ )6=Yt}.

Put

R̄n(f) =
1

n

n∑
t=1

P{ft(Xt
1, Y

t−1
1 ) 6= Yt | Xt

−∞, Y
t−1
−∞ }

and

R̄n(f ∗) =
1

n

n∑
t=1

P{f ∗t (Xt
−∞, Y

t−1
−∞ ) 6= Yt | Xt

−∞, Y
t−1
−∞ }.

Then
Rn(f)− R̄n(f)→ 0 a.s.

and
Rn(f ∗)− R̄n(f ∗)→ 0 a.s.,

since they are the averages of bounded martingale differences. Moreover, by the ergodic
theorem

R̄n(f ∗)→ R∗ a.s.,

so we have to show that

lim sup
n→∞

(R̄n(f)− R̄n(f ∗)) ≤ 0 a.s.
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Lemma 10.1 implies that

R̄n(f)− R̄n(f ∗) =
1

n

n∑
t=1

(
P{ft(Xt

1, Y
t−1

1 ) 6= Yt | Xt
−∞, Y

t−1
−∞ }

−P{f ∗t (Xt
−∞, Y

t−1
−∞ ) 6= Yt | Xt

−∞, Y
t−1
−∞ }

)
≤ 2

1

n

n∑
t=1

∣∣E{Yt | Xt
−∞, Y

t−1
−∞ } − gt(Xt

1, Y
t−1

1 )
∣∣

≤ 2

√√√√ 1

n

n∑
t=1

∣∣E{Yt | Xt
−∞, Y

t−1
−∞ } − gt(Xt

1, Y
t−1

1 )
∣∣2

→ 0 a.s.,

where in the last step we applied (10.7). 2
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Chapter 11

Density estimation

11.1 Why density estimation: the L1 error
The classical nonparametric example is the problem estimating a distribution function

F (x) = P{X < x}.

from i.i.d. samples X1,X2, . . . ,Xn taking values in Rd. Here on the one hand the
construction of the empirical distribution function

Fn(x) =
1

n

n∑
i=1

I{Xi<x}.

is distribution-free, and on the other hand its uniform convergence, the Glivenko-Cantelli
Theorem holds for all F

lim
n→∞

sup
x∈Rd
|Fn(x)− F (x)| = 0

a.s.
The Glivenko-Cantelli Theorem is really distribution-free, and the convergence in

Kolmogorov- Smirnov distance means uniform convergence, so virtually it seems that
there is no need to go further. However, if, for example, in a decision problem one
wants to use empirical distribution functions for two unknown continuous distribution
functions for creating a kind of likelihood then these estimates are useless. It turns out
that we should look for stronger error criteria. For this purpose it is obvious to consider
the total variation: if µ and ν are probability distributions on Rd (d ≥ 1), then the total
variation distance between µ and ν is defined by

V (µ, ν) = sup
A
|µ(A)− ν(A)|,
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where the supremum is taken over all Borel sets A.
However, if µ stands for the common distribution of {Xi} and µn denotes the empirical

distribution then for nonatomic µ

V (µ, µn) = 1

a.s., so the empirical distribution is a bad estimate in total variation.
One may expect to find a more sophisticated sequence {µ∗n} of distribution estimates

of µ which is consistent in total variation:

lim
n→∞

V (µ, µ∗n) = 0 a.s.

Theorem 11.1. (Devroye and Györfi (1992)) Given any sequence of distribution
estimators {µ∗n} there always exists a probability measure µ for which

V (µ, µ∗n) > 1/3 for all n a.s.

Proof. This negative finding means that the total variation is a much stronger er-
ror criterion than the Kolmogorov-Smirnov distance such that it is impossible to con-
struct a distribution estimate with distribution-free consistency in total variation. The
proof borrows some arguments from Devroye (1983) and Rényi (1959). First, we need
a rich family of singular continuous probability measures. The family of probability
measures considered here is parametrized by a number b ∈ [0, 1] with binary expansion
b = 0.b(1)b(2)b(3) . . . , b(i) ∈ {0, 1}. Let the random variables Y(1), Y(2), . . . be i.i.d. and
uniformly distributed on {0, 1, 2}. We define the random variable X = X(Y, b) by setting
X = 0.X(1)X(2)X(3) . . . in the ternary radix system used for Y = 0.Y(1)Y(2)Y(3) . . . , where

X(k) =

{
0, if b(k) = 0,
Y(k), if b(k) = 1.

Let µb denote the probability measure of X = X(Y, b). If in the binary expansion of
b there are finitely many (L) zeros, then µb is absolutely continuous and distributes its
mass uniformly on a set of Lebesgue measure 3−L.If in the binary expansion of b there
are finitely many (L) ones, then µb is discrete and puts its mass uniformly on a set of
cardinality 3L. In other cases, µb is singular.

We write X(Y1, b), . . . , X(Yn, b) to denote a sample drawn from the distribution of
X(Y, b). We will replace b at a crucial step in the argument by a uniform [0, 1] random
variable B, which is independent of Y1, . . . Yn. Put

Ak = {0.x(1)x(2) · · · : x(i) ∈ {0, 1, 2} for all i; x(k) = 0}.

142



Then
µb(Ak) =

{
1, if b(k) = 0,
1/3, if b(k) = 1.

Let µ∗n be an arbitrary distribution estimate based upon X(Y1, b), . . . , X(Yn, b). Let us
now define the parameter estimate bn = 0.bn1bn2 . . . by its binary expansion with bits

bnk =

{
0, if µ∗n(Ak) > 2/3,
1, otherwise.

Then
|µ∗n(Ak)− µb(Ak)| ≥ 1/3I{bnk 6=b(k)}.

Therefore

sup
b

inf
n
V (µ∗n, µb) = sup

b
inf
n

sup
A
|µ∗n(A)− µb(A)|

≥ sup
b

inf
n

sup
k
|µ∗n(Ak)− µb(Ak)|

≥ sup
b

inf
n

sup
k

1/3I{bnk 6=b(k)}.

Replace b by B and resulting bnk by Bnk. Then

sup
b

inf
n
V (µ∗n, µb) ≥ inf

n
sup
k

1/3I{Bnk 6=B(k)}

= 1/3 inf
n
Zn.

Our theorem is proved if we can show that Zn = 1 almost surely for all n. Put ZNn =
I{∪Nk=1[Bnk 6=B(k)]}. Then ZNn ↑ Zn = I{∪∞k=1[Bnk 6=B(k)]}. Therefore it suffices to show that

lim
N→∞

P{∪Nk=1[Bnk 6= B(k)]} = 1.

But P{∪Nk=1[Bnk 6= B(k)]} is the error probability of the decision (Bn1, . . . , BnN) on
(B(1), . . . B(N)) for the observations X1, . . . , Xn. For this decision problem the Bayes
decision is

B̃nk =

{
0, if Xi(k) = 0 for all i = 1, . . . , n,
1, otherwise.

Thus,

P{ZNn = 1} = P{∪Nk=1[Bnk 6= B(k)]}

≥ P{∪Nk=1[B̃nk 6= B(k)]}

= 1−
(

1− 1

2 3n

)N
↑ 1.
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2

In the sequel assume that the distribution µ has a density, which is denoted by f :

µ(A) =

∫
A

f(x)dx.

Then we show a way how to estimate a distribution consistently in total variation. The
Scheffé Theorem below shows that the total variation is the half of the L1 distance of
the corresponding densities.

Theorem 11.2. (Scheffé (1947)) If µ and ν are absolutely continuous with densities
f and g, respectively, then ∫

Rd
|f(x)− g(x)|dx = 2V (µ, ν).

(The quantity

L1(f, g) =

∫
Rd
|f(x)− g(x)|dx (11.1)

is called L1-distance.)

Proof. Note that

V (µ, ν) = sup
A
|µ(A)− ν(A)|

= sup
A

∣∣∣∣∫
A

f −
∫
A

g

∣∣∣∣
= sup

A

∣∣∣∣∫
A

(f − g)

∣∣∣∣
=

∫
f>g

(f − g)

=

∫
g>f

(g − f)

=
1

2

∫
|f − g|.

2

The red area in Figure 11.1 is equal to the L1 distance between the densities f and
g.
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Figure 11.1: L1 error.

The Scheffé Theorem implies an equivalent definition of the total variation:

V (µ, ν) =
1

2
sup
{Aj}

∑
j

|µ(Aj)− ν(Aj)|, (11.2)

where the supremum is taken over all finite Borel measurable partitions {Aj}.
From i.i.d. samples X1,X2, . . . ,Xn we may estimate the density function f , and such

an estimate is denoted by
fn(x) = fn(x,X1, . . . ,Xn).

In an obvious manner one can derive a distribution estimate µ∗n as follows:

µ∗n(A) =

∫
A

fn(x)dx.

Then the Scheffé theorem implies that

V (µ, µ∗n) =
1

2

∫
Rd
|f(x)− fn(x)|dx,

therefore if the density estimate fn is consistent in L1, i.e.,

lim
n→∞

∫
|f(x)− fn(x)| dx = 0
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a.s. then the corresponding distribution estimate µ∗n is consistent in total variation:

lim
n→∞

V (µ, µ∗n) = 0

a.s.

11.2 The histogram
Let µn denote the empirical distribution

µn(A) =
1

n

n∑
i=1

I{Xi∈A}.

Let Pn = {An1, An2, . . . } be a partition of Rd such that the cells Anj have positive and
finite volume (Lebesgue measure λ). Then the histogram is defined by

fn(x) =
µn(An(x))

λ(An(x))
,

where
An(x) = Anj, if x ∈ Anj.

For the partition Pn, an example can be the cubic partition, when the cells are cubes of
side length hn. In this special case

fn(x) =
µn(An(x))

hdn

Theorem 11.3. (Devroye and Györfi (1985)) Assume that for each sphere S cen-
tered at the origin we have that

lim
n→∞

sup
j:Anj∩S 6=∅

diam(Anj) = 0

and
lim
n→∞

|{j : Anj ∩ S 6= ∅}|
n

= 0,

then
lim
n→∞

E
{∫
|f(x)− fn(x)| dx

}
= 0.
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Proof. The triangle inequality implies that∫
|fn(x)− f(x)| dx ≤

∫
|fn(x)− Efn(x)| dx︸ ︷︷ ︸
variation term

+

∫
|Efn(x)− f(x)| dx︸ ︷︷ ︸

bias

.

The histogram is constant on a cell, therefore∫
|fn(x)− Efn(x)| dx =

∑
j

∫
Anj

|fn(x)− Efn(x)| dx =
∑
j

|µn(Anj)− µ(Anj)|.

Put Mn = |{j : Anj ∩ S 6= ∅}|, and choose the numbering of the cells such that
Anj ∩ S 6= ∅, j = 1, . . . ,Mn. Because of the condition of the theorem,

Mn

n
→ 0.

Denote

Sn =
Mn⋃
j=1

Anj.

Then ∫
|fn(x)− Efn(x)| dx ≤

Mn∑
j=1

|µn(Anj)− µ(Anj)|+ µn(Scn) + µ(Scn),

therefore the Cauchy-Schwarz and the Jensen inequalities imply that

E
{∫
|fn(x)− Efn(x)| dx

}
≤

Mn∑
j=1

E{|µn(Anj)− µ(Anj)|}+ 2µ(Scn)

≤
Mn∑
j=1

√
E{|µn(Anj)− µ(Anj)|2}+ 2µ(Sc)

≤
Mn∑
j=1

√
µ(Anj)

n
+ 2µ(Sc)

≤
√
Mn

n
+ 2µ(Sc) (11.3)

→ 2µ(Sc).
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The sphere S is arbitrary therefore

E
{∫
|fn(x)− Efn(x)| dx

}
→ 0.

Concerning the bias term, we have that

Efn(x) =
µ(An(x))

λ(An(x))
=

1

λ(An(x))

∫
An(x)

f(z) dz =

∫
f(z)Kn(x, z) dz,

where

Kn(x, z) =
I{z∈An(x)}

λ(An(x))
.

Then ∫
|Efn(x)− f(x)| dx =

∫ ∣∣∣∣∫ f(z)Kn(x, z) dz− f(x)

∣∣∣∣ dx.

If f is continuous and is zero outside of a compact set then it is uniformly continuous,
and the inequality

∫
|Efn(x)− f(x)| dx ≤

∫ ∫
|f(z)− f(x)|Kn(x, z) dzdx (11.4)

implies that ∫
|Efn(x)− f(x)| dx→ 0.

If the density f is arbitrary then for any ε > 0 there is a density f̃ such that it is
continuous and is zero outside of a compact set, and

∫
|f(x)− f̃(x)| dx < ε.
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Then ∫
|f(x)− Efn(x)| dx

=

∫ ∣∣∣∣f(x)−
∫
f(z)Kn(x, z) dz

∣∣∣∣ dx

≤
∫
|f(x)− f̃(x)| dx +

∫ ∣∣∣∣f̃(x)−
∫
f̃(z)Kn(x, z) dz

∣∣∣∣ dx

+

∫ ∣∣∣∣∫ f̃(z)Kn(x, z) dz−
∫
f(z)Kn(x, z) dz

∣∣∣∣ dx

≤ ε+

∫ ∣∣∣∣f̃(x)−
∫
f̃(z)Kn(x, z) dz

∣∣∣∣ dx

+

∫ (∫
|f̃(z)− f(z)|Kn(x, z) dx

)
dz

= ε+

∫ ∣∣∣∣f̃(x)−
∫
f̃(z)Kn(x, z) dz

∣∣∣∣ dx +

∫
|f̃(z)− f(z)| dz

→ 2ε.

2

Without any tail and smoothness conditions on the density f , any slow rate of con-
vergence can happen, for any density estimate. (Cf. Devroye (1983).)

Theorem 11.4. (Devroye and Györfi (1985)) Assume that the density f is zero
outside a sphere S and it is Lipschitz continuous, i.e.,

|f(x)− f(z)| ≤ C‖x− z‖.

If the partition Pn is a cubic partition with side length hn then for the histogram fn, one
has that

E
{∫
|f(x)− fn(x)| dx

}
≤ c1√

nhdn
+ c2hn,

so for the choice
hn = c3n

− 1
d+2

we have that
E
{∫
|f(x)− fn(x)| dx

}
≤ c4n

− 1
d+2 .
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Proof. For the variation term, (11.3) implies that

E
{∫
|fn(x)− Efn(x)| dx

}
≤
√
Mn

n
≤

√
λ(S)

nhdn
.

Concerning the bias term, (11.4) implies that∫
|Efn(x)− f(x)| dx ≤

∫ ∫
|f(z)− f(x)|Kn(x, z) dzdx

≤
∫ ∫

C‖z− x‖Kn(x, z) dzdx

≤
∫ ∫

Chn
√
dKn(x, z) dzdx

≤ Chn
√
dλ(S).

2

11.3 Kernel density estimate

Introduce the kernel density estimate such that choose a density K(x), called kernel
function. For a positive bandwidth hn, the kernel estimate is defined by

fn(x) =
1

nhdn

n∑
i=1

K

(
x−Xi

hn

)
.

Examples for kernels:

• Naive or window kernel
K(x) = cI{x∈S0,r},

where S0,r is a sphere centered at the origin and with radius r.

• Gauss kernel
K(x) = ce−‖x‖

2

.

• Cauchy kernel
K(x) =

c

1 + ‖x‖d+1
.
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• Epanechnikov kernel
K(x) = c(1− ‖x‖2)I{‖x‖≤1}.

Theorem 11.5. (Devroye and Györfi (1985)) If

lim
n→∞

hn = 0 and lim
n→∞

nhdn =∞.

then for the kernel density estimate fn, one has

lim
n→∞

E
{∫
|f(x)− fn(x)| dx

}
= 0.

Proof. With the notation

Kn(x, z) =
1

hdn
K

(
x− z

hn

)
,

one can prove Theorem 11.5 similarly to the proof of Theorem 11.3. 2

Theorem 11.6. (Devroye and Györfi (1985)) Assume that f is zero outside a
sphere S and it is differentiable with Lipschitz continuous gradient, i.e.,

‖f ′(x)− f ′(z)‖ ≤ C‖x− z‖.

If the kernel K has bounded support and∫
xK(x)dx = 0, (11.5)

then for the kernel estimate fn, one has that

E
{∫
|f(x)− fn(x)| dx

}
≤ c1√

nhdn
+ c2h

2
n,

so for the choice
hn = c3n

− 1
d+4

we have that
E
{∫
|f(x)− fn(x)| dx

}
≤ c4n

− 2
d+4 .
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Proof. One can manage the variation term in Theorem 11.6 similarly to the variation
term in Theorem 11.4. Concerning the bias, we have that

Efn(x)− f(x) =

∫
f(z)

1

hdn
K

(
x− z

hn

)
dz− f(x).

Then calculate the second order Taylor expansion of f(z) at x:

f(z) = f(x) + (f ′(zx), z− x),

where
‖zx − x‖ ≤ ‖z− x‖.

Then

Efn(x)− f(x)

=

∫
(f(x) + (f ′(zx), z− x))

1

hdn
K

(
x− z

hn

)
dz− f(x)

=

∫
(f ′(zx)− f ′(x), z− x)

1

hdn
K

(
x− z

hn

)
dz +

∫
(f ′(x), z− x)

1

hdn
K

(
x− z

hn

)
dz.

Because of (11.5), we have that∫
(f ′(x), z− x)

1

hdn
K

(
x− z

hn

)
dz = 0.

Furthermore, the Lipschitz condition implies that∣∣∣∣∫ (f ′(zx)− f ′(x), z− x)
1

hdn
K

(
x− z

hn

)
dz

∣∣∣∣ ≤ C

∫
‖x− z‖2 1

hdn
K

(
x− z

hn

)
dz

= O(h2
n).

2

For further reading on L1 density estimation, the books Devroye, Györfi (1985),
Devroye (1987) and Devroye, Lugosi (2001) are suggested.
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