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Preface

This is a book about the L., convergence of density estimates that are based
on a sample of R%valued independent identically distributed random
vectors. In it, we try to develop a smooth L, theory because the better
studied L, theory has led to various anomalies and misconceptions. The
book is not an exhaustive description of all known L, results, but rather a
collection of observations with emphasis on those results that lead to a
better understanding of density estimation. Of course, by intentionally
limiting ourselves to the L, theory, we are omitting some interesting and
often profound work on nonparametric density estimation.

Although we hope that this book is entertaining in places, most of it, in
fact, is rather dull except perhaps to the odd technical fanatic. Thus, we do
not recommend it for class notes or for reading during TV commercials. We
had to make a few sacrifices for the goals that we set ourselves-—concise-
ness, generality, and optimality. For example, shallow results padded with
unnecessary conditions, as a rule, have simple and short proofs. To gener-
alize the results and get rid of the convenient conditions, sometimes long
devious paths must be followed. In doing so, one often stumbles on nice
tangential results worth reporting, and before one realizes it, the whole
enterprise becomes a nearly impenetrable technical jungle. The book grew
out of excitement and enthusiasm: excitement every time one of us closed a
gap or crossed a bridge, and enthusiasm about simple things such as
beautiful inequalities. Our excitement and haste are thus to blame for any
errors that the reader may discover,

In our choice of topics and selection of mathematical tools, we were
influenced by the original papers on nonparametric density estimation
(Parzen, Rosenblatt), by the modern French school (Geffroy, Bosq,
Deheuvels, Abou-Jaoude, Bretagnolle, Huber, Birgé), and by some scattered
relatively recent work on related topics (Geman, Steele, Stone). We would
like to thank the people who have directly helped us through discussions
and lectures: Terry Wagner, Sandor Csibi, Clark Penrod, Paul Deheuvels,

vii



viii Preface

Adam Krzyzak, Peter Hall, and Godfried Toussaint. We would also like to
thank NSERC Canada for its generous grant support and McGill Univer-
sity for not taking any overhead charges from this grant. Finally, we would
like 1o thank a number of colleagues and friends who, often without
realizing it, have contributed to our understanding of density estimation via
personal discussions: Alain Berlinet, Lucien Birgé, Denis Bosq, Jean
Bretagnolle, Pat Brockett, Gérard Collomb, Tom Cover, Ben Fox, Stuart
Geman, Piet Groeneboom, Wilirid Grossmann, Antomo Gualiieroitl,
Catherine Huber, Jean-Pierre Lecoutre, Fred Machell, Manny Parzen,
Georg Pflug, Pal Révész, David Scott, Mike Steele, Jim Thompson, and
Wolfgang Wertz.

Luc DEVROYE
LASZLO GYORFI

Montreal, Canada
Budapest, Hungary
October 1984
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“HAPTER 1

Introduction

“here is a vast literature on nonparametric density estimation, and any
-2k on this topic is necessarily of limited scope. This book is no exception.
- our selection, we were gnided by general principles: for example, we
-..bbornly treat all densities as members of L, and not of L, or L asis
done elsewhere. We also do not cover estimates that are not densities since
we believe that a density should be estimated by a density. Because L, is the
natural space for densities, an in-depth treatment of its properties leads to a
>ry smooth theory, uncluttered by unnecessary conditions. We will try to
state all our theorems in their most general (simplest) form,
This book deals with the following problem: we are given data X,. .., X,
mdependent identically distributed random vectors taking values in R? and
having a common density f. A density estimate is a sequence f,. f5,...,

where for each n, f{x)= f(x; X|,..., X,) i5 a real-valued Borel measur-
able function of its arguments, and for fixed n, X),..., X, f, is a density
on RY.

Our choice of the L, distance J, = f|f, — f| is motivated by its invari-
ance under monotone transformations of the coordinate axes and the fact
that it is always well-defined. Consider, for example, two random vectors X
and Y with densities f and g, respectively. Now apply the transformation
T: R?> R? 10 X and Y, where T is sufficiently rich, that is, if & is the
class of all Borel sets of RY, then {T"!B|B € #} = & (this implies that the
transformation is one-to-one). The densities of 7(X) and 7T(Y) are f* and
2*, but regardless of T we have

fir=g1=fire =g (1)

In particular, for d = 1, /, is invariant under continuous stricify monotone
transformations. Property (1) is a corollary of the following theorem:
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THEOREM 1 (Scheff¢, 1947).  For all densities f and g on R,

fo—fBg

Proof. Let B={f> g}, and let 4 € #. Because [(f—g)=0, [|f - gl
= 2{u(f — g), and, thus, (2) follows with “ <  instead of “ = . Also,

Sl - 0+1, -]
ol 0] o0

smMLQJ—gLng—H]=%ﬁf—m.ML4EQ,

: (2)

Jif = g1=2sup
Be®

where B denotes the complement of B. This completes the proof of (2).

The invariance property (1) follows easily:

A L Y SVa Y
f/-Jel= -

In other words, when ¢ = 1, we can draw the graphs of f and g on any
linear or nonlinear scale of our choice, or even consider transforms
7: R — [0,1] and draw the transformed densities conveniently on {0, 1], and
get a visual idea of the size of J, by taking a quick look at the size of the
area lying between the graphs of the densities. Also, Theorem 1 relates the
L, distance between f and g to the maximal error committed if we were to
estimate the probabilities of ali the Borel sets using f and g, respectively.

Consider now the L, distance (f|f — g|”)'/?, and replace X and ¥ by
aX and aY where a # ( is a scale factor, and our dimension is !. Thus, the
density of aX is f*(x) = (1/a)f(x/a). Therefore,

fir* - &%= 2sup = 2sup
B B

= 2sup
B

/p

(f’f* _ gtlp]I/P - a(l—p)/p(flf_ g'P) o (3)

Except for p = 1, all L, distances depend upon the scale that is used. They
cannot be compared with each other on a universal scale, such as the one
provided by (2): for example, when a density estimate is used to estimate f,
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and is then used to estimate g, the comparison between f(f, — /)’ and
f(f, — g)* is meaningless, because of (3). Yet, by Scheffé¢’s Theorem,
f1f, — fland [|f, — g| can be compared in an absolute manner. It is thus
conceivable to declare that a given density f is easier to estimate with a
given f_ than g.

The reader will have no difficulty with the proof of the following
statement: for any { and any g > 1, there exist sequences of densities f,
and g, such that f|f,— f1L0. f1f,— fI? 1w, flg,—fI=c> 0. and
f1g, — 17 L 0. Thus, simple relations or inequalities between the L, dis-
tance and the L, distance do not exist,

Density estimates are all based upon the Lebesgue density theorem:
when S, is the closed sphere of radius 4 centered at x, and A is Lebesgue
measure, then

o f)dy ' .
E{%Lﬂ A (S.,) =f(x), almostall x. ()

The quantity on the left-hand side of (4) is P(X; € §,,)/A(S,,) and can
thus be approximated by

n iy es,

fulx}= ,EEA_(S;S (%)

where I is the indicator function. Estimaie {5) was suggested by Rosenblatt
in 1956. For a good approximation in (4) it is necessary that 4 be small.
Yet, when 4 is small, the variance of (5) increases because fewer points are
expected to fall in S,,. In the choice of &, one must balance both effects,
and this creates interesting theoretical problems.

In Chapter 2, general approximation theorems of the type (4} are
presented. In Chapters 3, 5, and 6, two estimates are considered in parallel,
the kernel estimate and the histogram estimate. In particular, we give
necessary and sufficient conditions on # for all types of convergence of J,
(Chapter 3), rate of convergence results for E(J,) featuring a universal
lower bound for lim inf, , n*°E(J,) for all kernel estimates and all
densities f (Chapter $), and convergence theorems for kernel estimates in
which 4 is chosen as a function of the data {Chapter 6).

In Chapter 4, we show that for all density estimates, E(J,} can be forced
to tend to O at any prespecified rate merely by choosing f in an appropriate
class of densities such as the class of all infinitely many-times differentiable
densities, or the class of all densities with support in [0, 1] bounded by 2.
Thus, there does not exist an estimate, however sophisticated, for which
E(J,) decreases at some given rate for all f. For the study of rates of



4 Introduction

convergence of E(J,) we have to impose conditions on f, and by the results
of Chapter 4, it is clear that tail conditions alone, or smoothness conditions
alone, are not sufficient. The remaining chapters illustrate the basic theory.

Chapters 7 through 12 can be read in any order and have varying levels
of sophistication depending upon the intended readership. In Chapter 9, we
discuss the transformed kernel estimate. In Chapter 12, severai estimates
related to orthogonal series expansions are given. Other estimates are
described in Chapter 7. Chapters 8, 10, and 11 are more application-ori-
ented. In Chapter 8, for example, we tackie the problem of the use of f, in
simulations.

In Chapier 10, we show that every density ¢stimate has its analogue in
discrimination, and that there is a close connection between the probability
of error in discrimination and J,. Finally, in Chapter 11, we consider among
other things some applications in detection theory.

Many topics are not covered, and many questions are left unanswered.
The most important emissions include an asymptotic distribution theory for
J,, a law of the iterated logarithm for J,, results about the rate of
convergence of £(J,) in higher dimensions, methods for estimating ./, , and
confidence intervals for J,.

Each chapter has its own list of references. Additional references about
other properties of the estimates treated here (such as their behavior when
X, .., X, are not independent; or L properties for 1 < p < oo; or laws of
the iterated loganthm) or about other estimates can be found in the
monographs of Wertz (1978), Tapia and Thompson (1978), Nadaraya
(1983), Prakasa Rao (1983), and in the survey papers and bibliographies of
Cover (1972), Fryer (1977), Foldes and Révész (1974), Leonard (1978),
Révész (1972), Tarter and Kronmal (1976), Wegman (1972a, 1972b), Weriz
and Schneider (1979) and Bean and Tsokos (1980),

Within each chapter, the formulas are numbered (1), (2}, (3), and so on,
and the theorems are numbered 1, 2, 3, and so on. When we refer to
Theorem 3 within a chapter, we mean Theorem 3 of the same chapter.
Otherwise, we will add the chapter’s number as in Theorem 2.3. The -
chapters have the following dependence structure: 2 is necessary for 3, 4,
and 6; 3 is a prerequisite for 7 and 10; 4 is needed for 5; and 5 in urn is a
prerequisite for 8 and 9.
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CHAPTER 2

Differentiation of Integrals

The most important tool in our analysis is Lebesgue’s density theorem (1.4).
All the results of a similar type are collected in this chapter. For proofs and
illuminating discussions, we refer the reader to Chapters 7 and 9 of
Wheeden and Zygmund (1977) and Chapters 1-3 of de Guzman (1975). See
also Shapiro (1969), Stein (1970), Hayes and Pauc (1970) and de Guzman
{(1981). Throughout this section, A is Lebesgue measure on R¥, K is a Borel
measurable function on R¥ f is a density on RY, h > 0 is a positive
number, K,(x) = (1/h*)K(x/h), and “ »” is the convolution operator, for
example, when K € L (A),

foK(x) = [1(n)K(x = y)dy = [K()f(x = y) .

THEOREM 1. Forall functionsf, g € L{(A), f|f*g|l < [If{[f|gl(Young's -
ineguality). For all f, K € L,(A) with (K = 1, we have

Ii «K, — f|=0.
lim f1f « K, = /1= 0

Proof. The first inequality follows by a change in the order of integration
(which is justified for nonnegative integrands):

dx < [ fI7()]18(x = y)|dydx

f’ff(y)g(x-y)dy

=f|f(y)lflg(x —y)dxdy =f1glflfi-
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We first prove the second statement of Theorem 1 for continuous f
vanishing outside a compact set. Let «(#) be the modulus of continuity of £,
w(t) = supy, < /f(x) — f(y)l. and let m be a large number. Split X into
K' + K" where K’ = KIjy, < i1 K7 = KIjj > sy Clearly,

fire g, =115 f| s K~ 1 i)

The last two terms of (1) do not exceed 2[|K}'| = 2f]K”|, which can be
made as small as desired by choice of M. The first term on the right-hand
side of {1) is o(1) because it equals, for some large compact set 4,

fJr-ss-1{ )

+ ik + [rikn )

< [ Jilx = 9) = FOUKiL ) dy

o(Mh) [ [IKi(y)]dsdx

< w(Mh)A(A)ﬁm =0(1).
For all f, and all continuous g with compact support, we have

fi7 K —11< fif = glx 1Kl + f1f = g1 + fIg = Ky~ sl

< (fixr+ 1) fir= 51+ 0t0),

and this can be made as small as desired by choice of g.

THEOREM 2 (Lebesgue Density Theorem).  Let & be a class of Borel sets
of R having the following property.

A (smallest cube centered at O containing B)

su < Q.
pes A(B)

Then, for any sequence of sets B, yrom & with A(B,) — 0, we have

kli,n; LJerlf(y))\(;f;)ldy 0, almost all x. (2)
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Thus also,

k]inc':c L+Bkj;\((yﬂ?:;y =f(x), almost all x. (3)

The points for which (2) and (3} are valid are called Lebesgue points for f,
The set of Lebesgue points depends only upon f.

For the proof of Theorem 2, see Wheeden and Zygmund (1977, pp.
108-109). It is noteworthy that for & we can take all spheres centered at
the origin (in which case we obtain the classical version of the Lebesgue
density theorem), or all sets of the form a4 where ¢ > 0 and A is a fixed
compact set of R“ but that we cannot take all rectangles containing the
origin.

THEOREM 3. Let K € L (A) with {K = 1. Assume that K has an integra-
ble radial majorant ¢ € Li{(A)(¥(x) =3up| 1l K(¥)D. Then

f*K,—>f ash |0 foralmostall x.

Theorem 3 is due to Stein (1970, pp. 62-63). It is, for example, sufficient
that K is bounded, in L;(A), /K =1 and K(x) < a/||x|**" for some
e > 0, @ > 0. This is the version found in Wheeden and Zygmund (1977,
pp. 152-153). Of course, for bounded K with compact support, Theorem 3
is a simple corollary of Theorem 2.

Theorem 4 is the converse of Theorem 1,

THEOREM 4. Let K be a density on RY. Then [|f« K, — f| > 0 for all
h > 0, and when h = h, is a sequence of numbers, lim, _, _[|f* K, — f| =
implies h — 0.

Proof. Let ¢ and ¢ be the characteristic functions of f and X, respec-
tively. Thus, f * K, has characteristic function y(Az)(t), ¢ € R” Clearly,
[1f* K, — f| = 0 implies that f= f= K, for almost all x, and thus that
o(t) = ¢{1)¢(ht) for all t € RY. For ¢(r) + 0, that is, at least in a
neighborhood of the origin, ¢(Af) = 1. But since 2 # 0, this implies that
cannot be the characteristic function of a density on RY and we have a
contradiction. This proves the first part of Theorem 4.

To prove the second statement of Theorem 4, we assume first that
limk = <. By Fatou’s lemma, [|f* K, — f| — 0 implies iminf|f* K, —
f| = 0, for almost all x. But since f + K, — 0 for almost all x, we must have
f = 0 for almost all x, and this is impossible. Assume next that limh = ¢ €
(0, 0). Cleatly, f|f* K, ~ fl= [If* K, = fl= [If* K.~ [+ K,| By the
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first part of the theorem, it suffices to show that [|f+=K - f*K,|—= 010
reach a contradiction, thereby concluding the proof of Theorem 4. Let K’
be a continuous function with compact suppert. By Theorem 1, and the
Lebesgue dominated convergence theorem,

K.~ oK< fIK - k)|
< fik.~ Ky + [1K. - K1+ [1K; - Kl
=2[ik - K+ [IK - K|

=2f|K-Kl+0(1). 0

The last expression in the chain of inequalities (4) can be made small by
choosing K’ close enough to K in L;(A).

To study the histogram estimates, we need some martingale convergence
theorems. Consider a sequence of partitions &, = {A,, j=12,...},
n > 1 with A(4,,) € (0, o) for all #, j, and all 4, are Borel sets of R4
The sequence is said to be nested when £, , is a refinement of 2, for all
n. It is called cubic if there exist positive constants a;,...,d, and a
sequence of positive numbers h = A, such that each 4,; is of the form
M9 .lak;h, a,(k; + 1)h) where k,, ..., k, are integers. In what follows, we
let &, = a(#,) be the o-algebra generated by #, &, = o(U ,,, %, ), and
@ = class of all Borel sets of R9. Throughout, we assume that

&= ﬁ z. ' (5)

Condition (5} states that the sequence of partitions must be rich enough.
Consider the function

gn(x)=L”A(£nj)’ x €A, | (6)

For sequences of partitions satisfying (5), Abou-Jaoude (1976) has proved
the following strong analogue of Theorems 1 and 4.
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THEOREM 5 {(Abou-Jaoude, 1976),
Jig2 =110 forall densities f

if and only if for all A € & with 0 < A(A) < o0 and for all € > O there exists
an ny such that for all n > n, we can find an A, in B, with A(AAA,)) < ¢
(here A denotes the symmetric difference}.

Theorem 5 is proved in Abou-Jaoude (1976, pp. 216-219).

THEOREM 6. For a cubic sequence of partitions, (5) is satisfied and
[18, — f1 = O for all densities { if and only if lim h = 0.

Proof. First, it is clear that im & = 0 is necessary and sufficient for (3). For
example, the sufficiency follows from the observation that M 7., %, contains
all sets of the form [14 (- 2, x,) for all x = (x,,...,x,) € RY, and that
these sets generate the Borel o-algebra.

Thus, we will just check the condition of Theorem 5. Because A is a
regular measure on R¥ (i.e., all Borel sets are decreasing limits of open sets),
we should only consider bounded open sets O. But every set O is a
countable union of rectangles. Thus, for every £ > 0 there exists a finite
collection of rectangles R, ..., Ry such that A(O — UL R} < e Thus, it
suffices to establish the condition of Theorem 5 for a finite number of
rectangles, and, in fact, for one rectangle. But for one rectangle, the
condition is trivially satisfied.

We should mention here that for cubic sequences of partitions, nested or
not, g, — f for almost all x, by a trivial application of Theorem 2.

We have seen that pointwise convergence theorems usually require more
conditions than integral convergence theorems, for example, compare Theo-
rem 3 with Theorem 1. This is because pointwise convergence is a concept
that is strictly stronger than I, convergence:

THEOREM 7 (Scheffé, 1947). Let f, be a sequence of densities on RY
tending almost everywhere 1o a density f. Then [|f, — f]| = 0.

Proof. By Theorem 1.1, [|f, — fil=2f. (f—f)— 0, where we used
the Lebesgue dominated convergence theorem.

THEOREM 8 (Glick, 1974).  Let f, be a density estimate on R, and let f be
a density on R%. If f, = f in probability as n = oo, for almost all x, then
{If, — f| = O in probability (and thus in the mean) as n — o0. If f = f
almost surely as n = oo, for almost all x, then [|f, — f| — O almost surely as
n — 0. .
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Proof. We will write (), for the positive part of a function. By assumption,
(f = /f,).— 0 in probability for almost all x. Since (f — f,), < f, we thus
have E{({ f — f,), )} — 0 for almost all x, by the Lebesgue dominated conver-
gence theorem. But by another application of the Lebesgue dominated
con(\)fergencc theorem, E(f1f, — f=EQf(f~£).)=2f/EW(f— f)})
For the second part of the theorem, we let (2, %, P) be the probability
space of X;, X;,..., with probability element w. By Fubini’s theorem,

P{w: f,(x)» f(x)) =0 foralmostall x(A}
if and only if

{{w,x): f,(x)» f(x)} has P X A measured
if and only if

A(x: f,{x)» f(x)) =0 foralmostall w(P).

Let & be the last set of w’s. By the Lebesgue dominated convergence
theorem, f|f, — f| — 0 for all w € . The theorem now follows since
P(2)=1.
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CHAPTER 3

Consistency

1. KERNEL ESTIMATE

The kernel estimate (Parzen, 1962; Rosenblatt, 1956; Cacoullos, 1966) is
defined by

£ = (') * 5 (257),

where i1 = h, is a sequence of positive numbers, and K is a Borel measur-
able function (kernel) sausfying K > 0, fK = 1. The main result of this
section is that for the kernel estimate all types of convergence to ¢ for J, are
equivalent. Theorem 1 given below states that either J, — 0 completely for
all f, or J, does not converge (0 0 in probability for a single f. There is no
intermediate situation. A weak analogue of Theorem 1 for histogram
estimates is given in Section 3. Theorem 1 was first published in Devroye
(1983), but some key ideas go back to Abou-Jaoude (1977).

THEOREM 1. Let K be a nonnegative Borel measurable function on R?
with {K = 1. Then the following statements are equivalent.

(1) J, = 0 in probability as n = oo, some [,
(i) J, — 0 in probability asn — oo, all f.
(i1} J, — 0 abnost surely as n — oo, all f.
(iv) J, = 0 exponentially as n — oo (i.e., for all ¢ > 0, there exist
rony >0 such that P(J, 2 e) s e” ™ n = ny), all .
(v) lim h=01lim,_ nh?’=o0.

In (iv), r can be chosen independently of f. Also, (v) implies (iv) when K is
merely absolutely integrable and [K = 1.

REMARK 1. We will show that (v) implies that P(J, > ¢) < e~ for all
e € (0,1) and all n = ny, where n, depends upon f and e For fixed f,

12
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~ere exist functions A (&) and cy(e) such that for
cole) 1
(%)) < h < hy(e),

s exponential bound is valid. Thus, for a given e, A may remain constant
-nd the exponential inequality remains valid nevertheless.

. PROOF OF THEOREM 1

e will try to extract the key facts needed in the proof of Theorem 1. They
_¢ condensed into several lemmas of independent interesi. We will also
~¢2d Theorems 2.1, 2.2, and 2.4. The implication (i) = (v} is ¢stablished in
Lemma 3, and (v} = (iv) is proved in Lemma 2. Since clearly, {(iv) =» (iii) =
i1} = (1), this completes the proof of Theorem 1.

Throughoeut this section, we will use the notation

8 (x) = E(4,() = [n k(52 )s() . ()

LEMMA 1 (A Multinomial Distribution Inequality). Let (Xi,..., X,) be
a muitinomial (n, p,, ..., p,) random vecior. For € € (0,1} and all k satisfy-
ing k/n < € /20, we have

k
P( LIX - E(X)|> ne) < 3emm/,

i=1

Proof. The proof is based upon a Poissonization. Let N be a Poisson (n)
random variable independent of U, LL,..., a sequence of independent
{1,..., k}-valued variables distributed according 1o P(U, = i)=p,. 1 < i
< k. Let X, be the number of occurrences of the value i among U, ..., U,
and let X; be the number of occurrences of the value / among U}, ..., U,. It
is clear that Xi,..., X, are independent Poisson random variables with
means np,,...,np,, and that X, ..., X, is a multinomial (n, p,,..., p,)
random vector. We have

k k

1 , .
> pl % el = 2 —IX X1+ E ;IX = np. (2)
Fa1 ;‘-1 i=1

Now, when U is Poisson (A), then for ¢ > 0, E(eW~) < E(eV~1 +
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there exist functions k() and co(e) such that for

1/d
cole
(ﬁ) < h < hy(e),
n
this exponential bound is valid. Thus, for a given e, # may remain constant
and the exponential inequality remains valid nevertheless.

2. PROOF OF THEOREM 1

We will try to extract the key facts needed in the proof of Theorem 1. They
are condensed into several lemmas of independent interest. We will also
need Theorems 2.1, 2.2, and 2.4. The imphcation (i) = (v) is established in
Lemma 3, and (v) = (iv) is proved in Lemma 2. Since clearly, (iv) = (iii) =
(11) = (i), this completes the proof of Theorem 1.

Throughout this section, we will use the notation

8(x) = E(f(x) = [n k(52 )10 . (1)

LEMMA 1 (A Multinomial Distribution Inequality). Ler (X,,..., X;) be
a multinomial (n, p,,.... p,) random vector. For ¢ € (0,1) and all k satisfy-
ing k/n < &*/20, we have

k
P( YIX - E(X)| =2 ns] < 3e e/,

iml

Proaf. The proof is based upon a Poissonization. Let N be a Poisson (n)
random variable independent of U, U,,..., a sequence of independent
{1,..., k}-valued varables distributed according to P(U; =i)=p,, 1 < i
< k. Let X, be the number of occurrences of the value i among U,,...,U,,
and let X be the number of occurrences of the value i among Uy,..., U,. It
is clear that Xj,..., X; are independent Poisson random variables with
means mpy,...,np,, and that Xj,..., X, is a multinomial (n, p,,..., p;)
random vector. We have

k k
Slxomic S hx-x+ Shx-me @

i=1 fa=] i=1

Now, when U is Poisson (A), then for ¢ > 0, E(eV ™M) < E(eY M +
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efA- Uy = M- Dmh g GMeT A o DpMe'-1-0) hecause e+t < !
— t. Thus,

P(JU = Aj 2 Ae) < E(e'W-M-rhe) < 2 Reghe™~170)
= JeMe—(rohd+o) o 28—)\.-"/2(1“) < 26—1\#/4‘ (3)

where we took 7 = In(1 + ). By a repetition of the previous argument,

k1
P(E ;IX,—np,-Ize)

i=1

2e

SP(|Nﬁn|2n5

|+ P

k 3¢
21X —apl =
& 5
i=1
k
< 27"V 4 4 gm0/ T (2e™4°-19)  (by (3))

i=1

< PRI 4 Qkgnle'=1—1-3e/5)
< 2e7/ 4 gk n3e/5) /4 (for r = In(1 + 3e/5)}
< 3¢ /% (when k < ne?/20). C))

LEMMA 2. For any density f on R, and any absolutely integrable function
K with (K(x)dx =1, (v} holds whenever

limA=0 and lim nh= .

R—=oC n-—cG

Proof. Let g, be defined as in (1). By Theorem 2.1, it suffices to show that
[1£,(x) — gs(x)|dx = 0 exponentially. Let p, be the empirical probability
measure for Xj,..., X,, and note that

1i(x) = b (KT Jua(a).

For given € > 0, find finite constants M, L, N, a,, ..., a, and disjoint finite
rectangles A,,..., Ay in R? such that the function

K*(x)= T ad, ()

i=1
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satisfies: |K*| < M, K* = O outside [— L, L]¢ and [|K(x)~— K*(x)|dx <
e. Define g and f as g, and f, with K* instead of K. Then

J14,(0) = go(x)1dx < fi£,(x) = fr(x)ide + [1£7(x) - gr(x)1dx
+ [l (x) — g (x)ldx

< [ fie (257 - k(2 ) v

+ [n f|K*(

+ [I£x(x) = gr(x)1x

)— K(E;—y)mn(dy)dx

s 26+ fif3(x) - gh(x)1dx

by a double change of integral. But if g is the probability measure for f,

Wl f)dy - "deH,,A.""(dy)l“"

Ji72(x) = gx(x)tax < )_Ella.-lf

< Mh™ "Zflp(x+hA) p,(x + hA)|dx.

=1

Lemma 2 follows if we can show that for all finite rectangles A of R¥,
h"’fl,u(x + hd) — p,(x + hd)|dx = 0 exponentially as n — oc.

Choose an A, and let € > 0 be arbitrary. Consider the partition of R¢ into
sets B that are d-fold products of intervals of the form [(i — 1)A/N,ih/N),
where i is an integer, and N is a new constant to be chosen later. Call the
partition ¥. Let

A= ]_[[x,,,+a) minaiz-z—
i N
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and

d

A4*=]][x,+ 1/N,x; + a,— 1/N).

il

Define
C.=x+hd—- | Bcx+h(da—4*)=C
BEY
BCx+hd

Clearly.

flu(x + ha) =, (x + ha)|dx

< L Ik(B) = ma(B)ldx + [(w(C) + ma(C2)) d.
BCx+hAd

)

The last term in (3) equals

A(A(A = 4%) = 2h°N(4 - 4*) = z;,d(ill a, ﬁ(a _M))

i=1

il

=1

-1

d
< 4hN(4) Y S < enf
i=1

by choice of N, We used the fact that for any set C, and any probability
measure » on the Borel sets of R, {¥(x + hC)dx = A(hC). For any finite
constant R > 0, we can bound the first term in (5} from above by

T Ika(B) -u(B)ngx+de

Be¥
BN Sy * @

_’; dx(p,(Sz) — m(Ssr) + 2(S5z))- (6)
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Here (-)° denotes the complement of a set. Clearly, &~ %z (., padx < A(A),
and u(Sgp) < € by cur choice of R. Also,
P(1,(S5) = n(S5a) > e} s €72

by Hoeffding’s inequality for binomial random variables (Hoeffding, 1963).
Finally, since the coliection of sets B € ¥ with B N S, # & has at most
(2RN/h + 2)4 = o(n) elements, we see that by Lemma 3, for all n large
enough,

Pl T Ip,(B)-p(B)>¢| < 3e /B,

Be¥
BNSyp* 2

Now collect bounds. This concludes the proof of Lemma 2.

LEMMA 3. Let K and f be densities on R%. If J, — 0 in probability as
n — oo, then lim, , . h =0 and lim, _ , nh = .

Proof. Since J, <2 for all n,J, — 0 in probability if and only if
Hm E(J,) = 0. Define g, as in (1). Then

n—o

E(1) = B fifu(x) = (s ) > fIECA(x)) = £l

= fig(x) - f(x)|dx.
By Theorem 2.4, we conclude that lim,, ,  # = 0. This will be assumed for
the remainder of the proof. For the second part, we note that by Theorem
2.1, E([{f,(x)— g,{(x)[dx) — 0. Let M be a large number, and let K*(x)

be defined as K(x)/ gy, < o) Define £¥ and g as f,, g, with K* instead
of K. By Theorem 2.1,

J1£0x) = g )dx = [1£2(x) = gr(x)ldx = [1£,(x) = f2(x)1dx
— flga(x) - g1 (x)|dx

= fif2(x) - g7 (x)idx — 2 fIK(x) = K*(x)l .
(7

Let us introduce some more notation: L is another large number, A is the
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event thatno X,,1 <7 < n, belongsto S, ,,. K" = K*/; , K" = K* - X',
and f; and f;’ are defined as f, after replacement of X by K’ and K" in

the definition. Clearly,
JEQR (x) = gi(x)1dx) = [E(1£(x) ~ gr(x)\L,) dx

2 [er(x)P(A)dx — [E(f(x)1,) dx

=0~ V. (8)

We will need the following facts, all corollaries of Theorems 2.2 and 2.3:
for bounded K* with compact support, gF(x) = f(x)/K*(x) dx, almost all
x, and u(S, 4, 42 )/AS, .4, 42) = f(y) for all z € R? and almost all
y € R% Let C be the volume of S, 1» and assume that lim, _, , #h“ = s €

[0, 20). By Fatou’s Lemma, we have

liminf ¥, >fhmmfgh(x)]1mmfP(A)dx

R— ¢

= J1(xYlimint (1 = p(S,,,))" dx [K'(2) de

>ff(x)exp( hmsup(“ﬂ(—“i)l—))) dfo’(z) dz

=ff(x)cxp(—sCLdf(x)) dxfso K*(z)dz. (%)
Also,
v, st Elh “'K”( ;X")I,')dx

= a5 My es,, Sy (= (8,0 e

=fIf K = - p(San)" dxdy

<10, K ep(~(n = Du(S,unenr)) ey (10)

The integrand of the inner integral of (10) is bounded by an integrable
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function, K”. Thus, by the Lebesgue dominated convergence theorem and
an earlier remark, we can conclude that

limsup ¥, < [f(y) [ K*()exp(=sCLY(y)) dzdy

n—x

= [Iep(=scLf () # [ Kz)dz. (1)
Combining (7), (8), (9), and (11) gives

timinf [E(1f,(x) = 2,(x)1) dx + 2fIK(x) = K*(x)ldx

> [£(x)exp(—sCL(x)) dx(lf; K*(z)dz — 1). (12)
Since M was arbitrary, we have

imint [E(14,0x) ~ s e > [ (2] K= 1).

Now, choose L finite but large enough so that f; K > 4. Then, in order
for the right-hand side of the last inequality to be 0, we must have s = oo,
and this is a contradiction. Thus, no subsequence of nk? can tend to a finite
limit s, and therefore, we must have lim, _, _ #h? = co.

3. HISTOGRAM ESTIMATE

The histogram estimate is defined by a sequence of partitions &, = {4, .,
J=12...},n=1, where all 4,’s are Borel sets with finite nonzero
Lebesgue measure. We assume that the sequence of partitions is rich enough

such that the class of Borel sets {#} is equal to
N 0( U 9’,,,), (13)
n=1 m=n

where we use the symbol ¢ for the o-algebra generated by a class of sets.
The histogram estimate is defined by
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and its expected value is

80 = EUL(0) = [ sy xS

Abou-Jaoude (19764, ¢} prove the following.

THEOREM 2. Assume that the sequence of partitions &, satisfies (13}.
Then the following conditions are equivalent:

() J, — 0 in probability as n — o0, all f.

(iiy J, = 0 almost surely as n — oo, all f.

(i) J, > 0 exponentially as n = o (see Theorem 1), all { (as in
Theorem 1, the exponent can be taken independently of f and of the
partition).

(iv) For all A € B with 0 < A(A) < o, and all € > O there exists ngy
such that for all n > ny we can find A, € o(P,) with N(AAA,) < ¢,

(14)
and

sup limsup}\( U 4, N C) =0. (15)
M>0 n- g FMA,NCYSM/n
all sets C of
finite Lebesgue
measure

Our proof differs from Abou-Jaoude’s only in the details. For example,
the powerful Lemma 1 provides us with a shorteut. Conditions (14) and (15)
are sometimes easy to check. Consider, for example, the cubic histogram
estimate where each A, ; is of the type 114, la,kh, a,(k, + 1)k) where the
k;’s are integers, & is a smoothing factor as for the kernel estimate, and the
a,’s are positive constants. In Theorem 2.5, we have shown that (14) holds
for this estimate if and only if

lim A =0.

n—*o0

Furthermore, it is easy to see that (15) holds if and only if

lim nh* = oo.
n—rx

We should point out that in another paper. Abou-Jacude (1976b) has
given similar necessary and sufficient conditions for weak convergence in L,
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of histogram estimates in R' in which the partitions depend upon the order
statistics of X|,..., X,,. See Theorem 7.3,

4 PROOF OF THEOREM 2

We aiways have £(f|f, — f]} = fig. — fI. Now, by the boundedness of J,,
convergence in the mean and in probability to 0 are equivalent. Thus,
(i) = (14), by Theorem 2.5. Since obviously (iii) = (ii) = (i), we are just left
with the proofs of (iv) =» (iii) and (i) = (15). Again, this will be done in two
separate lemmas.

LEMMA 4. (iv) = (iii).

Proof. We know that [|g, — f| = 0 (Theorem 2.5). Thus, it suffices to
show that f|f, — g,] = 0 exponentially. Let pu, be the empirical measure
for X,,..., X, and let p be the probability measure defined by f on the
Borel sets of RY. We have

J17, = gl = Yol 4,)) — n(4,,)1.

Divide the positive integers into two sets, H, and its complement H;, where
H, collects all integers j for which A(A4,,C) > M/n. We have

Jitfi -l s ¥ oin(4,) - w41+ Z (wa(4,,) +6(4,)

JEH, jeH;
< 2 nl(A,) = (A4, + 2p(4,) +i,(4,) - n(4,)],
JEH,

(16)

where A, = U,y A,

Since A(A4,, N C) > M/n for j € H , H, cannot have more than 1 +
nAC)/M members Also, {np,(A4,); npn(A,UC),j € H,} is multinomi-
ally distributed. Therefore, by Lemma 1, when

A(C) &?
M + 5-2'6, (17)

we have

P Z In(40) =m0 s 42) = (41> () < 3exp( - 3 ).
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We can make (A, ) as small as desired by choice of C. Indeed,

p(A,) = p(4, 0 C) +p{4, 0 C) < 0(1) + p(C), (18)

where the “o(1)” part follows from (15) (which states that A(4, N C) =
o(1}) and the fact that g is absolutely continuous with respect to A.

Thus, for given ¢ > (0, choose ¢ such that (18) < € + o(1), and then
choose M so that (17) holds for all » large enough. Combining all the
inequalities in (16) gives

ne’
P(ﬁfn ~ &> 45) < 3exp(— -E), all n large enough.

This concludes the proof of Lemma 4,
LEMMA 5. (i) = (15).

Proof. We keep the notation of Lemma 4. In particular, M >0 is a
constant, and C is a set of finite Lebesgue measure. Assume that A(C) > 0,
and define f = I./A(C), and

I
[A,; N C does not capture any X;]
z,‘—)j:A(A,,fnc) x(C)
We have
Al4,,nC)
N11, = g1 = Zinl4,)) = (4, ) = T p,(4,,) - —F—|2 Z,.
}. - M)

Since 0 < Z, < 1, (i) implies that E(Z,) — 0. Now,

A4, A4,,nC)\"
E(z)=% (A"(’;)C) - (A(Cr; ))
A(Anan) M "
> L0 ( "nx(c))
. A(A,,ﬂc)ex (_ M/A(C) )
27aC) P71 oM (O)

250 5)
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t this implies that for every ¢ with A(C) > 0,lim,_ . A(4, N C) =0,
0, when A(C) = 0, it is clear that A{A4, N C) = 0 for al} n. Thus, (15) is
isfied.

RELATIVE STABILITY

compare different density estimates, 1t is inconvenient to work with the

idom variable J,. One could use the quantiles or the moments of J,. We
Il use E(J,) throughout the rest of this book. This would simply be a poor
aice if J, were not close to £(J,) in some sense. In fact, we would like our
imates 10 be relatively stable (in probability, aimost surely), that is, we
nid like

J
—=2— — 1 (in probability, almost surely). (19)

E(Jﬂ)

Jte that a sequence of random variables J, is usually said to be relatively
ible when there exists a sequence of real numbers 4, such that J, /e,
1ds to one in some stochastic mode. Cur definition differs slightly because
s force a, = E(J,). Proving (19} however is virtually as difficult as
termining the limit law of J,. Forunately, it is much easier to prove that
e variation of an estimate, {|f, — E(f,)] is relatively stable. Via Lermnmas
and 7, this yields statements that come close to (19) for J .

“MMA 6. For any density f on RY, and any density estimate f,,
L
Max( f17 = BU G [t = BN < fif, =1

s I, = EG)I+ fIf = EG)L

roof. For the lower bound, note that, by Jensen’s inequality, [|f, — f| =
E(f,) — f|. Also, by the triangle inequality, f|f, — fl = [1f, — E( L) —
E(f,) — f|. Summing both inequalities gives the desired result.

EMMA 7. If the variation of a density estimate is relatively stable in
-obability, that is,

Jit = EGN
4ﬁﬁ—ﬂam

— 1 in probability,
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then P(J/E(J)) € (i — 63+ €)= 0asn— o0, all € > 0. If the varia-
tion is relatively stable almost surely, then P(J,/E(J) & (5 — &3 +¢€)
fLo)y=0,alle> 0.

Proof. We use Lemma 6 twice. First, for the upper bound, note that

. N1t =BG+ fif = ECL))
U g man{ fir - £CAIA f15 - B O

J,

| Jifa = GO+ fif = E(L)
ma fis - £CL3E{fiss - E)))

=

fi. - G
<2 +1,

£ fis, - (1))

where we used Jensen’s inequality. For the lower bound, we let 4 be the
(deterministic} event [ | f — E(f,)] = YE(/|f, — E(/,)D], and note that

max(ﬁf B f1f, ~ E(4))
— >
B fir - B0 + fir- G

J

SRy Ji. = E(4)
E( fis, - B(1))

2 4

Ji. = E(A)
£(fir.- 81 |

E

L]

B

> min

Lemma 7 follows directly from these inequalities.
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Roughly speaking, if the variation of an estimate is relatively stable, then
J./E(J,) remains with high probability in [}, 3]. This would indicate that
E(J,} is a fairly pood yardstick for comparing density estimates. (This is
precisely what we will do in Chapters 4, 5, 7, 8, and 9.)

In the remainder of this section, we follow Abou-Jaoude (1977), who
showed that the histogram estimate and the kernel estimate with a uniform
kernel K(x)=1I_,,;,7¢ have variations that are relatively stable in
probablity for all f.

To do this, we will need a few inequalities for the binomial distribution.

LEMMA 8§ (Inequality for the Absolute Deviation of a Binomial Random
Variable). Let X be a binomial (n, p) random variable with p < 4. Then,

5((o- %) )2 | dpim

where ¢ = (Yaw e13/%)y"1 is a universal constant. Also,

f(r-5),)< 2

Proof. Let m = np (the largest integer contained in np). We have, by
elementary computations, for n = 2,

E((np - X)) = é(np - () -p

= np(" m 1)p"'(l -p)" "

If p <1/n, and thus m = 0, this is equal to np(1 — p)" = ape™"?/' =7 >
npe 2. 1f p = 1/n, and thus m > 0, we obtain, by Stitling’s formula,

E{(np~ X)) = (2'”)_1/2["/ "m__/;l"l (%)m(%)—)rmg(n,ml

where g(n, m) = exp(u/12n — v/12m — w/12(n — m)) > exp(— ¢) (here
u, v, w are numbers in [0,1]). Also, » — m = n/2, and m/n < p. Further-
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more, since m = np — z,z € [0,1],

(M)"’("(l _P))"_'" _ (1 B i)“‘"ﬁ‘—zl(l s )—(ﬂ—np+:)

+
m n—m np n(l —p)

2
z z
2exp(+z———z— )

ztaxp(—i - }2exp(f2).

np  n—np

Combining these estimates gives our result for n > 2.

For n =1, note that E((p — X/n),) = p(1 — p), and, thus, our in-
equality follows for all n. The upper bound is obtained simply by using the
Cauchy-Schwarz inequality and noting that E(( p — X/n)?) = p(1 — p)/n
<p/n.

LEMMA 9 (Geffroy. See Abou-Jaoude, 1977, pp. 52-53). Letp,. p,, p- be
a probability vector, and let X\, X,, X, be multinomial (n, py, p;, ps) random
vector. Then

o )l 2)) =l - ) Jel(22).)

Proof. Assume that (20} is valid:

X
E( (pl - Tl)+ X, = nz) is increasing and convex in #,.  (20)
Then,
X a2 X
E .Pl__l) = ZP(X"::":)E (Pl_"—l) Xy=m
n /., ny=0 n /s

=£{ (n- ).

X, = .n_pz.J (Jensen’s inequality)

X2=n2), all HZSNPZ.
+
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which was to be shown.

Let us prove {(20) now, We must show that y(m) = ¢(m + 1) — ¢(m) is
positive and increasing in m, where ¢ is the function defined in (20). Let ¥,
be the random variable X| given that X, = m. Obviously, we have the
following embedding: ¥, =Y, ., + Z where Z is a Bernoulli random
variable with parameter p, /(1 — p,), and Z is independent of Y, . ,. Thus,

v(m) =E((P1 - L"il))r_(!’z - % - Z)+) = E(U).

n

But U takes the following values:

0 ifZ=00rifZ=1,p, -(1/n)Y,. <0
U= (1/”) mtl lfz:l 0<p1 (1/") m+l51/n!
l/n £Z=1,1/n<p; —(1/n)Y.,.

If z = np, — np,, then
¥(m) = P(Z = D 2P(Y1 =10) + 5 P(Tray < 79, = )

n(l _Pz) (ZP( m+l = npl) +(1 - Z)P( mtl = APy — 1))

This expression is positive, By our embedding, we also note that it increases
with m. This concludes the proof of Lemma 9.

LEMMA 10. Let Z,,Z,,....Z, be a sequence of nonnegative random
variables with E(Z,) + 0, for all n, and E(Z}} < 0. Then Z,/E(Z,) = 1
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in probability whenever
E(Z?
m ) _
" (E(Z,))
Proaf. By Chebyshev’s inequality, for all € > O,

Var(Zn)
2E2(Z")

>1l+e

= o(1).

P zZ,
E(Z,)
THEOREM 3 (Abou-Jaoude, 1977). Assume that for the histogram esti-

mate of Section 3, there exists a constant q > O, such that for all e > 0, and
some ng,

An(e)__' Z nu‘(An_,")Zn‘ nznO‘
r(Aq)<e

(This is satisfied for the cubic histogram estimate when h — 0.} Then the
variation of the histogram estimate is relatively stable in probability:

fif = E(1)1
B( fis, - £ )

Proof. We note that

= 1 in probability,

V- B =22,
where

Z,= E(F"(Anj) —p‘n(Anj))+'

f]

In view of Lemma 10 and the obvious inequality EX(Z,) < E(Z?2), we need
only show that

E(Z}
lime sup ( )

Ao E (Z) =1 (gl)
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But, using Lemma 9, we have

E(2}) = LE((s(4,,) - m.(4,,)),)

# X E((5(A) ~ 1(4n), (K(An) ~ 0,(4,0).)

< %ZP(A,,,-)(I - p(4,,))

+ gE(( (Aﬂj) P’n( nj )) ) ((”'(Am) lu'n(Am'))’r)
< ;1!- + EX(Z,). (22)

But (21) follows from (22) and vt E(Z,) — o0, which we shall now show.
By Lemma 8, and using the constant ¢ from that Lemma,

VRE(Z) = ¢ .): Je(d,,) +en L p(4,)

ezp{d, ) z1l/n 1A, }<l/n

e VR
z nmmn| —, — |, nezng.
7 (\/a‘ e2) °

Now, Theorem 3 follows from the arbitrariness of .

REMARK. For the cubic histogram estimate with smoothing factor A =
h, — 0, we know that supu(4,;) — 0 (by the absolute continuity of with
respect to Lebesgue measure), and thus that for any e > 0,

lim A,(e) =1.

Thus, the condition of Theorem 3 is satisfied.

THEOREM 4 (Abou-Jaoude, 1977). Consider the kernel estimate with
kernel K(x) = I;_, 31, and smoothing factor h — 0. Then the variation is
relatively stable in probability.

Proof. We will use C for [— %, 114, p(x) for p(x + AC), and p,(x) for
u,(x + AC). Recall that sup, p(x) — 0 as n — <o, by the absolute continu-
ity of p with respect to Lebesgue measure. Arguing as in the proof of
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Theorem 3, we note that the variation is 2Z, /h“, where

z,= [(r-p),

Again, it suffices to establish (21). Now, let D be the collection of all x, y in
R*? for which the L_ distance [|x — y|} < A, and let D° be its complement.
Note that by Lemma 9, applied 10 D<,

E(22) = [[E((p(x) = (0))s (2() = 5 (). ) drdy

< [E{(p(x) = p(0), (p() = pa(3)) ) iy + EX(Z,).

=a,+ E*¥Z,).

We are done if we can show that E(Z))/ V’a_ﬂ — o¢. To do so, we must
obtain good upper bounds for a,,.

Consider now for fixed x, y the sets A = (x + hC)—(y + hC), A" =
(x + hRCOYN(y+ hCyand 4" = (y + hC) — {x + h(C). Then,

(P(x) = 2.(x)). (P (¥) = a(¥))
= {(w(d +A) —p,(A+ AN, (s +27) - p, (4 + A7),
< ((u(4) = po(A)), +(n(4) - g, (A)))
X ((n(4) = p,(4)) 4 +(p(47) = g, (47)).)
< (5(4) = 1, (A, + 24 =, (4D, +(0(47) = (A7)},

and the expected value of this does not exceed

L(u(4) + 28(4) + p(47) < < (6(x + HC) + p(y + KC)).
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Thus,

a, < f l(,ul,(x +hC)+ u(y + hC)) dxdy
L

%(Zh)dfpz(x + AC) dx

IA

— gzd}'!d_
n
But by Lemma 8, if sup p(x) < 1,

¢ _plx) -2
E(Z) = —_— = dx + e Xx)dx
(2,) fl/:zp(x):vl/n\ﬁ; Jsup p(x) ";(-Y)sl/n p(x)

hd . ( c -2 ) p(x)
Z —mn| ————, ¢ \E Loy,
i\ supp(x) /5
Theorem 4 now follows from the fact that supp(x) — 0 and that
J(p(x)/h¥ydx = 1.

REMARK. We leave the extension to general K as an exercise, When
f& Ly(R), the integrated square error is relatively stable, that is,
ff, = PY/E(J(f, — )?) — 1 in probability, at least when &, f, and K
satisfly some regulanty conditions (Hall, 1982). In a milestone paper, Hall
(1984) actually obtained the asymptotic law of f(f, — f)* when f has two
bounded uniformly continuous derivatives on RY and K is a bounded
density corresponding to a zero mean random vector with zero off-diagonal
covariances, and unit variance components.

The techniques used in the proofs of Theorems 1 and 2 lead to useful
results related to almost sure stability. This is illustrated below for the cubic
histogram estimate.

THEOREM 5. Let f, be the cubic histogram estimate in RY based on
positive constants a,, 1 < i < d, and scaling factor h {notation of Section 3},
where lim, , h =0, tim,_  #h" = . Let f be an arbitrary density on
[0,1]%, and let ¢ be the constant of Lemma 8. Then, for all & < (0,1) there
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exists ny > 0, such that for n = n,,

P E-(}—n)' =21+ ﬁ < 3exp(-5~(‘1ja hd(l —a))- )

If also tim, _, _ h? log(n) = 0, then

lim sup <1+ /20

n— 2 E(Jn) - Cf\/f

Proof. The rectangles defining the cubic histogram estimate, 4, ., j = 1,...
have sides of lengths ha,, i = 1,..., d. The number of 4, ’s with u(4,;) > 0
is denoted by N. Clearly,

almost surely.

N < 15[(2+h%).

i=1 i

We define the constant b by 1 + v20 /(cf \/f (1 — ¢)). Now, by Lemmas 6
and 8, and using the notation of Sections 3 and 4, we have

P(J/E(J,) = b)

<pli+2fir,- E(mf/E[ﬂf,. - E(1)l) > 8]

PZhu,. ni) = 8(A4,;) 2 b;lEE(lpn(Anj)—-u(Anj)I))

/

i

Py

IA

P(Eiha (1) = w412 6= DEE((s(4,) (4. )
( a(4n;) — u(4, )12 (8- 1)

X Zmin(e’zp(A,,j);cyf,u(A,,j)/n)). ‘:,-'./

J
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But

Z_min(e'zu(d,,,-);c\/u(f!nj)/n)
ZZCW"(AM‘)/" - E ¢ -""(Anj)/n

imA, )< Petsn

2,2
o Bef 1/ (4,) - 2
J "

fy7
e~ )

Thus, since nh¢ — o0, we see that for all n large enough,
P(1/E(1,) 2 8) < P( Tika(4,,) ~ (4,1 2 8)
J

where

20 )1/2

’- ((na,)nhdu ~9)

Next, note that N/n < 82/20 for all n large enough (since N/n ~
(7h“T1a,)™"). Thus, by Lemma 1,

P(J,/E(J,} =z b) < 3exp(—nd?/25),
which was to be shown. The last statement of Theorem 3 follows from this

inequality and the Borel-Cantelli lemima.

REFERENCES

S. Abou-Jaoude (1976a). Sur une condition nécessaire et suffisante de L,-convergence presque
compléte de lestimateur de la partition fixe pour unc densité, Compies Rendus de
"' Académie des Sciences de Paris Série A 283, pp. 1107-1110.



34 Consistency

S. Abou-Jaoude (1976b). Sur la convergence L, ct L_ de 'estimateur de la partition aléatoire
pour unc densité, Annales de I'Institut Henri Poincaré 12, pp. 299-317,

S. Abou-Jaoude (1976¢). Conditions nécessaires et suffisantes de convergence L, en probabilité
de T'histogramme pour une densité, dnnales de I'Institus Henri Poincaré 12, pp. 213-231.

8. Abou-Jaoude (1977). “La convergence L; et I de certains estimateurs d'une densité de
probabilite,” Thése de Doctorat d'Etat, Université Paris V1, Paris.

T. Cacoullos {1966). Estimation of a multivariate density, Anrals of the Institute of Statistical
Muthematics 18, pp. 178-189.

L. Devroye (1983). The equivalence of weak, strong and complete convergence in L, for kernel
density estimates, Annals of Staristics 11, pp. 896904

P. Hall (1982). Limit theorems for stochastic measures of the accuracy of density estimators,
Stochastic Processes and Applications 13, pp. 11-25.

P. Halt (1984). Central limit theorem for integrated square error of multivariate nonparametric
density estimators, Journal of Multivariate Analysis 14, xx-xx.

W. Hoeffding (1963). Probability inequalities for the sum of bounded random variables,
Journal of the American Statistical Association 58, pp. 13-30.

E. Parzen (1962). On the estimation of a probability density function and the mode, Annals of
Mathemarical Statistics 33, pp. 1065-1076.

M. Rosenblatt (1956). Remarks on some nonparametric estimates of a density function, Annals
of Marhemarical Statisties 27, pp. 832-837.



CHAPTER 4

Lower Bounds for Rates
of Convergence

1. INTRODUCTION

In this chapter we will try to obtain general information about possible rates
of convergence for E(f|f, — f), for all density estimates, in the¢ form of
lower bounds. There are two questions one can ask here:

(i) ' Obtain lower bounds for

supE(flf:, - fl)s
feF
where # is a suitably restricted class of densities. We will call these
uniform lower bounds.

(il) Obtain lower bounds for

sup limsupa;‘E(flf,, —fl),

feF n—ooxc

where a, is a sequence of positive numbers. Thus, in (ii) we ask for
the worst possible rate of convergence for a single density f in #.

Occasionally, we will refer to the quantity inf, sup, . # E(f|f, — f]) (which
depends only upon n and %} as the minimax error, and to lower and upper
bounds for it as minimax lower bounds and minimax upper bounds.

The following classes of densities on R' will be considered:

(7. all densities vanishing outside [0, 1] and bounded by 2.
G, all densities vanishing outside [0,1], bounded by 2 + & (some
§ > (), and infinitely many times continuously differentiable on [0, 1).

35
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H(g): all densities of the form L2, p,g(x + x;), where g is an arbitrary
fixed density with support contained in [0, 1], ( p, p;. -..) is a.probabil-
ity vector, and x; is an increasing sequence of real numbers with
X — X > 1

U: all densities on [0, oo) that are monotone and have a peak at €.

U,,: all symmetric infinitely many times continuously differentiable uni-
modal densities with center at 0.

THEOREM 1. Let f, be any density estimate.

(i) infsupE(flfn~f|)2c

" feF

where c = 1 for F= G, G,, or H(g), and ¢ = § for F= U or U,
(i} Let {a,} be a sequence of positive numbers tending to 0. Then, for
all F mentioned in (i),

sup IimsupaiE(ﬁf,, —f|] = .

JEF n—ox n

Theorem 1 will be called a slow convergence theorem. To study rates of
convergence for any density estimate, it is clearly not sufficient to put
continuity conditions on & because Theorem 1 covers the classes U, and
H{(g). For example, if g(x)=cexp{—1/x(1 —x)), 0 < x <1, every { in
H(g) is infinitely many times continuously differentiable. Furthermore,
because ¢ is also included in Theorem 1, a tail condition alone or a
boundedness condition alone does not suffice either. Thus, a combination of
continuity and tail conditions seems necessary to obtain meaningful uni-
form and individual lower bounds. But even here, in view of G, one must
be careful: the nondifferentiability of f at even one point suffices to obtain a
slow convergence result.

We note that in part (ii) of Theorem 1, one f is chosen in #: it does
usually depend upon the sequences f, and a,, but once chosen, remains the
same for all a. In part (ii) we have proved that any rate of convergence is
attainable within the subclasses # considered here. We should note here
that in part (ii) the lim sup can be replaced by a liminf (Birgé, 1983b).

Theorem 1 (i) is not totally satisfying in that the particular densities
within the subclasses & that give us the large values for E([|f, — f]) are
possibly those f that correspond to large values of a criterion that measures
how long-tailed or un-smooth f is. One such criterion that will reappear in a
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natural way in Chapter 5 is

2s/(2s+1)

(N =/ lf"’l)mz”h( [

where ) is the sth derivative of f. Note here that [/f measures the
heaviness of the tail of f. The integer s can take any positive value. We will
now see that Theorem 1 (i) is largely due to the presence within each # of
densities with large values of D,(f). In doing so, we will only consider
uniform lower bounds.

THEOREM 2. Let f, be any density estimate. Let g be any density on [0,1]
with continuous sth derivative g, Then

E( fn = fl) $/2s+1)
lim infns/@s+1 gup f > {s/e(2s + 1))
e rene  DAS) D.(g)

, alls>1.

We note here that inf, D,(g) = C(s) > 0 for 5 = 1,2 (see Chapter 5), so
that the lower bound is
(s/e(2s + 1))3/(2”1)
C(s) ’

s=1,2,

provided we replace the supremum over all f in H(g) by that over all g on
[0,1] and all f in H(g). .

It is clear that the supremum in Theorem 2 is not approached by
densities that have D,(f) = oo, as may have been the case in Theorem 1.
Thus, Theorem 2 tells us about the worst f that are in a sense reasonably
well-behaved (because D,(f) < co). Theorem 2 also highlights the impor-
tance of the normalizing factor.

To illustrate Theorem 2 in the case s = 2, we will jump ahead a bit, and
announce a result of Chapter 5 for kernel estimates f,: for all f, we must

have
-£( fis, - 1)
liminfn??

=c>0,
nec D,(f)

where ¢ is a universal constant, and D,(f) is defined as above when f is
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twice continuously differentiable (its definition is different in the other
cases). This has information not avaitable from Theorem 2 because it is an
individual {not a vniform) result. Yet, it implies that, for s > 3, the lower
bound of Theorem 2 is not achievable with the kernel estimate. For 5 > 3,
we need either other estimates or a drasticaily modified kernel estimate. In
Sections 5.9 and 7.6 we will see that it suffices to allow negative-valued X.

A careful analysis of the proof of Theorem 2 reveals that for the densities
J¥ in H{g) for which E(f|f, — f)/D.(f}is large, D( f¥)} — oco. We could
take the bounding technique a little further now by restricting ourselves to a
class of well-behaved densities such as

F, ,: all densities on [0, 1} with (s — 1) absolutely continuous derivatives,
sth derivative £, and D(f) < r,

or

F, ... all densities on [0, 1] with (s — 1) absolutely continuous derivatives,
sth derivative {9, and D,(f) < o0.

These classes are not nested with respect 10 any of the classes considered
until now. We have another theorem:

THEOREM 3 (Bretagnolle and Huber, 1979).  Let r* be a number at least
equal to

(9°(s + DY,

For any densrga estimate f,, we have

liminfn*/®5* 0 sup E(ﬁfn = fl] > (2e)“‘(ri, - 1), all r > r*,

B fefF,

and

liminf p/@s* 1 sup E(f|f,, —f|) = .

Ao f

Theorem 3 is stronger than Theorem 2 in the sense that the suprema are
taken over classes of densities £, , having uniformly bounded values of
D.(f). As a consequence, the argument is more subtle and sophisticated.
We observe again that the rate #n7*/*'?D approaches n~'/? as s — o0,
While this rate is not achievable with the kernel estimate for s > 3 for any f,
it is achievable at least on an individual basis with some other density
estimates for densities f in F, , having compact support: see, for example
Bartlett’s estimate described in Secuon 7.6 or Section 5.9.
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All of the classes treated thus far are still quite large. Further drastic
reductions in the sizes of the classes will of course result in smaller lower
bounds. If we reduce the c¢lasses to such an exient that there is only one
parameter & left in the family, our lower bounds should be valid for all
parametric density estimates for the given class. The lower bounds thus
obtained will usuaily not be attainable by the general density estimates
considered here. They should however be tight for some specific parametric
density estimates. For example, consider the foliowing simple family of
densities:

II(g): all densities of the form f(x) = pg(x)+ (1 — p)g(x + 2), where
£ is an arbitrary density with support contained in [0, 1], and p € [0,1] is
a mixing parameter, unknown to the user.

Note that all f in I1(g) have compact support, and have infinitely many
continuous derivatives when g has. We will prove the following theorem:

THEOREM 4. Let f, be any density estimate and let g be an arbitrary
density with support comtained in [0, 11. Then,

(i) Foralln> 4,

sup \/rTE(fu; —fg] 2 0.030153 - -

fell(gy

(infact, sup E(flf,,—-ff)2(0.0849856--- +o(1))/\/ﬁ).

fellig)

(ii) sup lim supv(rTE(ﬂf,, —fl) > 0.0424928 - - -,
. Jell(g) n—ox

We can thus conclude that uniess one chooses a truly frivial class #,
the best possible rate of convergence in L, is 1/ Vn . For example, if #
has only a finite number of members, g,..., gy, and we define f, = g,,
where / is determined after having looked at the data X, ..., X,. we have
ECf|f,— f < 2P(g # [), and this tends to 0 exponentially fast in a (see
Section 11.9 on detection) when g; is chosen by the maximum likelihcod
principle. Thus, for all f in this finite %, we have an exponentially
decreasing upper bound!

A common complaint of users is that most statistical theories are
asymptotic in nature. What can one do for small samples? Is there such a
thing as “small sample superperformance”™? Well, one way of obtaining
good estimates for small n consists of suitably restricting the densities f one
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is willing to consider, and of answering the following minimax question: for
which f, is sup, ¢ & E( {|/, — f]) minimal? (This minimal value, m(n, ), is
a function of n and # only.) Classes one might consider here are all
monotone densities on [0, ov); all symmetric unimodal densities; all Lipschitz
{C) densities; all log concave densities with mode at 0; all densities with
increasing hazard rate on [0, oo); and so on. In particular, if only X, is given
(the one-observation-problem), what is f, for some of these classes? It is of
interest of course to have good bounds for m(n, #) for all n, Asymptoti-
cally good lower bounds can be obtained usually by the methods developed
in this section and the next section, and are of less practical intergst in this
context.

2. ASSOUAD'S LEMMA

The principles used in Section 1 can be classified into three groups: first, one
cannot estimate a density f in a given interval when no X, falls in this
interval (Theorems 1 and 2); secondly, lower bounds can be obtained by
information-theoretic considerations (Theorem 3); thirdly, one can use
inequalities such as the Cramér-Rao inequality, and properties of sufficient
statistics (Theorem 4). In this section we would like to draw the attention to
a powerful and simple technique developed by Assonad {1983) and Birgé
(1980, 1983a,b), which will allow us to rederive some of the results of
Section 1 and to obtain some new lower bounds for important classes of
densities. Birgé used the notions of e-entropy and e-capacity introduced by
Kolmogorov and Tikhomirov (1961) which allows him not only to obtain
uniform lower bounds but also upper bounds for the minimax error

infsupE(flf,,~f|).

S fef

He successfully answered the question of obtaining for some # lower and
upper bounds that have the same dependency upon » (but different
coefficients). Because we will obtain important upper bounds in Section 5,
we will not concern ourselves with the second half of Birge’s work.

The key is a powerful lemma due to Assouad (1983) (Theorem 5 below),
which we shall give in a form slightly adapted to our subject,

THEOREM 5 (Assouad, 1983) (General Form). Let r = 1 be an integer,
and let b=(by,....,b)YE {—1,1}" be a parameter of a family of densities
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f(B,.) with 2" members. Let b, and b;_ be the parameters defined by
b= (b.byy....0,_,, +1,b,.1,....5),
b‘-_= (bl’bz!""bi—l’_I!br'+l!"'!br)'

If there exists a partition Ay, Ay, ..., A, of RY such that for ail b and all
1 < i < r, the following inequalities are valid:

L'f(bi‘-l-!') -.f(bj—!-)l za>0

and

[ -) 28>0,
then, for any density estimate f,,

. ) ()1 -2 - 287);
spr(f!fn E {(ra/4)ﬁ‘2".

In terms of y = 1 - B, the lower bounds can be replaced by (ra/2)
(1 /2ny) and (ra/4)1 — ¥)2", respectively.

(Particular Form) (Birgé, 1983b). Ler r = 1 be an integer, let A = [0,/},
{ < 1/r be an interval on which we define a measurable function g having the
properties

|glsl,Lg=0,

let g =0 ourside A, and let y,,..., ¥, be real numbers such that the sets
A + y, are nonoverlapping. Let f, be a density on R taking the value 1 on
WA + 3. Let F be the class of 27 densities parametrized by

b=(b.....5) € {(-1,1)'
with members f(b,.) defined av follows:

ﬁ,(x}, XEU A4y

f(8,x) = folx) + big(x—y), x€Ad+y,.
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Then, for any density estimate f,,

sz (fir~ )= oo - \fon

> {;rL|g| (when angzs %).

If a general family # is given to us, we should first find r, /, g, f,, and
Yi,--., ), 50 that the family F of Theorem 5 is entirely contained in #.
Then, any lower bound obtained over F is necessarily a lower bound over
&, and we are done. This plan of attack will now be illustrated for a few
important classes.

We define the Lipschitz class W{(s, a,C) as the class of all densities f
vanishing outside [0, 1], possessing (s — 1) absclutely continuous derivatives
and satisfying the condition

lf{’)(x)—-f‘”(y)lsClx—y{", x.-)"ER,

where 5 = 0 is an integer, C is a positive number, and a < (0, 1]. When we
say that a function g is Lipschitz (C), we mean

lg(x)—g(y}I=Clx-y, x,y€R.

The analysis in Section 1 centered around the functionals D ( f ). Here we
start from a nice small class, the Lipschitz class W{(s, a, C}), without worry-
ing at first about D.(f). We will show in Chapter 5 that uniformly over
W(s,1,C), a suitably generalized functional related to D, (f) is uniformly
bounded.”

—-__ .. The most important Lipschitz classes are W(1,1,C) and W(0,1,C). The
latter class is the class of all Lipschitz (C) densities that vanish outside
[0, 1]. Obviously, W(0,1,C) is empty for C < 4, and has only onc member
(the isosceles triangular density on [0, 1}) when C = 4. Similarly, for all
W(s,a,C), we observe that the class is nonempty for all C larger than a
constant C, and empty for all C < G,

THEOREM 6. Let f, be an arbitrary density estimate. For all s > 0
(integer), a € (0,1), there exist positive constants ¢, ¢y, ¢;, Y;, and ¥,
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depending upon 5 and o only such that for all C = ¢,

sup E( s, -f|)

feW(s.a,C}
(C3 + a(l))cl/{ﬂl+a}+l)n7(51‘11)/(2(5+a)+l);

0 S {6rmc2) @O L s,

If WH(s,a) = U . W(s,a,C), then

liminf - sup E(ﬁfu —fl)n(x+a)/(l+2(:+a)) = .

AR fE W (s, a)

The constants ¢, and ¢, can be computed as follows:

-1
Yo = [(s + a)’”Z‘“‘exp(s ; c‘exp(:' i l))] ,

1= vlHs +a+ 1T (25 + 2a + 2),

Y, = ¥ T(25 + 2a + )T (45 + 4a + 2),
= Y%/4

-1
c; = 73(2(s+a)+1)/(:+a)(1672) ,

—(sta)(l+2s+a)}
¢ = 41 (167, } ey T

43

Theorem 6 is nice in that it provides us with a continuous range of
polynomia! rates of convergence. Unfortunately, the constants ¢, in the
theorem are suboptimal, and it is worthwhile to spend some extra effort on
W(1,1,C) and W(0,1,C) in the hope of obtaining useful lower bounds.

This is done in Theorem 7 below.
THEOREM 7. Let f, be any density estimate. Then, for all C = 72,

21 [ 12073 3C
sup E( lf,,—fl)z ——(—) , nzMax(lo,—).
few(,1,C) f 160 \ 25n 50
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For alf C > 288,

2/5
i(-:ég) CY3 + o(l)]n_z/f’,

E(ff f) (32 23

sy n = = -

jemiiney UMl Cf({Bacty* AT , 1sc
32\ 730 ’ "= 368

We will see in Chapter 5 that these rates are achievable by the kernel
estimate, and, for W((, 1, C) only, by the histogram estimate. If the lower
bounds for C seem unrealistic, the user can without a lot of effort obtain
smaller bounds at the expense of increased values of the coefficients of
n~'? and %" in Theorem 7.

Let us show now that from Theorem 5, we can also obtain slow
convergence theorems and fast convergence theorems in the spirit of Theo-
rems 1 and 4.

THEOREM 8. Ler f, be any density estimate. Let r > 1 be a fixed integer,
and let g be a fixed measurable function on [0,1/r) with (g| < 1, f}/g = 0.
Let Q.(g) be the class of all densities of the following form; there exists an
¢ € [0,1] and numbers b, € { — 1,1}, 1 <i < r, such that

i+ 1

i i .
f(x)—l+eb‘g(x~;), ;Sx<——, i=0,1,...,r—1.

Then,

oo £ fra-1)2 ye )

In particular, if g =1on [0, 1/@r) andg= —1on [1/(2r),1/r), then

s E(fif.-11)2 V7R, nzoss

feQ.(g)

and

sup E(f|f,,—f|) > % for all n.
fetg g

Theorem 8 contains quite a bit of information despite its simplicity. The
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uniform lower bound over ,(g) is of the order of 1/ vn . This lower bound
applies to the pargmetric estimation problem because it remains valid even
if g were given to us, but only ¢ and the 5,’s were unknown. Thus, we are
once again in a situation comparable to that of Theorem 4. Not surprisingly,
the lower bound grows with r, and by considering U, Q,(g) we are in fact
back in the domain of Theorem 1. This result comes as no surprise because
U.0,(g) is a densely populated subclass of G, the class of all densities on
[0,1] that are bounded by 2.

All results of this section were uniform results. Individual lower bounds
as in Theorem 1 (ii) can also be obtained from Theorem 5 by involved
constructions (see, e.g., Birgé, 1983b).

We close this section with a uniform lower bound for the class M = {all
nonincreasing densities on [0, 1] with f(0) = B). It is clear that this class is
empty unless B > 1.

THEOREM 9. For any density estimate and any B > 2,

1 1 (4]1/3

fsEu.SBE(flj;' _fl) = 16(3 + 2(”/4)1/3) - ﬁ ;

Clearly, the same lower bound is valid for all symmetric unimodal
densities on [ — 1, 1] satisfying f(0) < B/2, and for all unimodal densities on
[-1,1] with mode at m € [—1,1] and f(m) =< B/2. The lower bound
developed here is far from best possible: for one thing, it is not an
increasing function of B. The proof of Theorem 9 however is amazingly
simple, ard at least the power of n (n~'/?) is correct, because we will sec in
Chapter 5 that both the kernel and the histogram estimate have uniform
upper bounds for the expected L, error which increase as n~'/>, The lesson
we learn from this is that under monotonicity and compactness conditions
alone, no grand performances should be expected from any estimate, and
that it is probably not very rewarding to construct special estimates for M,
possibly not consistent outside M, since little can be gained over the kernel
estimate.

IMPORTANT REMARK. To obtain uniform lower and upper bounds
for E({|f, — f|} over nonhomogeneous or too large classes # is a risky and
often useless exercise. It is much like trying to determine the maximal
number of worms in a single apple in a bunch of freshly picked apples after
having thrown in a couple of old apples. With high probabitity, the old
apples will determine the outcome, and we end up with little or no
information about the freshly picked apples. One instance of this phenome-
non occurs for Lipschitz classes W(s,a, C), where the upper and lower
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bounds increase with C (for fixed s and a). From Theorems 2 and 3, and
from upper bounds to be derived in Chapter 5, we will see that the quantity
D (f) measures the “difficulty” posed by f very well. But because C and
D.(f) are only vaguely correlated, we obtain very little information about
the vast majority of the densities in W{(s, a, C) from Theorem 6, say. In that
respect, the classes F, |, which from now on we shall call Bretagnolle- Huber
classes, scem more natural and realistic. In addition, W{s,«, C) is not
closed under rescaling, while F, , is.

3. SOME HISTORICAL REMARKS
The collection of lower bounds of Section 1 has some L analogues. For
obvious reasons, this is not the forum for such lower bounds. 1t is of interest
however to recall some historical milestones because they will help us to
better understand the difference between the L, norm and the L, norms for
p*L

In Section 1, we considered slow convergence results (Theorem 1),
medium rate lower bounds (Theorems 2 and 3), and small lower bounds

(Theorem 4). Theorem 1 leads, for example, to an important observation
about L, convergence results for the kernel estimate,

1 e - X
A6 - (k) EK(TER) xer,
i=1 n
for bounded symmetric densities X. Rosenblatt (1971) has shown that

B[t 17) - 2=+ B

when h, = 0 and nh, > o0 as n — o0, and [ is a bounded density with
iwo continuous derivatives and jf”? < c0. The constants are

a=fK2, B=(fx2K(x)dx)2ff”2.

Taking h, = (a/B8n)'/* yields the optimal L, rate

B(ftn-17) - §ES

(see also Nadaraya, 1974). Yet, at the same time, for some f in the given




Some Historical Remarks 47

class,

1
E(ﬁf" - 'fl) Z Joglogloglogn

infinitely often: in Theorem 1, take H(g) with g(x) = constant -
exp(—1/x(1 — x))on [0, 1], and note that for all f in H(g), f is bounded
and ff"* =T%, plfg"? < [g”"* < 0. In other words, Rosenblatt’s classical
result and most other L, rate of convergence results give us little informa-
tion about how close f, is to f, and should be used with extreme care when
it comes to choosing #,. This discrepancy between good L, rates and poor
L, rates is due to the fact that in L,, tails (and regions with low-f values)
are less important. We should note though that if some tail conditions are
added to the class of densities considered by Rosenblatt, the optimal L,
rate for the kernel estimate (n~%/%) is achieved (see Chapter 5).

We note without proof that Theorem 1 has an L, analogue.

THEOREM 10 (Devroye, 1983). Let f, be any density estimate, let p = 1
be a fixed real number, and let f € L,. Then,

E(ﬁf,,—flf’)> .

Py

(i) inf sup
nofeF j fr

where %= H(g) forany g, or ¥= G,
(ii) Let {a,) be a sequence of positive numbers tending to 0. Then

Sup ﬁmsupa;lf('[_lf"ﬂ -

fEG n—ow ffp

There are also scveral analogues for the medium rate lower bounds, cited
here without proof, or with a short sketch of proof only. We remind the
reader that it is easy to get lost in the vast sea of results available in the
literature: there arc as many results as there arc normalization factors,
norms, and classes of densities #. In what follows, we will give a generali-
zation of the factor D,(f) toward L: we will define

2, (0= (furerr) T frr)

The uniform lower bounds of Theorem 1 and the uniform lower bound of

2s/(25+1)



48  Lower Bounds for Rates of Convergence

Theorem 3 are complemented by the following resuit by Bretagnolle and
Huber (1979), valid ford =1, s =z 1, and p > 1:

lim ian”/‘2’+1’SupE(f|fn - flp) 2 rC, >0,

- o0 fe¥F

where C,, is a constant depending upon s and p only, » > 0 is a real
number, and % is the class of all densities with (s — 1) absolutely continu-
ous derivatives, /€ L,, fe L, and D, (f)<r. We note that for
P = 2, the condition D,,(f) < r does not impose restrictions on the tail of
f. and thus this result does not contradict Rosenblatt's L, rate of conver-
gence result for kernel estimates,

Let us stress once more the importance of normalizations. For example,
for p > 2, we can find g such that H{g) C &#: this follows from the fact

that for f € H(g),

5 2s 3 s
D, (Y = (Zp?NEpr?) D, ()" < D, (2)"".
Thus, by Theorem 9 sup; ¢ s E( 1, — fI?)/ff? =z 17277 alt n,all p = 2.

Let us now gradually reduce the size of the classes #. First consider
H(g) again. A check of Section 5 below reveals that

%
sw E(fi-117)2 [ s ¥ (- p)
JeH(p) all probability ;=1

veclors py, pa, - -

>[5 (z(1+n))w(l - {;;)n

> fg,,( (r-1) cxp(_ﬁ__p))”

b . -1)/2)7!
] f ,((p-1)/ )"

T

-1

asn— g,

The lower bound i1s 1 for p=1 and all »n. For p = 2, it reduces to a
constant times 1 /n, regardless of the choice of g. In fact, since fg” 2 1 for
all p > 1, we have, for all g,

sup E(f(f f)) 2(n 1+1) p( lin)’ all n.

feHg)

Yet another normalization yields the following result.
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THEOREM 11. Let g be an infinitely many times continuously differentiable
density with support on [0,1), and let d = 1. Then

B ° _ps—— - l)pj/(25+1)
E(ﬁfﬂ f') 1 (2$+1 ¢

liminfp?*/@s* D sup > -,
=00 feH(g) D:p(f) 2771 Dsp(g)

for all p, s = 1, and all density estimates f,.

We have seen that 1/n is the best L, rate of convergence attainable
uniformly over any class H(g). Boyd and Steele (1978) have shown some-
thing quite a bit stronger for the small class

BS: all normal (0, 02} densities.

THEOREM 12 (Boyd and Steele, 1978).  For any density estimate f,, there
exists an [ € BS such that

l]msuan(f(fn f))>c(f)>0

n-—+o

where c( [) is a constant depending only upon f.

The result of Boyd and Steele cannot be improved for normal density
estimation: for example, if we estimate f by f,, a normal (4, d?) density
where fi and 62 are the standard sample-based estimates of u and o2, then

lim P[5, -1 < - F(x),

16,/_

where F is the distribution function of 4V + 3U, and V, U are independent
chi-square random variables with one degree of freedom (see Maniya, 1969,
who also has a similar result for & > 1). Thus, the rate predicted by Boyd
and Steele can be achieved. Theorem 12 should be considered as the L,
counterpart of Theorem 4. It is conjectured that

sup hmsup\f_E(ﬁfn f]) zc>0

fE€EBS n-ox

for some universal constant c.

Kiefer (1982) surveyed the literature on lower bounds for rates of
convergence in density estimation: until now, most emphasis has been on
pointwise rates of convergence (see Farrell 1967, 1972; Wahba, 1975; Stone,
1980, Ibragimov and Khasminskii, 1981). Global or L, rates of convergence
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have been considered by Samarov (1977) and Bretagnolle and Huber (1979).
For L lower bounds, see, for example, Ibragimov and Khasminskii (1981,
Theorem 4.2) and Stone (1983). For the kernel estimate, the rate of
pointwise convergence was studied in some detail by Wahba (1975),
Rosenblatt (1971), and many others. Its L, raie of convergence was
obtained by Rosenblatt (1971), Nadaraya (1974), Deheuvels (1977a), and
Bretagnolle and Huber (1979), among others. For d > 1, we refer to
Deheuvels (1977b).

4 PROOF OF THEOREM 1

Classes G and H(g). We will start with two families of densities. Family
1 is parametrized by a real number b € [0,1] and a probability vector
(P1, P2, --.). We will only make the dependence upon b explicit and write

f(b,x}= ip,-g(x - 2i-b),

im]

where g is a density with support contained in [0, 1], and 4, is the ith bit in
the binary expansion of b = 0.5,b,h, --- . For each b, f(b, x)is a density
in x.

Family 2 is parametrized by the same & and the same probability vector
(P, P2, -- ) First we partition (0,1] into sets 4, 4] such that f, dx =
f4;dx = p;/2, and then we define

T

e
We can always take A, and A as adjacent intervals such that A4; = A, +
p./2. It is clear that family 2 is a subclass of G, and that family 1 is a
subclass of H{g).

The proof is based upon the following embedding device: let B be a
uniform {0, 1] random variable, and let X7,..., X¥ be independent random
variables, independent of B, with common density f(0,.). Then define the
sets C, = [24,2i + 2) for family 1, and C, = A, U A] for family 2. Clearly,
P(XF € ) = p, in both cases. We will also use the notation B; for the ith
bit in the binary expansion of B. The random variables X|,..., X, are now
defined by the relations '

(b, x) f_z-g'fg;;,.;g:b;m; (x).

X, = X*+ B, when X* € C; (family1);

B.p, .
X=X+ =2 when Xfe ¢ (family2).
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Furthermore, we will use the random variables N, =ZL7_,/(x cc)=
Lailixs cc,p» 50 that, by construction, N = (N}, N,, ...) is independent of
B. Fmaﬁy, we will let B” and B” be random variab]es equal to B except in
their ith digits, where we force B/ = 0, B = 1.

There are two fundamental tricks: the first trick is based upon the fact
that a supremum is larger than an expecied value:

s fif, = /(5. 91) = E( fi1, - 1(8.)

- E(f} fcxf,, ﬁf(B,-)l)- (1)

The second trick eliminates f, from (1} and uses the fact that on [N, = ¢,
B, and Xj,..., X, are conditionally independent. Thus,

E(fm,-o, St —f(B,.)nXI,...,x,,)
= E(IIN-'OIIiB.-=UJ_,;|fn - f(B",)]
+I;~4-01118f-11_/;lffn ~ [(B", )X, ..., X,,)
= %Im,smf(j;_lfn —-f(B, )1+ fclf,, - f(B", )X, ..., Xn)

> fyma Y| [ 1108') ~1(8". )]

= Pilin-p 2

for both families. A combination of (1} and (2) now gives

spE(fif, = 6.0 = Zpp(=0= £ p(1-p)" ()

i=1 il

Inequality (3) is strong enough to prove (i) for families G and H(g),
because we still have the freedom to choose ( py, p. ... ). Consider, for
example, p, = 1/M, 1 <i <M, and p,= 0, i > M. Then (3) is equal to
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{1 -1/M)", and the supremum over all M is 1. We will postpone the
classes G, U, and U, for the time being.
For part (ii) we will need a Lemma.

LEMMA 1. When 0 <a, < } foralln lim,_ a,= 0, then there exists a
probability vector { p,, p,, ...) such that

o0
Yp(1-p) za, aln.
i=1 .

Proof. Construct first the sequence

This sequence satisfies: a,, > a,, for all n, § za{2ay> -+ 2 a,l0.
Thus, we can find integers 1 = &k, < k, < --- and positive numbers p,
such that p, =1 — 2aj,andforn=> 2, k,_ <igk;

k,
P = (2")_1’ Z = 2a,_, — a,).

=k, _;+1

Note in particular that

[e o] oo
Zp,-=p1+ Y 2a,_,—a,}=1-2a + 2a] =1,

=1 n=2

Also, for n = 2,

Yaa-z) z(1-5) T »

im] psl/2n
t
1 1 &
Z 5 Pi b E E pl'
pi<l/2n i=k, 1+1

1 &
=3 L2Ad —a)=a,2a,z2a,

=n

For n=1, we have p,(1 — p,)= 2ai(1 — 2a;) > a; = @), and we are
done. :
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Proof of (ii). For (ii), we employ the same embedding, but extend it to
infinite sequences Xy, X3, ... and X, X, ... . We will need the quantities
J(b) = E(J|f, - f(b,))) and J(b) = sup,,, ,/,(b)/a,. Let D, = {b:
J.(b) > 1}. Since D, decreases monotonically, there is a limit set D, and
thus fp npod% 4 fpapyydx = A(D) (A is Lebesgue measure). Let D) be
the complement of D,.

The introduction of the set D, was merely needed to allow us to use
Fatou's lemma:

. (b
sup lim sup (6) > sup limsup

b n—om n b n— a0

> E(limsup ( AC) )ID;(B))

n—x aﬂ

(Jn(b)

a,

J124(0)

zmMﬁ”mﬁwﬁ 4)

n— o ap

For the individual terms in (4) we will use the inequalities (1) and (2),
suitably modified. If we write X = (X}, X;, ...), then the left-hand side of
(2) after modification becomes

E(l[m-O]“;lIo;(B)f . —f(B,.)”X)
G
2 I[N.'=0](za")_LE(IIJ,.(B’)sl]fclfn - f(B'. )
+I(.?,,(B")<11fcllf; - f(B”’-)"X)

2 Iy g (Zan)—IE(Ilmaxu.,(a'),fnw"n sufclf(B', ) —f(B”, -)IIX)

P
z IIN.-OIZR:E(Ilmu(f..(ﬂ’)‘iu(-‘?”))sllIX)
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and the expected value of the last expression is
p,a;'P(N, = 0, max(J,(B),J,(B")) < 1)
> pa; (P(N,=0) — P(N,=0,7(B) > 1)
—P(N,= 0,7(B") > 1))
> p,a; (P{N,=0)-2P(N,=0,71,(B)>1)
—2P(N,=0,7,(B)> 1))
= pia,'(P(N,=0) —4P(N,= 0, B € D,)). (5)

Let A, =[k,.,, x), where k, is as defined in the proof of Lemma 1.
Define also

= X Pilin=o-

) icA,
We have shown that

e[ of ] e

n
12

) —4(5(5—;‘2]}’(3 €D,)

2 £

SN

(by Schwarz’s inequality).
Now, we choose the probability vector ( p,, ps, -..) as dictated by the
construction of Lemma 1, Then

Z n
B(2)=a' T pi-py o
a, ik,
Furthermore,
E(Zf) = X pidl-p)"+ b) prj(l - P _pj)ﬂ
i€4, iy i, fEA,
s2 X pi(1 - p T X mQ "P;')"Pj(l -Pj)n
ieq, i#f, 1, €A,

<2E¥Z),
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where we used the fact that on A,, (1 — p;}" = %, and that for all i, j:
1 —p,—p, < —pXl~ p) Combining the last two facts and (5), (4),
and lim P(B € D,) = A(D), we conclude that

n—+o0

sup timsup 22 » (1 - 4/2(D) )nmsup;z(%).

b n—om " n— o n
We always have

sup lim sup J"—ibl > A(D)

b n—x n

by definition of D.

Because A(D) > 0 certainly implies that for some b,
limsup, _, . J,(b)/a, > 0, and because A(D) = 0 implies the same thing by
the former inequality, we can conclude that there exists some & such that

L(b
ﬁmsup# > 0.

=00 L

But since we can always replace a, by V!‘Z in our choice of a probability
vector ( py, P, --- ), we see that (ii) follows from this result for families G

and H(g).

Class G_. We will change the definition of family 2 very slightly. Consider
the density g{x) = Cexp(—1/x(1 — x)) on [0,1]. Then, let C,,C;, ... be
the intervals [0, p,1.[p,, P, + P2] ... . Dichotomize each interval into two
intervals of equal length, and call the left interval A, and the right interval
Aj. Next, define

flb.x) = E 2(bg; +(1 - br’)ga")s

i=1

where g, is g(x/(p,/2)) translated to p, + --- +p,_,, and g/ is g; trans-
lated p,/2 to the right. Thus, g, vanishes outside A4, and g/ vanishes outside
A;. Furthermore, family 2 belongs to G_.. To see this, we need only look at
the maximal value of f, that is, twice the maximal value of g: 2Cexp(—4).
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Now,

Lot ] 5o

1—4y2

_a 12 16y?
=2¢74 exp| - d
fo p( 1- 4y2) 7
2 2 [ (1 - 20)%) dy,
0

where we used the inequality e * > 1 — », and the fact that 1 — 4y? < 1.
But the lower bound is $¢~%/ v20. Therefore, 2Ce™* < $y20 = 3y5. It is
casy to see that for any & > 0 in the definition of G, we can cheoose an
appropriate g, flat on [¢,1 — £], and very smooth on {0, ¢] and [1 — ¢ 1]. It

is simple to establish that the proof of Theorem 1 carries over to this family
without change.

The Class U, We will consider a subclass of U parametrized by » and
(p1. Py, ... ) as before. The vector of p;’s is nonincreasing in i and sums to 4.
We first determine intervals by defining knots

X=0, x,=1, x,,—-x,=2p, i>1

The density f(b,.) is constant on [x;, x;,,) and O elsewhere. For x €
[x;) X; 1), its value is determined as follow5'

\
pi § “'-
if i = 0: = -+ 3 i
if § f(x) g | \‘7

b=1
ifi#0,b=0: f(x)=277
ifi# 0,5, =1: f(x)=2"0+D,

Note that f is unimodal on [0, c0), and that it is a density in view of

Pi —i-
ff= ( 5 t Z + Z (xr+l a’)z !
:>1 jzl
=1 by=1
Z Xip1 — xi)z_!
2_
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The embedding is slightly more difficult now. We start with independent
random variables B, X},..., X}, Y;,....Y,, where B is as before, the X*’s
have density f(0, ) (recall that f(0, x) = § on[x,, x,); and f(0,x) = 2""on
[x;, x,+1) i 2 1), and the Y;’s are Bernoulli random variables with parame-
ter . We define our sample X),..., X, from f(b,.) by

X, =X if Xr € {x4,x)
orif X* € [x,,x,.;)., izl,andb =0

orif X* € [x,x,,,), iz2l,andb=1Y=0

X = (Xf - xi)

= —— 1.
/ (xH-! - x;)

if X* e [x,x,),iz1,b =17,

Thus, in the last case, we replace X* by a uniform [xg, x;) random variable.
It is easy to verify that the X;'s have density f(b,.).

Check that (1) remains valid after replacing C; by [x,, x,,,). Then,
because on N, = 0 (i = 1), where N, is the number of X,’s in [x;, x;,,), B
and Xi,..., X, are conditionally independent, we can derive (2) again for
all ; = 1 with the following modifications: condition on X¥, Y;,..., XX Y,
and replace p, by p,/4 on the last line. Thus, we can conclude that (3) holds
if the right-hand side is divided by 4.

This lower bound depends upon n and the vector of p,’s. As we have
shown above, we can find a nonincreasing sequence of p;’s with sum equal
to 4, such that (X% (p.(1 — p,)"/a,) = o as n — . Also, the supre-
mum of the lower bound over all such vectors of p,’s is §. This concludes
the proof of (i} for this class of densities. The proof of (ii) poses no major
problems either.

The Class U,. Consider the family of piecewise rectangular unimodal
densities constructed for U, and construct a new family taken from U
consisting of similar piecewise “almost™ rectangular unimodal densities: on
each interval [x,x,,,), define f(b,.) as before except near x, and x,,,,
where a continuity correction is made. Since U can be considered as a
limiting case of U/_, it is not hard to see that all the previous results remain
valid here.

5. PROOF OF THEOREMS 2 AND 11

Note that Theorem 2 is but a special case of Theorem 11 (take p = 1).
Consider the family 1 of the proof of Theorem 1 once again. It is not hard
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to check that
[re6.)=(Epr) [er,
and that

Dsp(f) = Dsp(g)(ZP,P)UQHU(Zptf’/z)hﬂzﬁn.

Now, rederive (1) and (2) up to the second-to-last expression of (2), in which
the factor 3 should be replaced by 277. The integral over C, of [|f(B’,.) —
f(B”, )| is 2pffg?, and this gives

sl;pE( s, —f(b.-)t”) 2277V [gr Y pr(1 - p)".

Now, take p, = 1/M fori = 1,2,..., M, and 0 elsewhere. Then

A

Take M ~ n/(ps/(2Zs + 1)), note that fgf > 1, and let n > =c.

|

6. PROOF OF THEOREM 3 N

We will use a randomization technique as in the proof of Theorem 1 (i) (see
(1)). A family of densities strictly contained in F, , is constructed around a
central density g. This central density in turn is obtained as g,+*g, (a
convolution} where g, is a density with support in [— %, 5] and continuous
(s — 1)st derivative, and g, is the uniform density on [— 1, 4]. Thus,

x+1/2

(go* () = [T s (N &

— g D(x+ 1) - gfO(x — 1),

and

Jizo= )1 = f1gf ™ 0x + §) g7 (x = P)idx

= 2 figf " (x)1dx.
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To randomize, we will consider a uniform [0, 1] random variable B with
binary expansion B = 0.8, B,... in which all the bits are +1 or ~1 (i.e,,
al! occurrences of 0 are changed to —1). Individual realizations of B will be
denoted by . We will also need A, u;, j > 1, sequences of real numbers
wnth the property that 6Lk, <1, ‘o < u, < 1. Now, find real numbers

»J 21, such that the sets A =[x, - Jh X, + 3#,] are disjoint and
contained in {x:g{x)=1}. (This can be donc because 6Zh <1)

For fixed & € [0,1), we define the density f(b, x) in our family as
follows:

f(b,) =g(x)(1 + b,-u,-(g(x—ﬁ 7)o - %)))

J

and f(b, x) = g(x) when x does not belong to any A4,. One can easily check
that f> 0 because |bu;|<1 for all f and g < ] Also, because of the
construction of g, the mtegral of f is equal to the integral of g.

Clearly, suppressing the dependence of f, upon a sample with density
f(b,.) and integration with respect to dx, we have

sup E( fi5.5) = 10 ) = ['B( flf,,(x;__—_f(b,x)l)db

O<h=<l

> T L8[ {100~ 1(bx] @ @

7

Consider now an individual term in (6), and let us fix by, b,....,
bj_l,bjﬂ, .... Let b7, b~ be the corresponding numbers with the given
binary expansion into b;’s with b, = +1 and b, = — 1, respectively. Thus,
averaging the jth term in (6) with respect to the jth bit &, and with respect
to “E” only gives

1

E(E( [t =16 ) + B f 1) —f(b-,xn]).

Introduce the notation y = (zy,...,2,) € R" u™=u"(y) = [ 1/,(x; y) —
BT x) wm= [y 1 (X y) ~ f(b x)l f+(y)*nf-1f(b z;); and £(y)
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= TP, (b7, z;). Then, the last expression is bounded from below by

%(f“+(v")f+()’)dy+f“ (y)f(y)dy)

> 3 [ () 4w ()min( £ (). (1)) dy

v

Zufmin(s, )

= %uexp(—ff*log(fr—*)), | (7)

where u = f, [f(b", x) — f(b", x)| does not depend upon the b,s, i # j.
The last mcquahty in{7)is provcd in Theorem 8.2, The exponent in (7) is

equal to njf(b™, x)log(f~ (b, x}/f* (b, x)). Also, because for |z| < 1,

- z) e 222
+ 2z 11—z
we have, if we write f as g(1 + b,g,) on 4,

fr ) of s e 55

l(l + z)log(}

2gg:
> 12 -
-fAJ BT T gl
4nu’h,
20— 77
u;

Because u = 2/|g,| = 2u;h ,» we can combine all the previous bounds into
one, and note that (6) is at least equal to

4nuth,
) (8)

1
E 3 J,hjcxp( =

Let us take u; = w, h, = h, 1 <j < N, such that 64N = 1, u/h* = a > 0.
With this choice, we can compute D, ( /) for each b. In particular, we always
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have
T-ufyg < [Vf svi+ufie,

Juror =+ 28 =) f1g0) = 1+ 5) fig)

and, thus, because we will let ¥ = oo, u — 0,

)1/(2:+1)

D)~ D)1+ %

The lower bound (8), rewritten as (u/12)exp(—4nu*(u/a)'”* /(1 — u)) is
approximately minimized by taking u = ah’, h*"*! = (s/(25 + 1))/4na?,
and the corresponding value of the lower bound is

1 5

s/25+ 1)
E(4ne(25 +1) )

al/Gs+h > %6-401/(2“ Lgy—5/(25+1)

To make all densities f(b,.) asymptotically belong to F, ,, we must take
(1 +a/3)"**UD(g) < r. Thus, let us pick a=3((r/D(g)**' -1
(this is certainly positive for r > D,(g)). Then, because 3'/*1 /12 > 2-¢
and ((r/D,()y**' — N> *V > r/D (g) — 1, the lower bound is

’.\.\ (28)”4"/D5(g) -1

"s/(25+ n

valid for all r > D.(g) and all n large enough. This concludes the proof of
Theorem 3, if we can establish that at least for some g = g, * g,, we have
D.(g) = (39°(s + DHY®*D, To see this, note that

f‘/_ %:_ (becauseéio‘g]Slon[-fh%])_

Also, if we take g (x) = 2(s + 1)1 — 4|x|)%, 4lx]| < 1, then

f1891 =218

= 247125 + 10271 - 4x) dxs!
0

=45+ 1
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Thus, for this particular choice of g,

D(g) s ((3)¥4 (s + 1)!

which was to be shown.

)1/(25+1)

¥

7. PROOQOF OF THEOREM 4
Let f, be a density estimate. Then the following estimate is strictly better:
f(x) = pg(x} +(1 — p)g(x + 2),

where p = [y, .. because

Jit=n1= [ gip=pl+ [ gl0-p)=(-p)

j[’o,uf" - f([o,mfﬁ' B f'

< if,- 11

In other words, when we derive lower bounds, we can assume without
loss of generality that f(x)=pg(x)+ (1 — p)g(x + 2), where p =
P(X|,..., X,)is a Borel measurable function of its arguments taking values
in [0, 1}. Now, let us define N = 71,y 10,1 Then,

+

E( fif.~ 1) = 205 = o) = 2E(E(IN) - p) = 2EQ¥(V) - p)

for some [0,1]-valued Borel measurable function . Here we used the
conglitional version of Jensen’s inequality, and the fact that N is a sufficient
statistic for p.

Let us write £, for the expected value with respect to the distribution of
(Xi.-.., X} when the mixing parameter in f is p. Let N, and N, be
binomial (n, p) and (n, ¢) random variables, respectively, where 0 < p < g
< 1. The fundamental inequality underlying the remainder of the proof is

%(Ep(flfn -f!) +Eq(f|f,,_fl))zlp—'qlP(Nqs_np),
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The proof of this inequality is simple:

28 (fir 1)+ £o{ firs - 1)
2 E(19(M,) - pl) + E(I¥(N,) — ql)
= ¥ (1)) - pIP(N, = j) +1$(j) - qIP(N, = j))

Jj=np

> ) (w(f)~p|+|¢(j)—q|)P(Nq=f)

j<np
z|p—qlP(N, < np).

Part (i) of Theorem 4 follows directly from our fundamental inequality by a
randomization argument. Let p be a2 random vanable with probability
measure ¢ on [0, 1]. Then,

s, f1f, = 11) 2 [E,( furs =1 |atap)

Let p put half its mass at @ = 4, and half its massat b = + + ¢/ Vn for
some constant ¢. From the fundamental inequality we note that

su;:nl!:"‘,,(f[f,l -f|)q/r? = ¢P(N, < na) ~ c®{-2c),
?

where @ is the normal (0,1) distribution function. The last step follows

from the central limit theorem. The lower bound ¢®(— 2¢) is maximal for

2¢ = 0.7517915241 - - - and takes the value of 0.0849856 - - - . If a bound is

needed for particular values of n, we can follow many routes: for example,

assume that ¢ = 19/100, n > 4 (these choices will be convenient). Note
that n(l — b) < pa;< nb. Slud (1977) has shown that

()

CP(Nb <ng)z | —————|.

fnb(l - b)

For n even, this is at least equal to c¢®(—c¢/ {5 —¢/2m) =
e®(—c/ {4 —c/4)=c®(~2¢/V1 — ¢). For n odd, a lower bound is
provided by c®((—2¢c — 1/Vn)/ V1 — ¢) 2 ¢®((—2¢c — 1)/ V1 = ¢). The
odd lower bound, which is smaller than the even lower bound, is
HO(— B)z &P(—1) = 030153 - - - . This concludes the proof of (i).
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For the proof of (ii), we introduce the notation J,( p) = E,({1f, — f|Wn,
and let p be a random variable with uniform probability measure p on
[3 — &4 + €] for some small £ > 0. Also, define g = ¢/ Vr, and choose ¢
as in the proof of part (i), that is, 2¢ = 0.7517915241 --- . Let a > ( be an
arbitrary constant. By Fatou’s lemma, h

sup limsupJ,(p) = E(ljmsup.l,,(p)) > E(lim Suprnjn(J,,(p),a))

r =2 1% o

> limsup E{min(J/,( p},a}))

H—

lim sup § (£(min(J,( p), @) + E(min(/,(p ® ), 4))

R— o

limsup 4 E(min(4(J,(p) +J,(p @ q)),a))

n— oo

v

> lim sup%E(min(cP(N,Hq < nplp),a)lpwsmﬂ).

= o

where p @ g is defined as p + ¢ when the sum is less than § + g, and as
p + ¢ + 2ke for some other k integer. The integer & is chosen such that
p + g+ 2ke belongs to [3 — e} +¢). The symbol N, is used for a
binomial (n, p + g) random variable. If we take @ = ¢, then the last term in
this chain of inequalities is equal to

-
ra

l.i.IIlS‘I.lp %E(CP(NP-fq = npip)lp+qsl/2+e)'

[ andt® 4]

Now, for fixed p such that p <3 + e cP(N,,., < np|p) —
c®(—c/Vp(1 — p)). by the central limit theorem. Thus, by the domin-
ated convergence theorem, the limit supremum is at least
1cE(P(—¢/ yp(l — p) ). Since |p — 1| < & and since we can choose ¢,
this imit can be made arbitrarily close to 1¢®(~2¢) = 0.0424928 - - - | This
concludes the proof of Theorem 4.

8. PROOF OF THEOREMS 5, 6, 7, 8§, AND 9

Proof of Theorem 5. We proceed again by a randomization argument,
using & uniform distribution over all 27 possible values for b = (b,,..., b,).
We will write £, for the sum over all these values, b;, and b,_ for r-vectors
equal 1o &b in all their components except possibly the ith: the ith compo-
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nent of b,, is always +1, and the ith component of b, _ is always — 1. We
will write X,, for (X,..., X,) € R", and x, for (x,,...,x,) € R”". Finaily,
all products [] are over j =1, » as in [1f(b, x;). The density estimate is
f.(x),x € R, but it will be more convenient to write f,(x,X,) to make the
dependence upon the data explicit, where X, is a sample of » i.i.d. random
variables with density f(b, x). We have

sl;pE(ﬁf,, —f(b,-)l)
2 2L [ fifs(xixa) = (6. 0) 1 dx - T1f (b, 3, dx,

22"’§f

=1 i

% [ 1xx,) = A(b.x)idx - TUf(h,x) ax,
= Z_rzfi %(Llfu(xaxn) _f(bj+sx)ldx : nf(bH ’xj)
b =1 . .
+L,.|f"(x’x") —f(b,_.x)dx - TIf(b,_, x,)| dx,

py FMin(T1f (6. ), 11/ (bics x;)) dx,

> 2"§f

2 3 inf [Min((1f(5,0. %), 11/ (8-, %,)) dx,.

Now, if f and g are two densities, we know that [ Min(f, g) > 4( f\/E)Z
(Theorem 8.5) and that [ Min(f,g)=1-31f—g/=1— (f(\/f
- \/§ )*)*/2 (Theorem 8.4). But

S0 076 ) dx, =T 75, x ) f (b, x,) dx, > B7

and the first part of Theorem 5 is proved,
For the second pari, note that a = 2/,|g| and that y < [, g2 This
follows from the observation that for any & and 7,

l—f\/}(biwx)f(bimx):L (fo_v'fo"*g\/fo_g)

*5

=f (I*Jl_:?)s[qu.

A4y,
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REMARK. The first part of the proof of Theorem 5 essentially coincides
with the chain of inequalities (6), (7) in the proof of Theorem 3, due to
Bretagnolle and Huber (1979). :

Proof of Theorem 6. We will first find a nonnegative function g, satisfy-
ing the W{s, a, C) condition and

1 1
fulgoiz‘n(?, fosésthz» supgp < 7sC.

After having done this, we proceed as follows to construct a family as in
Theorem 5. Take a constant a, > 1. Define 4 = [0,1/a,r), and

MQ%, 0<x< .
(x) (2a,r) 2ayr
glx)=
-80(2a07(x — 1/(2a,r))) LI X < 1
(2apr)’" T 2agr T agr’

Let y, be 31 —1/ag) +ijagr, i =0,1,...,r = 1. Thus, U, 4 + y, =[3(1
= 1/ay), $(1 + 1/a,)), that is, we have cut the latter interval into r equal
pieces of length 1/a,r each. The function f, of Theorem 5 is 1 on this big
central interval, and must be defined carefully outside it. In particular, we
should make sure that f, = 0 outside (0,1}, that fj f, = 1, that f, = 0, that
=0 for i=0,1,....5 — 1, that f,(3(1 — 1/a,) =1, and that
/P30 - 1/ay) =0, i=1,...,5 — 1. Furthermore, f, should satisfy the
W(s,a,C) condition, and the interval [{(1 + 1/a,), 1] should be treated
symmetrically. This can always be done merely by choosing C larger than a
threshold c,(s, a, a,). Later we will take a, = 2 (for no particular reason
except convenience), and this allows us to introduce the condition C =
¢,(s,a). Let us quickly verify that the family of Theorem 5 is indeed
contained in W(s, a, C). First,

35“(290’*)
(2‘70"')'l

g9(x) = , O0O<x<

and thus

180(x) = g (»)] = (2a4r) "C(2a0r)%1x = y|* = Clx ~ yI".
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Also,
fig1=2" &), _ 2nC
A (1} (zaur)-“"““'l (zaor)snn‘l
2
fgz f < 2y,C ’
A 0 (2(1 r)2(3+a)‘l (2a0r)2(,7+a)+1
and

|&o] ¢
sup!gl = Sup 5 o S 5 @ "
A 0. (2a,0)"" (2a,r)™"" "

The lower bound of Theorem 5 now reads

_l_rf lg| = YlCr(Zaor)"s'“_l _ Y]C(zaﬂ)—s—a—lr_(_‘_'_ﬂ)
2 A

subject to the conditions J
2ny,C? 1
2 2
nfgis ——— < ¢
L (zaor)l(s+u)+l 8
and
C
% < 1.
(2aqr)

The first one of these side conditions is used to determine r; to obtain the
best possible result, we should take r equal to the ceiling function (i.e., next
integer greater than or equal to) of

(2a,) ](1672116'2)1/(2{”")“).

The last condition now becomes a lower bound for #. For example, it is
satisfied if

(st+ta)/(As+a)+l)
2) = Y}C’

(16v,nC

which is equivalent to the condition n = Cc,. Resubstituting our value for r
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in the lower bound, with g, = 2, gives us the asymptotic result mentioned
in Theorem 6. By using the fact that ceiling (y) <y + 1, we obtain the
lower bound

1,C/4
)1/(2-r+2u+1) + 4)5f“’

((16y,nC?

valid for all n > Cc,.
This leaves us with the task of finding our original function g,. We
consider deliberately a suboptimal but practical g,, namely,

8o(x) = Cro{(x(2 — x))""".

We verify without effort that [ |go] = Cv, fi 28 = C?v,. andsupg, = Cy,.
Thus, Theorem 6 is proved if we can prove that g, satisfies the W{(s, «,C)
condition. Using the notation

w(u=1) - (u=j+1)

("f)=1 (for j =0} and 7

J
(for j > 0), ueR,

and the binomial expansion theorem, we see that

g(x) _ = — {5t a stat)
2370 _;E‘o( 1)1( J )x ’

The sth derivative of g,(x)/(Cy,) is L7y (—1)/h(x), where

h(x)= (s j a)(s +a+j)--(1+a+j)x*t.

Now, for0 < x <y < %,

00 = 1= 7 s at ) (U ak I =y
and

[y — xi, j=0,

|pet — x| < { ke .
{a+j)y* " Ny—xl, j=>0.
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Combining all these estimates in a super-upper bound, we obtain

g8 (x) — g6 (»)
Cyy

<{s+a) - (1 +a)y—X

= 5+ _
+ 2 (T raky ot )y =
Jj=1

+7) s + @)’

sly—xl((s+a)"---(1+a)+ f (s+a

=1 20041
Sly—x|((;c+a)---(1 +a) -
+ E" (s + a) *121~a ({s + a)e“:“/(-wa)/z)i )
j=1 Jt
<1y = s+ )2 g 23 e 211

where we used the inequality (1 + u) < €“, y € R. But the right-hand side
is equal to |y — x|/¥,, which was to be shown. .

Proof of Theorem 7. In the first part for W/(0, 1, C), we will illustrate how
the inequality of Theorem 5 can be manipulated by optimization metheds to
get good bounds. We follow the proof of Theorem 6 first, and use the
following function g, on [0, 1]:

Cx,
-,

Obviously, i |g,l = C/4. [d 85 = C?/12, and supg, = C/2. Thus, the
constants v;, 1;, and v, in Theorem 6 can formally be replaced by 1, s,
and . Define g from g, as in Theorem 6. We will let a, > 1 and r > 1
keep their meaning from Theorem 6 too. Thus, by Theorem 3, for C large

enough,
om g fit=n)z o[ fanf )

~nC(l_ L
a \y  y¥?

= O
A 1A
o™
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where L = y4v,C*n and y = 2a,r. The bound is valid whenever y > v;C.
If the lower bound is considered as a function of y only, then it is
maximized by setting y = (5L/2)*/, and takes the value

| 3¢ 2133 3 [12C)H\3
~yC- _(_ B 15
ag S1V5L 20a, \ 25na

The only minor inconvenience is given by the factor a,, which must be
chosen such that the solution r of 2ayr = y is integer.

Let b, be another constant greater than 1, and set r = ceiling of
(y/2by). Thus,

ay

1y - _
= 2 ceilingl y,/25,) € [boabo/’(1 2by/y)} € [bg, bo/(1 = uy)]

when y > 2b,/u,. Our lower bound now is

31— (12C37
20 & (%)

subject to the conditions
(i) y = v,C (which is equivalent to n > %);
(i) y 2 2by/uy-

In addition, the construction of a Lipschitz (C) function f; on [0, }(1 —
1/a,)] as in Theorems 5 and 6 will give us a lower bound for C. We can
consider a two-piece linear curve with breakpoint at j(1 — 1/4,) (where it |
takes the value $) and endpoints at 0 and 1(1 — 1/a,) (where the values are
0 and 1 of course). We verify easily that

(1/2K1—1/a0) 1 ( 1 )
= - ]_ —_
fO f() 2 a,
and that f, is Lipschitz (C) when (1 - 1/ay)C < 3, thatis, C > 6/(1 —
1/a,). The latter condition is always satisfied when

6
Wy €2 ——r—.
W €= T 178
Take b, = 4, u; = %. Condition (iii) gives C > 72. Condition (ii) leads 1o
n =12 - 48%/(25C?). For C = 72, this holds whenever n > 10. Replacing
ty and b, in the lower bound has the effect of decreasing the coefficient #
to v%. This concludes the proof of the first part of Theorem 7.
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Before we proceed with the proof of the second part, we should mention
that we have struck a compromise between an asymptotically small lower
bound and a lower bound that is useful for small values of n. Interested
readers can now, with very little extra effort, produce their own bounds for
their range of interest. For example, the lower bound for C can be reduced
by introducing a “*flat level” for f; that is much larger than 1. This requires
changes in all the theorems, including Theorem 5, but may well be
worthwhile. The small optimization problem solved in obtaining the bound
for W(0,1,C) can be mimicked for W(1,1,C), but we will not do so¢ here,
Instead, we will use the straightforward technique in which we determine
agr from nf, g? = }, and plug these values back into the formula 47/, |g|.

For W(1,1, C) we start with the function g, on [0, 1] defined by

sz/zv D<x =< },
golx) = 5(%C_C(x"i)2), l<xx<3,
c1 - x)'72, I<xsl,

Clearly, g is Lipschitz (C), and g, fulfills all the requirements imposed
on it in the proof of Theorem 6. Next, [|g,| = C/32, fg¢ = 23C/(60 - 256),
supg, = C/16, so that we can take y, = 1/32, v, = 23/(256 - 60), and
¥; = 1,/16 in Theorem 6.

From this, we compute, as in Theorem 6, the constants

B NE L S )
ST ml\s) 0 927 38

Thus, this part of Theorem 7 follows directly from Theorem 6. For the sake
of the user, we will compute the constant ¢, explicitly. We have taken a, = 1,
and must make a connection between (0, 0) and {4(1 — 1/a,),1) = (4, 1) by
using a function f, within W(1,1,C), and with average value 1 in this
interval. We claim that this can be done for C > 288. We begin with a basic
building block of width 2a on which we define the function.

{isz, 0<sx<a,

Ca® - }C(x - 2a)’, a<x<2a.

This function has a Lipschitz (C) derivative on [0,24], and has zero
derivatives at both endpoints. Its area (integral from 0 to 2a) is Ca?, and
the maximal value, at 2a, is Ca?. If we take a similar function, upside down,
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and with a constant D instead of C, where D < C, and stick it to the right
of the first function, and if for the new piece we choose a certain width b,
then we have our function f, provided that we can solve the following
equations;

() 2a+2b=1;
(i) Ca® + Db* + 2b = 2a + 2b (average value condition);
(ii) Ca® — Db? = 1 (endpoint must be correct);

subject to D < C,a = 0, b = 0. The solution a is given by

{o )

This is less than or equal to § (and thus, b = 0) when C > 128. Finally,
D =64-8a/(1 — 8a)? < C if and only if C/64 2 /T + C/16, and the
latter condition is fulfilled for C > 288. This concludes the proof of Theo-
rem 7.

Proof of Theorem 8. From Theorem 5, we have the lower bound
(r/2)ef|gl, subject to ne?fg? < 4 if we only look at the subfamily of Q,(g)
with fixed & Now, take & = (8afg?) /> < 1, and we obtain the first
inequality. The second bound follows from f{g| = fg° = 1/r for the given
choice of g. The third bound follows from the second bound after taking
r = 8n. Note that the first inequality would also have been obtained if we
had used the stronger half of Theorem 5 and carried out an optimization
process as in the proof of Theorem 7.

Proof of Theorem 9. We will apply the general form of Theorem 5. The
family f(b,.) is obtained from a central function f,(x)= B(1 — 2i§),
(i—-1/rBsx=<i/rB, i=1,...,r, and fy{x) =0 elsewhere on [0,1].
Here § = 1/2(2r + 1). The area under this function, its integral from 0 to
1/B thus, is

4 ) -1 8(r+1) . r+1
Y (B - 2i8)(rB) =1-—F—-= BGr+ 1)’

i=1

Take now a small perturbation, such as g(x} = 88 on [0,1/2rB), g(x) =
—88 on[1/2rB,1/rB). Its integral from 0 to 1/rB is 0. Since it varies from
&8 to — 8B, we can add it piecewise to f, without violating the monotonic-
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ity: define f(b,.) on [0,1,/B} as follows:

i—1 ] i .
fo(x)+g(x+ _B) on[ B ,;E) if =1,

f(b,x}= r _ j
fo(x) OR[T’E) ith = —1.

Thus, for any &, f(b,.) is monotone on [0, 1/8) and f(0) < B. Now, we will
distribute the leftover probability uniformly over [1/B,1). This uniform
piece has height

8(r+1)/B  8(r+1)
1-1/B  B-1 -

The value of f(5,.) on {0, 1/8) is at least equal to B(1 — (2r + 1)é) = B/2.
For monotonicity, we must require that 28(r + 1) < B(B — 1), or, that
(r+ 1)/(2r + 1) < B(B — 1). This is satisfied for all integer r when B = 2.
The construction is now complete. We need only compute the a and v of
Theorem 5. As a we can take [}/ |g| = 8/r = 1/2r(2r + 1). Also, we can
take y = 82/2r(1 — 2r8) as can be seen from the following inequality, valid
for all i and b:

1= fy7(b,, )b, %)

j("’”’ (fi- o+ 8))

i-1}/rB

B(1-2i8){ 3B
=~ 2B (1 \/] B 2i8)

5B
- \/1— B(1 - 2i0) )

<1—2:‘&;( 8B )2
="2r \B(1-2id)

(by the inequality V1 + » + V1 — u 2 2 — u?,ju| < 1)

5 52
2r(1— 2i8) — 2r(1 — 218)
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The lower bound is

ra wm_ 0 8’ 2
117 = 3(1 T2/ -2+ 1)))

4
& 2né?
_I(l-( p )

If r = {(n/4)"", then clearly r/8% = 4r(2r + 1)* > 16((n/4)°) = 4n, s0

Ll

that the lower bound is greater than or equal to

8 1 1-

8 - l6(2r+ 1) Z 16(2(”/4)1/3 + 3) *

and this concludes the proof of Theorem 9.~ |
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CHAPTER 5

Rates of Convergence in L,

1. INTRODUCTION
™,
One expects that with a finite amount of data a given density estimate has
built-in limitations, even for the best densities f. To a certain extent, these
limitations are captured in the lower bounds of Chapter 4. In this chapter,
we want to obtain very precise information about E(J,) for particular
density estimates, such as the kernel and histogram estimates. [n particular,
we are interested in asymptotic expressions for E(J,) for these estimates for
the case d = 1.
The kernel estimate considered here will be written as

filx) = (nh)"ll_ilx(* )

(1)

{Parzen, 1962; Rosenblatt, 1956), where h = kh, is a given sequence of
positive numbers, and K is a given density (kernel) satisfying

K(x) = K(—x), all x; X is bounded and has compact support. {2)

This condition will not be repeated. In view of Theorem 3,1, we also need
not consider sequences 4 that violate

lim £ =0; lim nh = 0. 3)

H— 00 [

In this chapter we will consider individual rates of convergence for
E(J,). As we will see, these are closely linked to the following quantities:

A(K) = (fKZ)z/S(foK)w

B(S) = (%(I\/f]4f|f"|)1ﬁ.

and

76
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To simplify the notation, we will use the symbols « and g for {/X* and
fx?K, respectively. Thus, A(K) = («*8)"". The quantity B( f) will be used
for all densities f belonging to %, the class of functions satisfying the
following:
(i) [ is absolutely continuous with a.e. derivative f';

(it) " is absolutefy continuous with a.e. derivative f*;

(iii) f" is continuous and bounded.
But because we also want information for densities f not in %, the
definition of B(f) must be generalized, For al! f, we define

1/5

B() - (%(/fﬂ)}gg firear)

where * is the convolution operator, ¢ is a density with compact support
and four continucus bounded derivatives, ¢ €%, ¢ € F, and ¢, (x) =
(1/h)e(x/kh).We will prove in Lemma 5 that the value B*(f) is indepen-
dent of the choice of ¢, and that for f in #, the two definitions coincide:

B*(f)= B(/f).
Finally, to describe the exact asymptotic behavior of E(J,}, it will be
necessary to introduce the function

¢’(u)=ﬁ(ufue“l/zdx+e'“2/2), u = 0.
o

It is perhaps useful to get a feeling of how ¢ varies. We have because of
Mills' ratio ([=e™*/2dx < (L/u)e”*'7?), (u) 2 u. By inspection, we
also obtain ¥ (u) = y2 /7. Thus,

max(u,\/g)s\lz(u)su+ ]/g;
vi(u)= \/gj(;"e""zﬂdx >0 {y is monotone 1};

¥'(u) = 0 (¢ is convex);

timi () = /2.
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THEOREM 1. For all f in & having compact support, the kernel estimate
defined by (1)—(3) satisfies

E(J,) =J(n, k) + o(#2 +(nk)~'?), B
where :
won) = [ (s B

J(n, k) f yris (Mza‘/f)

Also, |

a fVf
J(n,h)s\[%— :/[E +gh2f|f"|.

When f has compact support, then

E(J,) < \/7 ‘/_ supfl(f*¢)”l+0((nh) v,

where ¢ is as in the definition of B*(f). In particular,

lim sup mfnz/sE(J) < C*A(K)B*(f),

neod
where

2/5

C* = 5(8z)"* = 1.3768102 - - - .

The upper bound is not exceeded for the foilowing choice of h when f has
compact support, and B*{(f) < oo:

a f‘/f 2

h=|=— - n

2
B SUP.pofl(f* (Pa)”l

2/5

~1/5

In the upper bound for J(n, k), we detect a bias component (the second
term) and a variance component (the first term). Theorem 1 states that for



Introduction 79

densities with finite value for B*(f), E(J,) decreases at the rate n~/* if &
is chosen in proportion to n~'/°, We should note here that under mildly
different regularity conditions {not nested with %), Rosenblatt (1979)
obtained a similar upper bound with a slightly larger constant, 5/2%° =
1.435872 - - - . Although not explicitly stated by him, his argument uses the
inequality ¢ (%) = 1 + u, which is not best possible,

The proof of Theorem 1, and its various implications are deferred to
other sections, so that we may continue here with a description of our basic
results. To complement the upper bound of Theorem 1, we offer a lower
bound: ’

THEOREM 2.  For all f, the kernel estimate defined by (I) and (2) satisfies

liminf infr2E(J,) > CA(K)B*(f)

n—~oc A
> CC,A(K)
g CC102 = C},
where
C = inf i%—} = 1.028493 .-+ is a universal constant,
Hou
29 /s
¢, — inf B*(f) - (3;) = 14459624 - - -,
and
) 9 4\’
G- it A(K)= (ﬁg) ~ 0.59083538 - - - .

even density

Theorem 2 thus gives a universally applicable lower bound, which in view
of the upper bound of Theorem 1 cannot be improved upon very much:
note that the constant C* in the upper bound is only about 35% larger than
the constant C in the lower bound. In a sense, the lower bound of Thecrem
2 gives us more information than what was available from Chapier 4,
because it applies to all densities, not just the “worst™ densities in certain
classes of densities. More imporiantly, the lower bound can help us decide
whether our sample size # is large enough to achieve a certain L, error.

The lower bound remains valid when 4 is a random variable independent
of X,,..., X,,. This would be useful when % is automatically estimated from
an independent sample, usually of size much smaller than n.



80  Rates of Convergence in L;

The existence of the universal lower bound C;/n** is a corollary of the
observation that B*(f) is universally bounded from below by C,. For the
proof of this, we refer to Theorem 3. It is worth noting that this infimum
over all B*(f) ts attained for the isosceles triangular density. Thus, the
isosceles triangular density is the gasiest density 1o estimate with the kernel
estimate. This observation is at the basis of the development of the trans-
formed kernel estimate presented in Chapter 9. The interested reader could
now directly skip to that chapter without loss of continuity.

The constant A{X) is minimized by Epanechnikov's kemnel

K(x)=30-x), Ixlsl,

and takes the value C, (see Bartlett, 1963, and Epanechnikov, 1969; see
also Tapia and Thompson, 1978). For a short proof of this fact, see
Lemma 18. Strictly speaking, we should call this kernel Bartlett’s and not
Epanechnikov’s, the name commonly used in the general literature, It is
known that the values of A(K) for most reasonable even densities K are
very close to the minimal value C, (see Rosenblatt, 1971; or Deheuvels,
1977). -

Because of its importance, we will devole an entire section 1o the
understanding of B*(f). The key lemmas and proofs are given in another
section. The same treatment is then given to the histogram estimate, where,
as we will see, the rate is not n~ % but n~ /2,

In Section 9, we consider uniform upper bounds for the expected L,
error, that is, bounds that can be applied for any value of n. In Section 10,
we give upper bounds for E(J,) of the type obtained in Theorem 1 for
densities f that do not have compact support. Finally, in Section 11, we
show how for some smooth but usually long-tailed densities, a specially
designed kernel estimate can achieve E(J,) < ¢/ vn . The price paid for this
will be steep: the estimate is not convergent for the vast majority of
densities, including all densities with compact support.

2 THE FACTOR B*())

From Theorems 1 and 2, we conclude that B*(f) measures the difficulty
posed by f when an ordinary kernel density estimate is used. In this section,
we will obtain various properties of B*(f) and its components. Roughly
speaking, we can say that B*( f) has a component ( f ,ff_ ) that measures how
heavy the tail of f is, and a component (sup, . o [/ * ¢5)’|) that measures
how oscillatory f is. We will Jook at these components separately, starting
with [/f.
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The statement that fy/f is small when f has small tails and vice versa
requires some explanation. We can start with a generalization of an inequal-
ity due to Carlson (1934) (see Beckenbach and Bellman, 1965, pp. 175):

LEMMA 1. For any random variable X with density f on R,
O JYf <V2a(Var(X))'/*,
(i) [Vf =inf, RCLE(]1X — a'*9)l/20+o)

where € > 0 is an arbitrary constant and C, = (8w sin =/l +
£))e~/0+ N2 gepends upon € only.

Proof. Carlson’s inequality (1934) for nonnegative functions g on [0, 00)

states that
& o 1747 .o 1/4
< 1/17( 2) ( x? 2) )
Lasm{fe) (] <

Now, take g = /f, let p = [& f, a = & x¥f/[* x*f. It is clear that this
gives

f‘/f < ,/.;(fxzf)l/d( P4 (1 - p)l/-s(l _ a)1/4),

The last factor is maximal, for fixed 4 € (0,1), when p = /(1 + b) where
b=(a/(1 — a))'/?, and its maximal value for this p is (a'> + (1 —
a)'”*)*/%, and this, in turn, is never greater than v2 . Thus, we have

17 = ey

But since we can always translate X by a constant value, say, E(X), (i)
follows directly.

The second inequality will be obtained independently. For e = 1, it is *
only twice as large as (i). For constants b, ¢ > O we always have

f,/f < cf(l + Blx]T)f + j;(l+b|x|”‘)fsﬁ‘/f

1

SC+bCE(IX|1+E)+Zj(; m

1 i 2'17/(1 + 8)
_ 1+¢ 4+ — - - '
¢+ beE(1X]') + - p/0+o  sin(w/(1 + ¢))

When 4, B are nonnegative constants, then the function ¢4 + B/c is
minimal for ¢ = /B/A , and takes the minimal value 2vAB . This gives the
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bound

27 1 172

1+e =1/(L+e .
2{(1+ BE(1 XM +e))pm /A= m sin(7,/(1 + ¢))

As a function of b, one can easily verify that this is minimal! when
b= (eE(|X|'**)~!, and that the minimal value is the upper bound in (ii)
for ¢ = 0. The infimum over all 2 € R is added to the bound because X can~
always be translated at will. This con¢ludes the proof of Lemma 1.

Note that we come very close to showing that E(}X]|) < co implies
f ,/j_’ < oo, That this is not always true is easily seen from the following
example: let f be monotone | on [0, 20) such that f(x) ~ (xlogx)~? as
x — o0, Clearly, f,/f = o¢ but £(|X|) < 0.

On the other hand, we may have E(|X|) = o0, {/f < oo: for example,
let f be the indicator function of a set A. Clearly, [/ = 1. But if we
choose A as U[x,, x; + 27"}, where Zx,27' = oo, then £(|X|) = cc. Thus,
small tails guarantee small values for f/f, while the other implication is not
true, except under special conditions. For example, we have inverse inequal-
ities such as

E(1X1) s sup(Ix7) [ V7. o

Densities with a regularly varying tail of order r, that is,
lim, _, . f(ex)/f(x) = ¢t', for all ¢ > O, and similarly for the limit as x —
— o0, have finite values for f/f when r < —2. In particular, all densities
with an exponentially decreasing tail or tails have f \/f < oo, but the
Cauchy density has f‘/f’ = oo. When —2 < r, we must f\/f = 00.

Let us now consider the oscillation factor. We will begin by proving that
the oscillation factor is nothing else but f|/”| when f € #.

LEMMA 2. Forallfe %, B*(f)= B(f).

Proof. From Theorem 2.1, we recall that
li * ”o__ L = ]j " — L7 = 0
h?éﬁ(f ¢) = 1 hi%flf ¢, — 1

when [|f”] < oo. For such f,lim, ;¢ fi(f* $,)"| = [{f”|. When [|f"| = o0,
we invoke Fatou’s Lemma:

timinf fi(f+ )" 2 [lminf| /"ol = 1"

because /' is continuous. Thus, B*(f) = B(f) for all f in &.
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Furthermore,
Jurea 1= fir el < i,

50 that B*{f) < B(f). This concludes the proof of the Lemma,

We will now prepare ourselves for the proof of the fact that the value of
B*(f) does not depend upon the choice of ¢. Our energy will not be
wasted, because some of the lemmas obtained in the course of our prepara-
tion will be very useful later. Lemmas 3 and 4 are partially overlapping with
Lemma 22, but for the time being, they are sufficient for our purposes.

LEMMA 3. For any density K satisfying (2) and any { € F#, we have
foKy=f=HEysf"

for some nonnegative function K, where K is symmetric, has compact support,

and integrates to 8/2:
= 17, B
| fK——zfo——z.

Proof. Consider a fixed point x and a Taylor series expansion about x:
¥
f) =1(x) +(y = ) () + [y = 2)/"(z) de.
X
Because K is symmetric, we have

ok f= [3K(22 2V (v - )2y dedy

- jh ( )f[ y=ax xssz "'Z)f"(z)dz
+7

ystxazz_v(_(y - z))f”(z)dz] dy

- flK( )f[ rzx xszsy IJ’SJ‘IIE"ZJ’]
h

X1y = z|f"(z) dzdy

el

V() d,
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where

h?

a~|--

o~ -z
K5
) y?x11<z<y+Iysx1xa:2y]|y:%z|a}’
w

el -
. |

( )[Ix huax1x<zsx ku+Ix hu«_‘,xltaZZx hu”x—hu_zldu

= |

1
= hz('ng(")[Iusﬁfﬂs(z—x)/h_-_: u + fuzﬂfﬂk(z—x]/szu]

Xlu+ z—;—xldu}.

It is easy to verify that K is bounded, symmetric, and of compact support
when K is. Also,

(
JR= [K)Lgolocrs u+ Lizodos co-ull — x|duds

= fK(”)(Iusofolu = xfdx + fuzoj:lu - xl;ix)du
u

- %fuzK(u)du

-
5

which was to be shown.

LEMMA 4. Ler K be a density satisfying (2), and let ¢ € F be a densiry
with four continuous derivarives and compact support and let ¢ € F. Then
we have the following inequalities:

A fIf*K, —fl<hHB/DfIf"), all feF,all h=0.
@) f1f*K,—fl<h(B/Dliminf, o f((f*¢,)". all f,all h=0.
(i) fIf* Ky~ fl= RPUB/DINf*o) )~ BB fIf*0,) 1) all f,

all A, a > 0. (Here B, is a nonnegative constant depending upon K
only.)
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Proof. By Lemma 3, the integral in (i) is equal to
wfikye s iR fif1= 0L [,

where we applied Theorem 2.1. This shows that (i) is true.
Inequality (ii) follows directly from (i} and Theorem 2.1: Observe that

Jifeky=f1s [if v Ky = fro, oKl + [If = Fo0l
+ fif v, 2 K, — f ol

<2fif = frol+ w2E fi 70,y

and let a tend to 0.
To show (iii}, we first consider densities f in % with four continuous

derivatives, f” € %, and [|f”| < oo. By Lemma 3,

1+ Ky~ 1= W [Ryx = D))
- [Rilx = D) = () )

= ”z(glf"(xn ~1f Rilx = )((x) = 17(2)) dzl)-

Reapply Lemma 3 to the last term, but note that f and K should be
replaced by f” and K. Thus, there exists a nonnegative constant 8,
depending upon K only such that

fir+ K=z (& firn = wefir).

For general f, we can apply the inequality just derived to f* ¢, for all
a > 0, which together with the fact that

JiUski=f1z [(0)s Ki—f=al

yields (iii).
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The main result concerning the oscillation factor is captured in the
following Lemma:

LEMMA 5. Let f be an arbitrary density, let K be a density satisfving (2),
let & € F be a density with compact support and four continuous derivatives,
and let ¢ € F. Then the following quantities are equal and independent of K
and ¢;

k-t , )
lim 7 = liminf fI(7=9,)"1 = sup fi( +0.)"l

Proof. By Lemma 4 (ii), the first factor does not exceed
Hminf .
m in fl(f*qba) |

By Lemma 4 (iil), it i5 at least equal to sup, . o [k * ¢,)'| Therefore, the
liminf and the sup are equal, and all three quantities of Lemma 5 are equal
to each other.

We have now established a firm connection between the bias of the
kernel estimate and our oscillation factor. Let us now show that B*(f) is
bounded from below by a universal constant. To give the reader some
insight into the argument used to obtain such lower bounds, we proceed
very slowly. First, we will show that B*(f) = 1 forall f in #. Then we will
show that it 1s at least 1 for all /, and finally, we will show that the lower
bound can be improved to (2°/81)!7*, and that the latier lower bound is
attained for the isosceles tniangular density.

LEMMA 6. Foralifin #, BXf)=1.

Proof. We can assume that {|f”'| < co. Since f* is absolutely continuocus,
’ ’ ¥ I
P =f(x) = [ 17(2)dz, all x<y.
x

Because f” remains bounded, ' is Lipschitz. Also, since f” is absolutely
integrable, f’(x) tends to O as |x| — cc. Thus, using ( ), and ( )_ for the
positive and negative parts of a function, we have

[ == [T ONedy, alix,



The Factor B*(f} 87

and

+ 00 " + o ”
[ .+ [ (7 ))-ar =0,
= e
so that we may conclude that
] pto
supl f(x)1 < 5 [ 1/7(x)|db.
-

But we also have 1 = [f < \/supf/ ‘/f . Combining these inequalities shows
that B(f)® = supif'(x)|/supf?(x). Clearly, by a geometrical argument,

—
I

Jrx)ax = [(supf(x) - lysuplf (x)1). dy

supf?(x)
supf'(x))’

and the proof of Lemma 6 is complete.
LEMMA 7. Forall f, B*(f) = 1.

Proof. The following facts will be used in this proof:

A. [f = /T * ¢, (where ¢ and a are as in the definition of B*(f)).
B. Jyf*9. sup(yf *9.) = J(/T * $,)%

. . 2 ,
C. hi;nilonf f (,/f * %)2 > f lll:lllglf (\/? * qbu) “ (Fatou’s Lemma)

= f (v7)? (because /f « ¢, — /7 at almost all x; see Theorem 2.3)

=1.

fro, €F.

supl(f * ¢,)'1 < /I(f*#,)"| (see proof of Lemma 6).

1 = sup(f * ¢,)2/supl(f * ¢,)| (see proof of Lemma 6).
(ﬂ «¢,) < f+¢, (Jensen’s inequality).

QaF &0
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Thus, for fixed a,

BY(f) = (f(\/fnpu)") % (by A, B, E, and F)

2 ([(7va)) evo.

Take the limit infimum as a | 0, and apply C.

THEOREM 3. For all f, B*(f) = (2°/81)'/>. The lower bound is attained
for the isosceles triangular density.

Proof. Assume first that f € %, and that {]f"| < cc. K and ¢ will be as
in (2) and the definition of B*( f). We have f'(x) — 0 as |x| = . Thus, if

f is decomposed into its positive and negative parts, [ = f + f, we
have

firi=z2fri= ~2fr" = 2sups’ - int ).

Thus, B*(f)’ 2 (f/f)*(supf’ — inff’). We introduce a class of densities
containing all densitics in #: ¥ is the class of densities satisfying

—D{y—x)=<f(y) -f(x})<C(y—-x), allx<y.

Here C and D are positive constants. Among these densities, fy/f is
minimized by the triangular density of height # and base split into ¢ and &
at the mode, where b/c = C, b/d = D and bc + bd = 2. Thus, ¢* = 2/(C
+ Ci/D)and d? = 2/(D + D*/C). For { in ¥ we have supf’ < C and
inff* > —=D. Thus, B*3(f) 2 infc pinf,.4(C + DX f/g)* Since (C +
DX {/g)* is scale invariant, we can take C = 1. For the trizngular density
mentioned above, we have

(NE)h + D) > (%)4(0/2 + DV (1 + D)

2\ gp? \"* o2 |74
(3)(“1)) ((1+D)3 * (D+D2)3)

- (5052 = of3)
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by nqoting that (1 + D)?/D is minimal for D = 1. Thus, inf, o  B**(f) =
29 '

Let f be a density with compact support, and let K be a density in #
with compact support. Let f, be f+ K, ,. We will show that B*(f,) <
B*(fX1 + o(1)), thereby establishing the result for all densities with com-
pact support, since each f, has compact support and is in %. First, by
Fatou’s lemma and Theorem 2.3,

timinf {7*K,,, = f /lminf/~K,,, — [V7.

Also, if T is a large enough compact set containing the support of £, we
have for n large enough,

[ = [\ =71+ [Vf < WYy fif, =11+ [VF =00y + [F,

where we used Theorem 2.1. Next, because for all densities ¢ in & with
compact support, and all 4 > 0,

Si(F o Kipue o)1= [if*9)" Kyl < (7 *,))

we see that B*(f,) < (1 + o(INB*(f).

Having established the result for all densities with compact support, we
need only standard analytical arguments to generalize it to all densities.
This can be done, for example, by approximating f by a sequence of
functions g,, where g, = 1 on[—1¢,¢)], 0 outside {—¢ — 1, ¢ + 1}, and smooth
and continuous inbetween. (Wote that the convolution approach is not
applicable since there are densities for which f/f < oo, yet fyf* K, = o
for all densities K and all 4 > 0.)

3. PROOFS OF THEOREMS 1 AND 2

We start this section by explaining how the function ¢ crept into the
expression for J(a, k) in Theorem 1. This will be done in two separate
important lemmas. The remainder of the proof of Theorem 1 rests on some
results about the bias and the variance of the kernel estimate.
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LEMMA 8. Let X|,..., X, be independent random variables with a com-
mon distribution. Let E(X,) = 0, E{X?)=¢?> 0, and p = E(| X’} < 0.
Then,

cpt:r_3

W

sup |E z(oﬁ)“ix,-- al) —E(|N - a])| <

aeR i=1

where ¢ is a universal positive constant and N is a normal (0,1) random
variable. Observe that

E(IN — al) = lalP(I¥) < al) + |/ 2 &7/ = ().

Proof. Let F, be the distribution function of X = (ovn)~'%7., X,, and let
® be the distribution function of N. Clearly,

E(|X - a|) = j;wP(lX_a|>t)dt= f:(l —FE(a+0O+FE(a-0)d,

and a similar equation is valid for N and ®. The absolute value of the
difference between both equations does not exceed

fm|<b(a +1t)— F(a+ t}{dt+ fm]tb(a —t)=F(a—t)tdt
0 0

= [ o) - £ ()i

By well-known nonuniform estimates in the Berry—Esseen type central Limit
theorem (see Petrov, 1975, Theorem 14, p. 125),

3 cpo?
()~ F (0 s e

for some universal constant c. Since (1 + [¢|*)~! is integrable, we obtain the
desired result,
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For the expression of E(|N — al), we note that for ¢ > 0,
E(|N—a|)=E(|N|)+ E(|N —a|—|N|) = E(|N|} + aP(N < 0)
+E((a - ZN)II()(N‘(G]) - a.P(N > a)

= E(|N1) +a - 2E(NIy y<y) — 2aP(N > a)

37 +a— aP(|N| > a) z[“"""m d

= -a >a)-— t

/T ta IN| Y Vir
2(1 - e=+7?)

=\/2/—W+GP(IN1<61)—T,

which was to be shown.

In the remainder of this section, T is an arbitrary interval, [—r, r] is the
support of K, K* is an upper bound for K, and T* is defined as {x: |x — y| <
hr for some y € T}. Thus T depends upon k. Also, ¢ is the constant of
Lemma 8, B,(x)= E(f,(x) — f(x) is the bias at x, V,(x)=f,(x)-
E(f,(x)) is the variation at x, and o2(x) = E(V,*(x)) is the variance at x.

LEMMA 9.

|B,,(x)|)' L K

lf(zf,,(x)—f(xm—o,.(xw( o= S

for all densities K satisfying (2).
Proof. Apply Lemma 8 to the random variables

e b ) 5

h h

and use a = B,(x)/0,(x). We obtain an error term in Lemma 8§ of the form

E(|Y1|3) cK*
< .
nE(Y?) nh

LEMMA 10. Let T be a bounded interval. Then, for all h > 0 and all
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densities K,

=] —)/fif*thfM (7) <—f - 7
</ fireKi - M)

where K = K/[K™. Also, [r\onh /o — JF| = o(1) as k 0.

Proof. We first note that for bounded sets, we always have [, n/f < a0. We
have 62(x) = a(x) + b(x), where

a(x) = ———“2{12”)

and

7 2
b(x) = (f*Kih—f)az UK

Clearly, a(x) =z 0. Thus, ya(x)+b(x) < ja(x) + b.(x), and
Ja(x) + B(x) = Ja(x) ~ /|#(x)|. Integrating over T and applying the
Cauchy—Schwarz inequality gives

fous 2=\ [T + [ir-xT 7]

< %(jr\/? + \/flf*K;, —f:A(T)),

and

foz ‘,,f—;?(fr‘” - ffu*xf, - fIM(T) - »ff*K,,}

The first half of Lemma 10 follows easily from this. The last statement of
Lemma 10 follows il fp]b(x)l = o(1). But this is a consequence of
= of1), MT) < o, and f|f» K] — f| = o(1) (see Theorem 2.1).

LEMMA 11. For all f€ #, all K satisfying (2), and all bounded inter-
vals T,

JJi = Sw1r1| = o(42) ashso.
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The same remains true if T is replaced by R whenever [ has compact support,
€ #, and K satisfies (2).

Proof. Let K be the function of Lemma 3. Then

L)1 - Swir| = Swf)

< Bwffaier o

ﬁkwf'wﬂ

= o(h?)
by the Lebesgue dominated convergence theorem. Here we used the fact

that (2/3)@ s f” — { at all x (Theorem 2.3), that |f"| is bounded, and
that K2/B8)K,, » f”| < sup | /(X))

We need one last technical Lemma before we can attack Theorem 1.

LEMMA 12. For nonnegative numbers u, v, w, z, we have

u‘p(%) - w#:(%)] <lv—z|+ \/Ew _—

Proof. We verify first that 0 <y(u) <1, all u =0, and that for all
0 =0, uy(v/u))| < y2/7. Thus,
z z
w(5) (2]

() =e ()] =) - )]+

s|u—z|+\/§|u—w|.
T

Proof of Theorem 1. Theorem 1 has several components, First, we assume
that f€.# and that f has compact support contained in a bounded
interval T. Take T so large that for every x in the support of f, the interval
[x — a,x + a] is contained in T, where a is a number sufficiently large so
that K,(u} = 0 for all n and all |¢| > a.

We will begin with the inequality of Lemma 12 applied in the following
manner:

u=o9,{x); v=|B,(x);
B av"f_(;)__ _ B
W= Vel z= Ehzlf (x).
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Now,
fT|U—zt=a(h2) (Lemma 11)
and '
fT|u - wl=o((nk)™""*) (Lemma 10).

Thus, combining this into the inequality of Lemmma 9 gives

fTE(m—n)—J(n,h)[

| B,

LE(lfn‘fl)—f°"¢(;:

cK* 2 -1
< W}\(T) +o(h )+0((nh) /2),

= +

fa,,xp(%'i)—d(n,h)’

where we used the fact that J(n. h) = frwy(z/w).
The inequality involving J(n, 4) follows from y(u) < u + 2/7:

z 2
J(n.h)= fTw#z(w) < sz Y= fTw.
Let us turn now to alt densities f having compact support, and let us denote

the quantity sup, . , /K f * ¢,)”| appearing in the definition of B*(f) by L.
Again, from Lemma 9 and the inequality §(u) = u + /2 /7, we obtain

fpth-m s [{ 2o+ i8]+ SN,

and by Lemmas 4, 5, and 10, this is further bounded from above by

@%f}/j + E%\/ﬂfﬂn - fIMT) + §h2L+ 5,?,-,:’\(”’

where K1 is the density defined in Lemma 10. The second term is
o((nk)~17%) when h = o(1) (Theorem 2.1). The last term is o((nk) /%)
when ni — oo, This proves the first upper bound for general f. If we take
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the value of A given in the statement of the theorem (i.e., the value that
minimizes the main term in the upper bound), then

2 a B*
\/;ﬁf‘/f + §h2L= C*A(K) Lf;)

n

and this concludes the proof of Theorem 1.
Proof of Theorem 2. We have

. . . | )
inf£(J,) = min{ inf E(J,), inf E(,)) @

Consider a sequence h such that E(J,) ~ inf, E(J;). It is clear that
E(J,) = 0 for all f, because (3) is sufficient for E(J,) = 0 (Theorem 3.1).
But because E(J,) > [|f * K, — f|, we must have & — 0 (Theorem 2.4). We
will now treat each infimum in (4) separately.

First, if & is such that & > 1/yn for all n, and E(J,) ~ inf, 5., E(J,),
then by what we mentioned above, A — (. Also, nh = oo, and, in fact,
nh/n** — 0. Now, let T be a bounded interval, and a > 0 be an arbitrary
constant. We have for such A the following lower bound for E(J,):

|B,| X (by Lemma 9, the convexity
f‘E(Ifn -fl)y= fﬂnlll T - 7 A(T) of ¢ and Jensen’s inequal-
T T n ity) A

4/3 1/5
=C fo f|B [| = o{n%%) (definition of C})
r" r "

2 an(a fﬂ)“(% /| |(f~¢,.)"|)1/5(1 +o(1))

(Lemmas 4 and 10)

4 1/5
~ n‘2/5CA(K)[%(fTﬂ) fri(fwa)"l]
(definition of A(K)). (5}

Next, let # be a sequence such that & < 1/Vn for all n, and E(J,) ~
nf, <) £(J;). By Theorem 3.1, we know that nk — oc. Also, by Lemma

'y

E(1) 2 3E(fif -1+ Kil)
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By Fatou’s lemma,

liminfn23E(J ) > 11iminfn2/5E( LK),
PR

n—og

and the right-hand side of this is oo when for almost all x with f(x) > 0,
liminf, , . n*’E(|f, — f*K,|) = w. To show this, we will use the
Berry-Esseen central limit theorem used in Lemma 8. Let ¢?(x)=
Var{ K,( X, — x)) and let M be an arbitrarily large positive number. Let Z
be a normal (0, 1) random variable, Then,

nCE(1f, = /% Kil) afv.n’(tf,.—f“"h'2 ’%)
—MP(Iﬂ,“f‘KhIUﬁ: 2 :2{!;::5)

Mn*/10

R

> M(P([ZIZ ) — 2¢a, *n VE( K, (X, — x)

CE(K,(X, - x))f))-

By inspection of the proof of Lemmma 10 and Theorem 2.4, it is easy to see
that 07(x) ~ &’f(x)/h for almost all x, as h — 0. Also, by the c,-inequal-
ity and Theorem 2.3,

E(1K,(X, - x) — E(K\(X, - x))P)
s 4E(h-3K3(—’%_—x)) +4(E(K, (X, - x)))’
= 47 f (K?), + 4(f*K, Y
~ ah~}(x) [K? + 47(x) ~ 4h—2f(x)fK3. almost all x.

Because n'/V/0,(x) ~ n'Y%h /aiff(x) < 1/(n*Xajf(x))— 0 for al-
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most all x with f(x) > 0, we have

4 [K? jf(x)

n*PE(|f, — [+ K;l) =2 M1 —(2c + 0(1))W

= M{1 — ¢(1)), almost all x with f(x) > 0.
Since M was arbitrary, we have shown that

liminf inf n?/3E(J,) = =
n—o0 Amsl

and this, together with (5), the definition of B*(f), and the monotone
convergence theorem implies

1/5
ass | JI(f*8.)"|
liminf infn**E(J,} >  sup CA(K)(fT\/?)/S(L 75 )

n—o0 A a={
bounded T

= CA(K)B*(/f).

This concludes the proof of Theorem 2.

4 THE HISTOGRAM ESTIMATE

The treatment for the kernel estimate can be mimicked for the histogram
estimate on R. We will only consider the simplest histogram estimate

defined by the partitions
&, = {[kh,(k + 1)h), k integer) (6)

where h = h, is a sequence of positive numbers. The L, theory for this
estimate was thoroughly developed by Freedman and Diaconis (1981) for
densities in .%,, that is, functions satisfying

(i) f € L,, [ is absolutely continuous with a.e. derivative f*;

(i) 0< ff?< co.
For example, Scott (1979) and Freedman and Diaconis (1981} proved
Theorem 4 below.



98 Rates of Convergence in L,
THEOREM 4. When f € .F,, the histogram estimate defined by (6) satisfies

i(:-&eff’z)w

i]:fE(f(fn_f)z) ST

and this rate is attained if we take h ~ (6/(nff"*))!/>.

Theorem 4 is stated here without proof, merely for later reference, We
note that for the smoothest f, n~2/3 is the optimal L, rate as compared (o
n~%% for the kernel estimate. For smooth f, we expect a better L,
performance with the kernel estimate at least for large n. We will show in
this section that the same remains true for E(J,). Of course, one cannot
extend this nesting of performances to all densities f. For example, when f
is uniform on [0, 1] and # = 1, then E(J,) = 0 for all n, while, regardiess of
how £ is chosen,

liminfn*E(J,) = o0
n=+ o0
for the kernel estimate (Theorem 2), because sup, ..o [{f*¢,)"] = « and
thus B*(f) = o0
In this section, # will denote the class of functions satisfying (i) and (ii):

(1) f is absolutely continuous with a.¢. derivative f*;
(ii) /' is bounded and continuous. (Note: f[f’| < 00.)

THEOREM 5.  Forall f € &, the histogram estimate defined by (6) satisfies
the following lower bound.

hmmfmfnmE(J )= CyBy(f) = Cq,

n—=o
where
Cy = inf, ¢ (u)/(2u)" = 0.880261 -

and
1/3

By(/) = (%(f‘/f)zflf’l)
(which is = 1 for all fin &).

For the present section, and Section 5, we need anothcr function, r,,
defined as follows:

r(x) = b—:a‘f, allx € A,; = [a,b) = [jh,(j + Dh).
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This, on the real line, is a sawtooth function taking values between 0 and 1.
We wilt also need

z(x) = (1 = 2r,(x)) f(x),

a function that is well-defined for f in #. The function :z, oscillates
between ~f” and +f°.

THEOREM 6 [Exact Asymptotic Behavior of E(J))). Let f€ # have
compact support. For the histogram estimate defined by (6) and (3), we have

E(J)=J(nn)+ o(h + 1),

Vnh
where
J(n, k) = f\/%np(%w ff’l ]
Also,

lim sup i!’}anSE(Jn) < CiBu(/f),

n—+2x

where C} = (27/4m)/% = 1.290381 - - - .

Thus, on &, we have squeezed E(J,) between two close bounds,
CyBy(f)/n'? and CLB,{(f)/n'", where C%/C; = 1.46590 - - . Thus,
B, {f) measures to some extent the difficulty f poses for the histogram
estimate. What is intriguing is that B,,(f) # B*(f). In other words, densi-
ties that are easy lo estimate with the kernel estimate may be difficult to
handle with the histogram estimate and vice versa. For example, the
uniform [0, 1] density has B*(f) = o, whil¢ it can be approximated by a
sequence'in F with B, values tending to 1, the minimum possible value
for B,,. The rectangular density is thus the easiest density for the histogram
estimate.

A second consequence of Theorems 5 and 6 is that, for smooth densities,
the average L, error for the histogram estimate musl vary at least as n /3,
thus at a rate worse than that for the kernel estimate (n~2/%). Whether for a
particular n the kernel estimate is better depends to a large ¢xtent upon the
values of B, (/) and B*(f).

Distribution-free lower bounds of the type obtained in Theorem 2 for the
kernel estimate do not exist for the histogram estimate. It seems that to
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obtain such bounds, one should consider criteria of the type

inf sup £(J,)

X0

where &, is replaced by 2 (x,) = {[kh + x4, (k + 1)h + x4), k integer}.
This will not be pursued here because of the clear asymptotic inferiority of
the histogram estimate already established on a large subclass of #.

5. PROOGFS OF THEOREMS 5 AND ¢

In this section, we let u, be the empirical measure for Xi,..., X,. and let
be the measure corresponding to f. Let A4, ; = [jh,(j + 1)A),

fx) = Ealde).

XEA

njs
and

g0 - B0 = E0eq

Throughout the section, T is a bounded interval of the type [—1. ¢].
LEMMA 13. If f|g, — f| = O for a given f € %, then lim, , _h = 0.

Proof. We note that Lemma 13 does not hold for all f, and thatitis not a
consequence of Theorem 2.6. .

Assume first that lim,_ A= . Then, g, > 0 for all 'x, and
liminf, . ftg, — f| = fliminf, _, _ |g, — f| = 1, which is a contradiction.
Assume next that im, , & =¢ > 0. Forh = ¢, f|g, — f| = 0 implics that
{7 = 0 almost everywhere. But since f is absolutely continuous, this would
imply that f= 0 almost everywhere. Thus, we must conclude that for
h=c¢>0 flg, — fI > 0. Let us make the dependence upon 4 explicit as in
g,- It 1s clear that we have a contradiction, once again, if we can show that
h — ¢ implies [|g, — g.| — 0. This contradiction would conclude the proof
of Lemma 13.

To prove this, we need only show that g, —» g for almost all x and
apply Theorem 2.8. Assume, without loss of generality, that x > 0. Now,
x € [Jh,(j+ DAY N ke, (k + 1)c) for some integers j, k. For A close
enough to ¢, we have / = k. Let A be the intersection of the two intervals,
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and let B be the symmetric difference. We have

81 = 8 = w(4) 5 — ¢| + @5+ 5) s B + o =00,

This concludes the proof of Lemma 13.
LEMMA 14. If X is a binomial (n, p) random variable, then
¢

supP(X=i) g ——————
i ynp{l = p)

for some universal constant ¢,

Proof. We use the fact that &!=(k+ D)*2w(k + 1)e **Vexp(d/
12{k + 1)) for some 0 < # < 1 (see, e.g., Whittaker and Watson, 1963).
Thus, since all terms P{ X = i) are less than the Ath where & = (n + 1) p
(Feller, 1968, p. 151), we have

_];)n el+1/24 I" +1
il o2a(k + 1)(n —k+1)

2124y
2a(n+ Dp(n+ 1)1 - p)

P(X=i)< (1

< “'———,_.__C ,
ynp(1 - p)
where we used the inequality (1 + ) < e“
LEMMA 15.
inf B =1.
inf, w(f)
Proof We know that j,/f > ff/supf = 1/ /supf. Since f is abso-

lutely continuous, [|f’| =2 2supf. Combining these inequalities shows that

M) (fir) =

To show that this lower bound can be attained, we construct a sequence of
densities f = g * ¢, in F and let # — 0: here ¢ is the normal (0, 1} density
and g is the uniform {0, 1] density.
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It is a simple exercise in analysis to show that f\g*¢, — (/g =1 as
h— 0

Furthermore, since the convolution of two symmetric unimodal distni-
butions is unimodal (Feller, 1971, pp. 167-168), each f is unimodal.
Therefore,

fl(g*th,)’li Zsup(g*¢,) > 2supg =2 ash 0.

This shows that for this sequence limsup By (f) < 1.

We inherit the notation of Sections 2 and 3. In particular, ¢’(x) =
Var(f,(x)) = Var(p,(A,,;)/k), x € A, ; and B,(x) = g,(x) — f(x). Also,

E(1) = DE((4,))).  where 4 (4) = f1f =1
In analogy with Lemma 9,

IB(x)I)d S%, for all j, (7

E(s{4.)) - [ o(xw( e

A,

where the error term is computed as follows from Lemma §:

(lIA (X)) —u(4, )|3/h3) dx < (;If de = &,
AnE( 1L (X)) -~ u(A4,,)1/h?) 4 "

Also, in analogy with (5), we have

18,

SE(AD L)

E(J(T) = [o¥ ;

g,
T

>CH(f ) (2]|B|)1/3—;(L:l +2) (8)

because Cp, = inf Y(u)/(2u)"/>.
LEMMA 16. Assume that lim,,_, , h = 0. Then [,|o,ynk — /f| = o(1).
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Proof. let x € A, ;. Then 67(x) = u(A4,,X1 — p(4,,))/(nh*), and thus

lﬂn‘f"—’— - \/?I 1l/.u(Anj)(l - P'(Anj)]/h - 1/7]

< % + e (4,,)/h = VF
gV + Wz, — )l <gvh + g, — 11

Now, take integrals on left and right, and apply the Cauchy-Schwarz
inequality and Theorem 2.6:

[ 1o = 7 < VK + [ \f& =11 = Vi +/ [ 18, = /IMT) = o(1).

LEMMA 17. Assume that lim,_,  h =0, and that f € F has compact
support. Then

g,{(x}=o(h), forallx, and fq,, = o(h).
where q,(x) = |B,(x) = (h/2)z,(x)|. For all f € %, we have

h h ,
Jan=o(k) and [18~ 3 [lz1~ 3 [ 1/
Proof. By Taylor’s expansion with remainder,
F)=1(x)+(y = x)f(x) +(y = x) S E) - f(x)),  x<é<y—

Thus, for x € 4,,,, |”'

8= [ [=1+ [ (-0fD

3 ) = N0O N
= J(x) + B2,(x) + b(x, ),

where |b(x, h)| < sup|,_ <4 |f(¥) — f(x)|a/2 is bounded by # times an
mtegrable function (because f has compact support, and sup|f’| < o), and
b(x, h)/h — 0 for all x (because f' is continuous). Thus, fgq, = [|b(x, h)|
= o(h), and gq,(x)=o(h) for all x., When f does not have compact
support, it remains true that [ q, = o(h).

Thus, for all f€ F, [|B,| ~ (h/2)[r|z,| We are done if we can show
that for such f, friz,| ~ 3 fr|f’} Now, let N, be the collection of indices j
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for which A, ; € T. Obviously

nj—g

Y [ 110 - 2n) < suplf- 2k = o1).

JEN, TNAy,

Because f’ is continucus on 7, it is uniformly continuous on T. In
particular, for fixed ¢ > 0, we have {f'(x} —f'(y)| <e for all [x —y| <
h,x, v € T, and all & small enough. Using this, we have the following chain
of ineqgualities:

Y[ o arm-2ni< Eosuwp if1f 1o 2

JEN, TnAnJ JEN, Tﬁfl An}

IA

Y, sup |f]f Il-—Zh‘dx

JEN, Tﬂff

T s ISl

JEN, Tﬁ.ﬁ!

) -fm (1f1+ ) + O(h)

JEN,

%frm + %frs + O(h).

Similarly, a lower bound 4/,|f| — 4 /7€ — O(h) is obtained, and we are
done.

Proof of Theorem 5. We will split the proof in half by the following
device:

i = mi i inf E(J,)].
‘EfE“")—“““(hﬁlfuﬂ)'hﬁ’g (%))
First, let & be a sequence such that E(J,) ~ inf, &, E(J,). We know that
h — 0 {because E(J,) = [ig, — f] and this tends to O for f€ % if and
only if # — 0, by Theorem 2.6 and Lemma 13). Also, 1/nk = o(n™'/"7).
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Thus, combining (8) with Lemmas 16 and 17 gives for all T = [-¢,¢]:
inf E(J,)~E(J,)=E T
ot E(3) ~ E(J,) > E(J,(T))

f1B

= |- 54D

> CH( jT Jf)m( fT |f'1)w(2n)“/3(1 +0(1)).

Now, let T tend to R, and conclude that

liminf inf E(J)n"? 2 CyBy(f). )

n—o hfn sl

Next, we consider a sequence for which n'°E(J,) ~ inf, g ., n'*E(J,).
By Fatou’s lemma,

nE(J,) 2 %fﬁmihfnmE( fu — 8al)-
e on

Fix xeA,,, and let Z be a binomial (n, u(A,,)) random variable. By

Lemma 14,

¥

RSE(\f, - ga) = 0 (nk) T E(|Z ~ E(Z)|)
2 MP(|Z — E(Z)| = Mhn/n'/*) (for arbitrary M > )

2Mhn 3
> M|l - s ; (10)

][';"(Anj)(l - F(Anj‘))

where ¢ is the constant of Lemma 14.
By Theorem 2.2, u(A4,,)/h = f(x) for almost all x because £ — 0).

Also, p(A, ;) 0 for almost all x. Thus, (10) ~ M(1 — 2Mcyhn'3 /f(x))
~ M for almost all x with f{x) > 0. Since M was arbitrary, we have

liminf inf #*2E(J) =0 (11)
oo hfrsl

Theorem 5 now follows by combining (9) and (11}, and applying Lemma 15, :

i

1
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Proof of Theorem 6. We start from inequality (7) and let T be a set
[—1, t] containing the support of f. Then

< E(A—(I%—%ﬂ + 2) = O(;lz)' (12)

|EC3) = fontiBie)

Let g, keep its meaning from Lemma 17 and let p, be Jo, — /f/nA|. In
Lemma 16, we have proved that [p, = o(1/ Vnh ). Arguing as in the proof

of Theorem 1,
|- Vel || ofol(2) 4[5 )

|5 2) - %ng|%)S%+M§m (13)

Combining (12), (13), Lemma 16, and Lemma 17 shows that E(J,) —
J(n, by =olh + 1/ Vnh).

The second part of Theorem 6 uses the inequality () < y2/7 + u on
Hn, k).

Then, cheose the & that minimizes this upper bound, that is,

[ Bal
o’l

<aq,

%w

|
oﬂ

o

1/3

- 2
AR
)"

and the result follows.
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6. CHOICE OF THE SMOOTHING PARAMETER

In Theorems 1 and 6, we obtained exact asymptotic expressions for E{J, ).
Unfortunately, the sequence A that minimizes the main term in the asymp-
totic expressions is hard to extract in closed form. The upper bounds of
Theorems 1 and 6 lend themselves better to such minimization, We obtain
for the kernel estimate, after choosing the Epanechnikov kernel (1 — x?),
x| <1 (with [K? =1 and [x’K = {);

F fir1

valid for f € %, the class of densities for which Theorem 1 is valid. When
f € %, the class of densities for which Theorem 6 holds, the corresponding
h for the histogram estimate is

el

-1/5 (14)

“13 ’ (15)

fi . :

We should stress that (14) and (15) are only valid for f € %, (or € #y),
and then only for those / with finite f/f and f|f”|(or [{f']). If one of these
integrals is infinite, we obtain the strange result that the nearly optimal # is
. or 0. This contradiction is of course due to the invalidity of the formal
minimizations when one of the terms involved is infinite or 0 (see, e.g., the
apper bound for J{n, k) in the proof of Theorem 6). Since all these
conditions are hard to check, any attempt at determining # by approximat-
ing (14) or (15) is doomed to cause serious concern among the users.

For the choice of A, we also refer to Sections 5.8, 5.9, and 5.10, and
Chapters 6 and 9. In Chapters 6 and 9, for example, very general con-
sistency theorems are given for density estimates with data-dependent
smoothing factors. Here, we would just like to point out the features of the
parametric method for determining A.

Assume that f belongs to, or is close to, a member of a parametric
family f,,# € R*. For this family, (14) and (15) are explicitly known (by
assumption): cx(8)/n'/> and c,(8)/n'/>. Estimate # from the data in a
conventional way by 4, and use ¢, (8)/n'”* and c,(8)/n"" instead of (14)
and (15). If at all possible, robust estimates should be used for §. This, the
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parametric method, was suggested for L, optimal values of h for the kernel
estimate by Deheuvels (1977) and Deheuvels and Hominal (1980). A similar
development for the histogram estimate can be found in Scott (1979) and
Freedman and Diaconis (1981). In particular, for the densities satisfying
Rosenblatt’s condition (Section 4.3), the L,-optimal & for the kernel esti-
mate is given by

1/3

(16)

15
nffr.rz
(valld for the Epanechnikov kernetl), and for the densmes of Theorem 4, the

L,-optimal 4 for the histogram estimate is

1/3

(17)

6
r.l[_f'2

Except for their dependence upon »n, there is very littie resemblance
between (16), (17) and (14}, (15). It is curious that ¢ven for simple densities
such as the normal (0, 1) density, the values are very different. For example,
in that case, (16) and (17) give

1/5
h=(4°f) =2345- .- n V3

and

1/3
h= ( 12;/’?) = 27706 - n™ 7,
respectively. But (14) and (15) correspond to

) 1/5
h= (152{12_”) = 1.6644 -+ n~1/5

and

1/3
h= (4—) =27168 --- n V3,
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respectively. (It is easy to verify that (14), (15) remain valid for the normal
density.) Of course, more exireme cases can be constructed. For example,
when we approach the Cauchy density within the family of Student’s ¢
densities, the coefficient of n in (16) tends to a constant, while the coefficient
of n in (17) tends to oo, due to the fact that the L, theory is more sensitive
to the weight in the tails of the distributions, In Table 1, we give [ ,/f » fIf)
A1 B Y = VI By f) = BUVEY IS, cx(8), and
cy(8) for various families of distributions. When f & %, |/’ is replaced
by a limit of values of f|f’| of densities in #;; tending to f. When f & %,
{1 f"l1s replaced by its generalization sup, . o [I(f * ¢, Y|

It is not necessary 1o mention location and scale parameters in the
families (and thus in the expressions for ¢ (6) and ¢4 (#)) because

CK(-M’UrY) = OCK(O’LY)
and
CH(,U-,O,}’) = UCH(O- ]-;Y)s

where g is a location parameier, ¢ is a scale parameter, and v is a collection
of zero or more shape parameters. The computations of Table 1 are made
easier because for unimodal f in &, (|f’| = 2supf, and for symmetric
fe.#, with unimodal f’' on [0, o), {|/”| = 4sup|/f’)

None of the densities in Table 1 have a shape parameter. Since the scale
parameters can be factored out, Table 1 gives us complete information
about ¢ (#) and ¢, (#). For example, if f is nearly normal, we could take
for the histogram estimate

h = (Y87 )" a1/

where 6 is a data-based robust estimate of o, under the assumption that the
data come from a normal {u, ¢?) density. In general, such robust estimates
can be obtained as follows: choose two numbers p. g & (0, 1), and let x,
and x, be the (known) quantiles of the distribution with 4 =0, ¢ =1,
corresponding to p and g, respectively. Thus, the order statistics X, ,, and
X ngy Obtained from X,..., X, can be considered estimates of p + ox; and
p + ax,, respectively. Therefore, o can be estimated by (X, — Xinpy Y/
(x5 — x1). Estimates of this kind are usually preferable over estimates that
are based on averaging. For example. if we add a scale factor to the Cauchy
density of Table 1, and take p = §, g = i, we obtain the following estimate
for o: %(Xﬁ,1 sy~ X(ns4) (in the Cauchy case, averaging would have been
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absurd). For the normal density, there is a vast literature on robust scale
parameter estimates with a sophisticated underlying theory. For example,
one estimate that has received some attention for estimating ¢ in the normal
(w1, o) density is

6= 0-1174( X(0.9765n) - X(o.ozssn) + 2( X(o,smn) - X'(ﬁ,1279n)))

(Kulldorf, 1963, 1964).

Table 1 contains more valuable information. We have established in
Chapters 4 and 5 that B*(f) and B,,(f) measure the difficulty involved in
estimating f by the kernel and histogram methods, respectively. For the
histogram estimate we know that the uniform [0, 1] density is the easiest f
( B, attains its minimal value 1). Thus, discontinuities offer no problems for
the histogram estimate, as long as f remains bounded. For unbounded f
such as 1/2Vx we have B,{(f) = o because f|f'| = 0. Of course, neither
the histogram estimate nor the kernel estimate can handle long-tailed
densities very well (see, e.g., the Cauchy density, for which B*(f) = By,(f)
= o0). Note also the difference between the exponential density and the
double exponential density for the kernel estimate, due to the fact that the
discontinuity at 0 is absent in the double exponential density. Similarly,
B*(f)= oo for the uniform [0, 1] density. The best density for the kernel
estimale is the isosceles triangular density.

Table 1 is slightly misleading. One is led to believe that with the
suggested choices for h, the uniform [0, 1] density, for example, is better
estimated by the histogram estimate. This is not true: the iable just suggests
that the optimal n~%% rate for £(J,) cannot be achieved for the kernel
estimate. It is a good exercise to show that for the uniform [0, 1] density, the
best rate achievable for E(J,) with the kernel estimate is #~'/3, and that it
is attained if we let & vary as ¢/n'? (see Section 7 below).

All the densities in Table 1 are unimodal. It is intuoitively obvious that
multimodal densities are more difficult to estimate. To study the influence of
several peaks on B* and By, consider a central density f with support on
[0,1] and define the following multipeaked density

1 N
g(x) = W‘,E}f(x - Zi)'

Since fyg = VN f\fF, f18'1 = jIf1and fig”| = fIf") we have

B*(5) = N¥B()
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and
By(g)=N'By(f).

The presence of several peaks seems to influence the kernel estimate worse
than it does the histogram, The parametric method outlined above should
be used with extreme care for multimodal densities. A good strategy is to
isolate the different peaks and cut the estimation problem into several
(easter, unimodal) subproblems.

We have seen that for the kernel estimate, the optimal choice for # is of
the form h = cn™'/® when the density f is sufficiently well behaved. It is
important to know how the performance, that is, £(J,}. deteriorates when ¢
is suboptimal. Such a study is usually called a sensitivity analysis.

The exact expression of J{n, h} given in Theorem 1 is too difficult to
handle analytically, but the upper bound for J(n, h)is n ¥ *(ac™'* + bc?),

where
a= \Eﬂfﬁ, b= g :gl?)fl(f*.f’,ﬁ')f;'l.

It is easy to verify that this upper bound considered' as a function of ¢ is
minimal when ¢ = (a/4b)*®, and that the upper bound becomes n~2°
times C*A(K)B*(f) in that case. Let us call this optimal ¢ ¢,. When the
actual ¢ is equal to rc,, then the upper bound for J(n, k) becomes n~%*
times B*(f)A(K)C* times H(r) where H(r}= 1r2+ 4/5/r. When c =
¢,/r. the extra factor in the upper bound for J(n, h)is G(r) = 1/5r2 + &,
Both H(#) and G(r) are of course minimal and equal to 1 when » = 1. We
will now show that for all » > 1, G(r) < H(r): thus, if we must overesti-
mate ¢, by a factor of r, or underestimate it by a factor of 7, it is better to
underestimate c;,.

Proof of G(r) < H(r). We need to show that for r > 1, 4r3? + r* >
4r>? +1.Set r = 1 + u, u > 0, and note that by a truncated Taylor series
cxpansion,

3
4r3 4 i > 4(1 + —u) +(1 + 6u + 10u” + 6u’ + u)

2 _
1, 3L 4 15 , 15 ,
=5+ 12u + 108"+ 6u’ + u >5+]0u+7u +7u
5 5 3vu? (5 3 1y4d
—-—1+4(1+5u+(5-§-)52—+(5-5-5)§)
21+4(1+u)? =144,
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Wec finally note that the ratio H(r}/G(r) varies as follows: 1 (r=1),
1.038--- (r=121) 1.156--- (r=2),2232--- (r=4), and 6.787 - --
{(r=9.

To close this section, we have one interesting observation regarding the
optimal values of 4 as given tn (14) and (15), with [|f”| and [|f’| replaced
by their respective generalized definitions. The observation is that for a/l f,

a4\1/5
b (B o

= 6.7726100 - - - on~17° (18)
for the kernel estimate, and
h < (1672) gn~1/3
= 540513538 - - on~'/? (19)

for the histogram estimate, where o = Var( X), the standard deviation of
f. To see this, use (14) or (15), and combine it with Theorem 5.3 ( B*(f) =
(2°/3%)17%), Theorem 5.9 (B5(f) = 1, see Section 8 below), and Lemma 5.1
((f/f)/ (Var(X) < 2m). These bounds can be used to obtain very rough
but useful upper bounds for & in the absence of any knowledge about f, if
we replace o by good sample-based estimates.

7. THE UNIFORM DENSITY

The uniform density f on [0, 1] warrants separate treatment, because its
discontinuities imply that liminf, , _#*E(J,) = o for the kernel esti-
mate. In this section we will show that E(J,) decreases as n '/* if A is
chosen appropriately. The material in this section could be repeated for
densities with more outspoken discontinuities such as the beta densities

a—1g7 _ b1
f(x) = x&a—’;}), 0O<x<1, B(ab)= %,

where we can take a = b = (0,1): I1 is left as an eXercise to show that the
optimal rate of convergence to 0 of E(J,) is n~ " where ¢ is a function of a
only, and can be chosen arbitrarily close to 0.

In our analysis, a few imeresting parallel results should be noted, such as
Lemma 18. -
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LEMMA 18. Forallp > 0,

P . P
. 2 » pt+1 1
u}‘f(fx ) fx|K2(2p+1) 2p+1°

where the infimum is over all densities K on R'. The infimum is reached for

pt+1
K = +——(1 - |x|?), < 1.
(1) = B55 (- 1a) Jal <

For p = 2, this result is due to Epanechnikov (1969) and Bartlett (1963).

Proof.  For the density K defined in the statement of Lemma 18, we have
[K=1, [ix?’K=1/2p +1) and fK?=(p+ 1)/(Zp + 1). Because
(fK?)PfIx|?K is scale invariant, it suffices to take the infimum over all
densities K with f{x|?’K = 1/(2p + 1). All the densities considered here
are normalized in this manner. Any density g can be writtenas g = X + g*
where [g* = 0 and [|x|?g* = 0 (because {|x|’g = [|x|”’K). Thus,

for =[x+ fereaf 2ELa - ey |

\\

= [K2+ fgr2+ pzlfl_l'”cflxl"— 1g* \\
> fK2+ fg‘z,

because g* > 0 on [—1,1]° (otherwise, g would not be a density), and
|x{# = 1 on [—1,1])°. The right-hand side of the inequality is minimal if
g* = 0 almost everywhere. This concludes the proof of Lemma 18.

LEMMA 19. Let B, = E(f,) —f. Then, for the kernel estimate (1), and
all K€ L,

E(f|f,,—f!)zlen}~2hf|x|K(x)dx ash — 0.

Proof. The first inequality follows from Jensen’s bound, For the last part,
we note that E(f,) is smaller than or equal to one on [0, 1], and thus that

J1B,| = 2o EC£)
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But if X has distribution function F, and Y is a random variable with
density X,

1-x X
E(f,) = F( )—F ~-X)a
0.1 (/2) (0,1]° h ( h) .

_ f_" (—P(hY > 1 - x) + P(hY > —x)) dx

+fl°°(p(;,y< 1-x) - P(hY < —x))dx
= j:(p(hy < —x)+ P(RY > x))dx
+_£°°(_p(;,y>x) — P(RY < ~x)) dx

= hE(|Y]) + o(h) -

if E(|Y) < oc and k — 0. y;

LEMMA 20. Ifh >0, n8h > x,andKisa bounded dens:ty with compact
support, we have E(J,) = (a + o(1))}2/mnh , where a = )/fKZ

Proof. Lemma 9 and the meqtlahly y(u) 2 /2/7 imply

E(J)>f\/7 _ CK*A(T*)’

where T = [0,1]. Also, A{(T*) — | because 2 — 0. By Lemma 10,

o -

This concludes the proof of Lemma 20.

THEOREM 7. If K is a bounded density with compact support, we have for
kernel estimate (1) applied to the uniform density f on [0, 1},

1/3 1/3
hmmfmfnlﬂE(J)>( szf; |K) 2(—) ,

n—om h>0

Proof. By mimicking the proof of Theorem 2, we have

infE(J,) 2 ﬂetgiM(hflle, 1/%)(1 +0(1))
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where we applied Lemmas 19 and 20. The maximum is attained for
t = (a*/(2mn([|x|K)*))/?, and resubstitution gives the middle expression
in Theorem 7. The K-independent lower bound is obtained by applying
Lemma 18 with p = 1,

THEOREM 8. If K is a bounded density with compacr-support, then the
kernef estimate (1) applied to the uniform density on [0, 1] satisfies

lim sup 1nfn1/3E(J )< ((%)1/3 ( )1/3)(fK f|x|K)

n—x h>

1/3

Proof. let T =[0,1], and let all the undefined symbols be as in Sections 2
and 3. From the proof of Theorem 1,

E(4,(T)) = qu,(Lg;') o L),

By Lemma 10, o

- ) YL - ate®
fon=(a+ o) [+
Now, by ¢(u) < u + /2/7 and Lemma 19, \

E(J,) = E(J,(T9)) + E(J,(T))

=E(frf,,) + E(4,(T))
< [ E(f)+ @ fen [18)
= 2hf|x|K+ o(h) + E—J::h + 0(7’%)

The main terms in this upper bound are minimized by taking #%/? =

(ay/2/7)/(4f|x|K¥n ). We obtain
2 13 )
n*E(J) s (;f]lesz) (417 + 2717 + 6(1)),

which was to be shown.
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We did not derive the exact optimal asymptotic behavior for the kernel
estimate. Yet, by relatively sloppy arguments, we obtained an upper bound
(Theorem 8) and a lower bound (Theorem 7) with a ratio

213 42723 = 18898816 - - -,

valid for all X that are bounded and have compact support. The value of 4
for which the upper bound of Theorem 8 is attained is

1/3
fr

( f iij)zs«;m

Thus, if not enough information is available to exclude the possibility that f
is the uniform [0, 1] density, it is dangerous to let & vary as ¢*n '/°. Indeed,
from Lemma 19 we see that for the uniform density

E(L) = (f|x|K + o(l)]lc"n‘l/s,

a rate that is well above the optimal rate given in Theorems 7 and 8.

Let us finally note that for the uniform density f, the optimal kernel is
not the Epanechnikov kernel (which is opumal for the restricted class F of
Theorem 1), but rather the isosceles triangular density 1 — |x|, |x| < 1. This
follows from Theorems 7 and 8 and Lemma 18. For other members of the
beta family, the optimal kernel is different: its shape depends upon the kind
of discontinuity that occurs.

8. A MINIMAX STRATEGY FOR CHOOSING THE
SMOOTHING FACTOR

There are situations in which one is uncertain about the smoothness of f,
for example, when one suspects that f has a discontinuity. In such cases,
Theorem 1 gives us no clue as to how # should be chosen for the kernel
estimate. In fact, as we have seen in Section 7, when £ is the uniform [0, 1]
density, it is outright dangerous to choose 4 as a constant times n~ !>, We
could play a conservative game by enlarging the class of densities, deriving
an upper bound for E(./,) for this class, and obtaining A4 by minimizing this
upper bound. This is a minimax strategy of sorts. Wertz (1972) developed a
similar strategy for L, properties of the kernel estimate.
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Consider first the class of densities F of Section 4, that is, all absolutely
continuous densities f with bounded and continuous a.e. derivative f’, and
thus f[f’| < oo, For this class, we defined the following factor:

B = (3v7) i)

We will slightly generalize this definition by defining

1/3

510) = | 3(f47) e firean)

where ¢ € % is a continuously differentiable density with compact support.

The main message in this section is that if & is chosen as a constant times
n~'7 then E(J)= 0(n~'?) for afl densities with compact support and
finite Bj(f). This class includes all absolutely continnous densities with
compact support, and even densities with simple discontinuities such as the
uniform [0, 1] density. We will derive some properties in parallel with the
derivations of Sections 2 and 3. For some lemmas, we only sketch the
proofs.

LEMMA 21. Lert f and K be arbitrary densities on R. Then, when y = f|x|K,
JI7* Ky = f1s hytimint fi(7 4.y} alih > 0.
Proof. First consider f € #. Since
1) = f(x) = [[1() e,

we have

Jif k- f1= f\ |

where

(k)& x>0,
X

k=)= fx K(z)dz, x<0O.

e <]
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This imphes that
firs K= f1=nfirriR1= B 1171,

The extension to all f is as in the proof of Lemma 4 (ii) and is based upon
the fact that f* ¢, isin & for all f and all a > 0.

THEOREM 9. For all f€ F, Bi(f)=By(f). For all f, B}(f) =1,
and this bound is artained for the uniform density on 0, 1].

Proof. The first statement is not very hard to show (see, ¢.g., Lemma 2 for
a similar proof) and is not proved here. The second statement is partially
shown in Lemma 135, that is, for all f € #. Here we will prove that it holds
for all /. We will use the inequalities f\/f > 1/ \/supf and [[(f+*¢,)1>
2sup(f * ¢,) (see Lemma 15): this gives

sup(f* ¢,)

sp/ all @ > 0.

By(fY =

But since f * ¢, — f for almost all x as a |0 (Theorem 2.3), it is clear that
sup, . oSup(f *¢,) = supf (incidentally, we always have sup(f=+¢,) <
sup f), and thus B%(f)’ = 1.

THEOREM 10. Let K be a bounded density with compact support, and let h
satisfy (3). Then for the kernef estimate (1) and all { with compact support,

afVf
E(J,,)SE / + hysup [I(f = 9,)1+ o((nk) /%).

Vnh a>0
Furthermore,
liﬂsip it’}fnwE(.f,,) < CtA(K) B 1),
where
Cr= —13— = 2.0483522 - - -

'}'-"/3
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and
A(K) = (a2y)".

The upper bound C{A\(K)}BJ([) is not exceeded if BY([) is finite and h is
taken as follows: :

2/3
o
h = % __jlf__ n"‘l/:"_
2ysup fI(f*,)]
a>Q

Proof. As in the proof of Theorem 1, we have, for bounded intervals 7,

[EQL -1 < fT(\Ev + 1B,

< \/g—‘/:_;f\/f +hysup [I(/ 24,1+ o((nh) ™),

a>{

cK*

where we used Lemmas 10 and 21. If K has compact support, and we take
T large enough, then E(J,)= E(J (T)) for all n, and we are done.

The main terms in the upper bound are of the form wh™'/? + ph.
Considered as a function of A, this is minimal when # = (u/20)?, and
the minimal value is (u%)'/33/4'/3. But this can be rewritten as
CY¥A(K)B}(f) and the Theorem is proved.

A few remarks are in order here. First, by Lemma 18, A4,(K) is at least
equal to ($)!/%, and this minimum is attained for the isosceles triangular
density 1 — |x| on [—1,1]. Resubstitution of this value for 4,(K) in the
upper bound gives (6/7)/B(f) = 1.240701 - - - B}(f). It is better than
the upper bound of Theorem 6 for the histogram estimate, and very close to
the lower bound of Theorem 5 for the histogram estimate. The value of 4
suggested in the Theorem is

/3

h=(2 v 'N? -173
D0 10 £ * 9,
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when the optimal & is used (just substitute & = /2/3 and y = 1/3 in the
formula for k).

Finally, because the upper bound of Theorem 10 is minimal for the
uniform density on [0, 1] (see Theorem 9), it is 10 the advantage of the user
to “uniformize” the data as much as possible by transformations prior to
constructing the kernel estimate.

9. LIPSCHITZ CLASSES, BRETAGNOLLE-HUBER
CLASSES, AND UNIFORM UPPER BOUNDS

As in Section 4.2, we call W(s, a, C) the Lipschitz class with parameters
5, a,C, that is, the class of all densities on {0,1] with (s — 1) absolutely
continuous derivatives for which for all x, y € R,

If(x) =P () s Clx — yi*

Here a € {0, 1], s is a nonnegative integer, and C > 0. We will call F, , the
Bretagnolle— Huber class with parameters s and r (5 is a positive integer and
r > (), that 1s, the class of all densities on [0,1] for which D¥(f) =< r, where
DX(f) is defined as follows:

)l/(23'+1)

DHf)= ((f\/?)zs:;‘gﬂ(f*%)")

Here ¢ is an even bounded density, monotone on [(, 20), having s abso-
lutely continuous derivatives and compact support. Note that this definition
is slightly different from the definitions of similar quantmes in Chapter 4
and Sections 5.1-5.8.

In Theorem 4.6 we have seen that for € large enough and for all density
estimates f,,,

sup [ fify ~ £1) = (e + o()Cras s - cravasan,
fEW(s. a, )

in the notation of Theorem 4.6. Recall that ¢, = ¢;(s5, a) > 0. In Theorem
4.3, a similar minimax lower bound was obtained for £, ;1 ¢y(r)n™*/@s* 1,
valid for all r large enough.

What we would like to do now is to show that these minimax bounds can
be achieved by the kernel estimate up to a proportionality constant not
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depending upon n, C, or r, at least if we allow a slightly more general
definition of the kernel estimate. The importance of this fact should be
stressed very strongly. Other estimators can only at best reduce a propor-
tionality constant by L, minimax standards. Thus, only for special classes
of densities (such as monotone densities on [(, 1], etc.) should we seriously
consider other estimators.

For Lipschitz classes, we will only consider the case a = 1, the case
0 < a < 1 being less interesting anyway. It is a good exercise nevertheless to
treat that case after having seen the general treatment for a = 1. Also, we
will not take the long route: upper bounds will be obtained very simply by
separating the bias and variance terms rather crudely. The only effect of this
is that the proportionality constants are slightly worse. In our treatment, we
will follow to some extent Bretagnolle and Huber (1979).

LEMMA 22 (Uniform Bounds for the Bias). Ler K be a measurable
Junction satisfving:

K is symmetric, fK= 1,fx'K=0,i= 1,...,s =1,

Jixr1K < o,

and let L be the kernel associated with X, that is,

I O e P )

L(-x)= —(-1)°L(x), x<0.

Then fILj< . For s=1, K= 0, fIL|= [|x|K, and for 5=2, K> 0,
fIL| = [x*K/2. If f has (s — 1) absolutely continuous derivatives, then

[ifr &= g1 < b fiLifisen
For ali f, .
Jir+ Ky = 115w fiLitmint (79

When f€ W(s — 1,1,C), s = 1, then the latter upper bound is not greater
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than

Ch’f|L|.

Proof.

fi=2f”
szf (f((sfl);,] )IK(y)Idy fo

Fors =1, s = 2, and X > 0, we obtain equality throughout, which gives us
stmple explicit expressions for [|Lj.

When f has (s — 1) absolutely continuous derivatives, then, by Taylor's
series expansion,

[ (y 1), O k() | an

oy (xty—w)'!

) =x)= T B + [ 0 a

If L, is defined as (1/h)L{x/k), and (L), is defined as L with K, instead
of K, then

FoK, —f=fC"*(L),=hf"'nL,.
Thus,

Sirek, = pr<we fiLgfiron=w fiLfifor

For any f and fixed & > 0, we know that for almost all x,

[f*K,—fl=liminf|[(f* K, — f)*¢,| = liminf|f ¢, * K, — [ * ¢,].
all a0
Thus, by Fatou’s lemma, we have for the same A,

firv K, — 71 < timint fIf 2, ¢ K, — [+,
all

B . 5 (1)
< liminf ' fi(£+ ¢,)"1 L1
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We must now bound the integral in the last expression from above by C for
all fin W(s —1,1,C): fIf¥ " +¢.| < C. To prove this, note that f¢
is Lipschitz {C). Now, for any Lipschitz (C) function g on R, we have

69 =0 8| =l [(6(1) - s(Deitx -0 &
< [la(y) ~ g(x)llgslx = y)| b
< Cfix = ylig,(x)1dy

= C[lalig(2) 1z

= —ZLmCzq:’(z) dz

2Cf0°°¢(z) dz

= C.

This concludes the proof of Lemma 22, because liminf, | o fo 1y<[g* ¢ = 0
for all Lipschitz (C) functions g vamshing outside [0, 1]. (To see this, note
that g * ¢, is absolutely bounded by C, and is zero outside { —aM, 1 + aM]
where M is a number depending upon the support of ¢.}

LEMMA 23 (Uniform Bounds for the Variation). Let K be a kernel on R
satisfying the conditions of Lemma 22, let K vanish outside [ — 1, 1), and define
C, = Hminf,  off*¢,) and a = {[K? < oo. Then, if f vanishes out-
side [0,1],

E(ﬁfn —f*K,.,|) < (nh)‘m(aj\/f + \/Cl(h + 2h2)f|x|K2/2).

Proof. By the Cauchy-Schwarz inequality applied to E(|f, — f » K,|), we
obtain the inequality ‘

E(fiss =1+ Kil) < (1) VKT
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where K2(x)= (1/h)K*(x/h). If we introduce K = K2/fK?, then the
upper bound can be rewritten as

(nk)*‘ﬂaf,/fxx,:‘ < (nh)‘ma(j\/f + fvlf—f*KJI)

< (nh)“”a(fﬁ + \/f_l:"dxﬁf—fmm)

(by Cauchy’s inequality)

< (nh)_l/za(fﬁ + \/(1 + zh)hclf|x|x*/2)

(by Lemma 22},
which was to be shown.

THEOREM 11 (Minimax Upper Bounds). Let K and L be as in Lemmas
22 and 23, and let a and C, be as defined in Lemma 23. Then, for all {
vanishing outside {0,1), and the kernel estimate f, with kernel K,

g(fir.- 11

< h’CJILI +(nh)“’2(afff+ ‘/Cl(h + 2h2)f|x|1<2/2).

In particular, we have the following minimax upper bound for W(s — 1,1,C),
all s =z 1: if g, denotes any density estimate,

f wp B fig - )

& feW(s-1,1,C)

< inf  sup E(ﬁf,, —f|)

h;ﬂfe W(-1.1,C)

2s +1
25

a + o(1)).

1/2s+1)
< i )
K

(Z.s'C f |Lia¥n~*

It is understood that the infima are taken over all K satisfying the conditions of
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Lemmas 22 and 23. The last inequality is obtained, for example, by choosing

2/(25+1)

o
- V@t

2scf1L|

In particular, for s =1, the upper bound is (1 + o(1)) times

1/3 173
3C
- 2.1
j,gafoz(zcﬁxum ) (Zn) ,

after having taken the triangular kernel K (with «* = %, [|x|K = 1). For the
case s = 2, the infimum of the upper bound is reached for Epanechnikov’s
kernel 3(1 — x2)_ (this has {x*K =} and [K? = 1), and reads

(1 + o) (),

Proof. The first inequality follows from Lemmas 22 and 23. The second
chain of inequalities requires three facts: first, for all f vanishing outside
[0,1], wehave C, < (, < Gy < -+ < C,. Also, forannyW(s 1,1.C),
C, < C (see proof of Lemma 22). Second ﬁ < 1 when f is zero cutside
[0, 1]. Third, the function A*C[|L} + a/ Vnh is minimal for the choice of A
given in the theorem. Formal replacement of this value of A gives the upper
bound. The remainder of the proof s trivial.

The minimax lower bound (Theorem 4.6) for W(s — 1,1,C) and the
minimax upper bound of Theorem 11 have the same dependency upon C
and n. They differ only in a proportionality constant, which in turn depends
only upon s. It is informative to know what the gap is between the bounds
for the most important classes, W(0,1,C) and W(1,1,C): From Theorem
4.7, we recall that for W(0, 1, C), the coefficient of (C/n)l/ s &5, s0
that the ratio between upper and lower bound is about 11. For W{(1,1,C),
this ratio is of the order of 30. The upper bounds are without any doubt
very loose: they are obtained for a rather primitive estimator, the kernel
estimate with smoothing factor & chosen as a function of s, C, and K only!
It seems of course much more efficient to choose # as a function of f (see
Chapter 6 for the automatic choice of 4}, but if everything else fails, or at
least as a rough first guess, one can take the pessimistic attitude that the
minimax error should be minimized for a certain class such as W{s — 1,1,C). ~
In that case, # can be chosen as indicated in Theorem 11.

In addition to h, we should choose K. For the cases s = 1 and s = 2, we
know that KX should be the isosceles triangular density on [—1,1] and



Lipschitz Classes, Bretagnolle—FHuber Classes, and Uniform Upper Bounds 127

Epanechnikov’s kernel. For 5 > 3, K must necessarily take negative values,
and f, may no longer be a density because of this, although its integral is
still one. However. these estimates can easily be normalized, as shown in
Section 7.6, Bartlett (1963) was the first person to indicate that better rates
of convergence can be obtained by taking kernels such as those of Lemmas
22 and 23 (see also Section 7.6 for a detailed treatment). For s = 4, he
obtained the optimal form of K too. In general, kernels K satis{ying the
conditions of Lemmas 22 and 23 can be constructed without great difficulty.
For example, start with a basic symmetric density X vanishing outside
[—1,1]. For fixed 5 as in Lemma 22, we need only find real numbers p, (not
necessarily positive) such that the function

N
E pr'K]/i

iml

will do. (Incidentally, the choice 1// is arbitrary and can be replaced by
other positive numbers taken from (0, 1).) For example, when K is uniform
on | —1,1], this gives conditions of the following type:

Yp=1 Lpiti=0; Ypit=0;..;2pi "TP=0,

for s even, 5 = 4. Generally, there is a solution with ¥ == 5/2 components
in the mixture. See also Bretagnolle and Huber (1979) for other construc-
tions, based upon Legendre polynomials.

From the first inequality of Theorem 11, we see that for individual f, the
upper bound for the expected L, error can be much smaller than the
minimax upper bound. For example, | \/j_f is very crudely bounded from
above by 1, although we have the following fact:

LEMMA 24. For all f in W(0,1,C), C = 4, the following inequalify is
valid:

4 4
BEZIJTZW.

Both inequalities can be achieved.

Proof. The upper bound is achieved for the isosceles triangular density on
[0,1] (increasing as 4x on [0, ]. (It is in a sense the “smoothest” density in
W(0,1,C).) The lower bound is achieved by the isosceles triangular density
on[% — b, 1 + b], where b = 1/VC (the slope of the edges is C of course).
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For large C, we see that the minimax upper bound of Theorem 11 loses
some of its power, because it does not provide us with geod information
about most densities contained in the given Lipschitz class.

To obtain a unifrrm upper bound for the Bretagnolle- Huber classes £, ,,
the approach taken for W(s, 1, C) cannot be followed, simply because the A
that would give us the right dependency upon r is not a function of s, r,
and n only, but also of C, and fy/f. But since C, and [y/f are not known,
they must be estimated. Thus, strictly speaking, we should only consider
kernel estimates in which A is chosen as a function of the data in such a way
that, asymptotically, # approaches the optimal k. This adaptive strategy
was followed by Bretagnolle and Huber (1979) in their quest for a minimax
upper bound for F, ,. Note also that, on £, ,, fy/f is not uniformly bounded
from below, and that C, is not uniformly bounded from above. {This
follows by using different scales for the same density!) Since the minimax
upper bound for F, | requires the following tedious work, it will not be
proved here: first, cut the data into pieces, and use one of the small pieces
{o(n) in size) to estimate k, and use the big piece (of size ~ n) to construct
the kernel estimate with this h. Then, sup, ¢ », E(f]f, — f] is bounded {rom
above by the expected value of the first expression of Theorem 11, preceded
by a supremum over F, .. One must then make sure that this expression is
not larger than rn~*/**1 times a constant not depending upon r or ».

The uniform inequality of Theorem 11 has many other uses, besides
obtaining minimax upper bounds. For one thing, it is applicable for all n,
and thus of great value to the person who has to work with a small sample.
But more importantly, we can obtain the rate of convergence of a kernel
estimate with random smoothing factor / independent of X),..., X,. Typi-
cally, # would be a function of X, ,,,..., X, ,,,» We have the following
theorem:

THEOREM 12. Under the conditions of Theorem 11, and with the same
notation, we note that for the kernel estimate f, with smoothing factor h
independent of X,,..., X,,, the bound of Theorem 11 remains valid, provided
only that the expected value with respect to h is taken on the right-hand side.
In particular, assume that there exists a sequence of positive numbers h,, with
ko= 0, nh,, — oo, and

E(h*) ~ B E(R7Y?)~h,¢’%  E(Yh) -0,

and assume that [|x|K? < oo. Then -

E( 1= 1] < (B f1L1+ (h,g) 7)1+ 02).
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If €, < oo, fff < o0, and

2/(2s+1)

«f Vi

—— e .n—i/(2:+1),
2sCsf|L|

then

5(fifs 1) s 25 2 figen

For smoothing factors # that depend upon the data, we need a stronger
theoremn. The consistency of such estimates 15 dealt with in Chapter 6.

Dr(f)(1 + o(1)).

)1/(2.w+1)

10. DENSITIES WITH UNBOUNDED SUPPORT

We have until now postponed the problem of the performance of density
estimates for densities f/ with unbounded support, and this for two reasons:
such cases are less important (data can always be mapped monotonicaliy to
{0,1]; and densities with unbounded support occur less often in practice),
and the additional notational and conceptual burden would only detract
from the main ideas.

Lower bounds for all f were obtained in Theorems 2 and 5. Thus, we
will content ourselves with the derivation of upper bounds for E(J,). Only
the kernel estimate will be treated here, because the histogram cstimate can
be treated similarly. If we start from the uniform upper bound of Theorem
11, the proofs become very short. It should be clear though that we are
sacrificing a bit with respect to the bounds of Theorems 1 and 6, obtained
by exploiting Berry—Esseen type inequalities for deviations from normal
behavior. From Lemma 23 and Theorem 11, we obtain the following:

LEMMA 25. Let f, be a kernel estimate on R with K and L as defined in
Lemmas 22 and 23, and let s > 1 be an integer. Define

¢, = sup f|(f*¢,)"l

a>0

where ¢ is an even bounded density, monotone on [0, %), with 5 absolutely
continuous derivatives and compact support. Then

E(fifs = 1) < 16, fiL1+ (ab) ™ fF(K)s
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The uniform bound of Lemma 25 shows the importance of the omnipre-
sent factor [y f *(K?),, to which we will devote a separatc lemma.

LEMMA 26 (The Factor [y/f*(K?),). Let K be an arbitrary measurable
Sfunction on R with conditions added as stated in the various statements of this
lemma, and let [ be a density on R.

A. There exists a density f on R with [\[f < o0, yet [{f+{K?}, = o0
for all h small enough, and for all K with [K = 1, vanishing outside
[—1,1), and bounded in absolute value by a constant.

B. f{f+«(K?), = f\/ﬂ/ﬂ(_z In particular, [(f+(K?), = oo when-
ever f,/f = 0.
C. [Jf=(K?), — f,/j_‘\/fK_z as h |0, when K has compact support and

is bounded, and [ satisfies the following conditions:
(1) There exist positive numbers t, T, such that

Loarf 2 10 dx < co.

(i) fis almost everywhere continuous.
D. Iff and K are both symmetric and unimodal, then

UK <2y x4 2k,

Proof A. Let f be the indicator function of US [2,2' + 1/i{i + 1)},
i = 1. Clearly, /y/f = 1. Also, for h < &,

[T, > & LN (),

i=1

o

24+
) SRS
iml 2

sup yf=(K?),

—hsx-2ch+(i{i+1)"

ﬁu(_;ﬁi

>

2 ¥ MY

i=1

-——— [K? (where K* is the uniform
i+ 1) bound for |K )

=0,
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B. By Jensen's inequality, f*(K?), = /F»(K?),/ V[K?.
C. Let r and T be as in (i), and assume that X vanishes outside
[—1,1]). We always have

\.‘f*(Kl)h(x 5\/| sup f(y)fKZ

y-x|=h

The right-hand side of this inequality is smaller than a fixed integrable
function for & < ¢ (by (i)). By Theorem 2.3, f*(K?), — f(K?* for almost
all x, so that, by the Lebesgue dominated convergence theorem,

mec [Fe(K?), — f[_T‘T]L\/}\/fxz.

Also, if we set Kt = K1/(K?, then

ij‘/ft(Kz),, - \/]‘/F < Wf:;m _—
sy [x R

S\/le\/ZTflf*KE-fl

= o(1),

where we used Theorem 2.1.
D. Assume that x > 0. Then

fine-nas | inK(3)s

+f 3=

x/2sy

2f X X 2
s&(3)+1(3)/%*
the square root of the right-hand side does not exceed |K(x/2)i

+ yf(x/2) Y/K?. Integration with respect to x gives the stated inequality.

THEOREM 13. Lers = 1 be an integer, and let K be a symmetric bounded
function with compact support, satisfying the conditions of Lemma 22. Let L
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be as in Lemma 22, and let C, be the constant of Lemma 25. For densities [
satisfying condition C of Lemma 26, the kernel estimate f, satisfies the
following inequality as h } 0:

E(fira= 1) 5 G fiLw + ()™ V7[5 0+ o).

In particular, if C, < o and f,/f < o0 (i.e., DX f) < ), and

2/Q25+1)
/1% fi
=1 p~l/Q2s+D)

25, fILi

25 1/(25+1)
E(fir, - 1) s B ZSflLI(VfK’) n—’]

XDr(f)(1 +o(1)).

then

Proof. Theorem 13 follows without work from Theorem 11 and Lemma 26,
part C.

Thus, even for f with unbounded support, D}( f) seems to appear as the
measure of difficulty. The most important cases are again s = 1 and s = 2.
In those situations, the kerngl X that minimizes the bound is independent
of f, and coincides once again with the isosceles triangular density for s = 1
and the Epanechnikov kernel for s = 2.

With those choices for K, the upper bounds become

(2%1)1/3”?(” = (2)1/33?:0) (s=1)

n

and
(ﬁ%)mn'z/sDz'(f) - (%%)1/5,,—2/53*(” (s =2). .

These are only fractionally larger than the corresponding upper bounds of
Theorems 10 and 1. The optimal values for # differ also very litle from
those obtained for compact support densities in Theorems 10 and 1.
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We finish this section by noting that condition C of Lemma 26 holds for
all bounded unimodal almost everywhere continuous f with f/f < oo:
indeed, if m is a mode, then for x > m,

sup f(y) < f(max(x - 1,m}},

ly—x|=¢

' and the square root of this is integrable for any ¢,

, 11, UNBIASEDNESS AND THE ACHIEVABILITY OF
THE ERROR RATE 1/Vn

' The kernel estimate has an expected L, error rate that decreases as
n=*/@*D for all f in F,, or W(s — 1,1,C) (seec Theorem 11), provided
that K and 4 are picked appropriately. By increasing s, these classes
become smaller, and the rate n~ 172 is approached. We also recall that 1/ vn
is the best possible minimax rate of convergence for any density estimate
over such simple one-parameter classes as ¢(g) (Theorem 4.8) or Il(g)
(Theorem 4.4). In between, there is a void: for some estimate f,,, does there
exist a rich class of densities # for which limsup, _, Vr E(f|f, — f)) < oo,
all f€#7? By “rich,” we mean that the class should certainly not be
describably by a finite number of parameters, although, from the lower
bounds of Chapter 4, it should be clear that % cannot be too large.

The answer is affirmative in 1,. In fact, Ibragimov and Khasminskii
(1982) have obtained the following fantastic theorem:

THEOREM 14 (Ibragimov and Khasminskii, 1982). Let A, be the class of
all densities with characteristic function vanishing outside [ — T, T ). Then, if f,
denotes a density estimate,

lim inf sup nE(f(fﬂ—f)z) = %

n—oo fy feds

A few comments are in order here. First, the class 4, consists of
extremely smooth densities because tail conditions on charactenistic func-
tions correspond to smoothness conditions on the density. Since the char-
acteristic function ¢ is absolutely integrable, we can obtain f from ¢ by
inversion (see, e.g., Lukacs, 1970):

f(x) = @m) " fermg (o) ar,
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and in fact, we can obtain f by taking the sth derivative inside the
integral. This gives

¥+ 1

f|f‘”| < %ST+ T all integer s.

Unfortunately, there exist no direct inequalities between the L, and the L,
errors, so that Theorem 14 does not imply

limsup Y sup E(ﬁf,, —f|) < %

n— o feAy

for some estimate f,. There are a few indirect inequalities but they are of no
help. For example, we have inequalities of the form given in Theorem 8.3.

The possibility of achieving the rate n~/? within 4, should come as no
surpris¢ because the class is “nearly” parametric: by Nyquist’s theorem, we
known that f can be completely reconstructed (Feller, 1971) from the value
of f at the points iy, i =0, +1,—1,+2,-2,..., where y is a small
enough positive constant. A, can be considered therefore as a class with a
countable number of parameters.

Ibragimov and Khasminskii have shown more: the bound of Theorem 14
is achieved for the Fourier integral estimate (FIE) described in Davis
(1975,1977) and Konakov (1973). The achievability of the 1/a error rate in
L, for f € Ay on an individual basis was also noted by Davis (1975, 1977),
and is based upon the L, analysis of Watson and Leadbetter (1963). The
FIE is a kernel estimate with kernel

K(x)= mx

mX

Note that (K =1, but that [|K|= o0. Also, K has characteristic function
;1 1y(r). The estimate £, thus obtained as the correct integral (1), but it is
not absolutely integrable with probability 1. Hence, we cannot “normalize”
f, by defining

() = fn(x)"[f..(xPO],

fL ¥

because f* would be zero with probability 1. Had f, been absolutely
integrable, then this normalization would have led to a valid density f* and
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moreover,

Nz -ns fif.- 1.

(Apply the nonnegative projection Theorem 11.4). Since we do not know of
any other normalizations that keep or reduce the L, error, we are thus
reluctant to recommend the FIE as a density estimate, in keeping with the
general principles established at the outset of this book. The reason why
Davis and Ibragimov and Khasminskii were able to obtain a 1/n rate in L,
was that, for each x, the entire sample helped in the estimation. For the
kernel estimate, this would imply that & does not tend to (. But this in turn
would imply that {|f — f*K,| = 0 for some positive &, that is, the estimate
is unbiased! If we try to follow this reasoning, then the key to the solution is
the existence of a function K with the property that (K =1, f|K} < oo
(for normalization), and f|f ~ f*K,| =0 for some & > 0 and all f€ A.
Such a K indeed exists, so that there is hope to obtain a 1/ yn expected L,
error rate on Ay,
We start with the de la Vallée Poussin density

K(x) - (2m) (22222 "')) ,

which has characteristic function (1 — [¢]),. Then define for a constant
a > 0 (to be picked later) the function g,:

g.(5) = (a + D[ K(x) - K[ 5 7x).

We see that fg = 1, and that f|g | < 2a + 1. Also, g, has characteristic
function
).

a+1

$u(6) = (a+ 1)(1 — [}, - a(1 _

!

which is
1, Ml < a/(1 + a),
Y(t)=({(a+ 1)1 —-]), a/(Q+a)<|r=<1l
0, ft] = 1.

We can now handle the unbiasedness of our kernel estimate on A;:
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THEOREM 15. Let A, be the class of all densities with characteristic
function vanishing outside {— T, T'|. We have an unbiased kernel estimate with
kernel K and smoothing factor h (i.e., flf — [*K,| = 0) in any one of the
Sfollowing cases: ‘

1. K(x)=(sinx)/mx, h<1/T.
2. K(x)=g,x) forfixeda> 0, h <(a/(1 + a1 /T).

Proof Let f have characteristic function ¢, It is known that f+« K, has
characteristic function ¢(¢)¢(th), where  is the characteristic function of
K (which, when K is not a density, is defined as fe™K(x)dx). For
f=f+*K, for almost all x, it suffices that ¢(¢) = () (th) for all ¢. Since
f € Ay, we need only verify that ¢ (th) = 1, all |¢| < T. For the first kernel,
we have () =1 ;(¢), and we need only require that & < 1/T (this
argument is due to Davis (1975,1977). For the second kerncl, we have to
ask that Th < a/{1 + a). This concludes the proof of Theorem 15,

Before we proceed with the properties of the kernel estimate with kernel
g, for f € Ay, we will see what we should not expect, and what we cannot
do:

THEOREM 16. Ler f, be a kernel estimate with kernel K satisfying
JK =1, [IK| < oo, and let [sup,, | K(#)| < c0. Then,

1. h - O implies Vn E(f|f, — f) = o0, all f.

2. k=0, nh— oo, and [\/f = oo imply Vnh E({|f, — [} = .

3. If the characteristic function ¢ of f is nonzero except possibly on a set of
Lebesgue measure 0, then yninf, . (E([1f, — f]) = 0.

4. If K is a density (but possibly without integrable radial majorant), then
inf liminf, _  n*inf, . o E(f|f, = f]) > 0.

Theorem 16 states that if we are to construct a kernel estimate that is
“normalizable” and consistent for aff f, then we must have A — 0, and in
that case, the 1/ \n rate is not achievable even for a single f! Properties 1
and 3 of Theorem 16 essentialty imply that it is useless to look outside A
for 1/ yn error rates. Finally, property 4, which coincides with Theorem 2,
gives an even stronger lower bound for individual densitics f when we do
not allow negative-valued kernels. The proof of Theorem 16 rests on the
following uniform lower bounds:

LEMMA 27. Let Z,,...,Z, be independent identically distributed zero
mean random variables with E(|Z,|17) < oo, for some p > 2. Then there are
positive constants B, and C, only depending upon p such that )

) £4)

i=1

n P

Lz

i=1

B,E <E <CE
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Furthermore,

E( ¥z

i=1

zE(.]z)zngUau

We also have, putting q = P(|Z,| 2 u), u > 0:

Ao

4,/_ 8+ ng

i=1

uy_fnq .
= , validif ng > 2.
2012 "t

REMARK. The first inequality of Lemma 27 is due to Marcinkiewicz and
Zygmund (1937) (see, e.g., Manstavicius, 1982, and the references found
there). We will only prove the other inequalities of Lemma 27.

Proof of Lemma 27. We will repeatedly use the following inequality: if
U,V are arbitrary random variables, then E(J7 + V| = E()U + E(V|U)].
We first symmetrize our problem by using the fact that if U,V are
independent identically distributed random variables, then

E(U) = YEQU| + IV} 2 LE(U - V).

(£ » 34
i=1

where Zi,....Z,,Z,,..., Z, are independent and identically distributed.
By Szarek’s inequality (Lemma 28) and Jensen’s inequality, the lower bound

is at least equal 10
7 "
) = 5 B0 2= [T ez

This can be seen by representing Z;, — Z] as R, B,, where R, =|Z, — Z]|
and B, = sign(Z, — Z;) arc independent, and by conditioning on the R,’s.

Thus,

n
>z

i=1

1g

S i(z z)

1
2
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The last inequality of Lemma 27 can be obtained as follows, Set
v = E(R|R, 2 u), note that v > u, and define N = L7 /¢ , - We have

E( =E(
e |

(this is obtained by conditioning on B,/ ., and
applying the conditional form of Jensen's inequality)

n
E Rr'BI

i=1

_El Bi(RiI[Riz a t RAg, <ul) l)

)y BJ(UIIR,au]+ E(R)|R, < ”)I[R‘..:,,;)

i=1

N n—N
= E|| L vB + L B vE(R\|R, < u)
fw] j=1
N
2 E|} ) vB, ) (by independence, given N}
i=1
N
>uE(| ) B
j=1

> uE(/N/2) (by Szarek’s inequality).

Let us define r = P(|Z, — Z]| = u) and note that r > $P(|Z,] = u) = ¢/2.
Because N is binomial {#, r), we have by Cantelli’s form of Chebyshev’s
inequality for nr > 1.

d

Xz
=1

) 2 uE(YN/8) z winr P(N = nr/2) - %

u\/ﬁ (m‘/l)2 Zuv{; nr )uv/E
4 (nr/z)z + "r(]. _ r) 4 4+ nr = 20

, A
T2
which was to be shown.

LEMMA 28 (Inequalities for the Binomial Distribution). (Khinchine’s
inequality). Let Y,,...,Y, be independent random variables taking the values
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+1 and —1 with equal probability, and let a,. ..., a, be real numbers. Then
there exist positive constants B, and C, depending upon p > 0 only such that

n n n
Bp‘/ ‘Zlaf < EVr .):lai}:’p) < CP‘I ‘Elaf.
i= - i=

The following values are optimal.
B, =2\2"Vr  0<pxp,.

Bp = 2[/2( r((p + 1)/2) )1/}’, o <

<p=<2
V= Po=p
B, =1, p=2

c, = 21/2( F((P‘;;Tl)ﬁ) )w’ 255

G=1 0<p=<2

Here p, = 1.84742 - - - is the solution in (1,2) of T(p + 1)/2) = T(3).

REMARK. The optimal constant B, = 1/v2 was obtained by Szarek
(1976) (and we will refer to the corresponding inequality as Szarek’s
inequality). The best values for C,, p 2 3, are due to Young (1976). All the
cases are treated simultaneously in Haagerup (1978). We note in passing
that if Y is binomial (n, 4), then E(|Y - n/2) 2 /n/8.

LEMMA 29.  Let f be a density with characteristic function ¢, and let K be a
Borel measurable function satisfying (K = 1, f|K| < o0, and assume that K
has characteristic function $(t) = fe"*K(x)dx, t € R. Then,

Jif = 7K1 2 supie(e) = o (1) (1)1,

If ¢ > 0 is aconstant and h — ¢, then [|f» Ky, — f+* K | = 0.
Proof.

suplg — 091 = sup| [(f(x) = (f + K)(x))e™ d

< JI7) = (£ K)) [sopledx = fif =K1,
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For the second statement of Lemma 29, verify that (2.4) in the proof of
Theorem 2.4 remains valid.

Proof of Theorem 16. Statement 4 is contained in Theorem 2. For the
other statements we shall use the crude inequalities (se¢, €.g., Theorem 3.6):

£(fit,- 1) fir- il (21)

B fira - 1) 2 35( fifs - 1+ &) (22)

Assume that we have shown 1. Then 3 follows by contradiction. Indeed, if
there exists a sequence A such that yn E( [1f, — fD remains bounded, then
there exists a constant ¢ > ( for which % — ¢ along this subsequence. By
Lemma 29, we conclude that sup,j¢(¢) — ¢{8)¢(ct)] = 0. But this implies
that ¢ (¢) = 1, that is, the measure corresponding to ¥ 1s atomic with mass
1 at the origin, and this is our contradiction.
Consider now 1 and 2 together. Lemma 27 will be applied with Z, =
Z(x)=(Ky(x — X)) — E(K,(x — X))}/n. We note that E(Z,(x))=0,
Ld
Z Z,(x)
i=1

E(flf,.-f*Kp.I)=fE( 3 )dx

> L%ﬁ(zoﬁ)‘l‘/r(m(xn > %) dx,

where a > 0 is a number to be chosen further on, and B is the set of all x
for which P(|Z,(x)| = a/nh)is at least equal to 2 /n. Here we used Lemma
27. Thus,

WE(flfﬁfl) > 40527; fgl/P(izl(xnz =) ax.

Let C be the set of all x for which |K(x)| = a/2, and let a > 0 bt so
small that [~dx = b > 0 for some positive b. By Theorem 2.3, E(|K,(x —
X)) =f+*|K|, = f/|IK| for almost all x. For such x, and for all & small
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enough (so that at least E(|K,(x — X,)|} < a/2h), we have

P1Zi() > 5} > PIKu(x = X1 > F = E(K(x = X))

ZP(IKk('x XI)IAZh) (IK( ;Xl)lzg)

=P(X, € x—~ h(C)
-f(x)hf dx (almost all x; Theorem 2.3)
o

=f(x)hb.

Thus, by Fatou’s lemma, if nh — o0,

uﬂngigme(ﬁf,, —f|) > wLﬁﬁm“B\/P(izl(x)r a/nh)

b= 2005 L)Ob(f(—x)dx.

From this, we immediately deduce statement 2, and part of statement 1.

This leaves us with the case liminf, , _n/ < o in statement 1. Obvi-
ously, we can assume that limsup, , . nh < ¢, < oo, for the case
limsup, , ,#h = oo can then be obtained by a trivial combination of
arguments. By the last inequality of Lemma 27,

mE(fif~11) 2 S [ 7V g .

where g = P(|Z,(x)| =z a/rh) = f(x)hb(1 + 0(1)) for almost all x. By
Fatou’s lemma, the limit infimum of the lefi-hand side is <o if, for all
constants ¢ > Q,

nh 1
]{.I?.gfc+nhf

00.

But this follows from hminfnk > 0, & — 0. This leaves us with the case
h = o(1/n). We will conclude the proof of statement 1 and Theorem 16 if
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we can show that A = o(1/n) implies
liminfE(f!f—f,,|) > 1.
n—x

(Note that this does not follow from Theorem 3.1 since we allow negative-
valued kernels.) Now,

E(fife= 1) 2 B(f(r= 1)+ ) = B(f <= il 211

= [P 1) = [E(fuly,<n).

By the Lebesgue dominated convergence theorem, we are done if we can
show that for almost all x (with respect to f), f, = 0 in probability. Now,
to do so, we define C = {x: |K(x)| > ¢}, where ¢ > ( is arbitrary, and
note that |f,| < ¢ if x + £C has no X;’s. But

P(x + hC contains at least one X,) < nf+hcf—- nhf(x)fcdy

for almost all x. (This would follow from Theorem 2.3 if the function I
had an integrable radial majorant, and this is of course a simple conse-
quence of the fact that K has an integrable radial majorant.) Now,
fcdx < [|1K|/e < o0, and thus, we are done, because ¢ was arbitrary and
nh = o(1).

Because the factor | ‘/f is infinite for many a density in 4, (such as the
de la Vallée Poussin density; in fact, one can show that it is infinite for all
densities with real even characteristic functions that are concave on [0, T)
and vanish outside [— T, T']) for us to be able to use the uniform bound of
Lemma 25 and inequality D of Lemma 26, we must require explicitly that
f \/f be finite. For this reason, we introduce the slightly smaller class of
densities Ay, -, where T, C are positive constants and s > 1 is an integer:

Ar = { £ f has characteristic function ¢, where
(i) ¢ = Ooutside [T, T] (i.e., f€ 4;);
(ii) &,...,9" 1 exist and are absolutely

continuous (with almost everywhere
derivatives ¢, ..., ¢);

(i) f161 5 .}
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This class is not empty and certainly not descnibable by a finite number of
parameters. For example, it contains all densities whose characteristic:
functions are obtained by convolving (1 — {¢), sufficiently often with itself
(this will approach a normal characteristic function), and normalizing (so
that the value at 0 is 1). Ignoring scale factors, the densities will be of the
form

sin x 27
CP( x )

for integer p. Of course, it is clear that for some values of C and T, A7,
is indeed empty. We should stress from the beginning that we are not
interested in A ~ per se since it seems a rather artificial and unrealistic
class, but in the mere existence of a sufficiently rich class of densities & for
which we can construct an estimate satisfying

lim sup sup»/r?E(f}fn—f]) < %0,

n—roo feF

Thus, consider the kernel estimate with kernel K(x) = g_(x), and let us
call it the trapezoidal kernel estimate because g, has a trapezoidal character-
istic function. Let a > O be fixed, and let /2 > 0 be fixed such that

a 1 '
h51+a1_r' (23)

Then, by Lemma 25 and Theorem 135,

B(fits= 1) = B(fity =1+ Kil) < ()1 (K. 20

The last integral in (24) will now be bounded simply by obtaining a
uniform upper bound for all f in Ay,

LEMMA 30 (Inequalities Linking f and Its Characteristic Function ¢).
For alt f with characteristic function ¢,

1
supf < gfkﬁl-

Forallfe Ay, .,

H i (3} .g.
Wl < 5o 169 < 5=,
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and

£x) < g(x)  min{ L, -5

7’ 2wix|’

Proof. 'The first inequality follows from

1(x) = @a) " fep(aydr < (2m) 7 flal

Note that for f € A, this does not exceed T /7. Next, by partial integration
of the inversion formula, and the absolute continuity of ¢,...,¢" ™Y,

76) = @m) 7 f(in) e o) a

s (2rix’) ™ f19.

This concludes the proof of Lemma 30.

The class A, . is not closed under translations, for otherwise there
would not exist an integrable uniform bound for f. To define a translation
invariant class is easy of course, but we will not go through the extra trouble
here. Note that [|¢| tells us something about the peak of f, and that [|¢'*}
gives us information about a uniform upper bound for the tail of f, We can
now state the last result of this section:

THEOREM 17. Let s = 3 be integer, and let T and C be large enough so
that Ar, ~ is nonempty. Then, the trapezoidal kernel estimare f, with
smoothing factor h chosen fixed as in (23) and k = g, satisfies:

sop E( fif, 1)) < (lﬁsszr‘gj’zg’(g)"u%

5 —
f€4r . ¢

L
vk
Proof. For positive a, 8, v, we verify first the integral

-2 al- /gy
Jrin{ o 155 ) = et

Now, apply the following inequalities to (24): f < g as defined in Lemma
30, and |K(x)| < 2 min(1/27, (4/x2)1/m)) = min{l/7, (4/7)x"2) =
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K*(x) (by definition of K*). Also, f*(K?), < g*(K*?),. Since both g
and K* are symmetric and unimodal, we can apply Lemma 26, part D. The
result follows after observing that

T1/2 l/s( g)]/jﬂ.—l/Z_

J¥8 = 52

To make the inequality as small as possible, it is necessary to choose A as
large as possible. With the value & = 1 /27T on the right-hand side of the
inequality, we obtain a minimax upper bound for 4y , .. For every value of
a in the trapezoidal kernel estimate, we obtain a different minimax bound.
The formal optimization of it with respect to g is not given here.

What we retain from this section is that no kernel estimate with de-
terministic # can be consistent for all densities unless & ~ 0, Thus, we have
not constructed a density estimate that is consistent for all f and satisfies

hmsupJ’E(ﬂf fl)<c all f € #,

H—+oC

where # is a rich enough family of densities. Another unanswered question
is whether

limsup sup \/_E{flf fl)

n—220 [fE€Ay

for some estimate f,.

The trapezoidal kernel estimate has a kernel with jx'K = 0 for all i > 0.
The intriguing property of this estimate is that we do not have to adjust K
to the smoothness of f as in Bartlett’s estimates. Of course, & still needs
adjusting according to the smoothness of f, or alternatively, & can be
estimated from the data by one of the methods described in Chapter 6.

Finally, if we follow the interesting L, theory developed by Watson and
Leadbetter (1963) and picked up again by Davis (1975,1977), we can
consider what rates of convergence are attainable under various conditions
on the tail of ¢. In doing so, we can obtain a continuum of rates between
1/v¥n and n~%° (such as logn/va, etc.) depending upon the rate of
decrease of the tail of |¢|. An enumeration of the standard tail conditions
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would be tantamount to admitting that these lead to important classes: they
do not, and Ay ~ is not important either. Rare are the occasions when we
know anything about the smoothness of f, and expensive is the price paid
for choosing the “wrong” / in the kernel estimate! (For example, if we
“gamble” that f is in Ay, ., we can choose a fixed 4 and employ the
trapezoidal kernel estimate, and if we are wrong, the punishment is severe:
f, may not converge at all to f.)
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CHAPTER 6

The Automatic Kernel Estimate:
L, and Pointwise Convergence

1. THE MAIN RESULT

In this chapter, we study the consistency of the automatic kernel estimate

1) = ()7 B K(25), 1)

i=1

where K is a fixed density and # = &(n, X,,..., X} is a Borel measurable
function of n and the data. Ideally, # does not depend upon parameters
that have to be chosen by the user, although, strictly speaking, such
estimates (including the standard kernel estimate} are called automatic
kernel estimates as well. Note that / is not allowed to depend upon x since
this would in general lead to an estimate that is no longer a density on R<.

The first and foremost result of this chapter is in the spirit of Theorem
3.1 for the standard kernel estimate. It is stated here without proof (sce
Section 5 for the proof). In Section 4 we will present several examples of
automatic kernel estimates. In Sections 2 and 3, the pointwise convergence
properties of these estimates are studied.

THEOREM 1.  Ler f, be an auwtomatic kernel estimate with arbitrary density
K. If h+ (nh*) ' > 0 completely (almost surely, in probability) then
f1f, — f| = O completely (aimost surely, in probability), for all densities f on
R4

2. POINTWISE CONVERGENCE OF THE AUTOMATIC
KERNEL ESTIMATE )

Another albeit less powerful way of proving the L, consistency of a density
estimate consists of establishing the pointwise convergence of the estimate

148



Pointwive Convergence of the Stundurd Kernel Estimate 149

at almost all x, and applying Scheflé’s Theorem 2.7 or Glick’s extension of
it (Theorem 2.8) to derive the L, consistency. For the pointwise conver-
gence of the automatic kernel estimate and all densities f on R? we have the
following theorem:

THEOREM 2. Ler K be a Riemann integrable density with compact sup-
port, and let f, be an automatic kernel estimate with smoothing factor h. Let f
be a fixed but arbitrary density on R®. Then:

A. If &+ (nh?)"! = 0 in probability, then f, — f in probability at
almost alt x.

B. If # > 0 and nh?/(loglogn) — oo almost surely, then f, — f al-
most surely at almost all x.

C. If h - 0 and nh?/(logn) — o completely, then f, — f completely
at almost all x.

Theorem 2 is proved in Section 5. A and B lead directly to L, con-
sistency in probability and almost surely, respectively, but the statements
are weaker than those obtained in Theorem 1. The qualification *almost all
x" refers to all Lebesgue points of f. It cannot be dropped because a
density f is only defined up to a set of zero Lebesgue measure. Theorem 2
can basically not be improved because the conditions on 4 in A, B, and C
are necessary for the standard kernel estimate: this result was first estab-
lished by Deheuvels (1974) under various regularity conditions on K, f, and
k. This is a fine occasion to present Deheuvels’ result: in the next section, we
will state an extended version of it stripped of most regularity conditions.
The proof is given in Section 3.

In Theorem 2, h is also allowed to depend upon x, but in that case no L,
consistency results can be derived from it via Theorems 2.7 and 2.8.

Several results in the spirit of Theorem 2 are known for the uniform
convergence of the automatic kernel estimate, for example, those of Wagner
{1975), Devroye and Wagner (1980) and Deheuvels and Homenal (1980). In
the last reference, a sketch is given of the proof of the following result: if
h — 0 almost surely, and nh?/(logn) — oo almost surely, and if f is
uniformly continuous and K is a Riemann integrable density, then
sup, | f,(x) — f(x)| — 0 almost surely.

3. POINTWISE CONVYERGENCE OF THE STANDARD
KERNEL ESTIMATE

Definition. A sequence of positive numbers a,, is called semimonotone if
there exists a constant ¢ > 0 such that «,,,, = ca,, all m,n > 1. Note that
this implies that either liminf, , a, = o0 or sup,a, < oo.
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THEOQREM 3.  Let f, be the standard kernel estimate with smoothing factor
h depending upon n only and bounded density K with compact support.

1. Weak Version. The following are equivalent:
A. f, — f in probability, almost all x, some f.
B. £, — f in probability, almost all x, all f.
C. h—> 0and nh? > .
D. [|f, — fl = 0 in probability, some f.
E. [fif, —f] = 0 completely, all f.
2. .« Strong Version. Let K also be Riemann integrable, and let
nh“/(loglog n) be semimonotone. Then the following are equivalent:
A. f, — [ almost surely, almost all x, some f.
B. f, — f almost surely, almost all x, all f.
C. h— 0and nk‘/(loglogn) = .
The Riemann integrability of X is not needed for A = C, and the
scmimonotonicity condition is not used in the proof of C = B,
3. Complete Version. Let nh?/(logn) be semimonotone. Then the
following are equivalent:
A. f, — f completely, almost all x, some f.
B. f, — f completely, almost all x, all f.
C. h—0and nh?/(logn) = .
The semimonotonicity condition is not needed for the implication
C=Bh. '

The inclusion of Theorem 3 in this book is partly motivated by the
following observation: the standard kernel estimate can be strongly L,
consistent (i.e., [|f, — f| — 0 almost surely) while at the same time it is not
pointwise convergent (almost sure sense) at almost all x. This happens, for
example, for all f/ when n#“ is chosen as logloglogn, as yloglogn, or as
cloglogn for a positive constant .

4 EXAMPLES OF AUTOMATIC KERNEL ESTIMATES

Most automatic kernel estimates fall into one of two categories: the first
category houses all the estimates in which one considers the main term in
the asymptotic expansion of some error criterion, and estimates all the
unknown factors from the data. The second category groups the estimates in
which 4 is obtained by minimizing some criterion (such as the maximum
likelihood suitably modified) directly. The latter approach often requires
more computations, and the theoretical analysis of the properties of the
automatic estimate is usually more difficult too.
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Estimates Based on Asymptotic Expansions. First and foremost among the
estimates based on asymptotic expansions is the parametric method il-
lustrated in Section 5.6 for the L, error. The parametric method should give
excellent results if the hypothesis that f belongs to the given parametric
family of densities is correct. For example, if the parametric family is
normal with unknown mean p and variance o2, and if a7 is estimated from
the data by 62, then in the parametric method we use

15¢y27 \'°  16644--- 6
8n IV

h=c‘r(

For all f for which é — ¢ almost surely for some constant ¢ (this
includes nearly all densities when & is a reasonable data-based estimate), we
have, by Theorem 1, [|f, — f| — 0 almost surely. The same remains valid
when 6 remains almost surely bounded away from 0 and infinity (this is
satisfied for all £ when é is a robust quantile-based estimate; see Section
5.6).

In fact, more is true. Tt is a good exercise to obtain conditions un-
der which é — ¢ almost surely (or weakly) implies that E([|f, — f]) ~
E(fI1f¥ — f]), where f* is the kernel estimate in which, for the formula of
h,. & is replaced by c¢. Thus, not only do we have consistency, we also have
information about the rate of convergence. We should note however that
this rate is not optimal uniess f indeed belongs to the parametric family.
See also Section 7.

The parametric method was first developed in depth by Deheuvels (1977)
for R' and the criterion E([(f, — f)?). His development was based upon
Rosenblatt’s fundamental result that when K is a bounded symmetric
density and f is a bounded density with two continuous derivatives all in
L,, then the standard kernel estimate satisfies

E(f(f,, —f)z) ~ () K2+ %h“(fszfx)dx)sz”z (2)

provided that A — 0 and nA — oo (Rosenblatt, 1956, 1971). From (2) it
appears that the best value for # is given by h = [A/nff"?]'/>, where
A = [K/(Jx*K(x})dx)? is a [actor depending upon K only. The only
unknown in this expression is [f”?, which, for the normal density, equals
3 /(8w o). See also Deheuvels and Hominal (1980) for further discussions.

For the histogram estimate, the parametric method was developed by
Scott (1979). .

Others have proposed to estimate the unknown factor ff* in (2) from
the data by nonparametric means. This leads to a two-step procedure: first,
ff* is estimated, and then f is estimated by using the estimate of {f*? in



152 The Automatic Kernel Estimate: L, and Pointwise Convergence

h=[A/nff"*]'"> (Woodroofe, 1970; Nadaraya, 1974; Scott et al., 1977;
Deheuvels and Hominal, 1980; Scott and Factor, 1981). It seems straightfor-
ward to mimick this work for the L, error. In both cases, however, we are
again faced with the choice of parameters for nonparametric estimates (thus
creating a new equally difficult problem as the one we tried 1o solve), and we
assume that quantities such as ff*? can be estimated consistently if at all.
The parametric method is more robust in this respect. Finally, all the given
methods are based upon some strong assumptions regarding f that may or
may not be satisfied. For example, if the L, error is used, we need to
estimate | ﬂ and [|f”| (or a suitable generalization of it): the first term is
infinite for the Cauchy deansity, while the second term is infinite for the
uniform density. Large classes of important densities have to be excluded
from further consideration, and this should be avoidable,

Heuristic Estimates. Among the estimates that are not based upon
asymptotic expansions, the approaches of Wagner (1975), Silverman (1978),
and others fall into a separate category. No attempt is made to attain some
theoretically predicted performance (as for estimates that are based upon
asymptotic expansions), or (0 optimize some criterion as we will illustrate
below.

For example, Wagner (1975) considers D,,,..., D,,, the distances be-
tween X;,..., X, and their respective kth nearest neighbors, where %
=10 < a < 1. He suggests several schemes for choosing 4 such as

(1) & is chosen at random from D,,,..., D,..
(i) h =X (D,/n)
(iii)) 4 = max, D,,.
(iv) h=min;D,,.
The number of possibilities is virtually unlimited. For (i) he has shown that
for all f, A — 0 almost surely, and n°4?¢ — o almost surely when & > 1 —

a. Thus, for the kernels considered in Theorem 2 and for all f, f — f
almost surely for almost all x, and |/, — f| — 0 almost surely.

Optimizing Some Criterion. If % is chosen so that some criterion is
maximized, we can hope (o obtain an estimate that can be trusted for all
(unknown) f, even for quite small sample sizes. The first and foremost
criterion is based upon the maximum likelihood (ML) principle. It was first
suggested for use in kernel density estimates by Duin (1976, paper sub-
mitted in 1973) and Habbema et al. (1974). See also a recent survey by
Rudemo (1982). They suggest choosing /£ so as to maximize the likelihood

L(W) = [1u( ). ®
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~here
N SN Y '
W= e K ) (@
i

and to use this 4 in the standard kernct estimate. This cross-validated kernet
density estimate (and a similarly defined cross-validated histogram estimate)
seems to work well in most, but not all, situations. The cross-validation was
needed in the first place because [T}, f,( X;) is maximal for # = 0,

The major difficulty with cross-validated estimates is to establish their
consistency. Our Theorem 1 allows us to do this if we can prove something
about the smoothing factor A. The first occurrence of a consistency proof
for the cross-validated kernel estimate in R' is in Chow et. al. (1983).
Because of its practical importance and because of the novel technique of
proof, we will state their main result here, suitably generalized to RY and
stripped of unnccessary conditions on f. The proof is given in Section 5.

THEOREM 4. Choose h such that L(h) > a sup,.., L(h) for some a €
(0,1). Let f, be the cross-validated kernel density estimate, and let f be a
density with compact support. Let K be a bounded compact support kernel with
K> clg = for some c,r > 0 (recall that S,, is the closed sphere of radius r
centered at x), and assume that K is Riemann integrable. Then h — 0 and
liminf, ,_ nh?/(logn) > O almost surely,

Thus, (as a corollary of Theorem 2) f, — f almost surely for almost all x,
and [|f, — f| — 0 almost surely.

Sometimes solutions of some optimization methods are truncated be-
tween two bounds 1o “force” consistency. The strength of Theorem 4 is that
no such bounding is necessary. The only requirement on f is that it have
compact support. Consider however the following variation on R! of the
method mentioned above:

Step 1. Apply a monotone transformation (such as 7(x) = x/(1 + {x{)}:
R — [—1,1] to the data, thus obtaining ¥,...,¥,.

Step 2. Construct the cross-validated kernel density estimate on [ — 1, 1].
(This 1s afways consistent, by Theorem 4.)

Step 3. Estimate f by the transformed cross-validated kernel density
estimate.

Because the L, distance between densities is invariant under monotone
transformations of the coordinate axes, the L, error equals the error
committed in estimating the density of Y, by the cross-validated density
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estimate in Step 2. In other words, the variation given here is consistent for
all densities f.

Although Theorem 4 is reassuring, it does not tell us anything about the
rate of decrease to 0 for E(f|f, — f|), and this seems to be a challenging
open problem. Also, we have not explained why some strong tail condition
on f appears in the statement of Theorem 4. Take a density f on R!, let X
be 0 outside [-1,1), and let X, < --- < X, be the order statistics of
X, X IEh < X,y — X, _yy. we have f,(X;) = 0, where X, = X, and
thus L{h) = 0. Thus, the & that is actually chosen by the cross-validation
method satisfies for all n: &= X, — X,_y,- Now, let K be a kernel
bounded by M. For each ¢ > 0 we can find § > 0 such that

j.;f fze>0.

=2M

Now,

flfn -fl= 2L)f”f_fn = sz.}zfn = 'I;>?.M/frf

is at least equal to ¢ when & = 8. We tacitly used the fact that f, < M/h.
Thus,

P(f|f,,—f|2£) 2 P(h28)2 P(X,~ X,-py28). (5}

Therefore, convergence in probability to 0 is impossible for [{f, — f| if
Xy = X(n-1y = % in probability. This fact was first pointed out by
Schuster and Gregory (1981). For example, any density for which
lim, . f(x)/fZ f(y)dy =0, {Z f> 0 for all x (such as aff the densities
with a tail decreasing at a polynomial rate ¢/x% a > 1), must have X, —
X.,_1y = o0 in probability. This class contains the Cauchy density, the
Student’s ¢ densities, the Pareto densities, and all stable densities except the
normal density.

In Schuster and Gregory (1981), some method is given to take care of the
nonconsistency for long-tailed distributions. The borderline between con-
sistency and nonconsistency seems to be the exponential distribution (for
which % - 0 in probability, and thus we have nonconsistency). Distri-
butions with smaller tails seem to be safe. The condition that f have
compact support (Theorem 4) is too strong in this respect.

Experimental evidence is given in Scott and Factor (1981), Rudemo
(1982), Schuster and Gregory (1981). Chow et al. (1983) give a theorem in
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the spirit of Theorem 4 for cross-validated histogram estimates. Geman
(1981) and Geman and Hwang (1982) apply the ML principle to a kernel
estimate in which not the X,’s but some design variables x,,..., x, are
chosen as the centers for the kernels. Schuster and Gregory (1978) cut the
sample artificially in two, determine & by maximizing

ns2

[1/,(%), ©)

where f, ,(x) = 2/n)Z}_, .1 h~K((x = X,)/h), and they use this 4 in
the original kernel estimate. This approach requires less computational
effort, but seems to give poorer results than if cross-validation were used.

Finally, Hall {1982a,b) gives evidence that the cross-validation method
when used for f that are concave on {0, 1] yields smoothing factors # that
are of the order of magnitude n '/ (which is necessarily suboptimal in
certain cases).

The cross-validation method can also be used on other criteria besides
the maximum likelihood criterion. For example, in an attempt to find the &
that minimizes [(f,; — f)?, where f,; is the kernel estimate with smoothing
factor h and kernel X, Hall (1983a, b), Rudemo (1982), and Bowman {1982)
suggested a minimization of ff;, — 2M,,, where M,, is a sample-based
cross-validation estimate of ff,, f, for example,

1 n
; E fnh!( ‘XJ)’
where

x—X
- T TR(EE) i

F#i

Stone (1984) observed that

Mo s SR8 [5G TRKMX - X).

The value #* thus obtained is best possible in the following sense:
f(fnh‘ - f)z
min,, f (S —f )2

— 1 almost surely
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for all bounded f on R whenever K is Lipschitz (with any positive Lipschitz
power), X is symmetric, X has compact support, and [K? < 2K(0) (Stone,
1984). K does not have to be nonnegative, as long as (K = 1. For an
analogous result for the histogram estimate, see Stone (1983). It is not
known whether the given cross-validation estimate is consistent for all f. As
we have seen, minimizing the L, error could actually lead to extremely poor
L, rates of convergence. The question still remains of the construction of an
estimator A* such that

S = 11
- min, flfnh - fi

—+ 1 almost surely

for all f, or with “ = 17 replaced by “ < C + o(1).”

5. PROOFS

For the proof of Theorem 1, a few key Lemmas are needed:
LEMMA 1. For any density K on R,

lim fIK, - K| =0,

where K,(x) = h™“K(x/h).

Proof. When K is continuous, the statement is obviously true: K, ~ K at
all x. Thus, by Scheff¢’s Theorem 2.7, we are done.

When K is an arbitrary density, we can find for every & > 0 a continuous
density K such that f|K — K| < e. But because

Jiky— Ki< [IK, - Ry + fIR, - K1+ [IE - K|
we have

lixf_.silpf|K,,—K152£+ ’!i_’nif|l?,,—!(-'1=2£,

and Lemma 1 is proved.
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For an arbitrary density K introduce the notation

o(8)=  sup [k, - K|,
1-8<h<l+8§

For any 8 € (0,1) we have 0 < ¢(8) < 2. Also, by Lemma 1, lim; , (¢(8) =
0. At this point we would like to make the dependence of f, upon %
explicit, and we will write f,, instead of f,.

LEMMA 2. Consider a sequence of intervals H, = [h,, k], where b}, = 0
and nh* — 0. Then, for each € > 0 there exist positive numbers n, and r
such that

(supﬁf,,,, f|>s)<exp( rne?), alln > ny.
he i

Proof. By our assumptions,

hud
lim =0,
a—ou A} rd
and thus
hlﬂ
1< H = a,n'/4,
where lim, _, _ a4, = 0. Let §, > 0 be the solution of the equation

(1+8,)" = a,n/

Clearly, §, — 0. Next, introduce

~(1+8)K, i=012,....n

MI

Thus, k,, = h, and h,, = h;, so that

sup f|f —f1 < wp(ﬂﬁhl—fﬁ-'sw it~ Mm.)

heli, Lsesn w 1Sh<hg

7



158 The Automatic Kernel Estimate: L; and Pointwise Convergence

For each u > h,

St =t = 3 B Il = ) = Kol = )l

f e=of )

(%] K(h ) K(x)|d

Thus,
sup flf.,h Jan IS sup ¢( ! —1)
i<hshy, il By sh<hy \Prict
h?’”
S‘f’(h n 1) —6(5).  (®

There exists for each ¢ > 0 a number n; > 0 such that ¢(8,) <enz n,.
Thus, in view of (7) and (8),

P s fita=11>2¢) < £P{fif, - 11>e) 0

=1

We will now apply Remark 3.1: each term on the right-hand side of (9) is
bounded from above by exp(—rne?), n > n,, where » and n, are positive
constants, provided that for each i € {1,...,n}, we have

(%(E))W < h, < hole)

n

in the notation of Remark 3.1. But this is satisfied when A < Ay(¢) and
(cy(e)/n)/¢ < k. This concludes the proof of Lemma 2 since for all n
large enough, (9) is bounded from above by n exp( — rne?).

Proof of Theorem 1. We prove the complete convergence, The strong and
weak convergence can be obtained similarly by substituting the word
“completely” by the words “almost surely” or “in probability”. Assume
that for each ¢ > 0, we have I}, , Stz e} 0 completely. This is equiva-
lent to the condition that there exists €, |0 such that [, ., /(,,,,r,“”] =+ {
completely. Now, define

1\ /@D
en=max(e;,,(;) ),
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! and verify that ¢, = ¢ and [,y 445, — O completely. Next, define
H, = [hy, k] by

. ~1/d
k, = (ne,) / ,

Ry =,
’ By definition of &,, we have A}, < 4. Furthermore, & — 0 and nk}’ — co.
Thus, because

-1
I[h+1/(nh‘)ze,.] = I(I[h-t—l/(nh‘)ah:,’] + I[hn/(nh‘)zmh';') ‘])
1
2 HTpanp + linsiy)

1
=ilhen,)

we scc that fj, ez — O completely. Theorem 1 now follows from this
observation, Lemma 2, and the inequality, valid for ail ¢ > O:

II!I!..—J'"t] s I[hiﬁ..l t I[SUPﬂEEJ,f!fnn_f|>f]'

The proof of Theorem 1 illustrates very nicely the power and depth of
Theorem 3.1: we required hardly any new technical tools, For the proofs of
Theorems 2 and 3, quite a few new elements are needed. Until we complete
the proof of Theorem 3 we will assume that X is a density bounded by K*
with support contained in S, the closed sphere of radius ¢ centered at 0.

LEMMA 3 (Convergence of the Bias). Let &, be a sequence of positive
numbers tending to 0 as n — . For all densities f on RY we have

im sup [f*K,-fl=0, almostallx.

=X g<h<h;

Proof. We can bound the said supremum from above by

swp [ W(x =) = f(IK() &

O<h<h’

. |f(x —y) - f(xHdy
<K 0<Sﬁ?£h3,’ (f$,(n )\(So. ) MSoc).

where A is Lebesgue measure. By the Lebesgue density Theorem 2.2, this
tends to O for almost all x.
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LEMMA 4. For every nonnegative Riemann integrable function K bounded
by K* on [0,1]% and for every &> 0, there exists an integer N and
nonnegative numbers a, € [0, K*],1 < i < NY, such that the function

K(x) = Talyx).  xe[01)"

in which the A.'s are the rectangles formed by the products of intervals of the
form [(j — 1}/N, j/N), Y <j < N, or [(N— 1)/N,1), satisfies:
@) |K(x)— K{(x)}| <¢ all x € A =unicn of some A,’s;
1) 0= K| (x)=K*all x;
(ii} A(4) <e
LEMMA 5 (Fundamental Inequalities for the Uniform Deviation). Ler
€ > O be an arbitrary number, let x be a Lebesgue point for f (see Theorem

2.2), and let k', and k', be two positive number sequences satisfying 0 < k), <
ki, 10. Let f,, be the estimate (1) with smoothing factor k. Then

sup  P([fu(x) = Ki(x)] > ) < 2exp(—bnh’),
h,sh<h]

where b can be taken as € /(2K*(f(x) + o(1) + ).
If K is Riemann integrable, then also

aexp( —bnh)
1- exp( —b’nh:,“')

P{ sp [fulx)—frK(x)|2e) <
W ch<h?

for some positive constanis a, b. b’ not depending upon n.

Proof. Bennett (1962) has shown that for independent identically distrib-
uted zero mean random variables Z; with |Z,| < ¢, and for all € > 0,

e e A |

*Hﬁz

202+ 1e) ]’

1 n
&7

< 2cxp(

where ¢’ = E(Z}). The last inequality follows from log(l + u) = 2u/
(2 + u), valid for all « > Q.

Our first inequality follows by replacing Z, by A “(K((x — X)/k) -
E(K({(x = X,)/h))), which is bounded in absolute value by t = K*/h? and
has variance o2 < K*f * K, (x)/h? = K*(f(x) + ¢(1))/h* uniformly on
[0, 2] (by Lemma 3).
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For the second inequality, we take a positive number 8 (1o be specified
later), and let &, = A, {1 + 8)', i =z 0. Let i, be such that h,, | <h; <
k. We have, if we write estimate (1) as f,,(x) to make the dependence

upon # explicit,

sup | fu(x) — f* K,(x)]

h,<h<hy

< sup | |f,, () =f*K, (x}]

U<igiy

+ sup |f > Ku(x) = f* Kp(x)]
hn.j—lsh'h'shnf

+ sup U-nit(.x) —fnh'(x)I]

Roi1Shoh <hy,

= sup [U+V,+ W]

O<i<iy

By the first part of Lemma 5, for ¢ > 0,

P(U =€) <2ex ~ i1
; 2 E) & )

* PL2k*(f(x) + e+ o(1))

where the o(1) terms does not depend upon i (since 0 < i < i,). By Lem-
ma 3,

sup ¥, <2 sup |f*K,(x)—f(x)|—0.
0<igiy B<hy,
For fixed € > 0, find K, N, a,,...,a,« and sets 4, as in Lemma 4 (after
having replaced [0, 1] by [—¢, ¢]?). The set A also keeps its meaning from
Lemma 4. We introduce the notation p and p, for the measure induced by
/. and the empirical measure defined by X;,.... X, respectively, Also, A is
the difference operator between sets.

Without loss of generality, we can assume that all sets A, are strictly
contained in one quadrant, such as [0, c]¥. We need a few geometrical facts
now. Let &, A’ be numbers in the interval [4, ,_,. %,;]. and let A, be fixed,
for example, A, =la, @] X -+ X[ag, ayl. Then, (x + hA. )A(x + h'A;)
C(x+h,B) where B, is a set of fixed form and dunenszons determmed
by 4,, d, and & only. Also A(B) < 2¢4.
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To prove this first geometrical fact, we need only show that ud ;Au’Ad; C B,
for all u#, 4" € [1/(1 + 8),1]. First, take

, , a’ a!
Bf = {a!’a]] X X[ad,ad] _[‘1111—;8] X - x[“dsﬁ}

a , ,
+[1+16’a'] : 1+6’ ] (g, 41] X --- X[a,, a}].

where the — operators are considered before the union operator +. We
note that B, is contained in [ —c, ¢]“. Also,

! 1 ] r r ’
)\.(BJ-) < (ﬂl(l - m) +a1(1 "1+ 6))0203 et dy

< 2ajay -+ ayd < 2¢45.

Second, let A4 be the set of Lemma 4, that is, it is the union of A disjoint
rectangles A, and let B be the set of all points contained in u8, where
ue 1/ + 8),1} Then, B € [—c¢, ¢]% and by the previous derivation for a
single rectangle, A(B) < A(A) + 21=1 A(B) < A(A) + 2 Mc95. We can now
obtain the following crucial upper bound for W;:

s s T [allepn(n) Lo ()ERD)

hy 1<k R <h,, j=1 h:xfl 1
N _ _ &
42 sp ¥ K(xhy)_Kl(x y) n,,d( )
hyi-1Shsh, j=17%14hd; h h"‘,-,,l

ajy‘n( x+ hmAJA'x + hn i—-1 ,r)
hd

ni—-1

Nd
<X
=1
25;.t (x+[- c,cl’hy)  2K*u (x + h,,B)

hd + hd

ni—1 n,i—1

Vd
<h.i- 1( ZK"‘,un(x-bh j)+2r:,u.,,(x +[—c,c]dhm-)
Jj=1 .

+2K*,(x + h,B)

Nd
= L W, W W
Jj=1
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where p., is the empirical measure for X, ..., X,. For a given n > 0, we find
£,8 > 0 such that the expected value of each W, does not exceed 3/3N d
and the expected values of W, and W do not exceed 5,3, This corre-
sponds to the requirement that

(f(x)+0(1))(1 + B)dK*Zc“'ﬁ < n/(3N);
(f(x) +o(1))(1 + 8)"26(2¢)” < n/3;
(f(x) +o())1 + 8)“2K*(e + 2Mc?8) < 1/3.

Once again, the o(1) terms do not depend upon i, so that all three
inequalities can be satisfied for all » large enough, uniformly in /. A small
technical note is in order here: it seems necessary to choose € first under the
assumption that § does not exceed 2. This fixes ¥ and M, so that in a
second step we can choose 8.

For each i, we have by simple bounding techniques,

Nd
n
P(W,>23) < X P(Hﬁ, - E(W,)> F)

i=1
+P(W; - E(W) > 7) + P(Wr - E(W) > 3).

(10)

Uniformly in / and §, we know that for all # = »r,, all expected values are
smaller than /3. Also, each of the W, ’s, W]’s, and W/"’s can be written as
(/m)X; ., Y, where the ¥, ’s are independent bounded nonnegative ran-

dom variables with absolute value not exceeding r/h¥;, where

r = max(2K*,2e)(1 + 8)°.

Thus, by another application of Bennett’s inequality, we see that each
probability on the right-hand side of (10} does not exceed

n(n/aNd)z = 2 exp{ — bnh?,
2((n/3)(r/n8) +(r/he W u/3IN")) ol ~brk)

2expl -

by definition of . A combination of all the bounds derived above shows us



164 The Automatic Kernel Estimate: L; and Pointwise Convergence

that for all » greater than some n,,

P( sup Ifnh(x)-f*Kh(x)l>4n)

h,<h<h,
fo )
< Y 2exp(—snhi(1 + 8)“'_1))
=1
+(N? + 2)2exp( —bnr (1 + 8)“),
(1)

where 5 = 42 /4K*( f(x) + n). The right-hand side of {(11) is again bounded
from above, albeit very crudely, by

[+ a3 -
Yy exp( —b"nh(1 + 6)')
i=0

< ¥ bexp{—b"nh (1 + 8i))
i=0

Y exp( —b”nhf)
1 — exp( - b"8nh;")

for some positive constants &’, b”. This concludes the proof of Lemma 5.

LEMMA 6 (A Binomial Tail Inequality). Let Z be a binomial (n, p)
random variable, with p = p(n) € (0,1) varying in such a way that p + np*
= o(1) buz lim,, _, _ np = cc. Then, for constant § > 0,

1+ a(1)
(277(1 + 5)3np)

P(Z - np>bnp)> 7 exp(—npH(8)),
where 0 < H(8Y=(1+8Ylog(1 +§) -8 = Q0 as 8 /0.
Proof. Let k be the ceiling function of np(1 + 8). Then,

_ k
P(Z - np 2 8np) 2 (z)p"(l -p)" = ("—,T—l)p*(l —p)lert

D0y k)
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Since k% = o(n), pk = 0(1), and k! ~ (k/e)*y2xk , the lower bound is

—np k np -k
1+ o)) = - 14 o) IS
Snp—k log(l - §)

e
= (1 +0(1)) ok

—npH(§}

e
(L + 8)V2ak

> (1 + 0(1))

L]

from which the sought inequality follows,

LEMMA 7 (Exponential Lower Bounds for Large Deviations). Ler f be an
arbitrary density on R%, and let x be a Lebesgue point of f with f(x) > 0. Let
€> 0 be a constant, and let h = h, be a sequence of positive numbers
satisfying h + nh?? = o(1), lim, _ _nh" = 0. Let H(-) be defined as in
Lemma 6. and let § = 2e/f(x). Then, for the kernel estimate (1),

P(f(x)—f* K,(x)=z €)

1+0(1)
 (2mmrif(x)(2¢)7(1 + 8))7 |

Xexp(—nh"H(t’i)(f(x) + 0(1))(26)‘#).‘

Proof. Let Y be a random vector defined as X restricted to x + [—c, ¢]%h.
Define

]_ L x - }fr
g.(x) =3 L h K[,
i=1

where Y, Y,,... are independent and distributed as Y. 1t is clear that f, (x)
is distributed as (N/n)gy(x), where N is independent of the ¥;’s, and
distributed as the number of Xs in x + [—¢,c]%h. Also, E(f,(x))=
PE(g,(x)), where p=P(X, €4 =x+[—c¢ c]®h) = )R f(x) +
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o(1)). We have the following inclusion, valid for ail a large enough:

P(f,(x) = E(f,(x)) + ¢)
> P(N = np(1 + 8))

i)

indeed, on a rich enough probability space, we can think of f,(x) as being
equal to (N/n)gy(x), where ¥,,..., ¥y is the subset of X),..., X, that falls
in A. If N = np(1 + 8) and g,{(x) = E(gy(x)) ~ e/2p(1 + 8), then

x _inf Plg(x) 2 E(g(x) - (12)

kznp{l+&)

fi(x}= %gw(ﬂ z ﬁp(lTJra—)(E(&(X)) m)

_ E(f(x)) e
—P(]+6)( P 2}?(1"‘6))
= E(J,(x)) + 8E(f,(x)) - 5

> E(f(x)) +¢&, nlarge enough.

This explains (12). By Chebyshev’s inequality and the fact that Var(g,{x))
< K*(f(x) + o(1))/kh“p, we see that (12) is at least equal to

P(N—np> 8np)k2nir(11f+6)(l (Mﬂf_ﬂ) Var(g,c(x)))

_K*f(x) +0(1))(2p)'( + 3)2)

>P(N—np=46 i
( " np)( np(1 + 8)e’h’p

= P(N —np = dnp)(1 — o(1)), ' (13)

to which Lemma 6 can be applied since N is binomial (n, p) with p + np?
= ¢(1} and lim,_, ,, np = 0o0. This concludes the proof of Lemma 7.

At this point we would like to make the dependence of f, upon A
explicit, and we shall use the notation f,,. A quantity of crucial importance
10 us will be )

D,{(x) = sup|f,4(x) — f(x)I,
. H,
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where the supremum is over all values of 4 in the interval H, = (&), &}],
and 0 < k], < A < oo only depend upon n.

LEMMA 8. Let K be a bounded Riemann integrable density with compact
support, and let k" = o(1). Then, for every density f on R:

A. Ifnk'? = o, then D,(x) — O in probability, almost all x.

B. If k!, varies regularly with coefficient r < 0 (i.e., W /h, =t all
t>0), and nh'?/loglogn — oo, then D (x)— 0 almost surely, al-
most all x. _

C. Ifni'?/(logn) > oo, then D,(x) = O completely, almost all x.

Proof. Parts A and C follow directly from Lemmas 3 and 5 and the trivial
inequality

D(x}s S;PU;A(X) ~f*K,(x)| + Szpif* Ky (x) — f(x)l.
To prove statement B, we fix a small 8 > 0, and define a subsequence
n={1+8),i=012,....Let
E

;= sup  sup |f(x) — f*K,(x)], (14)

*
nsn<n, ) heH)

where

H,.*=[ inf k. sup Ayl =[RY APY]

M=t R<H<R
By Lemma 3, it is clear that

sup  D,(x) < E; +o(1) asi— oo, all Lebesgue points x.

mER<A,

Thus, to show that D,(x) — 0 almost surely for almost all x, it suffices to
show that for all Lebesgue points, all ¢ > 0 and some §(e) > 0,

o0
YPE>e)<w
[={}

(by the Borel-Cantelli lemma). A simple bounding argument yields, for all
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n <n<n._,and fixed A,

Vw = I Kl <A fn = fopt ¥V fon — K

S(l— : )th(x*X,-)

LGRS i e

LIPS

F L Ka(x— X) Um0 K

¢J =n+1
< 8+ oW fon+Foonn) ¥ Fnn— F* Kl
S +8+ oI — FHK+HE+ 0O, g = F* Kl
+(8 + o(l))Zf-r K,. _ (15)

Here f,, is an estimate independent of f,, but distributed as f,,. It is
clear that E, is not greater than the right-hand side of (15), preceded by
SUPy ¢ pra- Smce A¥* = 0 as i —» oo, the last term in the upper bound is
28f(x) + o(l) (Lemma 3). Now, for fixed € > 0, let us choose § so small
that § < 1,28/(x) < e/4, and i are so large that all the (1) terms in (15)
do not exceed 1 and the o(1) term in 28/(x) + o(1) does not exceed £/12
(thus, the entire term does not exceed &/3). For such large i, we have

€
EESZ sup }fn,h_'f*Kh|+ Sup Ff"tl ~nh f*Kh|+§‘ (]6)
heH! helt,

By Lemma 35, there exist positive constants a4, a’, a”, b, b’, b such that the
probabilities that the first and second terms on the right-hand side of (16)
exceed ¢/3 do not exceed

aexp(—a'n,h*")
1 — exp( —a"nk?")

and

bexp(—b'(n; .y — n)hr)
1 —exp(~&"(n;,q — n,)h") ’

(17)

respectively. The constants do not depend upon i.
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For every M > 0, we can find i large enough such that j =i implies
n,.h}“’ > Mloglogn, > M log(jlog(l + §)). For j = i, the bounds in (17)
are smaller than

a+o(l) — and b+ o(1) —
(jlog(l +6}) (jlog(1 + 8))

(18)

respectively. But both expressions in (18) are summable in § when Ma' > 1
and Mb8 > 1. This shows that 6(&) > 0 can be found such that

Y P(E >¢) < o0, alle>0,all Lebesgue points of f.
=()

This concludes the proof of Lemma 8.

Proof of Theorem 2. Theorem 2 is based upon the inequality

|f{x) = f(x)l < s:p|f,,,,(x) =)+ o0 T e s (19)

where [ is the indicator function of an event, and o¢ - 0 is 0. The integral
versions follow from the pointwise versions (statements A and B) after
noting that /, is a density on R¢ for each n, and that weak and strong
extensions of Scheffé’s Theorem are applicable (Theorem 2.8).

The proofs of the pointwise parts proceed by construction ol a proper
sequence H, = [k, h’)]. They are based upon increasing subsequences of
the integers nj and nj, respectively. In all cases (A, B, and C), we have
nmy = ny = 1. Also, A} = 1/k on [n}.n}. ;) ~+ 0 as k = oco. Finally, &,
and Ay are arbitrarily defined on {n], n5) and [n], nY), respectively.

Part A. Let

n;j=inf(n: n>nyi_g, supP(h,,,z%)s%), k=2,

mzn

‘ 1
n;mf(n:n>n;(1, supP(mhﬁf,-:k)sE), k=2,

mzn
B, o= (k/n)on [, ni, ), k=2

Clearly, nh’¥ — oc. Also, on [n},n}, ). P(h,.=h))=P(h,21/k)<
1/k -0 as k — oc. Similarly, P(nh? < nh'?)y= P(nh?<k)<1/k on
[n}. 7} 1), and this tends to O as & — o¢. This completes the proof of part
A {apply (19) and Lemma 8). :
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Part C. Let

,,;=mf(,,;n>n'k'_l, Y m"P(hmz—)sz"), k=2,

mzn

mh< _
" infn:n>n;_1,2mkpl o k|<27F|, k=22,
m>n Ogm

1/d
(k’of") on [}, wisy), k22

k.,

Clearly, nk)?/(logn) — <. Also,

A+ —1

[+ 2]
Y P(h,z2h)=ny+ )Y X n"P(h,, >

n=1 k=2 n=ny

)

o[-

sni+ Y2 F< .
k22

By an identical argument,
[=2]

Plh,<h)<ni+ ¥ 2 %< .
=1

n k=2

Thus, 2.P(h, & H,) < o and, therefore, the right-hand side of (19) tends to
( completely in view of Lemma 8.
Part B. Let

h, = (k(loglogn)/n)"“ on [, miuy), k= 2.

Check that nA’?/(loglogn) — 20, and that &, > &, finitely often almost
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"

surely because on [n}, n} ),

o

P( U [k, = h;;,]] < gkp(;(j,,["m > %])

mzn =n}

oz
< Y27 =2*150a5k > .
jmk

In a similar way, it can be checked that 4, < k&, finitely often almost
surely. Part B will be complete if we can find a sequence of positive numbers
h* < k', such that nh*?/(loglogn) — oo and that A% is regularly varying.
Lemma 8 and (19) will then complete the proof. The sequence ¢(n) =
nid /(log log n) is nondecreasing by construction, and it tends to cc. Define
¢(¢) on the real line by linear interpolation from ¢(n). We will attempt to
find a function (£} with0 < § < ¢,y (¢)T e asr Too,and tY(¢)/¥(¢} > 0
as f — co. This function ¢ is thus slowly varying (Seneta, 1976, pp. 6-7).
Then, we define #* = (y(n)loglogn)/n)'/?, and note that it satisfies all
our requirements,

The function y that we suggest is continuous and piecewise linear with
knotsat 1, <¢, < ---, where f;, = . Let ¢, = 1, and set ¢(¢) = ¢(¢) on
{0,1]. Given ¢, and (¢, ) we define ¢, ., and ¥(1, .} as follows:

Wltis) = minl (1), ¥ (21 + ﬁgg—k))

‘P(tk-i-l)
w(n) '

> ($(t01) — "P(‘k))’k)gk)
) ‘lb(rk+1) .

1 = inf(t: txt. + L/t 2

-1,

Note that 1, > k = 0 as kK = oo, that ¢()/1 |, and that on [¢,, ¢, ;)

¥ (f41) <‘P(’)/t
teoplogk = logk ’

v(t) <
The existence of ¢,,, follows from the fact that we can always find
¢ >t + 1 such that

[ tk
1 - togk(1 — (1) /9(te0))
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because the denominator in the last expression is always at least } (in other
words, ¢ > 2¢, will always satisly the given condition). Finally, 0 < ¢ < ¢
and Y ()1 oc because ¢(7) — o0 and

* 1
kljz(l * 2logk) =%

Proof of Theorem 3. Part 1 requires no new proof. The equivalence of C,
D, and E is established in Theorem 3.1. Qbviously, C= B = A by a
combination of Lemmas 3 and 5.
Finally, A = D by Glick’s extension of Schefi¢’s Theorem (Theorem 2.8).
Part 3 is partially shown in Lemmas 3-and 5 (i.e., C = B = A). To show
A = (, we note that the necessity of k= o) follows from part 1, and
that the necessity of nh?/logn — 20 follows from Lemma 7: indeed,

i P(f(x) - E(f,(x))>e)< o0, alle >Q. almost all x,

n=1

h,=o(1), and nh? = % (both consequences of part 1 of this theorem)
imply that

e o] .

> min(l,(nhﬁ)_l’zcxp(ﬁanh‘j)) <ow, alla>0 (20)

n=1

by Lemma 7, since we can restrict ourselves 10 Lebesgue points for f, with
f(x)> 0. If nk?/logn is bounded by M, then the sum in (20) is at least
equal to .

[+
Y (Mlogn)_vzn"“‘”.

/= (’1/ M

which is not summable for @ < 1/M. But if rh?/logn cannot remain
bounded, then lim,_ _ (nhd/logn) = oc by its semimonotonicity. Hence
A=C

Part 2 is the only nontrivial part of the theorem. Clearly, B = A. Also,
¢ = B by Theorem 2 when K is Riemann integrable. We will now show
that Lemma 7 suffices 1o prove that A = C. Fix a constant ¢ > 0, and
define the subsequence n; by gxp{ailogi),i = 1. Now that (a, ., — n,)/n,
~ (ei)“ Assume that we can show that whenever nh?/loglogn < M < @,
B, = 0, nhY - o, and x is a Lebesgue point of £ with f(x) > 0, then

P(1£,(x) = E(/, (x))| > ¢ infinitely often) = 1 (21)
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for & small enough. By the semimonotonicity of nh?/loglog n, we must have
that lim, _, . (nh9/loglogn) = o0, to avoid a contradiction. The necessity
of h, = o(l) follows from part 1 of this theorem, as does the necessity of
lim, _,  nh? = co. We will thus show (21) under the stated conditions. We
have

[lfn,(x) - (f,, x))| > “0]

2 [1£(x) = E(f(x))| > 2¢eio)]

(x) = E(f*(x))] > ¢ f.o.], ' (22)

where

- T K - X\/h
H) = (nymny 3 K= X)h,)

J=m+l hg,“ ’
) o K((x=x)/m, )
f*(x)=n; ‘E‘,} W )

Implication (22) follows from the inequality

o) = Sy, (D12 25— (x) — ()]

Hx) = E(fH ()

By Lemma 5,

*(x) — E(f*())] > e)

Eﬂ(n,.}l/n )2
< 23"9( nih, "2KH(f(x) + e+ o(1)) )

) (¢2 + o(1))(ei)*
—ZCXP( 1+Lhn, 12K*(f(x)+e+0(l)))
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which is summable in § for all a,& > 0 (since nh? — o0}, so that by the
Borel-Cantelli lemma, the tast event in (22) has probability 1. By the
independence of its component events, the middle event in (22) occurs with
probability 1 if and only if

Y P(f(x) - E(() > 26) — 0. (23)

i=1

A lower bound for the jth probability in (23) is given in Lemma 7 if we
replace n and A there by »,,, n and k, |, respectively. By our assump-
tions, h, = o(l),(n,, —n)h;d = 0(1) and (o) — n )R > 0,50
that Lemma 7 indeed applies. Thé lower bound for the ith term is of the
form

c,(n,.ﬂhﬁm)_lﬂexp( cyn,, ke 1) i large enough, (24)

where c,,c;, are positive constants for all ¢ > 0, liminf, ¢, > 0, and
liminf, ¢, = 0. Clearly, (24) is at least equal to

¢ (Mloglogn,,,) *exp(—c, M loglogn,,,)
~ ¢,(Mlogi) *(ailogi)™™,

and no tail sum is finite when ¢, < 1/M (i.e., when & is small enough). This
concludes the proof of (23}, (21), and Theorem 3.

Proof of Theorem 4. In what follows, we assume that the conditions of
Theorem 4 are satisfied. T will be the compact support of f, M is the bound
on K, K = 0 outside §, ;, and K 2 cl5 . Let A4, be the set of all 4, with
L{h,)> asuph,OL(h) There are some mcasurablhty problems rega.rdmg
the h, that is actually chosen from A,. These can be sidestepped in a
number of ways. We will assume that the choice process is such that 4 isa
random variable. We will use the notation F for the distribution function of
f, and F, for the empirical distribution function defined by X|,..., X,.

The proof of Theorem 4 is based on a number of important lemmas.
These are extracted for the convenience of the reader.

LEMMA 9 (Large Deviation Inequalities for the Poisson Distribution}. If
X is @ Poisson (\) random variable, then

P{|X = Al = Ae) < 2exp(—-Ae’/2(1 + €)), alle> 0.



Proofs 175

Proof. See (3.3) and its proof.

LEMMA 10. Let {gq) be a collection of functions: R* — R' parametrized
by 8, and let f be a density with compact support. Then

f gy dF, — f 8o dF ’ — 0 almost surely

sup
6

under the following conditions on our collection:
(i) supysup,lgs(x)] < oo ({ e} is uniformiy bounded);
(1) {gg} is uniformly equicontinuous.

Proof. We let £ > 0 be arbitrary, and partition T into rectangles R,,1 < i
< N, with sup, sup, , c g IIx = Il < 8, where 8 > 0 is chosen so small that
1ge(x) — go( )| <€ for all &, x, 3. Let x, € R, 1 <i < N, be arbitrary
points in the rectangles. Now,

[ 804, _fgadF!

sup
g

=

I
—

<

sup ngﬁdﬁl _fn,g"dFI

¢

™=

s
{

j;lan—L‘dFU

sup( [ 186(x) = go(x )(dF, + dF) + g(x,)
] R,

Ldﬁ,—ﬂdl”),

where R is a rectangle. But by a d-dimensional version of the
Glivenko—Cantelli lemma (see, e.g., Kiefer and Wollowitz, 1958 or Kiefer,
1961),

1

2¢ + sup sup|gy(x}|sup
[ X R

N
<Y
jm]

sup
R

Ldﬁ,—fkd}‘

This concludes the proof of Lemma 10.

< 29sup|F,{x} — F(x}| = 0 almost surely.

LEMMA 11. For any constants 0 < ¢, < ¢, < 0,

inf inf [+ K,(x)> 0,

a<shsc xe¥l
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and
M
sup supf*K,(x) <— <.

ag<h<e; x€T 151

Proof. The second part of Lemma 11 is obvious. For the first part, we note
that

__f
Sura (16,)“A(Sp )

where A is Lebesgue measure. Since 7' is compact, the collection { S, ,,, 2. %

f:K,l(x)>cf 7\( ,;,)_

€ T} has a finite subcover of T with spheres centered al xp,...,x,.
Therefore,
1nff~= K,,(x)>c3 inf >0,
<i<N S A2

where ¢, is a positive constant. Since the lower bound does not depend
upon k, Lemma 11 is proved.

LEMMA 12.  For all densities f and K satisfying the conditions of Theorem
4, we have

ff*fK,, < M, + MR,

where M,, M, are constants depending upon f, K, and d only.

Proof. First, wenote that f» K, = A~ f _[- It is always possible to find
a cover of T with sets of the form §, ,, /2 in such a way that at most
M, — M, + M,/h? sets are needed, where the M,'s are constants depending
upon f and K only. This is because the smallest closed cube covering T can
be covered in such a manner. Let the M, centers be called x, x5,..., x,. It
is clear that for all x € S, ,,,, wehave [g f2 [ . f. Thus,
Ms d
T L e N c f
sx.hr

M.

Pl S Mih?
LD D =—,

i=1 [ f f c

S.\’,—Jufz

which was to be shown.
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LEMMA 13 (Properties of the LlogL Norm). Let K and f be densities
satisfying the conditions of Theorem 4. Then the following is true:

() [flogf+K, < [flogf allh>0;
(i) lim,,,fflogf*K, = [flogf;
(i) fflog [+ K, is continuous in h on (0, co).
Preof. We note first that fflog f+* K, < oo for all A > O, but that it is
possible to have [f log f = oc. We start with Jensen’s inequality:

) sl

for all 4 > 0,

The proof of (ii) is in two parts. Let log, and log denote the positive
and negative parts of the log function, respectively. Fm;t by Fatou’s lemma
and Theorem 2.3,

[*K,\
7 ”)—logLf*K,,*:O

limiunffflogJ(f* K, foligniibnflog‘f* K, = [flog.f.

Next, we need a fact from analysis: for any real number # € (0, 1), we have

J _ J ® _ J
logﬁzil__._.ﬂ: y -«
=0 J=d+1l J
L1
—J+1 u

From this tail estimate and Lemma 12, we conclude that for all integers J,

- J 1—f=» 4
[rog ek, + [rE UELBe
j=0

5[ 1 <M]+M2fl"
f*K, J+1~ J+1 °

ﬁnd
A(T)

J+1‘

Ifflog_ﬁffZ -1
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where A 1s Lebesgue measure. However, for all integers jf, we have
Jf(1—f«K).— [f(1 = [). (by the Lebesgue dominated convergence
theorem and Theorem 2.3). All these facts taken together imply that
fflog_f+K, = [flog _f. Thus, since log = log_+ log_, we have
liminf, fflog(f * K;) = [flog f, which together with part (i) of this
lemma implies (ii).

For part (iii), we consider arbitrary 4, #’ > ( and start with the following

inequality:
f*K
Sff iog(f* K:,

If A" > 0 is fixed and h € [’ /2,2k'], then sup_ . [log(f * K, /f * K,)| is
uniformly bounded in £ by Lemma 11. Let us call this bound ¢,. Now,
because for u, v > 0, |logu — log v| < |u — v|/min(u, v}, we have the fol-
lowing upper bound for the integrand in (25):

. ()

|frioe(r+K,) = [ 1081+ K,

e f1f =Ky = [+ Kyl _ (26)

Here ¢, is the bound for sup, ;. 4 <24 8UP, e r1/(f * K;,). The integral of
{26) ir turn can be bounded as follows;

acf JracfifeKi-feKl e >0 (27)
€3

where ¢; = sup, 3 <4 <24 SUP e 7 f * K, (this too is finite by Lemma 11).
The last term in (27) is o(1) by an argument as 1n {2.4) of Theorem 2.4 when
h — h’. The first term of (27) can be made arbitrarily small by choice of ¢;.
This concludes the proof of (iif) and of Lemma 13.

LEMMA 14. Let C be the interval {c;, ;] € (0, 0), and ussume that the
conditions of Theorem 4 are satisfied. Then

= 0 almost surely.

1o L(k) - [f10g(f + K,)

sup
he

Proof.  First, we show that

~sup

%logL(h) —% ¥ log(f*K,,(X,))l — 0 almost surely.
heC

i=1
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Indeed, note first that

sup sup|f,.(X,) — £,( X)| < sup sup sup|f, (x) — f,(x)]

heC | heC xeT |

1
< sup sup f,,(x) + sup — =0(1),
heC X, h

and that

sup sup|f.{x} —f*K,(x)| = 0 almost surely
he( =x

when K is bounded, has compact support, and is a.c. continuous (see, €.g.,
Devroye and Wagner, 1980 or Bertrand-Retali, 1978). By Lemnma 11 about
the uniform lower and upper bounds for £+ K,, we can conclude that

- LX) )
sup — lo — 0 almost surely,
helz' n E g(f *K, (X} Y

Lemma 14 is proved if we can show that

— 0 almost surely.

sup |~ Zlog(f*K,.(X)) [rio8(1 K,)

he(

Let us define g, = log(f+ K,). We must show that sup,.|/fg,dF, —
fg, dF| — 0 almost surely. This will be done by verifying the conditions of
Lemma 10. First, { g,, # € C} is uniformly bounded in view of Lemma 11.
Thus, we need only check the uniform equicontinuity. But again by Lemma
11, it suffices to verify the equicontinuity of the functions f s K,. Let us
take x, y € T. Then,

sup |+ Ky(x) = £+ Ky()] < sup [K,()If(x = 2) = f(y - 2)lde

heC
(M/ed) fIf(x = 2) = f(y = 2)|dz.
(28)
But by approximating f in L, by a uniformly continuous function f* with

compact support, we can show that this 1s ¢(1) as y — x. Because the
integral in (28) is thus continuous in y for each fixed x, and because
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x, ¥y € T compact, it must be uniformly continuous in x and y. This
concludes the proof of Lemma 14.

LEMMA 15. Under the conditions of Theorem 4, we have h, — 0 almost
surely. (This is the first half of Theorem 4.)

Proof. A, is almost surely not empty because L(A) = 0 for all # small
enough (this follows from the compactness of the support of K), and
L(#) > 0 for all k large enough (this follows from K = clg ).

To prove the Lemma, it suffices to establish that for every e > 0 there
exists a § € (0, ¢) such that

hm1nf(aL(8) - supL(h)) >0 almost surely. (29)

hze
(Because if y € [e, o¢), we have L(y) < sup,., L(h) < al(d) <

asup, ., L(#), all n large enough, almost surely, and thus y &€ 4 ) Now,
(29) is satisfied if

lim sup sup — logL(k) <hm1nf—log(aL 8)) = hminf%logL(B).
H— %X

H—of h>s
(30)

By Lemma 14, the right-hand side of {30) is almost surely egual to
[f log(f # K;). If M| is a large positive number, we also have

lim sup sup %logL(h)

n—w hzr

Smax(limsup sup —};]ogL(h),limsup sup log(h—ﬂi))

n—ooc e<hs M, n—soc hzM,

< max( sup fflog(f" K,),log M/Md))
esha M,

almost surely (by Lemma 14)

<fflog(f*K6) forsome 0 < 8 < e,
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The last inequality is a consequence of Lemma 13 and our ability to choose
M, as large as we please. This concludes the proof of Lemma 15,

LEMMA 16. Under the conditions of Theorem 4, we have
liminf, , _(nhi/logn) > O almost surely. (This is the second half of Theo-
rem 4.)

Proaf. For any ¢ > 0, we have

P( sup kb < a) < P(max
b

heA,

in| X, ~ X|| < 7a). (31)
#i

This follows from the observation that for £ < (1,/7)max; min, . .|| X; — X[,
we have L{k) =0, and thus certainly & € A, (because L{h) > 0 for all &
large enough). Inequality (31) is the starting point. In order to avoid putting
too many conditions on f a careful argument is needed. We assume that the
support T of f is contained in a closed square Q. which we can take equal
10 [0,1]¢ without loss of generality. We will use (31) with a =g, =
{(elog n)/n)"/? for some small £ > § 1o be picked later. Partition each side
of Q into 1/(7a) intervals of equal length (thus, each interval has length at
least equal to ra, and the length ~ ra as # — o0). The grid of squares has
m,, cells B,, which we assume, again without loss of generality, to be a
multiple of 3. Each cell has ¢ coordinates, and each coordinate is an integer
between 1 and 1 /{Fu), the rank of the interval for that coordinate projec-
tion. Let ¢ be the cells with all coordinates of the form 2 + 35, j=
0,1,2,..., and let C; be all the cells having at least one vertex in common
with C/. Thus, C, is a supercell consisting of 3¢ original cells, and there are
exactly m_/34 such cells C,. In our linear numbering of cells, we will assume
that the first m,/3“ integers give us the indices of the C; type cells. Let
P,= fC,f! pi= f(‘,’f-

We proced by Poissonization of the sample size. This is entirely a
subjective choice. For example, in R', the argument could easily be done
without Poissonization because the properties of spacings are well under-
stood on the real line. Let N,, &, be independent Poisson random variables
with parameters # — b, and 2b,, respectively, where b, = /M*nlogn, and
M* is a large number to be chosen later. The random variable N = N, + N;
is thus Poisson {# + b,). Given N, draw independent random vectors
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Xi,--., Xy from the density f. Now, the right-hand side of (31) is equal to

n
P( N [.S'X“,-.‘r contains at leastone X, j # /, j < n])

i=1]

=P

m, /3¢
Niciselu [C,’ isnot &, C, has at least two X,’s, j < n])
=]

< P(N <n}+ P(N, > n)

NI has no X, J = NyJU[C has at least one X; with
© J = N,C has at least two points with index j < N, N,
snmNz=n

+P

(32)
By Lemma 9, the first two terms on the right-hand side of (32) do not
exceed

2 - by +2 by n
KT an 26,y ] T P\ T 2n ) My

and this is summable in » for M* > 2. Having fixed M*, we will now
bound the last term in (32) by a function summable in #. By (31) and the
Borel-Cantelli lemma, this implies that sup, ¢ 4 & < ((elogr)/n)"/ finitely
often almost surely, which was to be shown.

From the last term of (32), we can drop N, < n, N > n, thus making it
larger. But then, we are left with the probability of the intersection of
independent events: '

/3

n (e—(ﬂ—b..)p: +(1 — e b (¢ b")p;e*(ﬂ+f’alﬁi—(n+b..](Pf'I’Q)))
im} ‘

mn/jd mi!/Jd )
S exp E (e {ﬂfbu”’; — e_(" ¢ hn)p;) — z (n + bn)p:e ("+bn}P| .
i=l i=1

(33)

where we have used the inequality 1 + u < e® valid forall u. For0 < u < »,
we have e ™ — ¢ " < e %(v — #) < v — u. Thus, the first sum in the expo-
nent of (33) is at most
m, /3
2, Y. p. <25,

i=1
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Now, define the following histogram density approximations:

gn( )— (3 a)d’ g”'(x)=(:f)d’ xeCf'

For the last sum in the exponent of (33), we have

/3
X (n+b)pemrron

a3

~ 3" —d }: f(n + b )gn t)e (n: b)(qm)"g,.(\)dx
i=1 "G

- 3—df ng.(x Yo~ (rHEOR ) gy : (34)
o

But by Fatou’s lemma and Theorem 2.2,

( ) n -(n b M3 g, (x)
limint 50 2 53 ¢ () imint e e

which is infinite if on a set of nonzero f~measure,

] :n exp( = (n + b,)(37a)"g,(x)) = o. (35)

liminf
n— o0

By Theorem 2.2, g, — f for almost all x. Also, (n + b,)(3Fa)’ ~ (37)elogn
and the term in (35) is

\/:gexp(k(y)_df(x)(e + 0(1)) logn), almost all x.

This tends to oo on a set of positive f~measure if ¢ is chosen small ¢nough.

Thus, for all » large enough, (33) 1s at most equal to exp(— \/_ fogn), and
this 1s summable in #. This concludes the proof of Lemma 16.

6. INVARIANT DENSITY ESTIMATION

Invariance of density estimates under certain transformations is an issu¢
first suggested in the work of Wertz (1974a,1976). in this section, we will
explain why invariance motivates us to use automalic density estimates in
general.
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Let ¢ be a real-valued function on R, monotonically increasing, one-to-
one and onto, and let ¢ and its inverse be absolutely continuous on finite
intervals. We say that a density estimate f, on R is ¢-invariant if for all n,
and all x,x,...,x, € R"*",

f"(q)(x)- ¢(X1),.. 'i(p(xn)) = (¢71(x))’fn(x’ xli' " ’xn)'

This can be rephrased as follows. Assume that we have constructed a
density estimate f,(x, X;,..., X,). Then, an estimate of the density of
Y = ¢ (X)) can be obtained in two ways:

(i) By an ordinary transformation of densities: this gives, if ¢ = ¢ 1,
o' (V) () o). v(3)). ¥y ¥, €RTY,
(ii)) By constructing a new estimate based on w(X,), ..., ¢( X, )
L)) = (v )

Vodieon ¥, € RO

Essentially, ¢-invariance means that both estimates are identical. To put it
in yet another way, ¢-invariance means that for all Borel sets B,

[hoamdr=[ f(ren)....s0n)) &,
B [ B]

where ¢| B] is the set of all values ¢(y), y € B.

In particular, we are interested in translation invariance (¢(x) = x + a.a
€ R). and scale invariance (¢(x) = bx, b > 0). Translation invariance is
nearly always taken for granted, and estimates that are not translation
invariant seem somehow peculiar. Translation invariance is basically equiva-
lent to the requirement that f, be a function of x — X;,...,x — X, only.
Obviously, all kernel estimates are translation invariant, as long as # is
fixed. The same remains true if we allow & to depend upon all pairwise
differences X, — X, = (x — X)) — (x — X)). Unfortunately, unless we mod-
ify its definition, the histogram estimate is not translation invariant. Dirac
delta function estimates (Walter and Blum, 1979) are estimates of the form

fn(x) = i Wme(X-, Xr')’

im]
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where the w,’s are weights, and the X ;’s are given real-valued functions.
Estimates of this form are translation invariant only if K,,(x, y) = K.(x —
y) for some functions K. This is why only the latter form is treated in this
book. In Chapter 12, we will see that orthogonal series estimates on the real
line are not translation invariant. We should also note that without transla-
tion invariance, it is difficult to enforce the condition ff, = 1.

Scale invariant density estimates satisfy

bf,(bx,bX,,....,bX,) = f.(x. X,,..., X,), all b> 0.

Unfortunately, the standard kernel estimate with fixed » is not scale
tnvariant for all kernels X because the condition

Tl orx—»\_1 (bx—by) .
b(hK( . )) K[ 22, allx, yi RobA> 0,

is only fulfilled if K(x}= c¢/x, or K(x) = c/)x| for some ¢ € R. These
choices of kernels lead to kernel estimates with horrible properties: for
example, for K(x) = ¢/|x|, we have [|f,|= o0, all n, and E(f (x)) =
for almost all x for which f{x) > 0. The standard conditions on the kernel
K, thatis, {|K| < oo, [K = 1, cannot lead to kernel estimates that are scale
invariant unless h is data-dependent. In particular, we obtain scale invari-
ance if # depends upon the data in such a way that

B(bX,,...,bX,) = bh(X,..., X,).

This is one of the main arguments for studying automatic kernel estimates.
Such functions k include for example,

1/r
(Zix-xr) . e,
L
c(X(b") - X(aﬂ,), where 1 <a,<h, <n, X, is the ith

order statistic of X,..., X,,.

In both cases, ¢ is a suitably chosen function of » only.

Invariance with respect to other transformattons is rarely needed: there
are applications in which density estimales may be required on a linear and
a logarithmic scale, and it would be quite distressing to observe that the
standard log-transform of the linear scale estimate does not correspond to
the estimate constructed with the logarithmically transformed data. If there
is inequality, which estimate should one choose? Another question we have
not tackled here is that of the existence of meaningful (consistent, etc.)
g-invariant estimates for a given ¢.
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7. RATE OF CONVERGENCE FOR AUTOMATIC
KERNEL ESTIMATES

In this section we give a general theorem that allows us to infer things about
the rate of convergence of an automatic kernel estimate provided that we
know something about the asymptotic behavior of k, in particular, its
closeness to a deterministic sequence a,. We impose a new condition on the
kernel, but emphasize that this is merely for technical convenience.

THEOREM 5. Assume that f, is an automatic kernel estimate with smooth-
ing factor h and kernel K, where (K =1, and
fIK,-Ki=cl~u), uz,

for some constant C. If f,, is the standard kernel estimate with smoothing
factor a and the same kernel K, then

fir=11- it 11| < cfr - mint(2,%)).
Proof. Without loss of generality, assume that ¢ < 4. Then
|f152=11= fifua = 1]
< [1fy = fud

éf!

:Ilr—*

o5

>R
‘*—-_d

REMARK. The condition put on K is satisfied for most densities K, in
particular for all densities K on R that are nonincreasing along rays, that
is, K(ux) < K(x), all x € R%,u > 1. In the latter case, C can be taken
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equal to 2, as can be seen from the following simple argument:

JILA Y sflu “K(%) —u K (x)|dx + flumK(x) = K(x)|dx

- u'“’f(K(%) - K(x)) dx +(1 - u)
=21 -u“)u=1

The inequality of Theorem 5 does not impose any conditions on the
smoothing factor, such as convergence 10 zero, and so on. It has many uses,
and we will list only a few in some Lemmas.

LEMMA 17. For any automatic kernel estimate f,, with kernel K as in
Theorem 5,

E(ﬁf,, —f]) < E(fff,mﬂ —f|) + Ce, + ZP(I ~ mind(ih’i, ai) > e,,),

n

where a,, &, are positive number sequences, and f,, is the standard kernel

estimate with smoothing factor a,,.
This Lemma is extremely useful. For example, consider smoothing fac-
tors of the form
ns2

h= an; E IXZA"I - ijl-
i=1

Here a, is an arbitrary sequences of positive numbers. We could have
suggested a double sum over all | X; — X/, but this could be computationally
unfeasible, and would in any case cloud the issue at stake. We have the
following lemma.

LEMMA 18.  If an awtomatic kernel estimate is consiructed with nonnegative
kernel, vanishing outside [—1,1), and satisfying the condition of Theorem 3,
and if h is chosen as in the previous paragraph for some arbitrary sequence of
positive numbers a,,, and if E(|X;17) < o0 for some p > 4, then

»

E(ﬁfn —f[) E(flf,.a.,mxlfm) ‘f')

in the notation of Lemma 17. There are no other conditions on f apart from the
given moment condition,



188 The Automatic Kernel Estimate: L, and Pointwise Convergence

Proof. We will apply Lemma 17 directly. By Theorem 5.2, the result
follows if we can find a sequence e, such that ¢, = o(n~?"°) and
P(lh/(a  EC1X, — X31)) = 1] > ¢,) = e(n *°). By Chebyshev’s inequality,
the latter probability is not greater than

n/2 °

2 Y (% - E(r))

:

Ele? (where Y, = |X,,_ | = X,,|)

P
< Cpe,jp(g) E
n

(valid p > 2, some C, > 0 by the inequality of
Marcinkiewicz and Zygmund, see Lemma 5.27)

] 72 1172 ' :
<Ger(2)'(5)7 TR BO% - E@)IP) (by the cinequaliy)
i=1

n

(2) 2 gy
< CpEn n (l ll )

< Ae;fn=?/2,

where A is a finite constant. If we pick €, ~ n” /%7 * 1 then ¢, = o(n"??)
for p > 4, and &, n #/? decreases as €, times a constant. This concludes
the proof of Lemma 18.

REMARK. From Theorem 5, Theorem 3.1 and an argument similar to
that used to obtain Lemma 17, we see that if there exists a sequence a,, with
a, — 0, na? = oo, such that #/a, — 1 in probability (almost surely), then
fif, = f1 = 0 in probability {almost surely), provided that the kernel in-
tegrates to 1, is absolutely integrable, and satisfies the conditions of Theo-
rem 5. Theorem 6.1 is more general, because no extra conditions are
imposed on K, and the existence of a centenng sequence a,, is not assumed
{this allows for more variability in the random variable #).
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CHAPTER 7

Estimates Related to the Kernel Estimate
and the Histogram Estimate

1. INTRODUCTION

The density estimates in this chapter are all valid densities on R“. They are
mainly generalizations of the kernel and histogram estimates with some
extra features, such as:
(i) improved small sample performance;

(1)} robustness;

{iii) simple recursive definition;

(iv) locally adapted smoothing.
In general, the consistency of these estimates is easy to establish although
equivalence results of the format of Theorem 3.1 are not available at this
moment. In Chapters 3—-5 we obtained a solid foundation for comparing the
kernel and histogram estimates. For the generalizations of these estimates,
much less is known about the rates of convergence. While consistency is
normally a routine matlter, the rate of convergence is not.

The estimates are quite arbitrarily grouped as follows:
Variable kernel estimates,
Recursive kernel estimatés.
Maximum likelihood estimates.
Varible histogram estimates.
Kernel estimates with reduced bias.

e

Grenander’s estimate for monotone densities.

191
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2. VARIABLE KERNEL ESTIMATES

In 1977, Breiman, Meisel, and Purcell proposed the following estimate:

AORE PRt 8

i=1 ni

where K is a given kernel, and H,; is the distance between X; and its & ,th
nearest neighbor among X,...., X,. Estimate (1) is a density in x, and
seems to have a locally adapted smoothing parameter because, roughly
speaking, H,, is large where f is small and vice versa. Of course, one still
has to choose k,, so this estimate could hardly be called automatic,

Estimate (1) probably emerged from the nearest-neighbor estimate which
could be thought of as (1) with a replacement of H,; by H, {x), the distance
of x to its k,th nearest neighbor among Xj,..., X,. See, for example,
Moore and Yackel (1977), Mack and Rosenblatt (1979), and Loftsgaarden
and Quesenberry (1965) {(who were the first to define the nearest-neighbor
estimate for the special choice K(x)= lsn,,(x)/;\(sn‘l))- However, using
H (x) instead of H,; destroys the density property: in fact, we have
ff, = oo for all n.

The idea of a locally adapted smoothing parameter is worthy of further
study. Our analysis of Chapter 5 shows that the smoothing factor should be
large when 1/f and |f”| are small. In arcas of high curvature of f (large
|fD or of small values of f, smaller smoothing factors are needed. The
quantity H,; does not take the curvature component into consideration and
is thus inherently asymptotically suboptimal. In fact, for fixed curvature, the
smoothing factor should increase, not decrease, with increasing values of f,
as suggested by the nearest-neighbor methods.

Nevertheless, the experimental results reported for (1) in Breiman et al.
(1977}, Habbema et al. (1978), and Raatgever et al. (1978) are promising, to
say the least. Yet what has eluded most researchers is a firm grasp on the
properties of (1), which is a sum of dependent random variables. The only
consistency result reported in the literature states that sup,|f, — f| = 0
completely when f is uniformly continuous, X is the uniform density on
the unit sphere, k,/n — 0, and k, /logn - oo (Devroye and Penrod.
1982). Abramson (1982) has suggested another method for choosing H,;,
and although his method lets A, depend upon x, it has an obvious
x-independent extension. What is needed here is a consistency theorem in
the spirit of Theorem 6.2 (which can be considered as a special case in
which H,, = --- = H,, = H, is random), with conditions on, say, the
quantiles of the H,; sequence.
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Another problem worthy of further investigation is that of the choice of
H,,. Nearest-neighbor methods, such as the one used by Breiman et al,
(1977), let the smoothing factor increase with /. There is no direct depen-
dence upon the curvature. But as we have seen in Chapter 5, even though
the results developed there are global, the smoothing factor should ideally
depend upon f and f”.

3 RECURSIVE KERNEL ESTIMATES

Recursively defined estimates offer two advantages: data need not be stored,
and the cstimates are ¢asy to update when new data become available. In
the former case, we are presumably only interested in the value of f at
several fixed x's. One can hardly expect simple recursive versions of the
Parzen—Rosenblatt kernel estimate to perform as well was the nonrecursive
original estimate.

The most frequently mentioned estimate defined by

f,.(x)=;‘_)f:lhx‘K(";X’) @

i

is due to Wolverton and Wagner (196%a, b} and Yamato (1971) (for its
theoretical analysis see Davies, 1973; Deheuvels, 1973a,b, 1974; Carroll,
1976; Ahmad and Lin, 1976; Devroye, 1979, Wegman and Davies, 1979;
Gyorfi, 1981). Here, £, is a sequence of positive smoothing factors.
Deheuvels (1973a, b; 1974) also proposed other generalizations including

En: K((-" - Xr‘)/hi)
fix)=—— (3
pMH
=1
and
T ak((x X)/h)
fi(x) = . (4)

n
2 ah!
i=1

where a, = g(h,;) for some positive-valued function g. In particular, he
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showed that the asymptotic variance of (3) is better than that of (2) or (4)
(with a, # 1).

Deheuvels (1979) derives the optimal asymptotic values for h; and a;
under a mean integrated square error criterion, and concludes that when K
is a symmetric density on R!, estimate (2) is optimal. Estimates (2) and (3)
will therefore be considered in some detail below. We would also like to
draw the attention to the general classes of estimates introduced by Banon
(1976) and Rejtd and Révész (1973).

Fora, =1/ ,/h_;f , (4) comes close 1o an estimate studied in Wegman and
Davies (1979). Finally, we would like to point out the work of lIsogai
(1978, 1979, 1982) who considers estimates defined recursively by

- X,

i) = £0) a5 <40 9

n+l

where g, =1, 0<a, <1, a,— 0 and L7.,a, = co. He gives sufficient
conditions for various types of consistency. Note that for the choice
a, = 1/n, (5) defines (2).

THEOREM 1. Let K be a bounded density with integrable radial majorant
(see Theorem 2.3), and let {h,} be a sequence of nonnegative numbers. Let f,
be estimate (3). Then, the following are equivalent:

A. f, — [ almost surely, almost all x, all f,
B. f, — f in probability, almost all x, some f;
C. IX_hg=coand lim,_ T kT, . /EI_ k=0 forall ¢ > 0,

D. JIf, = fl = O almost surely, all f;
E. fIf, — fI = O in probability, some f.

Theorem 1 will be proved here in full. Parts of the proof are taken from
Deheuvels (1973a, b; 1974) and Devroye (1979). We would like to point out
that weak and strong pointwise consistency are equivalent, a property not
shared by the standard kernel estimate (see Theorem 6.3).

Note that C is implied by the conditions &, = o(1) and £%_,#? = 0, but
that it does not impty that A, = o(1).

For the proof of Theorem 1, we will base curselves on a few key lemmas.

LEMMA 1.  Any random variable X with absolute moments p, = E(|X}")

satisfies
By 2 VB by
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Proof. The function 1/x + ax? on (0, o) (for fixed & > 0) is minimal for
x* = 1/2a. Thus,

x + ax*? 1/ 1 2/3A_3 1/3
2 2 (2a) +q(ﬂ) -E(Za) X

From this, we have, replacing x by | X), and taking expectations,

3
Bz %(2‘1)1/ Ko —apg.

The lower bound considered as a function of a i1s maximal for «
= L(,/p4)*"% Resubstitution into the bound gives

Ml 2 -‘.Lz.
Wi

LEMMA 2. If K is a bounded density with integrable radial majorant and
h 10, then

f*Kf —»ffo" for almost ail x, and all p > Q.

Proof.  This is a consequence of Theorem 2.3.

Proof of Theorem 1. By Theorem 2.8, A= B = Eand A= D = E We
will first show C = A, and we will conclude later by proving that E = C.
Define

i K((x - Xi)/hr')l[h,Sr]

fu= ]

f,,*(x) = n
N

i=]

for some € > 0. Then, by C,
n
M‘Zl I!h,>s}
IS, = £l s —=——— = o(1),

2 hf

i=1
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where M is the bound for K. Also,

H n n
E v 2 hf|_f*K,,, _f”m,s:} + E hff[hpr]f
=1 =1 i=1 -

- <5+ - ,
N , pIH

i=1 i=1

where

V.= h;,(ht_dK((x - X)/h,) "f*Kh,(x))Ilh,sr]’ I<i<n,

are independent random variables. The last term on the right-hand side of
the inequality consists of a term that can be made small by choosing & small
(in view of Lemnma 2), and a term that is o(1) for all € > 0 (by C), and this
for almost all x. Thus, A follows if we can show that XJ_ \V,/Lr k¢ — 0
almost surety for almost all x. Such a random variable tends to O almost
surely when

T s (6)
{see, ¢.g., Loéve, 1963, p. 253). But we note that for almost all x,

E(Vnz) = hrzrdllh,,ge]hn df*Khz,, S.hif[h"q](fff(z + ])

by our choice of ¢ and Lemma 2. Thus, we need only verify that
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But this is true because, if &, > 0 (without loss of generality),

-] hd ac hi
z " 2 Sh;d+ E n n-1
" (Zh:’) " ( LY h:‘)
i=1 i=1 i=1
- n—1 -1 n -1
=h?+ ) ():h:’) —(th) ]=2h1'"<oo.
n=2 i=1 i=1

This concludes the proof of C = A.

We will now show that £ = L2_. 4% = oc. We proceed by contradiction.
Assume that the sum is finite and equal to 5. Thus, we have A, — 0 and, as
established in the first part of this theorem, |E(f,) - f| = 0 almost all x.
Now, by Fatou's lemma and E, 0 = liminf, ,_f(E(|f, — f} =
fliminf, _, _E(|f, — f], and thus,

liminf E()f, — E(f,)[) =0, almost all x. (7

Assume first that there is an infinite sequence of positive k,’s. In view of
Lemma 1, we obtain a contradiction with (7) if we can show that

limsup E(|f, — E(f,}*) < o0, almostall x, (8) -
and
liminf E(|f, - E(f,)[*) > 0, almostall x. 9)
n—a

Let us define ¥, = K((x — X)/h,), Z. = Y, ~ E(Y)). By Lemma 2, E(Y")
~ h¥f(x) (K", all r > 0, almost all x. From this, we deduce that E(Z7) ~
E(Y2) ~ h¥f(x)/K?, almost all x, and that E(Z*) ~ E(Y*) ~ h%f(x)/K*,
almost atl x. To verify (8), we note that for almost all x, as n — oo,

[£2]

E(If, - E(f..)l")( )3 h:’]4 ~S'E

re=]1

n n n
‘E( YzZi+6Y Y zfz}) < st
i=1 i=1 j=1
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for some constant ¢ depending upon x. Here we used the fact that
E(Z?)/h? and E(Z%)/h¢ are uniformly bounded in i for almost all x.
Also, E(Z?) 2 (f(x)h¢fK?)/2 for all i > N(x), almost all x. Thus,

id f(x)fK2 n
E(f,~ E()P) 257 T E(Z})z— 5~ L &
r=N(x) 5 i=N(x}

2 =
- f-(i:(—- > h?>0, almostall x.
2s i=N(x)

This shows (9). If &, = 0 for all n > N, then a contradiction with (7) is also
easily obtained. Thus, the first condition of C must hold.

For the proof of the second half of condition C, we use characteristic
functions. Let ¢ and ¢ be the characteristic functions of f and K. Since
E(fIf,—fD— 0, and E(f|f, — fD = [IE(f,) — fl. we conclude that the
characteristic function of E(f,) must tend to the characteristic function of
/. The characteristic function of E(f,) is

¥ ho () ¥ (k)
9u(1) = =
> e

i=1

, t € RY.

We know that £%_,h¢ = oo (because it is implied by E),
Assume that there exist positive numbers ¢ and » such that along a
subsequence of n, L7_ Al B> o/ Lr1h? > b. Because
n
T (g (hi) - 1)
(1) = 0(1) = ¢(1)— >0,
2

i=1

we hévc for all ¢ small enough,

n J N .
iglhi (‘Ibn(h:t) 1) S /
WH

i=]
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But the real part of this expression is, for the » in our subsequence, at most
equal to

n
) hﬂu.‘zai

sup (Re(¢{m) — 1)) —— < —bsup{Re(¢y{nr) — 1)).
hza h;f hza

™=

1

i

Thus, we must have sup, . ,Re($(hr)) = 1 for all r small enough. By the
continuity of v, this implies that Re(y (4t)) = 1 for some & = a, t # 0. But
this is impossible, because { is the characteristic function of a random
variable with a density. Thus, we have a contradiction, and therefore
E=C

For estimate (2) we again have different strong pointwise and strong L,
behavior. Although all types of L, convergence seem eguivalent, this will
not be shown here. We briefly state a theorem with some sufficient condi-
tions of convergence. The necessity of these conditions was shown by
Deheuvels (1974) under various regularity conditions on f, K, and k,. The
necessity can be established in all generality by using the techniques of
Theorems 3.1 and 7.1.

THEOREM 2. Let f, be estimate (2), where K is a bounded density with
integrable radial majorant. The conditions

lim A, = 0, lim nh?¢ = (10)

= n—=co

are sufficient for the weak convergence to 0 of |f, — f|, almost all x. If also

. nh? .
,,li.n:c loglogn it (a1

then | f, — f| — 0 almost surely, almost all x, Finally, if in addition

ﬂhd
n— oo lOgN

= oo,

then |f, — f| — O completely, almost all x. ~

Proof. Let us introduce the random variables Y, = A7 °K({x — X,)/h,,).
By Lemma 2, E(Y,)=/f*»K, — f, almostall x, th — 0. Now, E(f,) =
(1/n)X]_E(Y;) = f. almost all x, by Toeplitz’s lemma (Hall and Hecyde,
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1980, p. 31). Let m,, = inf, _ k¢, and let M be the supremum of K(x) over
all x, Let ¢ be sup; E(Y,) (this depends upon x). Note that E(Y?) < cM/h¢
and |Y, — E(Y,)| < M/h? For arbitrary e > 0, we have by Bennett’s in-

equality, also used in the proof of Lemma 6.5, and for all x for which

c < o0,
25)
2

< 2exp| — ne
s cexp 2cM/m, +eM/m,) )’

Ly (- E®)

i=1

P(f(x) - E(f,(x))] 2 ) = p(

and this tends to 0 for all ¢ > 0 because nm, — o0, which is implied by (10)
(see Lemma 3 given immediately following this proof). This weak conver-
gence is thus valid for almost all x, and the first part of the theorem follows.

For the strong convergence, we will apply a version of the strong law of
large numbers (Loéve, 1963, p. 253), which asserts that if {Y,| < an forall n
and some a < oc (which is the case here since the 4, are positive numbers
and nhi/(loglogn) — o), then (1/n)E7_ (Y, — E(Y;)) — 0 almost surely
if and only if for all ¢ > 0,

o0 2k+l
P27 L (Y-E(Y))|z¢|<w
k=0 jm2k oy

(this is also called Prohorov's convergence criterion (1949)). But, again by
Bennett’s inequality, we can conclude that f, — E{f,) = 0 almost surely for
almost all x when

oc

2kg? )
2exp| - < 00,
S p( 2cM/my + eM/my)

/

which is implies by 2*m,«/logk — o0 as k — oo. This in turn follows from
nm_/loglogn — oo and thus from nhd/loglogn — co (Lemma 3). This
concludes the proof of Theorem 2.

LEMMA 3. Ifa,b, 20, a,V, then a,/b, > « if and only if a,/
sup; . 8, — 0. '

Proof. Note that

an an . H ar‘ éﬂ
—_— s _r ___A
b, = supb, T m(,-'i‘fv b’ supb,.)'

i<n isN
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Lemma 3 follows by first picking N large enough and then letting # grow
unbounded.

4 MAXIMUM LIKELIHQOD ESTIMATES

The classical maximum likelihood estimation principle, when applied here,
would be such that the estimate f, is the density g that maximizes

TTs(X). (12)

=1

This maximum is not achievable without restrictions on the class of allow-
able g. Roughly speaking, we would approach a discrete distribution with
atoms at the X.'s. There are several cures for this problem, For example,
Grenander (1981) suggests a remedy for this by choosing g from an
appropriate collection of densities C,, which is allowed to grow slowly with
n. The sequence of collections C, is called a sieve and the resulting
estimation method is called the method of sieves. Several examples of sieves
are given below. In the last example, we relate the method of sieves to other
well-known maximum likelihood density estimates.

EXAMPLE 1 (The Histogram Estimate}). 1If
C, = {g: gisconstanton {(j — 1)A,, jh,), j integer},

where h, = 0 as n — oo, then (12) is maximized by the fixed histogram
estimate

11 . .
fo(x) = Ton Z iy erj-vm i » X € [(J - l)hnafhn)
a e

(see Section 3.2 of Tapia and Thompson, 1978).

EXAMPLE 2 (The Convolution Sieve). Geman and Hwang (1982) suggest
the sieve

G, ={8g=k »,* v for some probability measure » }

where A, — 0 as n = o0, and X i3 the normz“ density. C, is called a
convolution’ sieve. There 18 no particular reason to take the normat density
except perhaps for theoretical convenience. For example, maximizing (12)
for the normal convolution sieve gives an estimaie of the form

£(x) = ): k(52




202 Estimates Related to the Kernel Estimate and the Histogram Estimate

for some probability vector ( py...., p,} and some real numbers y,,..., y,
all strictly contained in (min X, max X;) (this was shown by Geman and
McClure, and the proof can be found in Geman (1981)). We note that
although the Parzen—Rosenblatt kernel estimate is in the sieve, it is not
among the optimal solutions.

The computation of the optimal values y,,..., y., py,..., p, is difficult.
If p, = 1/n for all i, a solution is somewhat easier to obtain, but it should
be clear that computational difficulties are inherent in all the maximum
likelihood based estimates. The fact that explicit solutions are not available
makes the analysis difficult too. Rate of convergence results are nonexistent,
but some consistency results can be found in the literature. For example, for
the normal convolution sieve

1 & fx— ' :
Cn={g?gfx)=nh EK( p '],somcyl,...,y"eRl},

"1=l n

Geman (1981) showed that

sup f |f, — f1 = 0 almost surely (13)
all optimal
solutions of (12)
inG,

under the following conditions: #, = 0, n“h, = oo forsome 0 <a < §, f
has compact support, and

fflogf< . (14)

One of the conditions here states that we can’t let C, grow too large too
quickly. The condition on the peakedness of f (see (14)) comes naturally
because maximizing (12) is equivalent to maximizing X7_,log g( X;), which
has expected vatue nff log g. Now, in view of

ffloggSIflogf. all f. g \

(which is a consequence of Jensen’s inequality), there is hope that maximiz-
ing (12) gives us a g that is close to £, at least if some law of large numbers
applies, that is, when (14) holds. In this sense, (14) is not a natural criterion.
The only positive thing about it is that there is some vague one-way
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connection with the L, error:

vg(ffkmf-ffkmg
(see Theorem 8.2),

Suppose now that we also allow h, to act as a parameter in the
convolution sieve. Then, the maximum of (12) would be achieved by setting
A, =0, y,= X, all i. Thus, if we are going to maximize over A, too,
another device is needed, for example, a limitation of the complexity of the
mixture as suggested by Geman and Hwang (1982), who define the sieve

2 fif - sl

Ky W
%K(x hy’)forsomeh:» 0, yl,...,yk_eR'}.

i=1

G = {31 g(x}= ;1;

For this sieve, statement (13) remains valid when f is bounded and has
compact support, and when &, — ¢ and &,/nr® = 0 as n = o¢ for some
a < 1/5 (Geman and Hwang, 1982}. Unfortunately, we are still left with the
problem of choosing &,.

EXAMPLE 3 (The Method of Penalized Maximum Likelihood). Let % be
a suitable class of densities, and let C, now be defined by

C,={g:5€% ¥3g) <M},

where m is a constant possibly depending upon n, and ¥(g) is a penalty
function penalizing for oscillatory behavior. This sieve method is suggested
but not analyzed in Geman and Hwang (1982). The Lagrange multiplier
method corresponding to it would find the g in % that maximizes

an log g(X;) — M‘P_(g), (15)

=1

where A, > 0 is a Lagrange multiplier. This multiplier plays the role of a
smoothing factor. There are several suggestions for ¥ and %, for example,
() ¥(g)=/g'%/g 9={s: /gy €L,} (Good and Gaskins, 1971;
see also Tapia and Thompson, 1978, pp. T08-109);
(i) ¥(g)=afg?+bfg"% I= (g (faY €L, (fg) €L} az0,
b >0 (Good and Gaskins, 1971).

The main problem, once again, is computational: how does one find these
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maxima? Some solution based upon a quantization of the sample space is
given in Scott et al. (1980). Unfortunately, even though their estimate is
consistent for large classes of densities f, the experimentally obtained
asymptotic error rate in L, is slightly worse than that of the standard kernel
estimate in some simple problems.

For consistency, we must let A, vary with » such that A, — 0. The rate
must be controlled, because for A, = 0, we obtain a degenerate solution. A
variety of conditions on ¥ and f guaranteeing consistency are given in
de Montricher (1980), Klonias (1982), and Silverman (1982).

5. VARIABLE HISTOGRAM ESTIMATES

The histogram estimate studied in Chapters 3 and 5 is not locally sensitive:
the size of the cells is not allowed to vary with x. They are but special cases
of variable histogram estimates defined as follows:

(i) Determine a countable (possibly finite) partition P,,, P,,,... of R%
This partition is allowed to depend upon the data Xj,..., X,.

(ii) Estimate f on P,, by a constant ¢, such that the estimate itself is a
density, that is, ¢, = 0, all i, and Z,¢;,,A(L,,) =1 (A is Lebesgue
measure). Usually, but not necessarily, ¢;, = N,,/nA(P,), where
N, is the number of data points falling in 7,,.

Thus, the kernel ¢stimate with a uniform [—1,1] kernel K classifies as a
variable histogram estimate. But more importantly, the class of variable
histogram estimates is large enough to allow the asymptotic L, error rate
n~% for some f. The original fixed grid histogram estimate had a built-in
limitation of n~ /3.

Among the variable histogram estimates, perhaps the most popular tvpe
of estimate is that based upon statistically equivalent blocks. In R', for
example, we could consider the order statistics Xy, ..., X,, corresponding
to the data, and partition the space by defining P, = [ Xy, Xx )} P2 =
( X1y X213l - - -+ 50 that each interval has about & data points, or is emply.
For all points x in [ X,,,, X )], estimate f,(x) by k/nA(P,,), x € F,,.

This estimate is (not explicitly) suggested in Anderson (1965), and
formally defined and studied by Van Ryzin (1970, 1973). Smooth spline
functions that generalize it (but possibly violate the density property)} can be
found in Wahba (1971,1975,1976). Its L, consistency was first_obtained
under very general conditions by Abou-Jaoude (1976), and its L, rate of
convergence was studied by Hanna and Abou-Jaoude (1981).

THEOREM 3 (Abou-Jaoude, 1976). For the order statistics baé';'d histo-
gram estimate with k data points per interval, the following statements are
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equivalent:

A, [|f, — fI = O is probability for all Riemann integrable f,
B. f1f, — F| = O compietely for all Riemann integrable f,
C. lim k= o0and lim,_ (k/n)=0.

n—=oc

There are many possible generalizations to RY, one of which is given in
Gessaman (1970), where the first axis is cut into about (n/k)"/“ intervals
each containing about an equal number of data points (this will be called a
homogeneous cut). Each of the cylindrical sets defined by these intervals is
subjected to another homogeneous cut into (n/k )/ pieces, but now along
the second axis. After 4 homogeneous cuts, each of the n/k final “cells”
has about k data points. Gessaman (1970) offers some pointwise con-
sistency resulls, and points out quite correctly that the computation of f,
after the construction of the partition is fast.

Alternatively, one could cut cach axis in turn, on a rotational basis, each
time splitting the remaining data points exactly in half, and stopping when
all the cells have about k data points. This method has the computational
advantage that the implementation could be done with a balanced binary
tree of about log,{n/k) levels.

6. KERNEL ESTIMATES WITH REDUCED BIAS

Variations of the standard density estimates can, in some cases, give better
rates of convergence for £(J,) than those obtained in Chapter 5 for the
kernel and histogram estimates. Usually, the improvement is due to a
reduction in the bias compenent [|£(f,) — f| and is possible only for very
smooth /. In this section. We will illustrate some general bias reduction
principles and illustrate them for the kernel estimate.

In what follows we will assume that f, is a density estimate of f ( f, itself
is a density in x), and that g, is another function on RY. An additive
variation of f, can be defined as follows:

+
ﬂ,*=£'i"-g"—)+-; fgn=0: flg,,l<oo, all n.

f(fn + &),

The normalization is necessary to insure that f* is a density. A muliplica-
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tive variation of f, is defined by

f*=&; g, 20, alln.

" ff,.g,.

For L, convergence, the normalizations can be ignored because of the
following lemma:

LEMMA 4. For ail densities f, and all density estimates f, on R“, any
additive variation satisfies

Jiz=f1= flth + ) - 1.

Similarly, any multiplicative variation of f, satisfies

iz =n1< i - 11+

ffngr 1‘-

Proof. For the additive vanation, we refer to the nonnegative projection
Theorem 11.4. For the multiplicative variation, we argue as follows: when
if.8, <1, we have f¥ > f 2., and thus,

Nz =n=2ftf-1y.s2f(f-fsa).

= [If - hi&l +(1 —ffngn)-

When ff,g, = 1, then f} < f, g, and, therefore,
Nz =f=2f(z=Ne<2f(fiss =1
- fire =11+ { fhe 1),

The foremost example of bias reduction is Bartlett’s estimate (1963)
on R,

10 = ()™ 5 K(25%),
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where K is a Borel measurable function with the following properties:
(1) K is symmetric, bounded, and has compact support;
i) [K=1;
(iii) [x*K=0,i=12,...,s-1; (16)
(iv) [IX{¥IK| < o0;

where 5 = 1 is a fixed integer. For s > 1, f, can possibly take negative
values since K does. It is easy to verify that f, can be written as a standard
kernel estimate (with kernel X,/ /K ) plus a function g, with zero integral.
Thus the density £ = ( f,)./f(f,). qualifies as a genuine additive variation
of the standard kernel estimate. To avoid ambiguity, we will call f
Bartlett’s estimate and f} the normalized Bartlert estimate. For a different
point of view on this ¢stimate, see Section 5.9.

THEOREM 4. Assume that h — 0 and nh — oo. Then, for any integer
5 = 1, Bartlett’s estimate is exponentially convergent, that is, for all € > 0,
there exist positive numbers r and ny such that

P(flfn~fl>£)_<_eﬁ’". nzn,.

This property holds true for all f, but r can be chosen independently of f.
Theorem 4 remains valid for the normalized Bartlett estimate.

Proof. Theorem 4 is a direct consequence of Theorem 3.1, where K was
subject to only two conditions: (K =1, {|K| < 0. For the normalized
Bartlett estimate, use Lemma 4.

THEOREM 5. Assume that s 21 is a fixed integer and that h — 0,
nh = oo. Let [ be a density with compact support and (2s-1) absolutely
continuous derivatives, and let f**) be continuous. in the notation of Chapter
3, we have, both for Bartlert’s estimate and the normalized Bartletr estimate,

E(J)~ | —‘Lp( Bz,if‘zw)

(2s)!

' V7
< é. Ve o ),ﬁhﬁf‘“w
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Here a = [K? and 8, = {{x]*°K + 0. Furthermore,

lim sup mfnzs/(‘”l)E(J ) < Gy A, (K)Dy(f),

n—od
where
25/(ds+1) 1148/(4s+1)
C2,=1+4s(3) ((25)) ,
(2s)t \7m 4s
N 25 1 /(454 1)
AR = (a1 = (] ]|
and
ar 1/(4s+1)
Dy (f) = (( / ﬁ) flf“”l)
This upper bound is not exceeded for the choice
1/@s+1)
b= \/? a(25 - 1)! f‘/j p- L@+
T

zlﬁlsl flf(zj)l

If By, = 0, and Dy ([} < oo, then

lim sup mfnzs/“‘” bYE(J)=0.

n—=x0

If 8+ = 0 and [ is any density with compact support and B*( f) < oo (notation
of Theorem 5.1), then

lim sup mfnZ/SE(J )=0.

n~*x

The quantity D, ( f) appearing in the upper bound of Theorem 5 can
also be found in the minimax lower bounds of Theorems 4.2 and 4.3. More
importantly, for individual f with finite values of D, ( f} we can do much
better than the rate n~/@**1) given by the minimax lower bound, simply
by insuring that the kernel K satisfies (16) and has B,, = jx**K = 0. This
apparent contradiction can be explained by the fact that the improvement is
not uniform over the class of all f with compact support and D, (f) < r
for fixed constant r. In fact, within this class, all slow rates to zero are
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achievable for n2/#s*DE( ). The last half of Theorem 5 does not provide
us with any clues as to how 4 should be chosen either. Irom the proof, it is
clear that h = Mn 1741 is better than 4 = M*n 7“1 whenever
M > M*, but that is about all one can conclude without further assump-
tions about f. A similar problem must be faced for X, and it seems sensible
to choose # and K in such a way that a minimax bound (such as the one
obtained in Theorem 5.12} is minimized. For example, we could also obtain
in Theorem 5 a crude but manageable upper bound merely by replacing §,,
throughout by [x?*|K| (i.e., in the definition of # and of A, (K)), and
choose K so that 4,,(K') is minimal, Let us mention here that the following
kernels satisfy the conditions (16)(ii), (iil), and [x*’K = 0 for 5 = 1:

K(x)= %1~ 3x?), |x|=<1 (Barilet, 1963),

K(x)=3(1 - 3x?)e ©/2 (Rosenblatt, 1971).

Other such kernels are of course easy to construct too {Deheuvels, 1977).

The choice of a kernel is determined by the degree of smoothness that we
expect to observe in f. There are admittedly other considerations 100. For
example, some applications demand the simultaneous estimation of f and
one or more of its derivatives. If the derivatives of f are estimated by the
corresponding derivatives of the estimate f, then it is obvious that K
should be smooth. This point was addressed by Miller (1984) and Gasser
et al. (1983). Finally, we note that if & is taken in accordance with Theorem
5 and f does not have the smoothness properties called for by the theorem,
one could actually lose quite a bit in asymptotic performance.

Proof of Theorem 5. The essential difference with Theorem 3.1 is in the
bias term. By Taylor’s expansion of f about x,

25 i — x 1s ] )
f0)= (=0 5L 4 Qo) - o,

y=zéz=x,

and a symmetric expression when y < x, we obtain

k(2

[ B ™)

<f %x( : )'J’( SO 1)l
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where £ depends upon x, y, and f. In other words, because of property
(16}, all the terms in the Taylor series expansion cancel out after convolu-
tion with K, except the 2s-th term. The bound on the right-hand side is
o(h**) uniformly over all x in a large interval T (by the uniform continuity
of f®*) and the compactness of the support of K), and 0 outside T. If we
define, as in Chapter 5, B, = E(f,) — f, then this implies

th
J1B.1 = GyrtBac @ = o),

a result that will replace Lemma 5.11.

Lemma 5.10 remains obviously valid, and thus Theorem 5.1 can be
followed to the letter if we replace z there by A%|8,,]lf*|/(25)!. This
proves the first half of Theorem 5.

We note that the asymptotic upper bound is of the form wh '/ + vh**
for some positive numbers u, v not depending upon 4. Thus, a formal
minimization with respect {0 # gives the following minimal value;

(udtp) /5D (45 + 1)
(4s)43'/(4s+1) :

Tt is attained for & = (u/4s50)>/* 1 If we replace u by af‘/f\/Z/-rm and v
by |8, f1/%7)/(25)!, we obtain the announced upper bound.

For the case 8,, =0, D, (f) < oo, take M arbitrarily large, set 4 =
Mn~Y**1and note that [|B,] = o(n~ 2/}, Also, in the notation of
Lemma 5.10,

fo. [T+ [VF+o)
< < n

‘/F_ vk T M

This concludes the proof of the theorem.

25/(4s5+1)

As a second example, partially overlapping with the previous example,
we mention the time-honored jackknife method for reducing the bias of
estimates in statistics (Quenouille, 1956; see also Schucany et al., 1971). For
density estimation, it was first developed and illustrated in Sommers (1972)
and Schucany and Sommers (1977).

Let f,....,f,a be M kernel estimates of f, all based upon the same
sample X,,..., X,, but possibly with different kernels X,..., K,, and
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different smoothing factors h,...., &, We will assume that h, = ha, for
some constants a,; h depends upon n only. Consider now the linear
combination

M
Zb,f
fo= S,
b
i=1

where b,, ..., b, are constanis not summing to 0. Clearly, if all the kernels
integrate to 1, so does f,. Thus, its normalized form is again an additive
variation of the standard kernel estimate. It is not hard to verify that f,
coincides with Bartlett’s estimate with kernel

M
Z bi((l/ar’)Kr‘(x/ai))
K(x)= Sy —,

L b;
i=1

and Theorems 4 and S apply. Now, if all the K,’s satisfy Bartlett’s condition
(16) (i) only (and not (ii), (i), and (iv}), and if all the K,’s are densities, and
if f satisfies the conditions of Theorem 5, we have the following Taylor
series expansion for the pointwise bias:

. e 21K + h2s
E(fu)=f= ): (2 ),f JVK+ o(h?),
The first 5 — 1 terms in the bias of f, can be eliminated if

M
Eb,-a,.szxsz,- =0, j=1,2,..,5-0L
i=1

This system of equations has many degrees of freedom. For example, we
could take all X,’s equal to K, and set the a,’s equal to i. Then the
equations can be reduced to

M .
Yui¥=0, j=12,...,5-1.

jm]
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This has nenzero solutions for the d,’s whenever M > 5. For example, with
s = M = 2, we have a solution b, = 1, b, = — 4, and a jackknife estimate

fo =4S — L) = fa ¥ 3 (fa = fa)s

which seems to suggest that 1(f,, — f,,) is a correction factor of sorts for
the standard kernel estimate f;.

As an example of a multiplicative vanation on the standard kernel
¢stimate, and certainly not the only possible one, we will present the
estimate of Terrell and Scott (1980). Consider two kernel estimates with the
same symmetric bounded compact support kernel K, and smoothing factors
h and 2h, respectively: f,. f.». Again, both estimates are based upon the
same sample X|,..., X,. Then form the estimate

w2

The multiplicative correction factor is always well defined if we ensure that
K is unimodal, in which case it is a number between 0 and 21/3. The
consistency of this estimate requires some work, for we must establish that

ffnl(f"‘)m -/

fur

But the left-hand side is bounded from above by

2‘/3f1f,ﬂ—f|+ff[f§;)m—1.

Thus, by Theorems 3.1 and 6.3 and the Lebesgue dominated convergence
theorem, we can conclude the following:

THEOREM 6. Let K be a symmetric bounded unimodal density on R with
compact support, and let b — 0, nh — oc. Then, for all densities f,

- 0.

flf,,' ~fl—= 0 inprobability asn — 0,

where [* is the normalized form of the Terrell and Scott estimate. The same is
true for all correction factors g, that are uniformly bounded from below by 0
and from above by a positive constant, and that converge pointwise almost
everywhere to 1,

There is also an almost sure version of Theorem 6, requiring only that the
condition nh/(loglogn) — <o be added. Terrell and Scott have shown that
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under sufficient smoothness conditions for f, the bias is @(4“) at each point
x, while the variance is O((nh) ') at each point x. The estimate seems to
behave asymptotically as Barilett’s estimate with s = 2, but a rigorous
analysis is lacking at this point. The main advantage of the multiplicative
variations over the additive variations is their nice behavior in the tails:
additive variations of the kernel estimate will often abruptly drop to 0
because of the normalization. The normalization of a multiphcative varia-
tion of the kernel estimate is less drastic.

7. GRENANDER’'S ESTIMATE FOR

MONOTONE DENSITIES

In this section, we will ¢onsider only monotone densities on [0, oc) (the class
of all these densities will be called M), and monotone densities on [0.1]
with f(0) < B (the collection of these densities will be called M), We have
seen that the minimax lower bound over M is at least ; (Theorem 4.1), but
that the minimax lower bound over M, is (3% + o(1)}4/n)}"* (Theorem
4.9). Lucien Birgé has proved that there exists a minimax lower bound over
M, of 0.198(log( B + 1)/n)'/?, valid for B > 1.3, B/n < 0.026 (since this is
an unpublished result, it is not included in this book). With these results in
mind, we can now compare various estimators. There is no reason of course
to look at estimates that are consistent for all f if one is only interested in
M or My. One such estimate is Grengnder’s maximum likelihood estimate
{Grenander, 1956): it is a density in M for which the product

T14(%)

is maximal. This optimization problem has a remarkably simple sclution: if
F(x)=(1/n)L].1 I x < xy 1s the empirical distribution function, and G, (x)
is the smallest concave majorant of F, (i.e., G, is obtained by taking a huge
elastic band, putting it around the first quadrant, and letting it go: it will
come to rest, if we hold it at the x axis, around the curve of F),, and is of
course piecewise linear), then f, = G.

For this estimate, a deep analysis of its pointwise properties can be found
in Prakasa Rao (1969). But the result that interests us most of all, and is
shockingly beautiful, is due to Groeneboom (1983):

nl/o(nlﬁﬁfn - f1- C(f)) fN(O,UZ),
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where = means “converges in distribution to”, N(0, 0?)is a normal (0, 0%)

random variable, ¢ > 0 is a constant independent of f, and

1/3

cn=af(z11)"

where ¢, is another universal constant (its value is about 0.82, based upon
experimental results reported by Groeneboom). Groenchoom’s result is
valid for all strictly decreasing f on [0, 1] with continuous and bounded
second derivative, and f* < 0 on (0,1}. For these f, we have

(i, - 1)~ af (31017)

Grenander’s estimate performs even better when f has flat parts. For the
uniform density on {0, 1), rate n” /% is achieved.

Let us compare this result for individual f with results for the kernel
estimate. For the densities f covered by Groeneboom’s theorem,

)< (3{pa )= st

For the kernel estimate with A2 chosen as in Theorem 5.10 we know that
nPEIf, — f < (1.24 -+ +0(1)By,(f). Thus, this seems slightly worse
than Grenander's estimate., On the other hand, for the kernel estimate,
suitably modified near zero, the rate n~ '/ is guaranteed for all f in Mj:

THEOREM 7. Let f be any density in My, and let h be chosen as follows:

1/3
N
wnB?

Let K be the isosceles triangular density on [—1,1}. Let g, be the kernel
estimate obtained from Y,,.... Y, where Y, is equal to X, with a random sign

N n* i

added (by a coin fiip), and let f, be defined by

f(x) =g x)+g.,(-x), x>0
Then

1/3
limsupn1/3E(f|f,, —f|) < (E) B/,

n—+oc "
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Proof. We have

8,(—x) = 3/(x)|ax

=11 [7ex) - 3700

-]
</
- o

We apply Theorem 5.10 directly to the latter L, error. The reason for the
rather artificial symmetrization is the following: we want to ensure that
B} f) is uniformly bounded over our class of densities. Now, if take ¢ in
the definition of B}, (f) symmetric and umimodal, then it is not at all sure
that f#* ¢, is unimodal. However, if g(x) = 3f(|x|), then g+ ¢, is indeed
unimodal (Feller, 1971), so that fi(g* ¢.)| = 2g(0) = B, for all a. We have,
in view of fyg = V2 f{f, B4(g) = (fyf)*B)"? < BY/% The remainder
of the proof follows directly from Theorem 5.10.

a’.x+j(‘:'J

8.(3) = 3/(b) | x.

The sitvation is even rosier for the kernel estimate, because, for the
densitics covered by Groencboom’s theorem, we can choose A and K in
such a way that n**E([|f, — f]) tends to a constant. For this, it is
absolutely necessary to use the symmetrization trick of Theorem 7 (for
otherwise, this result would be impossible by the discontinuity at zero). In
other words, on an individual basis, a suitably modified kernel estimate can
be much better than Grenander’s estimate,

We also have the following minimax upper bound, simply because it is
achievable by the modified kernel estimate:

THEOREM 8. For the estimate f, of Theorem 7, and all B = 1,

limsupn'”? sup E(ﬂfn f]) (%)VBBV:‘.

n-+ o0 feMg

Proof. It suffices to verify that the o{(#h)~'/?) term in Theorem 5.10
remains o{(nh) '/?) uniformly over the class of symmetric unimodal densi-
ties on [—1, 1] that are bounded by B /2. For the remainder of the proof, we
refer to the proof of Theorem 7.

Unfortunately, this upper bound is not the best possible, even though for
M,, the ratio between minimax upper and lower bounds is only about 16.
Birgé, in a private communication, has told us that the minimax upper
bound for My is smaller than 1.98(log(B + 1)/n)'/?, valid for B = 1.3,
B/n < 0.026. It seems very likely that this better minimax upper bound is
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attainable with Grenander’s estimate. This belief is based upon the follow-
ing observation:

LEMMA 5. Let f be an absolutely continuous density in My with almost
everywhere derivative f'. Then

JUrf)'” <1 +(10g ).

Proof. Let u €[0,1] be a point such that f(x) = 1, x < u, and f(x) =< 1,
x > u. Then, by Jensen’s inequality,

3 NIPLVAVE Loeniss

Janny? < fLarn' + fir
w (117

< AL«

<o)
1/3

= UO— d(logf)) +1
= (logB)"” + 1.

To close this section, we will merely give a few references to other
estimates designed for the class of all unimodal densities: sce, for example.
Robertson (1%67) and Wegman (1969, 1970a, 1975).
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CHAPTER 8

Simulation, Inequalities, and
Random Variate Generation

1. CHOOSING A CRITERION

Consider the situation where one needs random variates with distribution
function F on R¥ but uses random variates with distribution function G
instead. The reasons for this replacement are sometimes economical (ran-
dom vanates from G are obtamnable in less time or with less space) and
sometimes practical (for the particular application a good approximation of
F is all that is needed). Sometimes F is unknown and must be estimated
from the data. And in many cases, one just does not want to spend a lot of
time wriling a complicated program for the generation of random variates
with distribution function ¥. Whatever the reason for the replacement may
be, it is necessary to have a good understanding of its consequences. How
should one measure the goodness of the approximation for simulation
purposes?
One of the classical criteria,

A = sup|F(x) — G(x)|,

has the disadvantage that it is not sensitive to local discrepancies between
the distributions. For example, if F puts all its mass uniformly on [0, 1],
[2.3],....[2n — 2,2n — 1], and G puts all its mass uniformly on [1,2],
[3.4).....,[2n — 1,2n], then &, = 1/n. For large n, this is quite small,
although it is clear that one would be reluctant to replace F by G in any
simulation,

Assume that 4 = 1. If F and G are continuous and U/ is a uniform [0, 1}
random variable, then F'(U) and G “(U) are random variables with
distribution functions F and G, respectively. This fact is of course at the
basis of the inversion method in random variate generation. This leads to the

220
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criterion
A, = sup |F7Mu)— G '(u)l.

O<u=<l
Unfortunately, 4,, like A,, is not locally sensitive, and A, overemphasizes
the tails of the distributions. For example, if £ has infinite support and G
has compact support, then A, = oo,
Consider now the tota! variation criterion

=L

where f and g are the densities corresponding to F and G. As explained in
Chapter 1, J is an absoluie bound on the ¢rror committed by replacing any
probability {, f by its approximation, {, g. If random variates are required
for the purpose of the Monte Carlo evaluation of a functional fAdF (with
h = 0), then

’fhdF—fth‘=

1
J =3 JIf 8= sup

j(;wj;(x)zrdf’(x) dt —fowj;(x)zrdG(x) dl’

fh(x)ﬂdf(x) —f . dG ( x)

dr < Jsuph(x).

Hence, for bounded functions 4, we have a clear upper bound on the error
committed if a perfect evaluation of fhdG were possible. Often, J can be
determined without much effort. but in some cases it is very hard to
compute. In Section 2, we give several inequalities that may help in the
determination of upper bounds for J.

2. INEQUALITIES

In this section, we give inequalities that link f|f — g| to other measures of
the distance between f and g. Several of ihese inequalities were used in
previous chapters in proofs of convergence. Other inequalities are helpful
because they allow the user to infer some property about another distance
measure from L, properties.

We start with inequalities that are useful in random variate generation.

THEOREM 1.

JU - g < 2min(K,, K,),
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where
K=su(1—5) K = (1——)
r p ? ' Sup .

Proof. By Theorem 1.1,

flf—g|=2ff?g(f~g)=2];>gf(l—%)szx,.

Theorem 1 now follows by symmetry.

K, and K are constants that are related to the rejection and composition
methods in random variate generation. For example, the rejection algorithm
uses K, as follows:

Step 1. Generate a random variate X with density g, and an indepen-
dent uniform [0, 1] random variate U.
Step 2. If Ug{(X) < (1 — K, )f(X) then exit with X
else poto 1.
In the composition method, we proceed as follows:

Step 1. Generate a uniform [0, 1] random variate U,
Step 2. If U <1— K_ then exit with a random variate X having den-

sity g
else exit with a random variate X having den-

sity (f — (1 — K)g)/K..

The random variates generated by both algorithms have density f provided
we can do arithmetic with infinite precision. Both algorithms exploit the fact
that g is a density that is close to f (i.e., has a small value for K_ or K.},
and that random variate generation for g is simple.

In Chapter 4, we needed an information theoretic inequality between the

L, error and [f log(//g).
THEOREM 2.

2
3

fflog(g) Z%U'f_"’")
3Jr-ds \/1 e~ frof )
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and

foint .02 Lo - i 4] -

Proof. Let A={f=>g), B={f<g), h=2gl,/f,g Then, by Jensen’s

fpalt) 2
b 1)

1
Js]

Define p = [,f, ¢ = [,8 We have, by symmetry,

*fflog

f1 108 £) = p1og( 2) +(1 = pyiog =2 = (5. 0).

q .

Assume without loss of generality that p = ¢ + » for some r > (. Write
H(p.q) as H(q, r)=(q+ r)logl + r/q) + (1 — q — r)log(l — +/
(1 — gq)), and note that H'(g.r) = log(l + r/q) — log(1 — r/(1 — q)), and
that H"(q,r}y= 1/p(1 — p) = 4, where all the derivatives are with respect
to r. Thus, by Taylor's expansion with remainder term,

H(p.q)2 4 ) -2 - ([ (- g)) Hf-a).

f=g

This concludes the proof of the first inequality.
For the second inequality, we employ Jensen’s inequality once more:

~ fr1oe| £} = fpoelmin{ 1]} te{mar( 5.1

< log(fmjn(f,g)) + log(fmax(f,g)).
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Thus,
cxp(—fflog( )) fmm(f g)fmax(f g)

= (1 —%fif—gl)(1+%flf—gi)
-1 -(%frf—m)z-

The third inequality follows trivially from the previous argument.

The first inequality of Theorem 2 was proved by Kullback (1967), Csiszar
(1967), and Kemperman (1969). The other inequalities and their proofs are
due to Bretagnolle and Huber (1979). There is another distance measure
that is closely related to ff log{ f/g) in the sense that both are finite or
infinite simultaneously: [f%/g — 1= f(f* - g?)/g. lts connection with
the previous distance measures is given in Theorem 3.

THEOREM 3.

f%z— 1 szlog(-g)alog(fg),

and

fE -1z (fir-a).

Also, for any function g, not necessarily a density,

JVif-gsy f(r-8).

Proof. The left-hand side of the first inequality follows from the observa-
tion that logu < u — 1, all « > 0. The right-hand side follows directly from
Jensen’s inequality. The second inequality can be obtained by applying
Holder’s inequality. Let p,g > 1 be such that 1/p + 1/ = 1. Then,

s s P

The inequality follows after setting p = ¢ = 2.
The last statement follows directly from the Cauchy—Schwarz inequality.
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The Hellinger distance H, = (f|f'/7 — g!/?|7)'/?, p = 1, shares with
the L, error H, a few nice properties; it is always finite, and remains
invariant under strictly monotone transformations. £, was suggested by
Pitman (1979) as an aid in the study of maximum likelihood estimation.
Unfortunately, there is no linear relationship between H, and H, = [|f —
g|, that is, there does not exist a universal constant « such that A, ~ af, as
H, — 0. In fact, we have the following inequalities:

THEOREM 4,
—_—
H} < H, < HyJ4 — H} <2H,.
Also, for any f, there exist sequences of densities {, and g, such that
H\(f.£,) ~ 2Hi(S.£,) 0,

Hl(fﬁgn) -~ ZH’.’.(I.S gn) - 0'

Progf.

H = [Iif~ g1 = [l - VeI(VF + V&) = [/ -~ V&1t = H3.

and

B s (7 - VeV [(V7 + V&Y = 132+ 2f Iz | = m3(s  12),

where we used the Cauchy—Schwarz ineguality.

The sequence g, is constructed by using a lot of overlap between f and
g,- Let m be a median for f, Set g, = (1 + p,)f on (-, m] and g, =
(1 — p,)f on (m, o0} for some sequence p, | 0. Clearly, g, is a density for
cach n. Also, H, =p,, and H} =2-2ffg, =2 -1 -p, - T+p,
~ p2/4. Here we used the fact that y1 — x =1 — x/2 — x2/8 + O(x*) as
xJ0,and that y1 + x =1+ x/2 — x%/8 + O(x*) as x | 0.

The equality H, = H? is attained for nonoverlapping [ and g, that is,
/ \/E = 0, The sequence f, is therefore partially based upon a sequence of
densities that 1s nonoverlapping withf. Let m_ be the 1/n quantile of f,
and define f, by: f,=Vnfon (—oo,m,), f,=( = 1/Vn)f/Q - 1/n)
on {m,,oc). Again f, is a density for each n. We verify easily that
H =2n —1)/n~2/Vn. Also, H} =2—=2f/ff, =2 - 2/n** -

2/ —1/n)(1 =1/Vn) ~2-2n"¥4 =21 = 1/2/Vn) ~ 1/ V.
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In Theorem 5, we state LeCam’s inequality (1973), which was used in a
crucial place in the proof of Assouad’s Lemma (Theorem 4.5).

THEOREM 5.  For any densities f and g on R,

frmint )= 4( f /)

Proof. By the Cauchy-Schwarz inequality

mT-(1.45) <1751

By symmetry,
(f@)252‘£<3f+ 2ng=2fmjn(f,g).

We finally consider the sup norm esssup|f — g|, where the essential
supremum is with respect to Lebesgue measure. It is clear that f]f — g| can
be small while sup|f — g| is large, possibly infinite. Vice versa, a small sup
norm does not guarantee a small L, distance, unless one is willing t0 make
assumptions about the tail of f or g. As an example of how this can be
done, we cite a few inequalities due to Serfling (1979).

THEOREM 6. Let f and g be densities in RY, and let r be a positive

sﬂ(ﬁ

<g £

constant. Let v, be 7/’ T(d/2 + 1), and define
sup? ( fof) 0 <r<oo;
_ I £V||> f
inf{t: f=1}, r=co,
[[xf=rf
Then

+d)
A 0 <r < .

11 - g < 449479 (v esssup| f - 1)
and
f]f—glsZA"vdcsssuplf—gi, r= 0.

In the definition of A, we can replace { by g if we wish.
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Proof.

1 = -_— = —_— -_—
fy-a=f G-~ f (U-e+[ (/-8

] lx|[> ¢
f>g I~z

< yglesssuplf — gl + At all¢> 0.

The terms on the right-hand side are equal for 1"*% = 4 /(v esssup|f — gl).
Resubstitution gives the first inequality. The second inequality is straightfor-
ward,

3. THE GENERALIZATION OF A SAMPLE FOR
RANDOM VARIATE GENERATION

We are given a sample X, ..., X, of independent R%valued random vectors
with common unknown density /. and are asked to generate (i.e.. produce
by means of a computer) a new independent sample ¥,,..., ¥, of indepen-
dent random vectors with the same density f. Stated in this manner, the
problem has obvicusly no solution. Some of the obstacles can be bypassed
by convenient and not so unrealistic assumptions:

(i) Real numbers can be stored on a computer; otherwise, the notion of -
“density” would be vacuous.

(ii)y We have a source capable of generating a sequence U, Uj,... of
independent random variables uniformly distributed on [0, 1).

Since f is unknown, it must either explicitly or implicitly be estimated from
Xy, ..., X,. In all generality, we are interested in procedures that take the
following format:

Step 1. Construct a density estimate f,(x) = f,(x; X},..., X,) of f(x).
Step 2. Fori=11tomdo:

Generate 2 new uniform [0, 1] random variable U.

Compute Y, from f, and U,

It is clear that both samples are dependent. Also, unless we are incredibly
lucky, £, is not equal to /. In this section we will discuss to what extent
these undesirable effects can be limited.

The following topics are of particular interest (0 us: sample indepen-
dence; consistency; sample indistinguishability; moment matching; genera-
tors for f,.



228 Simulution, Inequalities, und Rgndom Variate Generation

3.1. Sample Independence

There is very little that can be done about the dependence between
Xp.-.., X, and ¥},..., Y, except to hope that for » large enough, some sort
of asymptotical independence is approached. Also, in some applications.
sample independence is not a requirement at all.

Since Y),...,Y,, are independent given X,,...,X,, we need only con-

sider the dependence between ¥ = ¥, and X,,..., X,. A measure of this
dependence is

D,=sup|P(Ye A, XeB)—P(YeA)P(X € B)|,
A.B

where the supremum is with respect to all Borel sets 4 of R and all Borel
sets B of R"“, and where X is our short notation for (X, ..., X,). We say
that the samples are asymptotically independent when

lim D, = 0.

H—r o0

In situations where X,,..., X, is used to design or build a system, and

n
Yi...., Y, is used to test it, the sample dependence will often cause

optimistic evaluations. Without the asymptotical independence. we can’t
even hope to diminish this optimistic bias by increasing .

The inequality of Theorem 7 below provides us with a sufficient condi-
tion for asymptotical independence: lim, _, . E(J,) = 0.

THEOREM 7.

D, < B() = £(fif, - 11}

Proof. We have

D, < sup|P(Y€ 4, X€B)-P(X,,, €A, X € B)|
4.B

+sup|P(X,., €4, X€ B} - P(X,., € 4)P(X € B})|
A B

+sup|P(X,, € A)P(X € B)— P(Y€ A})P(X € B)|. (1)
A.B
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The last term of (1) is equal 10
SuplP(X,.. € 4) ~ P(Y < 4)1 = sup| [ (/) - [1]
A A A A

- 3 fIEG) - 1

by Scheff¢’s Theorem 1.1. The second term of (1) is obviously 0, while the
first term does not exceed

J<orelia- 1)
[r-14).
e(3 /18- 1),

SUPE(IHGB]
A B

[n-11

< E( sup
A

This concludes the proof of Theorem 7.

3.2. Consistency

Theorem 7 shows that asymptotical independence of the samples follows
from consistency of the density esumate, that is, lim, _, . £(J,) = 0. But

more importantly, consistency is needed for good approximations of all the
probabilitics because

Lfn*LfJ=%f|fn—fl=%Jn- )

sup
A

(see Theorem 1.1, the discussion of Chapter 1, and Section 1 of this
chapter).

3.3, Sample Indistinguishability

In simulations, one important measure of the goodness of a method is the
indistinguishability of X|,.... X, and Y,..., Y,, for the given sample size
m. When Card( A) and Card*( A) are the cardinalities of A for X|,..., X,
and Y,,....Y,, respectively, where A is an arbitrary set of R, then this
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could be measured by

S, = sup|E(Card(4)) — £(Card*(4)|X,,..., X, ).
A

n

When the random vaniable S, is smaller than 1, then all sets 4 capture in
each sample on average between u — + and # + 1 points for some . Such
a strict criterion is needed, for example, when extremal sets become im-
portant.

But a little thought shows that

fAf,,-Lfl=%f|fn—f1=’;Jn-

Thus once again, we are led to the L, criterion J,.
We say that [, is k-excellent for samples of size m when

S, = msup
A

E(S,) = SE(J,) <k. (3)

The notion of 1-excellence is very strong. To illustrate this, we will show just
how poorly any parametric or nonparametric density estimale must per-
form. In Table 1 we have calculated various threshold values for n below
which we cannot have l-excellence for fixed m, and this for certain
combinations of density estimates f, and densities f. The following combi-
nations are considered:;

A. All estimates f,, and some f of the form pf + (1 — p)g, where f
and g are known densities with disjoint supporis, and p is the only
unknown, a number between 0 and 1.

B. Al estimates f,, and some f € F, ,, where r is arbitrary but at least
equal to 2r* = (3888)'/° = 3.2233033 - - - (see Chapter 4). This is
essentially the class of all densities with bounded values of B*(f).

TABLE 1 _
m A B C D
10 1 1 40 85
100 18 1 13,000 85,000
1,000 1,800 15 4,000,000 85,000,000
10,000 180,000 4,900 1,300,000,000 #5.000,000,060

100,000 18000000  1,500000  400.000.000.000  85.000,000.000.000
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C. A/l kernel estimates (all K and A are allowed), and all f.

D. Al histogram estimates and all f € %, that is, all absolutely con-
tinuous f with bounded and continuous a.e. derivative f”.

The figures of Table 1 were obtained from results of Chapters 4 and 5
after leaving out the o(1) terms in all asymptotic expansions, and rounding
to two decimal digits. They should therefore only be considered as ap-
proximate figures. For A and B, we relied on the approximations provided
by Theorem 4.4

0.0849856 - - -

E(J)}= T

(or n = (00424928 --- m)?)  (4)

and Theorem 4.3
E(J,) = (2¢)7%(3888)'°n=%5  (or n = (0.00298963 - -- m)*?), (5)

respectively. The lower figures of column B can be explained by the
sloppiness of the argument of Theorem 4.4, Also, if 2r* is reptaced by 8r*,
the threshold value for n increases by a [actor of 4°2 = 32. For m = 10000,
this would imply that for any density estimate, however good, there is a
density in F ,,r < 8r*, for which we cannot have l-excellence when
n < 32 X 4900} = 156,800. Even for the simple class A, where we can use
very simple parametric estimates, for 1-cxcellence uniformly over all f in
this class and m = 10000, at least » = 180000 original data points are
needed. Columns A and B both tell us that there exists some density in a
class of densities for which there cannot be any 1-excellence when » is too
small. The particular density for which this happens is unknown: it depends
upon the f, that is used, and upon n. This is precisely the weakness of the
lower bounds of Chapter 4: we are still not satisfied with this result because
it is after all possible that for the f that we are trying to ¢stimate, we have
1-excellence, despite Table 1. The individual bounds of Chapter 5 are more
powerful in this respect.

For example, for any standard kernel estimate, and all f, we cannot
possibly have 1-excellence for m = 1,000 when n < 4,000,000. This is a
powerful statement, derived from Theorem 5.2;

E(J,)2 Gn ¥ (orn = (0.43933402 - -+ m)™?). (6)
There is no exception: it applies to all densities. Thus, the 4 million lower

bound on the sample size is an absolute lower bound. If the figures for the
kernel estimate {column C) are disappointing, then the figures for the
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histogram estimate are even more disappointing (column D}: the lower
bound for »t = 1,000 becomes now 85 million, and the rate of increase in
column D is as m’. The figures are based on Theorem 3.5:

E(J,) 2 0880261 --- n"Y7  (orn = (0.4401305--- m)’). (7)

The user may sometimes wish to relax his requirement to k-excellence
with &k > 1, because the high quality that is inherent in the condition
E(S,) = 1 is often not needed. In that case, the m-column in Table 1 should
he multiplied with k.

Nevertheless, Table 1 demonstrates very clearly that lor larger values of
m, we should not use a histogram estimate, unless there are other more
important factors than E(J,) such as the monotonicity of the random
variate generator (se¢ Section 3.5 below).

The bounds (4)—(7) are negative results, On the positive side, it is
reassuring to know that we can indeed achieve 1-excellence with the kernel
estimate for any m il we are willing to pay a price for it. In Theorem 5.1 we
have shown that in first approximation, for all f with compact support, if
the optimal # and K are chosen,

9 1/5
E(J,;)S 1.3768102---(5) B*(f)n"2/5_

Another bound is provided by Theorem 5.10:
E(J) <1.240701 -+ Bi(f)n~ V2

These two approximate inequalities can be used to conclude that if [ is
isosceles triangular, 1-excellence is obtained whenever

1.17624440 - -+ 7
nz (—-—“—2'——"1) ’

and that if f is uniform [0, 1], the same is true when

1.240701 ---  \?
oo (L2000

at least when A is optimally chosen, and X is the Epanechnikov kernel and
the isosceles triangular kernel, respectively. The figures of Table 2 illustrate
these inequalities, In case of k-excellence, multiply the m-column by k.
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TABLE 2
m Uniform [G,1] f Isosceles Triangular f
10 239 83.9
100 239,000 26,500
1,000 239.000,000 8,390,000
10,000 239.000.000.000 2,650,000,000

100,000 239.000.000,000,000 $39,000,000,000

3.4, Moment Matching
Some statisticians and engineers attach great importance to the moments of

the densities f, and f. For d = 1, the ith moment mismatch is the following
random variable (defined when |x|’ is integrable with respect to f, and f):

M,,,-=fx"f,,ffx‘f, i=1,23,.... (8)

In Theorem 8, we give M, and M, , for the kernel estimate:
THEOREM 8. For the kernel estimate on R', with {xK = 0, {x’K = ¢?,

|-
1=

My= LY (0-E(R). Ma= 1T (47 - E(x) + a0

P i1
Also,
Var( X,
E(M) =0, Var(dy) = YK gy ) - a2
and
Var(Xz)

Var{ M,;) =

Proof. We use the fact that f, is the density of the random variable
Y = X, + hW, where Z, W are independent of the X;’s and of each other,
Z is uniform on {1,...,n}, and W has density K. Theorem 8 follows from
the observation that

E(YlX,,..., X, ;11-2 X, + hE(W) = Z":X

i=1

XAl
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and

E(YYX,...,X,) = E(X} + 2hWX, + *W?|X,.... X,)

1 n
~ Y X2+ Rl
n i

f=1

We note first that the distribution of M,; is not influenced by the choice
of A or K. By the weak law of large numbers, M, tends in probability 1o 0
when E(|X;|) < o0, regardless of how A varies with n. The second moment
mismatch however consists of a random variable not influenced by # or K
plus a constant A%¢2. This constant is the sole contributor to the positive
bias in E{M,,) = h'e”. Since we have no control over Var(M,,), the best
we can do is to make the bias as small as possible. But this would force us to
choose h so small that E(J,) increases. If /1 is chosen optimally for £(J,).
then it varies as n~'/* for many smooth distributions. In that case, E(M,,)
becomes a good measure of the second moment mismatch in view of
Var(M,,) = O(n~ /%) = o(E(M,)).

For example, when K is the Epanechnikov kernel and * is chosen
optimally (se¢ {(5.14)}, then the normalized second moment mismatch is

(9)

E(M,,) 1 (E)z/s n;z/ﬁ(f‘/f/ﬂf"o‘/s |

Var(X,) S\27 Var( X,)
If we had used the optimal 4 for a given K, then we would have obtained
an expression attaining its minimal value for the Epanechnikov kernel
Thus, the choice of the Epanechnikov kernel is well motivated. Expression
(9) is translation and scale invariant. Only the shape of f is important. To
get a rough idea of the size of (9), we can take the normal density as our
prototype. We obtain

n=3% = 05540591 -« n~¥%  (10)

E(M,;) _ (2251762 )‘/51
Var( X;) 32 5

Table 3 gives different values of # (derived from (10)) needed to achieve
specific percentage relative errors for the second moment mismatch for the
normal density. For standard values of #, we note that this error ranges
from 1 to 1¢%. Thus, the smoothing necessary for consistency and smail
values of E(J,) has an undesirable side-effect on the second moment
mismatch, and this effect is especially outspoken for small n. We also note
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TABLE 3

Normalized Second Moment
n Mismatch, Normal, f, Optimal A

10 02205 ---
100 0.08781 - - -
1,000 0.03496 - - -
10,000 0.01391 ---
100,000 0.005540 - - -
1,000,000 0.002205 - - -

from Table 3 that it is all but hopeless to ask for a relative error of the order
of 0.1% or less. The situation for ¢ > 1 is of course more complex (see, £.8.,
Shanmugam, 1977, for a related discussion).

We also observe that, by (5.18), the normalized second moment mismatch
does not exceed

% X{(6.7726100 -~ Y'n' ¥/5 = 9.1736492 - - - n~2/*

when K is Epanechnikov’s kernel and 4 is chosen as in (5.14). VYarious
values for this universal bound are given in Table 4.

3.5.  Generators for f,

For the kernel estimate

) = () T (E5),

i=1
TABLE 4
Normalized Second Moment
n Mismatch, Absolute Upper Bound
10 3652---
100 1453 .-
1.000 0.5788 - -
10,300 (2.2304 - - -
100,000 0.09173 ---

1,000,000 0.03652 - --
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the following procedure can be used for generating random vanates:

Step 1. Generate Z uniformly on {1,...,n}, and generate an indepen-
dent random vector W with density K.

Step 2. Exit with ¥ <« X, + hW.

The only possible complication is created by the kernel K. For d = 1, we
have seen several arguments for choosing the Epanechnikov kernel

K{x)=1(0 — x?), |x] = 1.

There are two very fast algorithms for generating a random variate W with
this density—the rejection method and the order statistics method:

(The rejection method with a rectangular dominating density)
Step 1. Repeat Generate a uniform [ —1,1] random variate W, and an
independent uniform [0, 1] random variate U.
Until U<1— w2
Step 2. Exit with W,

(The order statistics method)

Step 1. Generate three independent uniform [—1,1] random variates
Vi, V, and V. Set W« V.

Step 2. If |V} = V| and |¥;] > V5|, set W < V,. Exit with W.

In the rejection method, W is accepted in Step 2 with probability %, so that,
per W produced, three uniform [—1,1] random variates are used, on
average. However, we also need some multiplications. The order statistics
method also requires three uniform random variates, but the multiplication
is replaced by a few absolute value operations.

In RY the optimal K according to L, criteria was computed by
Deheuvels (1977b). It takes the form

K(x)=Ci{d+4-x)2), |xi<d+4,

where €, is a normalization constant depending upon 4 only. Random
vectors with this density (the multivariate Pearson II densny) can be
obtained as

Vd + 4 Beta(d/2,2) T,,

where Beta(d/2,2) is a beta random variable, and 7, is an independent

k]
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random vector uniformly distributed on the unit sphere of R? For beta
random variate generation we refer to the work of Schmetser (Schmeiser and
Shalaby, 1980; Schineiser and Babu, 198(Q), and the references found in
these papers and in Schmeiser (1980). T, can be generated easily by a
variety of methods, for example, the spacings method (Sibuya, 1962; Tashiro,
1977), the polar method, or specific methods for small values of ¢ (see the
survey papers by Deak, 1979, and Rubinstein, 1980).

For example, in the polar method cone exploits the fact that 7, is
distributed as (N, /N,..., N,/N), where N,..., N, are independent nor-
mal (0, 1) random variables, and N = /N + --- + N},

For the choice of & as a function of the data, we refer to Sections 5.6 and
6.2. In some contexts, further modifications of the kernel estimate may be
needed, requiring some medifictions in the generation algorithm, For d = 1,
E(J,)is vsually reduced by using the transformed kernel estimate defined in
Chapter 9. For d > 1, there is no equivalent of the transformed kernel
estimate. Directional information in the data can be used to improve the
performance of the kernel estimate. For example, Shanmugam (1977) (see
also Deheuvels, 1977b) discusses what happens when instead of ¥ = X, +
AW we use ¥ = X, + hAW, where A is a 4 X d matrix chosen such that
A'A is equal to the inverse of the sample covariance matrix. The estimate of
Breiman, Meisel, and Purcell (1977, see Chapter 7) requires modifying the
basic algorithm to Y = X, + kW (and thus storing h,,..., A, together
with X,..., X,), where A, is the distance of X, to its kth nearest neighbor
among X,..., X,, and & is an integer to be selected beforehand.

Another modification is needed when f is known to concentrate all its
mass on [0, o0) or [0, 1] (see Chapter 9 below, or Hominal and Deheuvels,
1979): £, can be replaced by £, = f,// f, on [0, ) and by £, =0 on
{—o0,0). As proved in Theorem 11.3, this replacement is totally harmless
for any estimate. Random variate generation is no problem either:

Step 1. Repear Gengrate X with density f, Until X = 0.
Step 2. Exit with X,

The average number of executions of Step 1 in this rejection algorithm is
1/ 5%, which is usually close to 1.

The bias reduction devices of Section 7.6 cause¢ only minor inconve-
niences. Consider first the normalized Bartlett estimate g, = (f.).,//(f,).,
where f, is a kernel estimate with kernel X taking negative and positive
values. It suffices to note that ( £,}, < f?, where

A=y LK (SR,
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We can now proceed by von Neumann’s rejection method (von Neumana,
1951, see also, ¢.g.. Rubinstein, 1981):

Step 1. Repear Generate three independent random variates [, W,
and U, where [ is a random integer between 1 and »,
W has density K, //K,, and U is uniform [0, I}. Set
X < X, + AW. X now has density £}/ {f*.
Until U £ K. (X — X)/h) < (1 K(X = Xi)/R))..
Step 2. Exit with X.
The expected number of iterations of the repeat loop is equal to [£*/[(f,).
= [K./j{(f,), < /K,. The upper bound is tight because (f,),— 1 when
h — 0, nk — oo (this is a corollary of Theorem 7.4). For example, with
Bartlett’s kernel

K(x)=

o0 o

2
(1 - 5—;—) x| =1,

we obtain

o (BB X :\/ﬁ=
Jx. zfo {155 )de=y/ 55 = 1161895

A more time-consuming operation however is the evaluation of the sums in
the “ until” statement. Obviously, one should never take the sums blindly, as
this would cause the evaluation time to increase linearly with #. When K
vanishes outside [ — 1, 1], as is the case in our example, we can, for example,
store all the data in increasing order in an array. By binary search (see
Knuth, 1975), we can determine in what interval (X,, X;,,) X falls. By
searching up and down the array from the given interval, we can find all the
X,’s that are within distance 4 of X. No other X,’s can possibly influence
our sums, Under some conditions on f, one can show that the expected lime
now becomes O(nh) + Ologn).

Further reductions in evaluation time are possible if we take the form of
K also into account. For example, when K is quadratic on [~1,1] (exam-
ples include Epanechnikov's kernel and Bartlett’s kernel), we know that f,,
the kernel estimate, is a piecewise quadratic spline function with break-
points at X, —~ A, X, + 2,1 < i < n. Thus, we need only store these break-
points in order, together with for each interval the three coefficients of the
quadratic polynomial. Once the interval to which X belongs is determined
{(by binary search, this can be done in time O(log n)), the evaluation of the
sums in the “ until” statement becomes a snap (time O(1)). Admittedly, the
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set-up time has gone up dramatically: it too can be kept within reasonable
bounds by first sorting the data, and then computing all the coefficients in
one extra pass of the data, from left to right. For uniform kernels X, f, is
piecewise constant, so that the previous procedure can be simplified some-
what, For what follows, we can and do assume that the kernel estimate can
be evaluated in time (X(log #) when preprocessing time is ignored.

For the estimate of Terrell and Scott, also presented in Section 7.6, we
have an unnormalized estimate f, = £,,(£,,/f,»)"/°, where the correction
factor ( f,,/f,,)"/" always takes values between 0 and 2'/°. Thus, we have
f, < 22*f,,. In the algorithm for Bartlett's estimate, we must make only a
few modifications: in Step 1, X has density f,; and W has density X; and
we iterate until U273 < (f,,/f,)""*. The expected number of iterations is
273 + (1) (a corollary of ff, — 1; sce Theorem 7.6), and the evaluation of
(£ (X)/f,-(X)/? takes time O(togn), uniformly over all values for X.

Consider now the histogram estimate defined by partitions &, = {4, ,, J
integer}. An algorithm for generating random variates with density £, 1s
easy to find, for example:

Step 0. Preprocessing Compute and store the probabilities p, = p,
(A,;) for which p,# 0 (g, is the standard
empirical measure for X|,..., X,). Note that
not more than n p,’s need to be stored.

Step 1. Generate a random initeger f such that P(J = i) = p,.
Step 2. Generate a random variate X uniformly in A4,;, and exit.

In contrast to the algorithm given above for the kernel gstimate, a pre-
processing step is needed here. With some careful programming, it can be
implemented in time O(nlogn) because for each X, we must check if the
set A4, it belongs (o contains another X,,. An equivalent algorithm without
the preprocessing step is the following:
Step I. Generate Z uniformly on {1,...,#}, and find the set 4, to0
which X, belongs.

Step 2. Exit with ¥ uniformly distributed in A4, ;.

This atgorithm is preferable over the algorithm with preprocessing in all but
a few special cases. One such special case occurs when maximally anticorre-
lated random variables are needed, for example, in variance reduction for
Meonte Carlo simulations. It is known that for a continuous distribution
function F, two random variables with this distribution function and
maximal anticorrelation can be obtained by using F~'(U)and F (1 - U),
where U/ is a umform [0, 1] random variable. Fox (1980) argues that we
should try to implement the inversion method (ie., generate a random
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variable with distribution function F as F (7)) by all means. Unfor-
tunately, none of the algorithms given above for the kernel and histogram
estirnates are based upon inversion.

We will conclude this section by discussing various inversion algorithms
for density estimates. Most of the interesting estimates are piecewise poly-
nomial: these include the histogram estunate, and the standard kernel
estimate with uniform kernel, {riangular kernel, or quadratic kernel vanish-
ing outside [—1,1]. Assume that the real line is partitioned by the break-
points a4, < g, < --+ < g,, and that the estimate vanishes outside [a;, a,].
On [a,, g;,,), the estimate takes the form

f,,(x) = bfﬂ + b,-,x + bjzxz + - +bjpxp.

Assume also that we know the value of the corresponding distribution
function, F,. at these breakpoints: F,(a,) = ¢,. It is not difficult to verify
that these coefficients, breakpoints, and values are indeed easy to compute
for our estimates.

The inversion algorithm proceeds as follows:

Step 1. Generate a uniform [0, 1] random variate {/. Determine the
integer J with the property that ¢, < U < ¢;,,. (Thus, 7 takes
values between 1 and 7 - 1, since ¢; = 0,and ¢, = 1))

Step 2. Exit with X, where X is the solution of the equation

1
U—cp=by(X —a)+ fbn(Xz - a})

1
+ - +;Ti_b“’(xp+l - af’”].

For a piecewise constant estimate, the solution of the equation is very
simple. For piccewise quadratic estimates, the solution involves finding the
roots of a polynomial of degree three. In any case, the time taken in Step 2
is O(1), that is, it does not depend upon . If a sequential interval search is
employed in Step 1, its time could grow linearly with n. Also, binary
interval search is not recommended because the time requireq increases as
logn in the worst case. The alias method (Walker, 1977; Kronmal and
Peterson, 1979 ) can be used to generate a random integer I distributed as
our I of Step 1, in time O(1) in the worst case. Unfortunately, it is ineligible
because the integer is not obtained by inverting U. For Step 1, the prime
candidate seems to be the method of “guide tables” (Chen and Asau, 1974;
see also the comprehensive survey paper of Ahrens and Kohrt, 1981). It
takes expected time O(1), but could do much worse in the worst case.
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The principle is very simple: in a preprocessing step, a guide table
2,1 < i < n, is constructed, where

g =max(j: ¢, <i/n).

For example, it is clear that g, = n — 1. The determination of 7 such that
¢; = U < ¢;,, is done by sequential search from a place determined by the
guide table. Thus, the guide table is “almost™ an inversion table.

Step 1. I < pU + 1. (1 now has the property (I — 1)/n < U < I/n.)
Step 2. I < g,_,. (Look-up in the guide table.)
Step 3. Whilec; ., < Udol < I+ 1.
Step 4. Exit with [.
The interesting fact about this algorithm is that on the average the “while™
toop is executed at most once. This is because n values of ¢, are distributed

over n intervals and U is uniform [0, 1]. The guide table itself can be
constructed in linear ttme:

Step 1. Fori=1tondo g < 0.

Step 2. Forj=1tondo i« ne; + 1, g+ j. (Note: (i — 1)/n < ¢
<i/n)

Step 3. Fori=2tondo. g~ max(g_,.&) (Adjustment for empty
intervals.)

We should observe that for histogram estimates with data-dependent
breakpoints (i.e., breakpoints at the kth, 2k1th, etc. order statistics of the
data), the implementation of the inversion method becomes extremely
simple (Fox, 1980). Archer (1980), also concerned with simple generators for
f.. proposes a piecewise constant density estimate with breakpoints and
heights determined in such a way that the moments of f, match those of the
data. Unfortunately, such an approach does not yield a consistent estimate
in general. Thompson and Taylor (1982) report a method for generating
random variates in R¢ without explicitly constructing f,.
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CHAPTER 9

The Transformed Kernel Estimate

1. INTRODUCTION

The kernel estimate

s )

£0) = () ' 8 k(5

has the disadvantage that # is not locally adjusted. This is reflected in the
results of Chapter 5 where we have seen that the performance of the kernel
estimate deteriorates when f becomes less smooth or heavy-tailed. To some
extent, we can alleviate the problems by estimating the density of a
transformed random variable, and then taking the inverse transform.

The transformed kernel estimate (Devroye et ak., 1983) is based upon a
transformation T: R' — [0,1] which is strictly monotonically increasing,
continuously differentiable, one-to-one and onto, and which has a continu-
ously differentiable inverse. The transformed data sequence is 1,,....Y,,
where ¥, = T(X;). Note that ¥; has density

glx} = AT Hx)T " (x).

Now, g is estimated by g, from Y;....,Y,, and f is estimated by

-«

fi(x) = g, (T(x))T'(x). )

The key observation is that if g, is a density on [0, 1], the f, is a density on
R', and furthermore,

[ifo=11=f1z. - 81

244
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In other words, the L, error is invariant under monotone tranformations,
On the other hand, if g, is a kernel estimate, the L, error is proportional to
B*(g) as defined in Chapter 5. Thus, we should choose T so as to minimize
B*(g2). This leads 1o the natural question of the best form for g, which is
answered in Theorem 5.3: B*(g) is always at least equal to (2°/3*)"/*, and
this minimum is attained for the isosceles triangular density on [0,1].
Because of this, we should choose T in such a2 way that g is isosceles
triangular. If the distribution function F of f were known, this optimal
transformation would be

VF(x)/2, F(x) <3,
—y(1 = F(x))/2, F(x)>3

From Table 5.1, we recall that the optimal choice for 4 is (5/1927n)'/?
when g is triangular and X is the Epanechnikov kernel. Thus, g, and f,
are completely defined if F 1s known. Unfortunately, F is not known and
must be replaced by some estimate. Also, g, is usually not a density on
[0, 1] because some portions of g, stick out beyond 1 or to the left of 0. To
take care of this probiem, we will use

T(x) = 3

. £,{x)
E.(x) = (4)
[0
0
instead of g,. The integral does not cause computational problems because
Y, h
[eat)=1 z ) K. (s)
(Y-L/h

If we define f {x) = g.(T(xNT'(x), then obviously, [{f,— fl= fI. —
But our theoretical results on which we based our choice of g were valid for
g,- However, we are safe because for all g and g,

Y1z, — 81 < [ig, - 2l ©

(see Theorem 11.3).

The only unknown in the design at this moment is our transformation T,
We point out that for a transformed histogram estimate, the optimal 7 gives
a uniform [0, 1] density and should therefore be equal to T(x) = F(x), all x.
The 4 to be used in the histogram estimate is (27n) " '/? (Table 5.1).
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Because T is smooth, g inherits the smoothness properties of f. Thus,
transformed estimates are probably not very good to take care of annoying
discontinuities. They are mainly used for improvements in the performance
of the original estimates due to betier tail estimates. For example, if f is
unimodal, then the optimal inverse transform will stretch the kernels in the
tails. The visual effect is that of a method with a variable A depending upon
x; h will usually “seem™ larger in the tails, and smaller near the mode.

Another important factor is that g, is easy to plot because its support is
compaci. This point also led to the development of Parzen’s density-quantile
function estimate (Parzen, 1979).

Quite a few papers have been written about the choice of 4, but, as we
know, the expected L, error can decrease no faster than n 2> times B*(f)
times a constant. In this chapter, we suggest that rather than worry about h,
we should 1ry to work on B*(f), in a move 10 widen the horizons of the
kernel estimate.

2. CHOOSING A TRANSFORMATION

Choosing a transformation is not a sinecure. In a vast number of applica-
tions, one suspects that £ belongs to a certain family of densities (usually a
parametric family), or at least is close to a given member of this family. If
the family is a parametrized by 8, with distribution function Fy, the natural
approach is to estimate § by # in a robust manner, and use 3 in the
expression of the optimal transformation T. Throughout we use the same A,
that is, the optimal £ for the isosceles triangular density on [0, 1].

Particularly attractive are the so-called “quick and dirty” robust esti-
mates, based upon ideas given in Gastwirth (1966). for example, if X|,, <

« < X, are the order statistics {or Xi,..., X, Gastwirth’s estimate of
the mean of a normal family is

B=03X, 5+ 04X, ., +03X,, 3.

We refer to Huber (1972) and Andrews ¢t al. (1972) for more examples of
such simple robust estimates of location, For robust estimates of scale
parameters, we could use the two-quantile method of Chapter 5, Section 6.
For example, for ithe Cauchy family, this would give the following ¢silmate
of scale: :

G = %( Xan/a) - X(n/d))‘

Except in trivial situations, the normal and Cauchy famtlies are too small,
For a survey of families with more parameters, see Schmeiser (1977). The
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reason that we are reluctant to recommend nonparametric families is that
the consistency and rate of convergence of the resulting estimate become
harder to verify, and may even be questionable. With just a {ew parameters,
T is nearly constant, and the consistency is not jeopardized.

3. ESTIMATION OF DENSITIES WITH LARGE TAILS

There are two factors that determine the efficiency of the kernel cstimate:
discontinuities or sharp oscillations, and large tails. The former factor,
captured for smooth densities by [|f”|, is infinite for densities with simple
discontinuities such as the uniform density on [(41]. The latter factor,
measured by [ \/f . 15 mfinite for densities with a large tall such as the
Cauchy density. We have seen that when one or both of these factors is
infinite, we must have #*/°E(J )} — oo for the standard kernel estimate,
regardless of the choice of & as a function of n.

The transformation to a triangular density eliminates the discontinuities
and the tails, and should improve the performance of the estimatc as
measured by the L, error. In the inverse transformation, the discontinuities
are reconstructed, creating the illusion that the transformed estimate works
as a kernel estimate with locally adapted smoothing factor 4. For example,
A will usually seem bigger in the tails. This phenomenon will be illustrated
with the aid of the notion of an isolated bump. It will partially explain the
improvement that is obtained in the L, error.

An isolated bump in anry density ¢stimale is associated with one of the
data points X),..., X,: X, defines an isolated bump if there exists an
interval [a, b] with the properly that X; € [a, b], no other point X, belongs
to [a,b), [2f,>0,and f,=0onfa—ea)U(bb+e¢ for some & > 0.
Assume, for example, that we are using the Kkernel estimate with
Epanechnikov’s kernel. Then X, defines an isolated bump if and only if
[ X, — 2h, X, + 2] contains no data point except X,. Thus, in the graph of
fus [ X, — B, X; + h] appears as a separate hill. and it would seem that the -
data point “X,” is wasted. Note also that the number of isolated bumps is
invariant under strictly monotone transformations such as the ones consid-
ered in this chapter.

The total number of isolated b¥mps, B,, bounds from below the number
of hills in a graph. For example, when we are estimating a unimodal density,
we would like the number of separate hills to be T and B, = 0. As we will
show in this section, this is usually not the case. For example, for the normal
density with optimal k, F(B8,) increases at least as n'/*/ \/logn, and the
situation gets worse for longer-tailed densitics, We will also show that for
the triangular density, £(B,) = o(1).
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The basic starting formula is

E(B,) = nP([ X, — 2k, X, + 2h] has no other data points)

1

=nfs(of1 - f“z"f(y)dy) dx.

THEOREM 1 (General Result). Feor all f, E(B,)= o(n) when h — 0,
nh — oo,

Proof. We note that E(B,)/n = [f(x)r,(x)dx, where the integrand r,(x)
is {0,1}-valued and r,(x) < exp(—(n — 1)["*22,,”f(y)dy) — 0 for almost
all x (this follows from the fact that by the Lebesgue density theorem
{Theorem 2.2) the exponent in the upper bound is asymptotic to dnhf{ x) for
almost all x). Thus, Theorem 1 follows after an application of the Lebesgue
dominated convergence theorem.

THEOREM 2 (Densities with a Regularly Varying Tail). Let f be strictly
monotonically decreasing on [0, 50) with uniquely defined inverse, and let f be
0 on (—c,0) for the sake of convenience. Assume further that f is regularly
varying at oo with exponent r < —1, that is,

[lex) _
lim =¢", all¢>0.
x—x f(x)
If h = 0, nh — o0, then
E(B,) = ——L—(—?—)—
(nh)""h

for some slowly varying function L (i.e., a regularly varying function with
exponent ().

Proof. We will use the following facts:

(1) hmxﬂxf(x)/f 2f(y)dy = —r — 1 (Dehaan, 1975, Theorem
2.1);
(ii) f"‘(l/x) is =1/r varying at oc  (Dehaan, 1975, p. 22); ,
(iii) f(x) = x"L(x) for some¢ slowly varying function L (Seneta, 1976,
Lemma 2.1).

We will use the same symbol L for all our slowly varying functions. The set
of all x for which nf*'2ff(y)dy < 4 will be called A4, and the set of all x

X

for which x > 2h, 4nhf(x — 2k) < { will be called A*. Then, Theorem 2
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follows from

EB)znf 1)1 =nf ") dy) ax

2(r_f1)f' l(ﬁ)%ﬁ

~ L{8nh)(8nn) """
o —16(r+ )R

EXAMPLE. For the positive Student’s 7 density ¢ /(1 + x*)*“" V2 x > 0,
a > 0, we have r = — (g + 1), and thus

E(B,) 2 L(n)h~}(ah)/“" 0 = L(n)nt/tarp-alas,

For fixed ¢ > 0, 8 € (0, 1), we can find an a such that (1 + af)/(1 + a) >
1 — ¢/2. Thus, for every ¢ > 0 and every sequence & ~ ¢/n?, g€ (0,1),
there exists an « such that E(B,) > L(n)n'""/2 > n!~¢ for all n large
enough. The last inequality {ollows from a property of slowly varying
functions (see Seneta, 1976, p. 33). Thus, for any polynomially decreasing
sequence h satisfying A — 0, nh — o0, E(B,) can be forced to increase at
any given polynomiai rate n* * merely by choosing an appropriate density f
in the Student’s ¢ family. In particular, when # decreases as n /*, we have
E(B,) = L{(n)n'1*2/9/+a) The exponent in the last lower bound varies
from 1 {a {0)to 1 (a = x).

THEOREM 3 (The [sosceles Triangular Density).  For the isosceles triangu-
lar density on [0,1), we have

-

E(8,) < (1 + o(D)((32047) *+ 2200 )

when B — 0, nh = oc. In particular, when nh® — w0, we have E(B,) — 0.
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Proof. We start from

x+2h

)<2f n- 4rexp( (n—l)f f(y)dy)dx.

We split the integral into three pieces, [0.24], [2h, 3 — 2A] and [} — 2A, 1)
The contribution of the first piece does not exceed 8n - 2hexp(—(n — 1) -
22h)2) - 2h = (32 + o(1))nh’exp(—8nh?). The contribution of the third
term is at most 2a -2 - 2hexp(—{(n — 1) - 44 -4} ~ 2h) = (8 + o(1)) -
sh exp( — 8nh). The contribution of the second term is at most

n

o] 5 -1
2 dnxe Wby = (32R%(n - 1)) e ' dy
1k n =1y I]h
< 1+ 0(1)
32nh?

This concludes the proof of Theorem 3.

By Theorem 3, the kernel estimate has with high probability no isolated
bumps when f is triangular (in fact, E(B,)= O(n= %) for h ~ n™ /%),
The same is true for the transformed kernel estimate when the transforma-
tion is “ perfect.” Not only do we have a reduction in the number of isolated
bumps, but also in the oscillation.

Let us finally note without proof that for the normal density, E(B,) is at
least equal to a constant divided by h,’log( ‘nh) when A — 0, nh — oo, and
that thus with the optimal choice for k, E(B,) increases -at least as
nt/3/ flogn. Thus, nothing would be gained by normalizing the data
instead of triangularizing the data.

4 CONSISTENCY

For fixed transformations 7@ R' — R' satisfying the conditions of Section
1, we have J, = f|g, — gl and thus certainly the exponential bound of
Theorem 3.1 for J, applies: P(J, > ¢) < exp(—cn), all »n > n,, where
¢ > 0 is a function of ¢ and n, is a number depending upon g and ..
Furthermore, the lower bound of Theorem 5.2 remains valid, but we can no
longer be sure of the upper bound C*A(K)B*(f) for E(J,)n*"* (Theorem
5.1) as & may not be optimal for g. We do have a guarantee however that
with the choice h = (5/1927n)'/3, E(J,) decreases as n~%> when B*(g)
< o0. We also recall here the relative insensitivity of E(J,) to slightly
suboptimal choices for h (see Section 5.6).
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For variable transformations T, we must worry about the consistency of
the resulting estimate.
The transformation ¥, = T( X)) is usually of the form

Y= T,(X; X..... X,),

for some Borel measurable function 7, satisfying the following conditions:
T,: R' — R* is strictly monotonically increasing, one-to-one and onto, and
continuously differentiable. Its inverse is also continuously differentiable.

Consider the transformed kernel estimate with Epanechnikov kernel K,
and smoothing factor h = 3(5/6mn)!/> (which is optimal for the triangular
density on {0,1]). We will not worry for the time heing about trans{orma-
tions T,: R' — [0,1] and the corresponding normalizations, because, as we
have seen, this is an asymptotically negligible detail. We have the following
densities:

fr density of X),..., X, (the data).

g: density of Y, = T (X)), given Xi,..., X,.

g*: density of T(X,). where T is some given transformation.

g, transformed kernel estimate based vpon ¥,,...,7Y,.

gr: transformed kernel estimate based upon Z, = T(X)), 1 <i < n.

We have the following inequality that can help us in proving the conver-
gence to 0 of f|g, — gl

Jig. 1< fig* — g1+ flg: ~ g1+ 6suplT,(x) = T(x)].

To see this, note that K is Epanechnikov’s kernel, and thus that

({25 +{ 5 o

fiea - i< () £ _

< 2L 34 - ) s 6supll(x) - T(x)]

n'o? <
The transformation 7 is in some sense the limit of T,. For example, when
T, is obtained by estimating some parameters, the actual form of T is
known. One would hope that of the three terms on the right-hand side of
the inequality, the middle term dominates (it usually will), so that we can
in effect replace 7, for rate of convergence studies by the fixed transforma-
tion T.
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One of the terms giving some trouble is {|g* — g|. We know that it tends
to 0 in probability when it does so at almost every x (Theorem 2.8). But this
is the case when f is a.e. continuous, 7, ' = T 'ae and 7, V' - 77" ae
in probability.
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CHAPTER 10

Applications in Discrimination

1. THE DISCRIMINATION PROBLEM

The problem of discrimination (pattern classification, statistical pattern
recognition) is usually formuiated as follows: the observation X is a random
variable taking values in R“, and the label ¥ is a random variable taking
valves in {1,..., M }. Given X, one has to guess the value of ¥, and this is
called a decision. The decision is a measurable function: g: RY -
{1,...., M}, and the probability of error is P(g(X)# Y). If the distribu-
tion of ( X, Y') can be characterized by the probability measure for X, u, and
the regression functions (also called a posterion probabilities,

p{x)=P(Y=ilX=x), xR 1<izM.
A decision g* is called Bayesian if

pm.ﬂ(x} = maxp,(x) almostall x(u). (1)

If X has a density f and has conditional densities f; given ¥ = i,1 < i < M,
then

p.fi(x)
Ax) =", almostall x(u),
pixy =S ()
where p, = P(Y = i). Thus, for a Bayesian decision we have
P e (X) = m’axp,-f,-(x), almost all x( f). (2)

In discrimination the problem is to minimize the probability of error if
the p,’s and f’s are unknown, and a sample D, = {( X, 1}),....(X,.Y,}}

233
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of independent identically distributed copies of (X, Y) is available, We
assume that D, and (X, ¥} are independent. Y is now estimated by g,{ X ),
a measurable function of X and D, (the dependence upon D, is suppressed
in the notation), and the quantity of interest is the conditional probability
of error ‘

Ln-—'P(gn(X):’e YIDH) (3)
In particular, we would like to find sequences of functions g, for which

L,— L*=minP(g(X)+ ¥) almost surely. (4)
g

Here L* is psually called the Bayes probability of error. This is precisely
what we will describe in this chapter, several ways of choosing such
sequences. We will not take a deep look at the properties of these sequences
beyond (4). Rather, we would like to point out how the resuits of Chapters
1-9 on density estimation can be applied to obtain (4). In particular, we will
assume that X has a density f. It is stressed however that most of the results
stated in this chapter remain valid for all probability measures p on the
Borel sets of RY.

To approximate the Bayesian decision, we could first estimate all p,’s by
[0, 1]-valued functions ofD,, say p;, 1 < i < M, and let g, satisfy

ﬁg,,(x)(x)'__ m;’ixﬁ!(x). (5)

If X has a density /, and p,f,(x) is estimated [rom D, by p,f,(x), then
g, may be defined by

f?g,,(x)fg,,(x)(x) = miaxf’;‘fi(x)- (6)

THEOREM 1.

(1) If g* is a Bayesian decision, then
*=Plg*(X)+ V).
(1) If g, satisfies (5), then
M
0< Ly~ L* < T fip(x) = p(x)lu(dr)-
i=1

(1) If X has a density and g, satisfies (6), then

M
0<L,-L*< E _/Pifa(x) *ﬁfﬂ(x“dx‘

i=1
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REMARK 1. Various versions of relations (i) and (iii) were proved by
Van Ryzin (1966), Wolverton and Wagner (1969), Csibi (1975), Gyorfi
(1974,1978), Devroye and Wagner {1976), and Devroye (1982b).

Proof. By (1),

M

P(*(X)# 1) = 1= L P(Y =i0(X) =)
M
- :Z:; j[’.:*t.r)=:'1pj(x)#(dx)

=1~ fmaxp,(x)u(d) < 1= [, (x)uldx) (7)

for any g: R¢ —{,—'5'[1, ..., M }. Take the infimum over all g, and (i} follows.
Also, i

M
L=1-% [  plxuldx)=1~fp()ul@x}).  (8)

i=1"lgulx)=i]

s0 that by combining (7), (i), and (8) we have

L, = L* = [(maxp(x) = pyc())p(dx)
= f(maxp,(x) ~ maxp,(x))n(dx)
. +f(ﬁgﬂ(_()(x) _pg,,(.n(x))”(dx)

M
< ¥ fip(x) = (=) in(ax), )

i=1

and (it) is proved. Now, (iii) is a simple consequence of (it) for p,(x) =

P S(x)/f(x).

2. SLOW RATES OF CONVERGENCE

It is quite interesting that the L, errors of the density estimates f, provide
an upper bound for the probability of error. But there is also a converse
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relationship of sorts: for example, the probability of error (L,) can tend to
L* at an arbitrary slow rate (Devroye, 1982a).

THEOREM 2. Let a, be a sequence of positive numbers tending to 0, let
M =2, and c € [0,}). Let g, be arbitrary. Then there exists a distribution of
(X, Y) for which X is uniformly distributed on [0,1) and L* = ¢, so that
, E(L,) —
a’!

n—=ros

Proof. The proof follows the general lines of the proof of (ii) of Theorem
4.1, We will merely outline the construction of the randomized family for
the special case ¢ = 0. Let X have a uniform density on [0,1], and let
b=10: bbby -+ €[0,1] (the b,’s are the coefficients in a binary expan-
sion of b). Then define

%) = () = S b0y (5) pr(x) =1 - py(x),
i=1 ‘._‘

Y=1+/(X), Y, =1+f(X),

where0 =x, < x, < «+- <x,71l. Wedefine g, =x,,, — x,,i=12,.
Assume that 8= 0- BB, --- is uniformly distributed on {0,1] and mde-
pendent of X, X;, X;,..., X, and let us use the notation R,(b)= E(L,).
b € [0,1]. We have

sup R,(b)= E(R,(B))=P(g(X,D,)#7Y)

helo.1]
= E(P(g,(X,D,) = Y|X, X,..., X,))
> E(IL,P(g(X,D)+ Y|X, X..... X,)),

where A is the event N, [f5(X)f5(X)=0]. On 4, ¥ and g,(X, X,
Y,...., X, Y,) are independent given X, X,,..., X,. Thus, on A,
P(g. (X, Dn) # Y|X, X,..., X)) = 1, and therefore

wp 7,(5) 2 37 AU 0£e%) =0 | = 5 £ a1 - )"
pe(v. )] -

The rest of the proof is the same as that of (it} of Theorem 4.1,

Theorem 2 implies that rate of convergence results for E(L,) can only
exist under some smoothness assumptions about the regression function.
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Rather than pursuing the issue of the best possible rate of convergence for
certain families of distributions of (X,Y), we will concentrate on con-
sistency results for the most popular nonparametric discrimination methods.

3. THE KERNEL METHOD IN DISCRIMINATION

Let K be a function in L,(R?) with K = 1, and consider the modified
kernel density estimate

o1 e X —
pA(x)=(ned)' L K( p ul )I{K=‘], 1<i<M. (10)
=1 n
The corresponding decision is defined in (6). Under some additional condi-
tions on K, Devroye and Wagner (1980) and Spiegelman and Sacks (1980)
showed that L, — L* in probability as n — oc when &, = 0, k¢ - . In
Devroye (1981), strong convergence was obtained under the additional
condition nh¢/logn — co. In all these papers, there are no conditions on
the distribution of (X, Y). Theorem 3 below is valid whenever X has a
density: it states that L, converges to L* exponentially. The conditions of
convergence cannot be improved upon.

THEOREM 3. If X has a density, h, —» O and nhg — o0, then the kernel
method defined by (6) and (10) satisfies:

For all € € (0,1) there exists ny > 0 such that
P(L,— L* > ¢) < exp(—c\ne*), n 2 ny.

Here ¢y > 0 is a constant depending upon K only.

Proof. Because of Theorem 1, one only has to show that
(): fIP,f(x) Pf(X)Fdx>8)Sexp( cne’),  nzng.
i=]

Because E(p,f(x)) = =p;K,, *f,(x) we have by Theorem 2.1, f|p,f;
E(p,f)— 0 for ahl i. Thus, it is sufficient to establish the exponenual
inequality for

} |
P( L fibf(x) - E(p{x))ax > e).
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As in the proof of Lemma 3.2, we need only consider kernels K that are
indicaters of rectangles A. Introduce the measures i, and p,; defined on
Borel sets B as follows:

. 1 &
p,(B)=P(Y, =i, X €B); Ba(B)= P E I[)g:;.x € B

Then

M
T [15.5(x) — E(pJ(x))1dx

i=]1
M
= % fima(x + hyA) = p(x + b, ) dx,
i=1 ‘

This can be treated by technique of Lemma 3.2 and the rest of the proof is
straightforward. We conjecture that Theorem 3 remains valid for «/f distri-
butions of { X, Y)

4 HISTOGRAM-BASED DISCRIMINATION

Next, we consider histogram-based decisions in which R is partitioned into
sets A,;, A,,,..., and the estimates in (6) are of the lorm

)i fix,en,, vomi

—nE . X €A4,,. (11)
m=1 ‘\(Anj) /

PR =

THEOREM 4. If X has a density, the sequence of partitions satisfies
(3.13)—(3.15), and decision (6) is used with the histogram estimate (11), then
the following statement is valid.

For each ¢ € {0,1) there exists ny > 0 such that

P(L,— L* > ¢) < exp(—cyne? ) n > ny.

Here ¢, > O is a universal constant.

The proof is a copy of the proof of Lemma 3.4 and will not be given here.
The complete convergence of L, to L* for all distributions of ( X, Y) was
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obtained by Devroye and Gyorfi (1983). The conditions of convergence are
essentially the same as those of weak convergence indicating once again the
equivalence of all types of convergence. For histogram-based decisions in
which the partition of R depends upon the data, and corresponding weak
convergence results, see Gordon and Olshen (1978) and the references found
there.

5. THE NEAREST-NEIGHBOR METHOD

Another popular nonparametric decision is based upon the notion of &
nearest neighbors (Cover and Hart, 1967). Given X, D, is permuted
according to increasing values of || X, — X||: a vector of ranks is obtained
(R (X),..., R,(X)), where Xp (y, is the ith nearest neighbor of X. Ties are
broken by comparing indices. We note here that if X has a density f, ties
occur with probability zero. The decision is based upon a majority vote
among Y, y xp 1 < j <k, where £ is a sequence of integers. Stone (1977)
also considers the case of welghted voung the ith nearest neighbor carries a
weighted vote v,;; for each class the total vote is computed, and the winning
class is our decision. For the decision with equal weights among the k,
nearest neighbors, we note that it is equivalent to using the nearest-neighbor
density estimate (Fix and Hodges, 1951, 1952; Loftsgaarden and Quesen-
berry, 1965) in (6):

I

(Y, (x)=i]

Pl =1 % (12)

/=1 A(Sx,urxnk (x)u)

This is due to the fact that the denominator in (12) is the same for all /. We
will prove the following theorem: :

THEOREM 5. If X has a density f,k, > o, and k,/n = 0, then the
Sollowing is true for the decision (6) based on the nearest-neighbor estimate

(12):

For each e € (0,1) there exists ny > 0 such that
P(L,— L* > &) < exp(—c:ne? ), n = ny, where ¢y > 0

depends upon the dimension only.



260 Applications in Discrimination

Before we present the proof, a brief historical remark is in order. Stone
(1977) showed that L, — L* in probability for all distributions of (X, Y)
when k, — %0 and k,_/n — 0. We note here that these conditions on &, are
necessary. Proceeding via pointwise convergence, Devroye (1982b) showed
that L, — L* almost surely for all distributions of (X, Y') when &£,/n > 0
and k,/loglogn -» oc. Beck (1979) proved Theorem 5 under some’ ad-
ditional smoothness conditions on f and the f.’s. The proof given here is
shorter and more general. It also imposes no conditions on f. Thus, the
following statements are equivalent:

@ lim, , k,=occ,lim, , _k,/n=20.
(iiy L, — L* in probability whenever X has a density.
(iiiy L, — L* exponentially whenever X has a density, that is, for each
g > 0 there exists ¢ > 0 such that P(L,— L* > e)<e™ ™ for

alt n.

We would also like to point out that there is no hope of extendi;lg, the
exponential inequality of Theorem 5 to all distributions of (X, ¥) (while
keeping the conditions on k). For example, let X be ( with probability 1.
and let ¥ be 1 or 2 with probabilities + and £, respectively. Because
(Ym(x;v . YR.,,(x)) is(Y,..., Y, ) we have

L=

"

[

+i1,, L*=1,

where 4 is the event [(1/k, )¢, Ly .= 1], Thus, by Kolmogorov's
exponential lower bound (Stout, 1974, p. 262) (or Lemma 6.6), we have
P(L, — L* =€) z exp(—ck,,) for all n and some ¢ > 0.

The proof of Theorem 5 requires a geometric property also applied by
Fritz (1975) and Stone (1977). A cone of angle ¢ centered at x is defined as
the collection of all points y € R such that angle (y — x,z — x) < 8 fora
given point z € R¥ Thus, x, z, and 8 determine the cone. Now, choose
so small that for each v € Cone(x, z, #),

Cone(x,2,8) NS, 1ot € Seix - opr {13)

After having fixed @, we define the integer M, as the minimal number of
cones of the form Cone(x, z;,8),1 < i < M,, needed Lo cover RY.

LEMMA 1. Let u be a probability measure on R¥, and let

Ba(x)= {Z:H(S:,\{Arlel)sa}? xERd,
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Then -

#(B,(x)) < M,a.
Proof Let C,1<i< Mu, be a collection of cones of the form

Cone(x, z,, #) covering R? and satisfying property (13). Now,

w(B,(x) < ¥ (G, 0 Bi(x). (14)

i=1
For fixed i, choose an arbitrafy point y € C;, N B,(x). By (13),
B(Seixp O G N B (X)) < u(S, ) S0, (15)
where we used the fact that y € B, (x). Since y was arbitrary, we have
u(C, 1 B,(x)) < a. (16)

The lemma follows from (14) and (16).
Proof of Theorem 5. We introduce the notation

N 1 &
Pf(x) % 21 lerJ(x)=:'1
=

and
n
pH(x) = E ; Iy =i d e, - s s ryons
where k = k,, and r,{x) is a solution of the equation
k .
; = ""[Sx.r,,(x))' (17)

Note that decision (§) with p,(x) as defined above is equivalent to decision
(6) with (12). We note that the solution r,(x) is positive since p has a
density. Also, k/n — 0 implies that r (x) — 0 for almost all x(p). If C, is
the Lebesgue measure of the unit sphere of R, then (17) is equivalent to

M‘(Sx,r,,(x))

A(SJ(.J',,(-VI)) .

k=nr#(x)C, (18)
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Thus, by Theorem 2.2, and k& — o0, we have arf(x) — oo for almost all
x(g). \

Obviously, - \\
17:(x) = B,(x)] < {p.(x) = E(p(x))] |
+HE(pr(x)) = pr(x)| +{pH(x) — p(x). (19)
We have

E(pr(x)) = P{JI X, - x“ks/;(x)’yl =i}

L alow(e) |
Sx.r,(:) "(Sx.r"(;)) “'\,‘ -

- p;{x) for almost all x(p), (20)

by a slight generalization of Theorem 2.2. Thus, by the Lebesgue dominated
convergence theorem, [|E( p¥(x)) — p,(x)|u{dx) — 0 for all i.

Next, let n, be the empirical measure for X;,..., X,, and let 7 be an
integer in {1,..., M }. Then,

Sx‘rﬂ(.t)) - V(Sx,r,,(.t))l
P'(Sx,r,,(x))

1%,
J1p2(x) = E(pr(x))n(ax) = [ ( u(dx),

where
1 A
m(A4) = n 2 fix,e v,
j=1
and

v{(A) = E(v,(A4)), A Borel setof R?.

Let & be (k/n)'/9, and let & be a cubic partition of R? with cubes of size
h/N for some large integer N to be determined. The members of # are
denoted by B, and the centers of these sets B are called b. T is a fixed
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sphere §,, for some large r. We have '

J1pr(x) = E(p2(x))Iu(dx)

v.(B) —v(B
sf v.(B) — v(B}]| u(dx)
gtz t #lSenen)
_r’ v,(B)+v(iB
oy (() ()) u(dx) (1)
Bl e
(MB“QMM+NB”&MM
+ #(dx)
B:BOS, [ (n* P P'(Sx,r,,(x))
an;r.(:)¢®

Applying Lemma 1 with a = k/n, the first term on the right-hand side of
(21) is at most

T m(B) - B}|f | p(dx)

B:BNT+ 2 tr,,(t))

<M, ¥ I|n(B)-#(B)l

B:BNT+ W
(22)

This tends to (0 exponentially, but the exponent depends upon M, (sce
Lemma 3.1). The sccond term on the right-hand side of (21) is not greater
than

My (1,(T) + p(T7)). (23)

For a given € > 0, we can first choose r large enough so that n(T°) < ¢/M,.
Then P{(23) > 3e) < P(|u (T > e/M,;) < 2 exp(—2n(e/M;)*) by
Hoeffding's inequality (Hoeflding, 1963). Thus, we need only look at the last
term of (21).

To bound the last term of (21) from above, we will use the notation

A= Sx,r.(x)’ A* = Sx,(rn(x)—h/N)J and AN = {x: (Cdf(x))l/d > m}’
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where { ) is the function that takes the positive part. We bound the term by

(Bl g (A Y),

w(A) 7
f(](l (z:x(,:)m( )) (dx))n,,(dz)
+ f(%) W), ”

The first term on the right-hand side of (24) can be wriiten as f{(z)p,(dz).
where |{(z)| = M, The last term is then [{(z)p(dz). By Hoeffding’s
inequality, we see that | [{(z)p,(dz) — {(z)p(dz)j — 0 exponentially with
exponent depending upon M, Thus, we need only show that [{{z)u(dz)
{the last term of (24)) can be made arbitrarily small.

Choose N such that p(4y) < e d/ VN < e, where ¢ > 0 is an arbitrary
number. In view of (18) and the definition of %, we have

(h/r,(x))" = Cyf(x), almostall x. (25)

Thus, for almost all x & A,.,(1 — A/Nr,(x}),— (1 — (C,f(xNV4/N) =
(1-1/yN),> 0, and r,(x)> h/N for all n large enough. For such x,

VN

From this and the Lebesgue dominated convergence theorem, we deduce
that

pA) —p(4) [ (CSNN
1) 1 (1 N ) < e (26)

i [T a0

s p(Ady)+ limsupf

n—on “AS

(M(A)(;304)) (dx) < 2e.

(27)

Thus, [|p*(x) — E(p¥(x)|u(dx) tends to ¢ exponentially. 7
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We will finally consider the last term in (19). Again, for fixed | €
{1,..., M}, we have almost surely

|pr(x) = B.(x)

1 n n

K

Iipmix =g o) = 2 Lgmi 1, - sl < 1 g, 0y — 210
1 1

Jj= =

1 n
% Zl M, s et ™ T~ <y =51
j=

1 n

% & Tux-xisnen = 1) (28)
J=1

If we consider a new discrimination problem with data (X;, W), where

W,=i for all j, and if we et the corresponding p*(x) be g*(x), then (28)

implies that

[1pr(x) - 5, )uldx) < flgr(x) — E(gH())Iu(dx).  (29)

which we know converges exponentially to 0.

To verify that the exponent of convergence does not depend upon M,
proceed as follows: sum over all 7 on the left-hand side of (21). This gives, in
the first instance, an expression as in (22) with a summation over ali i, to
which Lemma 3.1 can be applied. Te handle the second term on the
right-hand side of (21), absolutely no modifications are necessary, and
similarly for the last term on the right-hand side of (21). For the last term
on the right-hand side of (19), we begin with adding a summation sign to
the first two lines of (28). The inequality in {28) remains valid as stated.
Finally, add the summation over all i to both sides of (29). This completes
the proof.
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CHAPTER 11

Operations on Density Estimates

The central theme of this chapter is the connection between the L, error of
some density estimate and the L, error of the same density estimate after it
has passed through operations, for example, taking the marginal density,
forming product densities, convolving densities, truncating densities, and
forming the nonnegative projection of a density are all rather common
operations. We will wherever possible establish useful inequalities.

1. MARGINAL DENSITIES

Let f* and g* be densities on R? (we are thinking here in general of an
unknown density f* and a sample-based estimate g*, but the randomness
implicit in g* will be unimpeortant). Let f and g be the marginal densities
on a subspace R* of R% Then, we have the following theorem:

THEOREM 1.
— 8l = *— g%

Proof. With a litile abuse of notation, we have

fur-a=f ] [, ¢

Theorem 1 is often nearly vacuous, because there exist examples with
d=2, s =1, for which {=g but [[f* — g* = 2. One such example is
simple: let f* be uniform on [0,1]* U [1,2]? and let g* be uniform on

* __ *
<[ =g

267
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[0,1) % [1,2]1U]1,2] x[0,1).

The inequality of Theorem 1 seems to suggest that one cannot lose by
first estimating f* by g*, and then taking the marginal density g to estimate
the marginal density f. What one should remember though is that f|f* — g¥%|
is usually very large to start with: if g* is a nonparametric estimate of f*,
the rate of convergence to 0 of [|f* — g*|is normally a function of 4.

2. COMPOSITION (MIXTURES) OF DENSITIES

When two densities / and g on R? can be written as finite mixtures L p, f,
and Lp,g,, where the f's and g,’s are densities on R? and (p,,..., p,y...)
is a probability vector, then we have the following theorem:

THEGREM 2,

flszfs - ZP:‘&'I = Epaflfg - &l

The inequality of Theorem 2 is trivial, yet it has interesting implications.
Assume, for example, that we know that = pf, + (1 — p)f,, where p is
known (this is only for the sake of simplicity), f, is known to belong to
some small parametric family (e.g., the family of normal densities), and £, is
unknown. If someone shows us samples X,,..., X, and Yi,....7,, drawn
from f, and f,, respectively, we could form an estimate of f by properly
combining a parametric estimate of f; with a nonparametric estimate of f;.
Since the error of the last estimate usually dominates, we see that the total
error is approximately bounded by (1 — p) times this error for sample size
m. On the other hand, had we disregarded the f; information and lumped
the samples together in a nonparametric estimate of f, we would have
obtained a nonparametric estimate of sample size n + m. If m/n is about
(1 — p)/p, this is usually bigger than the former type of error.

When a sample from f is available and f| is partially or completely
known, one should be able to take advantage of the additional information,
although it is not immediately obvious how one could do so.

Finally, we note that the inequality of Theorem 2 can be grossly
inadequate. For example, if f, and g, are uniform on [0,1) and f, and g,
are uniform on [1,2], while p, = p, = 4, we have f|f — g|=0and f|f —
gl=2,alli
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3. RESTRICTIONS OF DENSITIES

Consider a density f and an estimate g, also a density. Sometimes we know
that f has support A. To avoid nonsensical situations (e.g., a density
estimate that puts some mass on the negative numbers, while the density to
be estimated is the density of a positive random variable), we can replace g
by its restriction to A, that is,

g*(x) — g(x)lt! .

g
4

We encountered such a restriction in the development of the transformed
kernel estimate (Chapter 9). The restriction is always a better estimate than
the original estimate g:

THEOREM 3.

Jir-gts< fir- .

Proof.

Ag+

Ju-sgt=2f fmfi s2f(f-8).s2f(7-8).= fif - gl

4. NONNEGATIVE PROJECTIONS

We assume again that f and g are a density and its estimate on RY
However, while fg = 1, g could take negative values: for example, this was
the case for Bartleut’s estimate (Section 7.5). The function
]
g =5t 4= (xig(x)>0),
4
A

is a valid density, and we will call it the nonnegative projection of g. Again,
it is always better than the original g:



270 Operations on Density Estimates

THEOREM 4.
]If—g*ISflf—gl-
Proof. Since fg =1, we have {, g > 1. Therefore, g > g* on A.Thus,
fir-g1=2f(g* - 1).
=2 . ++2 * _ =2 * .
[ =pur2f (g =Du=2[(s" - 1)

s2f(g=N-=2f (s-1).=fls=11

5. PRODUCT DENSITIES

The question posed here is the following: when univariate densities f,,1 < i
< d, are estimated by univariate densities g,, how well does I1%, g,(x;)
estimate [17_, f,(x,), x, € R? We offer the following inequalities:

THEOREM 5. Let H,; be the Hellinger distance between f; and g,, that is,
. . L/p
le=(f|fl/p_gifplp) 4 lslsd’
and define
d
L, = |f logl =|, 1<i=<d.
f / g{ 2, i

Then, recalling that

[min(T17, T1g) =1 - 5 fIT1/, - Malbs

we have

fmm( [1f.T1s) < eXp(* Z%—Hf,) < exp(— Y %Hﬁ.),
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and

fin( 1. Ts) = exp| - £ 57 )

[min(IT/,. TTg,) = exp(- X L,).
Proof. The first inequality follows from

fwin( [T, fa) < I1 f e = 111 - 2 < oo - £ 582

and the inequality H,; > ; H;; (Theorem 8.4). The second inequality follows
from

fmin(I1f, T1e) = [TImin(£, &) =TT fmin(/,. £:)

-TIf1-1m) exp(~ E?—EH—I]

Finally, the last inequality follows directly from Theorem 8.2.

If =/, g,=g and [|f— gl # 0, we see that f|[If,—Tlg|—= 2 as
d — oc. This i1s why the inequalities in Theorem 5 were formulated in terms

of f min(I'lf,Ig,).

6. RADIALLY SYMMETRIC DENSITIES

We say that f* is a radially symmetric density on R® when it is the density
of a random variable YZ, where ¥ is a random variable with some density f
on [0, ), and Z is independent of ¥ and uniformly distributed on the
surface of the unit hypersphere in R (thus, || Z|| = 1 with probability 1). If
g* is another radially symmetric density associated with a density g on
[0, 00), then we have the following theorem:

THEOREM 6.

firt —g4i= fir -l
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Proof. Let B be a Borel set of R“. Then, if u is the uniform measure on the
unit hypersphere of RY, we have P(YZ € B) = [f(x)u(B/x)dx. Thus,

flf"' —g*l=251;p j;f* - fyg*

= 2sup ff(X)u(g)dx - fg(x).u(g)dx)

B

= ZSt;p j;}g(f— g)."(-f-) dx — ff{g(g —f)#(%)dX‘

(f- g),fm(g—f)) = fif- sl

< 2max(
f=g

Also, by taking B = {x: x € R? f(|Ix|) > g([ix]])}. we see that the inverse
inequality must be true too.

The importance of Theorem 6 is that all our one-dimensional results for
density estimation carry over to the problem of estimating radially symmet-
ric densities in R“ with known center. In particular, if the radial symmetry
is given, one should always try to estimate f, the density of ¥, and not f*.
An estimate of f* can always be obtained by reconstructing the radial
symmetry from the univariate estimate g of f. It goes without saying that
this is just one example of many situations in which s prion knowledge
about a problem can be used to reduce the dimensionality (and thus the
difficulty).

7. CONVOLUTIONS

Let us now consider a situation in which we want to estimate the density of
Y+ -+ +%, where the ¥’s are independent random variables with
common unknown density f, and a sequence X;,..., X, of independent
random variables with density f is available. In most interesting cases, d is
either bounded or at least very small compared to s, for otherwise we would
be better off applying a local central limit theorem. It seems that there are
probably better ways of doing this than by merely estimating f*9 (the
d-fold convolution of f) by g*4, where g is a standard estimate of /. In any
case, we have the following theorem:

THEOREM 7.
Jirmi - <dfif- gl
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Proof. The inequality follows from the fact that for any sequence of four
densities f, g, f, and §:

firei—gegi< fif<(F-2)1+ [(r-2)eal

< fir-g+ fif- 2.

Thus the L, error is not guaranteed to remain at the same value. On the
other hand, the inequality used in the proof of Theorem 7 is very loose: just
consider four gamma densities with unequal parameters a,b,c, d, but
a+c=hb+d

When 4 is large compared to n, local limit theorems will play an
mcreasingly important role. For example, if density f has mean p, variance
a2, and third central moment «, then, if g is normal (dy, do?),

xd _ o —3/2 L
Jirt = g1= S E =1+ de /)+o(ﬁ)

(see, e.g, Petrov, 1975, p. 213 or Sirazdinov and Mamatov, 1962).

& UNIMODAL DENSITIES

Consider a unimodal density f on R with a mode at 0. Khinchine’s theorem
(sec Feller, 1971, p. 158) states that there exists a distribution function F

such that

f(x) = jx“%dF(y); =)= [T JaFG). x>0

Thus, when f and g are {wo unimodal densities on [0, co} with mode at 0
and corresponding Khinchine distribution functions F and G,

fﬁodF(y)—dG(y)ldxs fj“’ldF(y)—dG(y)idx

Ju-g=f|f > 5

< fIdF(y) - dG(y)| AN
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If F and & have densities f* and g*, then the following can be concluded:

THEOREM 8.
fir-s< fir— e

The relation between f and f* is: f(x)= [Z f*(y)/ydy, and, clearly, g
is closer to f than g* is to f* for any pair of unimodal densities.
Unfortunately, we do not ordinarily have a sample from f* at our disposal.

9. APPLICATIONS IN DETECTION

We will pose the detection problem in one of its simplest forms: f and g are
two known densities on RY and we are given a sample X|,..., X, of
independent identically distributed random vectors known to have density f
or density g. We are asked to decide between the two alternatives. More
formally, we will let 2 number Z be 1 or 2 according to whether the
common density is f or g. Then, our decision ¥, a Borel measurable
function of X, ..., X,, is 1 or 2. We are interested in the indicator of error

L= I;n- z]-

In classical detection theory, the problem s actually asymmetric: one is
interested in iy ,; and Iy, ,, when Z =2 and Z = 1, respectively, but
one kind of error is worse than the other. This will not be considered here.
Nor will we consider problems in which we have to decide between f and
“not f.” These are better covered in texts on goodness-of-fit tests. For
additional information about the detection problem, one can consult Rao
(1973, Section 7a), For example, Theorem 9 below is strongly related to-
Section 7a3 of Rao (1973). From now on we take Z random with P(Z = 1)
= p € [0,1). All the bounds and claims of Theorems 9-11 are valid for all
p, including p =40, p = 1. Note that E(L,))=pP (Y = )+ (1 — p)P(Y
# 2}, where P, P, are the probabilities for X|,..., X, conditioned on
Z =1, Z = 2, respectively. When p = §, E{L,) is minimized by setting

yo b i IIA(X)/e(X) > 1,
i=1

2 otherwise.

This will be called the optimal detector or maximum likelihood detector. For
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convenience, we can rewrite it as

Lt (1/m) T log(£(X)/8(X) > <,
i=]

2 otherwise,

Y =

where we will let ¢ take any real value for the time being. We should note
here that the optimal detector depends upon the ratio f/g only, and is thus
invariant to monotone transformations of the coordinate axes, a property
that is desirable for all detectors. The value of the sum in the definition of
the optimal detector could be + oo or — o0, but is always well-defined in
view of P(f(X)=g(X)=0forsome i)=10

THEOREM 9. If c € (—[glog(g/f). [flog(f/g), then L_— O almost
surely as n — oo forall f + g (i.e., [|f — g| > 0). Note that the interval for ¢
may be left infinite or right infinite or both. It always includes the value 0. For
c = 0, we have, with ¢ = min(p,1 — p),

oo o5

P(Y+ Z)=E(LX > qexp(-nflf— gi/(l - ﬁf* gl))
< exp(-(n/S)(ﬁf— g|)2).

Proof. The three inequalities follow from the observation that

E(L)=pf mg+(-p)f

g, <nf, LI sws.

where f, = f(x,), g, = g(x,), and the integral is with respect to dx, dx, ---
dx,. Thus, E(L,)/fmin{xf, g,) € (g,1]. Now apply Theorem 5,

Let us next recall that [flog{f/g) takes values in (0, 00] when f+ g
(Theorem 8.2). When we split the integral into its positive and negative
parts by splitting log into log . + log , we notice that the negative part has a
bounded contribution since

02 fflogk(‘-g{) > —%.
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To see this, we use the fact that log,(g/f) < g/¢f, and thus that

Osfflog+(§)sf§= %.

We will also need the following form of the strong law of large numbers: if
Z,....,Z,... are independent identically distributed random variables
with E(Z;_)> —oo, we have (1/n)L].,Z, — E(Z,) almost surely as
n— o, evenif £E(Z))= o0

From this, we conclude that on Z = 1,
1¢ J{CORUN !
n L 8 ( (x)) ff“’g(g)

almost surely as n — co. Thus, when ¢ < ff log(f/g), we have P(Z =1, Y
= 2|X,,..., X,) — 0 almost surely as n — oo. The remainder of the theo-

rem follows by symmetry.,

Other detectors can be used too. In view of their suboptimality, they
should only be used in special circuamstances. For example, when f and/or
£ are not exactly known, but are merely good sample-based density esti-
mates, then the optimal detector could yield disastrous results because of its
sensitivity to the events f(X;) = 0 and g(X,) = 0. In other words, in such
situations we would like to have more robust detectors. We will introduce
and discuss two such detectors here, the PRD (pattern recognition based
detector) and the L1D { L, error based detector).

The PRD is defined as follows: :

n .
Y= 1 it (L/m) X Dpxysecxy 1~ Tipexassixn <y > €
- jm=1

2 otherwise.

In fact, in the PRD, we are summing the individually optimal decisions. It is
worthwhile to observe that there are cases in which the choice ¢ = 0 yields a
detector with probability of error L, — 1 almost surely when Z = 1. For
example, let g be uniform on [0,1}, and let £ be 2 on [0,a}, and (1 —
2a)/(1 — a) on (a,l1], for 0 < a < 1. Despite the fact that Z = 1, we have
g(X;) > f(X,) with probability 1 — 2a > 3

THEOREM 10. Ifc e (f,,Sg - ff(gg, jf>gf— jf<gf) (an interval that
does not have to contain 0), then L, — 0 almost surely as n — oo for all
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f+ g If we take

D | et

(f (f+g)- f(f+g))

then

Bz < ool - 5(fir- ) ).

Proof. Let us take p = 1 without loss of generality. The sum in the
definition of Y for the PRD has independent identically distributed
[—1,1]-valued summands with mean [;. f~ [ .. f. The first part of the
theorem follows by the strong law of large numbers and the symmetry of
the problem.

Also, if ¢ is taken as indicated, then

B(L) - p|; ¥ (Wi B() << - BOK)).

i=1

where W =1,y /e00y>1 ~ IU(X)/S(X)<11’ and E(W)) = [rn o f = fi<if-
We verify that

c— E(W,) = %(fm(g-f)— ff(g(g—f)) = —%ﬁf—gl-

i
Since (W, — E(W,)} are independent zero mean [—1 — E(W)),1 -
E(W,)}-valued random variables, we obtain, by Hoeffding’s inequality
(Hoeffding, 1963),

E(L,) < exp(—Zn{%flf— gi)2/4) . exp(— slfi- gl)z)-

The L1D is defined by

(e e N A

2  otherwise,

where ¢ € R is a constant. We have a behavior very similar to that of the
PRD: :
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THEOREM 11. If ¢ € (~ [f(1 — g/f)2, f§(1 — //8)%, then L, — O al-
most surely as n — o0 for all f + g. If we rake

- =21 - -7

then

E(L,) < exp(—%(ﬁf— Sl)z)-

Proof. The summands in the definition of ¥ are random variables with
means

I A e

and

fg(l—*) fg(1—~) =—ff(l—-f;)2+ (when P = 2),

so that the first statement follows simply by the strong law of large numbers
for independent bounded random variables.

For the inequality we will assume without loss of generality that P = 1.
We note that

. _
B(L) = P2 5 0= EOR) < -5,
i=1
where W, is the /th summand in the definition of ¥, and

= o= 4+ a3

Thus, by a variation of Bennett’s inequality (Bennett, 1962),

2
we <ol -5 )

where 02 = Var(W,). The inequality is only valid for independent sum-
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mands W, with |W,| < 1 (which is the case here). But

o? < E(W?) = jf[l— ) ff(l——) <e,

so that the inequality becomes E(L,) < exp(—ne/12). But by Cauchy’s
inequality,

o= (fefi = 4). V- 5).) = 3o

and we are done.

There are countless other examples of detectors. For example, L, = 0
almost surely for the detector

[(x)  g(X)\
y={ ,E(g(x’) f(X,-)) ©
2  otherwise,

when ¢ € (— fgz/f+ 1, ffz/g — 1), an interval that contains the interval
(—(fIf - gh% {(/If — g|¥’) when f+# g (Theorem 8.3). The unbounded
summands are very sensitive to differences in the tails and in the support of
£ and g, but this sensitivity will cause some problems when f and/or g are
not exactly known.

In practice, f and g are seldom known. Frequently, we are given random
vectors ¥}, ..., Y, and Z,,..., Z, with densities f and g, respectively. First,
f and g are estimated by f, and g,, where f, and g, are densities on R%
Then we are asked 10 classify X|,..., X, as having common density f or
common density g. The indicator of error now is .

L,= Ly 4 23

In most communication theoretic and information theoretic applications,
k can be thought of as fixed, but » is sometimes flexible, as X;,..., X, can
be considered as samples of a signal evolving in time, Thus, the quantity

L} = limsupL_ (in the a.s. sense)

n—roc

captures very well how good f, and g, are. Obviously, since L, can only
take the values 0 and 1, L} can only take the values 0 and 1. We cannot
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realistically expect that P(L} = 1) = 0. However, we will say that our
detector is consistent if

lim P(Lt =1) = 0.
k—oo

Let us now try to derive the consistency for some large classes of
detectors. 1t is left as a simple exercise to extend all that follows to the
notion of strong consistency, that is, LY — 0 almost surely as & — oo. The
detectors we will consider are based upon the existence of a function
H:[0, 0] = [—1,1] with the property that for all f + g (1e, [|f— g| > 0),

fiu(5)> Joul5)

Examples of such functions H are H(u) = I, — I, <1 (which leads to
the PRD and H(u) = (1 — 1/u),—(1 — u), (which leads to the L1D).
The detector is constructed as follows:

1. Construct the density estimates f, and g, from the samples ¥,,..., Y,
and Z,,..., Z,, respectively. Compute the detector’s threshold ¢, =

Jif + ) H(f /8-
2. The decision Y is defined by

S B
yo !l if — Y H(f(X)/8.(X))> ¢,
i=1
2  otherwise.

.THEOREM 12, The sample-based detector described above is consistent
when

(1) f, — fand g, — g in probability as k = oo, for almost all x;
(i} H is continuous (this is satisfied for the 11D).

Proof. Assume without loss of generality that P = 1. Because H is a
bounded function, we see immediately that L} is almost surely equal to

Liincssan < e

By our definition of H, we know that

RS
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Thus, we need only show that ¢, — ¢ in probability and that [fH(f, /g.)
— (fH(f/g) in probability as ¥ — oo. The latter fact follows directly from
the Lebesgue dominated convergence theorem and assumptions (1} and (ii).

Also,
)= o(5)

1 +
o= s 3 fh=n1+ fie-a) + [L5E
tends to 0 in probability by (i), Glick’s Theorem 2.8, and (ii).

Extensions of the maximum likelihood detector are not straightforward.
One of the main obstacles is the resolution of the problem that for some i’s
logl f,.(X,)/g.£ X)) takes the value — oo, while for some other i's it takes
the value + oc. This instability can be resolved of course by truncating the
logarithm from below and from above, a process called winsorization (see
Huber (1981) for a discussion of winsorized maximum likelihood detectors).
For the winsorized maximum likelihood detector, we clearly have a function
H that satisfies the conditions of Theorem 12 and the consistency follows
without work.

"

10. SYMMETRIZATION AND PERMUTATION
INVARIANCE.,

In this section, f is an arbitrary density on R“, and unless specified
otherwise, f, is an arbitrary density estimate based on a sample of size »n
drawn from f. It is well-known that estimates should improve if more
observations are taken, and that estimates that are not symmetric functions
of the data can be improved by symmetrization. Yet it is another maiter to
show these improvements quantitatively for a fixed n. This will be done
here. At the same time we take the opportunity to illustrate the beauty and
elegance of the theory of Schur-convexity by proving all our results starting
from an inequality of Marshall and Proschan (1965).

LEMMA 1 (Marshall and Proschan, 1965). Let ¢ be a convex function of
its n arguments, and let it be symmetric in its arguments. Leta = (a,,....a,)
and b = (by,...,b,) be two weight vectors such that a majorizes b (a > b),
that is,

k k
Tayz Xby, k=1,...,n,
i-1

=]
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with equality for k = n, where a2 -+ 2 ap, and by > -+ = by, are
reorderings of a and b. If X,,..., X, are random vectors with permutation
invariant distributions, then

E(9(a, X, 0,X,)) = E($(8Xs,... b,X,)).

THEOREM 13. Let f, be an estimate of the form

fn(x) = % f: Kn(x5 Xi)s

w1

where the functions K, are arbitrary measurable functions. If X,..., X,,
Xpt1reovs X, 1 ave independent identically distributed random variables, then

E(f!g,.—fl) < E([If,. ~f|),

where

B0 = i T Ki(x ). \

REMARK. For the kernel estimate (Parzen, 1962; Rosenblatt, 1956), with
fixed kernel K and fixed smoothing factor A, the L, error is a decreasing
function of n.

The proof of Theorem 13 will be postponed until after the presentation
of the results.

THEGREM 14. Let f, be an estimate of the form
n
fn(x) = E wm'Kn(x’ X:)’
i=1 :
where the w,;'s are weights summing to 1, and K, is as in Theorem 13. Then

B fie. - 1) < £{ fir,- 11).

where

() = 5 LK (5 ).
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and note that this is a convex symmetric function. Thus, by Lemma 1, and
the fact that a = (1,0,0,...,0) = b = (1 /n!,...,1/n!), we have

|

nt
Z aUYU

o=1

= E(|Y1|) = E( Ifn(x! Xiseens Xn) _f(x)l)

nt
'
Lo

cm]

2 E = E(ig.(x, X;1-.0, X,) — f()]).

Taking the integral on left and right with respect to dx gives us Theorem 16.
{(We note in passing that E(|g, — f|?) < E(|f, — f|") all x,all p > 1)

Theorem 15 follows from Theorem 16 without further work, To prove
Theorem 13, we construct g, as in Theorem 16, and note that

gx, X Xy ) = (n+m), Z ZK (x o(I))
. 1 n+m (H+ )|
‘—(n+m)vn,§1K( . X)) +",;
im]

For Theorem 14, we can apply Lemma 1 directly with a = (w,,....w,,),
b=QQ/n,...,1/n), ¢(uy,...,u,)=[E",u,l and with X, formally re-
placed by K_(x, X;) - f(x).
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CHAPTER 12

Estimators Based on Orthogonal Series

1. DEFINITIONS

The rich theory of orthogonal functions (Sansone, 1977; Szegd, 1975) can be
used in the design of density estimators. There are of course a few problems
with such an extrapolation: the original mathematical framework tends to
ignore the fact that the estimated function is a density, and most approxi-
mations of functions by partial sums of orthogonal series expansions are not
densities because they are either not in L, or violate the positivity con-
straint.

We start with an orthonomal system defined on a set B, usually R or
[—m,7]. The functions of the orthonormal system, p,, p;,... satisfy, by

definition,
0, i=j
prpj {1' imj .

For a function f on B, we define its Fourier coefficients a, by

a,= j;;fpg‘-

A function f on B may or may not have an expansion in terms of the p,’s,
depending upon whether £% &, p,(x) converges and is equal to f(x), or
not. This series, if its exists, is called the Fourier series of f. Without the
existence of the Fourier series, it is hopeless to reconstruct f by using
orthogonal series. It is thus important to characterize those situations in
which f has an expansion in terms of the p,’s.

An orthonormal system is called complete in L, (B} if for any function
J € L,(B), ffp, =0, alt i, implies f= 0 almost everywhere. The system is

286
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called a basis in L,(B) if for every f € L,(B) there is a unique convergent
series expansion Ya,p,. It is known that when B is compact, a system is
complete on L,(B) if and only if

fri=Yai allfeL,(8)
B

i=0

This is called Bessel’s equality. In that case, we actually have convergence
of the partial sums in L,(R):

m 2
f[f—za,-p,-) -0 asm— oo,
8 i=0

(See, e.g., Sansone, 1977, p. 23.) There is no L, analogue of this property. If
we want to study the convergence of the partial sums .

Sm(f) = Z a,p;
i=0

(sometimes we will write S ( f, x) to make the dependence upon x explicit)
in L,(B), then we cannot just use the Cauchy-Schwarz inequality to make
the bridge to L, theory:

B

[18.05)-11s \/?\(B)];(Sm(f) -1
Indeed, this would force us to introduce the condition f € L,(B). The
condition A(B) < oo is less restrictive since we can always transform the
data montonically to a compact interval; see, for example, Chapter 9,

One of the exciting features of orthogonal series expansions is that if a
function has a finite term expansion, then approximation and hopefully
estimation is very easy. If we are given a sample X,,..., X, drawn from f,
then a, = [fp, can be estimated without bias by

1 n
dy; = ; Z pi(Xj)"
j=1
and f(x) can be estimated by

f(x) = § a,;7(x).

i={}
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If f(x)~= L ,a,p,(x) for a finite m, then f, is an unbiused estimate of f.

In general, f does not have a finite term expansion, and we will be forced to

let the parameter m tend to infinity with n. Thus, f,, the orthogonal series

estimate, can be viewed as a direct generalization of parametric estimates.
There is also another way of writing down f:

(%) =+ T K, (x ),

i=1

where

K,(x,y)= _)_E(]p;(x)p;(y)

is called the kernel. This form will be called the regular form, because it
reminds us of the kernel estimate (see Section 8 below for more on the
connection with the kernel estimate).

One relevant result from Founer analysis is the Christoffel-Darboux
summation formula for orthogonal polynomials (see, e.g., Szego, 1975, pp.
42-44):

K,,,(x, y) - bmpm+1(x)pm(y) :pm(x)pm+1(y) ,

x=y
where b, = k, k.., and k_, is the coefficient of the highest power of x in
the polynomial p, .

The integer m can be considered as a smoothing factor. We will mainly
be concerned in this chapter with the consistency and the rate of conver-
gence of orthogonal series estimators when m = m, is a sequence of
integers. In particular, we will illustrate how some systems are not rich
enough to handle all densities on B, for example, trigonometric, Hermite,
Laguerre, and Legendre systems. This, of course, should be weighed against
a few formidable advantages of orthogonal series estimates, for example,
their superb performance when f has a finite term expansion, or a rapidly
convergent infinite expansion.

In density estimation, it is important to have estimates with [/, = 1. In
an orthogonal series estimate on a compact set B, this can be insured by
choosing the first function p, as follows:

Iy

P0=mp
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where I is the indicator function, Clearly,

f ):a,..fp, Za iNB) [ p.py = a,0A(B)

= ayA(B) =Lf= 1.

The inclusion of the constant function in an orthonormal system on R will
in general lead to estimates that are not functions of L.

Orthogona! series estimates were developed in a series of papers of
Cencov {1962), Van Ryzin (1966), Schwartz (1967), Kronmal and Tarter
(1968), Bosq (1969), Watson (1969) and Fdldes and Révész (1974). In this
chapter, we will not deal with multivariate orthogonal series estimates. For
the multivariate trigonometric series estimate, the reader could consult
Kronmal (1968), Schiler (1976), Sterbuchner (1980), Stegbuchner (1981),
Greblicki and Pawlak (1981), and Kirzyzak and Pawlak (1982).

2. EXAMPLES OF ORTHONORMAL SYSTEMS

The trigonometric system on 8 = [—=, 7] is formed by the functions
1 cos(ix) sin{ix)
= — i x)= —_—, ; = ’ > 1
Po ‘/-2? P2 1( ) {; - 2 ( ) ‘/‘;

The corresponding orthogonal series estimate is called the trigonometric
series estimate or the Fourier series estimate (see, e.g., Kronmal and Tarter,
1968). The trigonometric system is compiete in L,[—x, =], but is not a basis
for L,[—m, 7). It will be convenient to write the trigonometric series
estimate sometimes as

_1 cos(:'xj B ‘sin(ix)
fn(x) + Z nlr‘—l ]/; + n2i ‘/; )

=]

and sometimes as

f..(x)=—ZD (x, X)),

J"'l



290 Estimators Based on Orthogonal Series

sin(2m2+ 1 (x - y)]

2wsin(x —y)

where D, is the Dirichlet kernel

D (x,y)=

2

Note that the definition of m differs slightly from that given in Section 1
since we are in fact considering an expansion with 2m + 1 terms.

The Legendre polynomials form an orthonormal system on [ — 1, 1]. There
are many ways of defining these polynomials. For example, they can be
defined by Redrigues’ formula

2.’+1 1 4 4 (2
20t dx’

px) = -1, =20

The system is complete in L,[—1,1] (Sansone, 1977, p. 191). The corre-
sponding kernel K, (x, y) is

K, (x )~ % p()n()

i=0
= m + 1 pm(x)Pm+1(y) —pm+!,(x)Pm(.y)
V2Zm + 1V2Zm + 3 y—x '

Legendre series estimators were discussed by Crain (1974), Viollaz (1980),
and Hall (1982). For various explicit forms of the p;’s and the derivation of
K, for example, Sansone (1977) or Szego (1975). There are several ortho-
normai systems that generalize the Legendre system, for example, Ferrer’s
functions (Sansone, 1977, pp. 246-253) and the Jacobi polynomuals (Szegd,
1975, Chapter 4).

A function can be expanded sometimes into a Hermite series using the
functions

e* 2.2 d:‘

pi(x) = i dr

These functions form an orthonormal system, and are complete in L,(R).
The Hermite series estimate was studied for use in density estimation by
Schwartz (1967), Walter (1977), Bleuez and Bosq (1979), and Greblicki

e ), iz0.
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(1981). Using (5.5.9) of Szegd (1975), one can derive the kernel

y) = m+1p,.,(x)p.(y) - pm(x)Pm+l(y)

Ko, 2 x—y

The Laguerre series estimate on B = [(, 00} is based upon the orthonor-
mal and compilete {in L,{0, c0)} system of functions

1/2 i
r(’ + 1) —nrex) 1 d xr’+a:e—x), i> 0'

2x) = (m " g

Here a > —1 is a parameter of the system. For example, for a = 0, we
obtain

x/2 J]'
pl) = E (/5]

The kernel is

L(m+2) puai(x)p, () —p.(x) p,,+1(y)
I{m+a+1) y—x

K, (x,y)=

The Haar orthonormal system differs from all the previous systems in that
it is a basis for all £ [0, 1]. For a given integer m, the functions are defined
as follows: define 1n1egers k>0,and j, 1 <j < 2% by the equation m = 2%
+ j. Then, set

k2 xe(l;l J___Mz_)

2k ’ 2k
pm(x) = L J __1/2. g
’ 2k ’ 2k

0, otherwise.

This system has the desirable property that for all f< L,[0,1], S,(f)— f
almost everywhere, and [}5,.(f) — f| — Q. Its regular form nearly reduces
to the histogram estimate (see, e.g., Bleuez and Bosq, 1979). In fact, its
kernel takes only nonnegative values, so that it is easily seen that f, itself is
a density. The only difference with the histogram estimate with equal
intervals is that the intervals for different values of m are properly nested
{due to the dyadic construction of the functions p,). The Haar series

1
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estimate inherits all the properties of the histogram estimate, including the
built-in limitation of an expected L, error rate that is bounded from below
by a constant times n~'/3, and including the consistency for all densities
on [0, 1]. it will not be treated elsewhere in this chapter.

3. GENERAL PROPERTIES
The following lemma gives us usefol albeit crude upper and lower bounds
for the expected L, error (see also Lemma 3.6):

LEMMA 1. Let f, be an orthogonal series estimate of f with m = m,, terms,
and let f have the formal series expansion (convergent or not)

f(x)~ i a;p(x),

i=0

where the p.’s form an orthonormal system on a set B of R, and a, = [ fp,.
Assume also that all p;’s are absolutely integrable on B. Then,

E(firs = 1) < fisn (1 =11+ E{ fus, - £

< [15.(1) = 11+ [{E((5, - ECLY)
< 15,00 =1+ 7= [VEREx, %) ds

B( fis, - 11) = Max( fis.(1) = 11,5 fEC, - I}

LEMMA 2. Let f€ L,(B), and let p,,i = 0, form an orthonormal system
on B. Then, the orthogonal series estimate f, with m terms has the following
expected L, error (all integrals are over B):

5(f(n-0Y) -1 %

i

(ffpf-a?) v ¥ oa

imm+1

1 2 - 2
S"E’offpi-{_ Y af

i=m+1

= %ff(_x)Km(x,x) dx + f al.

i=m+1
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Proof. We begin with
JU= 1 =[5 = B + [(s.(5) =)

Since Bessel's equality applies, the last term is equal to

f( f afpf)2= fi al.

i=m+1 i=m+1

Here we used the orthonormality. Also,

im()

f(fn = E(fn))2 =f( .g(a' = am)pr) = i (a; - am’)za

and the rest follows without work,

Because we require integrable estimates, it is only reasonable to require
that all ps in our orthonormal system be absolutely integrable. However,
this restriction has some ill side-effects when an orthogonal series estimate is
considered on an unbounded set. The following lemma captures these
side-effects.

LEMMA 3. Ler p,.i = 0, be an orthonormal system on R (or on [Q, )),
and let all p.’s be absolutely integrable. Then

(i} If f, is translation-invariant (see Section 6.6), ff, = 0.
(ii) It is impossible that ff, = 1 almest surely for all f.

Proof. If £, is translation-invariant for all f, then K, (x, y) must be of the
form K}Y(x — y) for some function K}, and [K,(x, y}dy should be
independent of x. Thus,

() S [rn)d

imQ

should be independent of x. Because all p,’s are nondegenerate functions
(fp?=1), and no p, is equal to a constant almost everywhere (since
Jp? = 1), we see that L™, fp,(¥)dy = 0, and thus (K, (x, y)dx = 0, all y.
Thus, ff, = 0.

To show (ii}, we will argue by contradiction. If ff, = 1 almost surely, for
all £ then 37, fp.(x)p,(¥)dx = 1 for almost all y. Squaring and integrat-
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ing with respect to dy gives

% =f(§0p,(y)fp,<)zdy = ‘);‘.Ofp.’(fp,-)z = g .

i=0

(/7

which is clearly impossible by our assumptions.

Lemma 3 lcaves no doubt as to the limitations of orthogonal series
estimates on R or on [0,00). As a result, we will mainly discuss the
properties of orthogonal series estimates on compact sets.

4 THE TRIGONOMETRIC SERIES ESTIMATE:
CONSISTENCY

The aim of this section is threefold, Densities on [~ #, 7] will be constructed
with a convergent Fourier series that cannot be estimated by the trigono-
metric series estimate, regardless of how large n is. To balance this, we will
give weak sufficient conditions for consistency. Finally, we will address very
briefly the issue of the necessity of these conditions,

THEOREM 1 (The Nonconsistency of the Trigonometric Series Estimate).
Let a,, L0 be a sequence of numbers with ay = 1/ Vur , and convex considered
as a function of m. Then

& cos(ix) )
_— 4 a —=—*= -
2w .§1 Vo

exists (i.e., the series converges), and is the Fowrier series of a density f on
[—m 7]

Let f, be the trigonometric series estimate with parameter m and sample
size n. If

liminfa, logm > 73272,

m—aG

then

int £( fir, - 1) > .



The Trigonometric Series Estimate: Consistency 295

If lim, ., m= ooand lim, _, a,logm = oo, then

mmE(ﬁf"_”) .

noo 4, logm a¥?’

Theorem 1 states that for many a density on [ —#, 7}, even densities with
convergent Fourler series (except at one point), there is no possibility of
estimating f, regardless of how n and m are chosen. The reason for thisis a
run-away bias ( [|S,(f)—f] = oo as n —> o, when m - c0,a, logm —
oo). Thus, E(f{f, — f1) can increase at any prescribed rate that is o(logm)
when m — 0.

The proof requires several auxiliary results and in particular some
properties of the Dirichlet kernel D_(x, y). Since this is a function of x — y
only, we take the liberty to write from now on

D, (u) = sin((m + %)u)

2wsinf{u/2)
Another important function is Fejér’s kernel
1 . 1 sin((m + Du/2) \
= D = N
Fu(u) =3 ,,E_:O AC) Ry 1)( sin(u,2)

LEMMA 4 (Properties of the Dirichlet and Fejér Kernels).

A [T D (wydu= [" F(u)du=1.

B. |D,(u)<1/2ul,|uf <= |D,(u) <(m+1)/2,|ul <

C. fiD,| ~ (@/nPlogm as m — oo. (f|D,| is called a Lebesgue con-

stant.)

D. j/ID <2+ @/ )logm,m=1.

E F(u)<7m/2(m+ Du?|ul <m E(u) <(m+ 1)/4.
Proof. Property A is well-known. It follows directly from the definitions of
D_ and F,, and the orthonormality conditions. For property B, we have

1

1D, ()| < (Zwrsin(%) D < sup

bl

11
7lul = 2ul

sin{v)
and

sint

(m+12) w2 1 1
7 sin()u/2|)'<_2(m+2)’

|D,,(u)] < sup

where all u, v take values in [—, 7] only,
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For property C, we refer the reader to Bary (1964, Yol. 1, pp. 108-109).
One half of property C follows of course from property D, which will be
shown here in full.

1 grlsin((m + Hu)| 2 paslsin(@@m + 1) y)
Jod =2 | St |2 T oy ¢
\ 2 /2 sin((2m + l)y) w2| 1 1

/l ﬂ-[; y «[) sin( y) _;’dy'

Let us call the latter two terms /; and I,. We verify quickly that 1, < #2/48,
This follows from

y*/6

Iy — sin(y)
ysin{ y)

zy v
<2 O<sy<—,

and integrating this bound.
To treat [f,, we argue as in Bary (1964, Vol. 1, pp. 107-108) or Edwards
(1979, pp. 80-81). We have, putting 2m + 1)y = ¢,

2 f(2m+l)vr/2
K]

L= sin(2) |dr

2 2 kenes2fsin(s
_; y f | f )Fd
kmQ“k7/2

2 3 pkenmsafsing)]
= dr + 1
7 Zl j;("/z k/z

1A

]

MIA

SEE

?&"I'—'

4
< ;—2(1 + log(2m)) + 1.

Property D now follows after noting that #2/48 + 1 + 4 /7% + 4log(2)/7*
=2
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Finally, property E can bhe obtained as follows:

F (u) < (217("1 + 1)Sin2(_21{))_1 < (2(m + l)uz)ulﬂ';

and

1 - 1 1
£ % g L am+ )

y 1 (m+1+m(m+1))=m+l
T2{m+ 1)\ 2 2 4 -

LEMMA 5 (The Fejér-Lebesgue Theorem; see, e.g., Bary, 1964, Vol. 1, pp.
139--140).  If we define

0. = [ SO~ x)at,

then for all densities f on [—m, ), 0,(f)— fas m = oo, almost all x, and
flo, /)= fl—=0asm— oo

REMARK. It will be convenient 1o define f outside [~ =, 7] by periodic-
ity. This will make the notation simpler. Note also that D, and F,, are
periodic with period 2.

Proof of Lemma 5.

l0m( ) = f1 5 fIf(n + x) = F(x)|F, () du

< 6_1"|‘u|581f(u + x) —f(x)idu(m: ! )8

|f(u + x) = f(x)]m
+j].ulgﬁ 2(m + 1)u* u

Here & > 0 was arbitrary. Choose § = 1/(1 + m), and note that the first
term on the right-hand side is o(1) for almost all x by the Lebesgue density
theorem. To treat the second term, we define g(u) = | f(u + x)} — f(x)| and
G(u) = j3 g{v)dv. Thus, G(#) = o{u) as u |0 for almost all x. By partial
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integration, we observe that

f g(u);zdusi(ﬁv(f) G;f) j:zG(Bu)du)

m2uzd (m+ 1u T u
T Glu)
= o(l +— du
(1) fl/(l+m) u?
iy 2 (.,
_o(lQI+mo('f;/mu du]

—o(1)

for almost all x. The second part of the lemma follows from the first part
and the observation that a,, is a density for all m.

Proof of Theorem 1. We start with some well-known properties of Fourier
series. Consider the series

4y cos(ix)
A

when the sequence a2, a,, ,, ay,... is nonincreasing and tends to 0. This
series converges everywhere on [—w, 7] except perhaps at 0, and the
convergence is uniform on [e, 7], all € > 0 (see, e.g., Bary, 1964, Vol. 1, pp.
87-88, for a simple proof). If this sequence is also convex, then the series
converges to a nonnegative integrable function f on [—=, 7] (except per-
haps at x = 0), and is the Fourier series of this function, that is,

a,-=f”f(x)%dx, i=1;

= 1
ap = x)—— dx.
0 f_’f( )m
(See Bary, 1964, Vol. 1, pp. 92-94.) Since a,, thus defined, is 1/ V27 in our
case, f is in fact a density on [—=, 7).

For convenience in notation, we define b, = an/2/7, b, = a,/ Vr, iz 1,
so that

S.(f)= b0+ Zbcos(ix)
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and b, tends to 0 as i — oo in a monotone manner, and the sequence is

convex. Thus, Ab, = b, ~ b,,, = 0, all {, and Azb,. = Ab, — Ab,,, =2 0,all i.
We note that D, (x) =1} + L cos(ix) and that L7, D/(x) =

{m + 1}F, (x). Using these identities and Abel’s transformation, we have

lS,,,(f) = mil Ab;'Di(x) + bm‘Dm(x)
" i=0

. m—1 m-2 i
= Ab»'r—l Z Di(x) + Z Azbi E Dk(x) + mem(x)
© =0 i=0 k=0

m-2
= Ab,_mE, \(x}+ ¥ &%,-(i + DE(x) + b,D,(x).

i=0

The first two terms are nonnegative. (Incidentally, since the last term in the
last expression is o(1) for x # 0, we have shown that the partial sums
converge to a nonnegative function.) The integrals of the first two terms
over [ —m, 7] total

m~2 m—1
mAb, ,+ 2 (i+1)A%. = Y Ab,=b,-b,,.
=0 i=0

Therefore,
[18.:0012 (b fiDal + 8= b}

= \/';(ﬂ,.,fID,,,I +a, — aO\/Z_) = amv/':?(l +f|Dm[) -1,
and thus, by Lemma 1,
E(fir-11) 2 fis.(1) =112 a1+ fip,l) -2

By Lemma 4, this lower bound is a,, log(m). (4/7°% + o(1)) - 2. The last
statement of Theorem 1 follows directly from this. For the second statement
of Theorem 1, we note that there exist positive constants ¢, M such that

int fiS.(/)-flze

But since obviously, inf,, . 4 [1S,.(f) — f| > 0 for all finite M, we are done.
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The examples in Theorem 1 are all nice, because the Fourier series
converges at all x # 0. It is perhaps worthy to note that there are fe
L[=m, 7] for which §,( f) does not converge at any point; these f are in a
sense worse than those exhibited in Theorem 1, Since we are not directly
interested in pointwise convergence, we will merely state some known
results about the pointwise convergence of partial sums of integrable
functions f.

LEMMA 6 {Pointwise Convergence of Fourier series).

A. Forallf€ L\[-m,m], S, (f)— falmost everywhere for some subse-
quence my, Furthermore, S,(f)= o(logm) for almost alf x, and
SIS () = o(log m).
B. Iffe L,[—n =] for somep > 1, then S, (f) - f for almost all x.
C. There exists an f in L,{—7, 7] such that imsup,, , .. S,.(f)= oo, aff
x. In fact, for somefin L\[—=, =], imsup,, ._|S,.(/)/loglogm =
oo, all x,
D. For ail sequences m, 1 oo, there exists an f in L\|—m, =) such that
lim sup,; _, o, Sm,((f) = oo, almost all x.
E. For all sequences ¢, |0, there exists an f in L\[—m 7] such that
limsup,, .. |8, () (¢, logm) = oo.
REMARK. Part A can be found in Zygmund (1959, Section 7.3} and
Edwards (1979, pp. 167, 180). For p = 2, property B is known as Carleson’s
theorem (Carleson, 1966). The general statement for p > 1 was proved by
Hunt (1968) (see also Mozzochi (1971) and the book by Jorsboe and
Mejlbro (1982} for other proofs of the profound Carleson—Hunt theorem).
The first part of C is known as Kolmogorov’s counterexample (Kolmogorov,
1926; see Zygmund, 1959, Section 8.4). The second part of C concerns a
sharpening due to Korner (1981}, who also proved D, based on ideas of
Kahane and Stein. For property E, one can consult Edwards (1979, p. 180).
We note also that the Carleson—Hunt theorem was generalized to d dimen-
sions by Fefferman (1971) and Sjolin (1971).

After having established the lack of universal consistency of the trigono-
metric series estimate, it is possible nevertheless to say something positive
for certain classes of densities, We will not study the strong convergence of
the L, error of the estimate. The following lemma will help us to handle the
bias term /|S,,(f) - fI.

LEMMA 7. Let f be g density on [—7, 7). Then
@ lim,, ., fIS(/)—fI?=0, allp €(0,1).
(i) lim,_ . fIS.(f)—f| =0 whenever f € L,, some p > 1.

(iii) Lm,,, _ [IS.(f)—fl=0 whenever [flog, f< oo, and in fact
[1S..()] < Aff log . f + B for some universal constants A, B.
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REMARK. For Lemma 7, we refer to Section 7.3 of Zygmund (1959).

LEMMA 8. For afl densities f on |— =, w], we have for the trigonometric
series estimate with parameter m:

E(ﬁf,, -fl) e R X

If im, ,,m = oo, then
E(f|f,,—f|) < 1/%(]'/}+ 0(1)) +flSm(f) -/l

THEOREM 2 (Consistency of the Trigonometric Series Estimate). Ler f be
a density on |—w,w)] satisfying the peakedness condition [flog, f< w
{which follows from f € L,[—m, m), some p > 1). Let f, be the trigonometric
series estimate of f with parameter m, and let

imm=o00, lim ==0.

n—r o n—co N .

Then E(f|f, — f1) = G asn - co. If we also require that f € L | —m, 7] for
some p > 1, then E((f, — )*) = 0 as n = oo for almost all x.

Proof of Lemma 8 and Theorem 2. The first inequality of Lemma 8 follows
from Lemma 1 and a little extra work. The term

= [VEDIG - %))

equals

-‘15—1/ 2m L VE(Fu(x — %) d
sy 2 ﬁﬂ/fE(Fzm(x - X,)) dx

2m+1

»

n

where we used the Cauchy—Schwarz inequality and Lemma 4. In fact, if we
use the notation o,,(f) = E(F,,(x — X)) from Lemma 3, and if we recall
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that a,,.(f) is a density in x for each m, and f|g,,(f) — f| = 0, then the
same term can be rewritten as

V 22;, L _[V"zm(f) ,

and

J¥o2 () = [[02() = 1) +1
< [l ) =11+ [VF
<22 floan() -1+ [V

=o(1) + [V,

and this concludes the proof of Lemma 8,

The first part of Theorem 2 follows from Lemmas 7 and 8. This leaves us
with the statement about pointwise convergence almost everywhere. By the
Carleson-Hunt theorem (Lemma 6, part B), it suffices to show that E((f, —
E(£,)?) = 0 for almost all x. But f, — E(f,) = (1/n)L5_\ Y, where Y, =
D, (x — X)) — E(D,(x — X))). It suffices thus that E(Y})/n = 0 almost
everywhere This is unphed in turn by E(DX(x — X,))/n — 0 almost
everywhere. But D2(u) = (2m + 1)/2) F,,(u), all u. Thus, it suffices that
m/n — 0 and that E(F,,(x — X)) = o,,( /) remains bounded for almost
all x. This is of course a consequence of the Fejér—Lebesgue theorem
{Lemuma 5).

Let us finally brefly consider the necessity of the conditions on m. It is
clear that if f does not have a finite Fourier series expansion, then m — oo
is necessary for f|S,(f)— f| — 0 and thus for E(f|f, — f|) = 0. That
there are indeed many densities with a finite Fourier series expansion
follows from this simple construction: by using cos?{x) = (1 + cos(2Zx))
repeatedly and appiying the binomial theorem, it is clear that functions of
the form cos*(x), r integer, have an expansion with as highest nonzero
Fourier coefficient a,-... Thus, if we normalize these functions 10 make



The Trigonometric Series Estimare: Consistency 303

them densities, and set m fixed but at least equal to 2, then

£ fir, - 1) < 22

n

which decreases to 0 at the rate 1/ . It is noteworthy that the kernel
estimate cannot achieve this rate for these densities. Of course, this follows
from the fact that the trigonometric series estimate is all but tailored for
densities of this form. :

LEMMA 9 (Achievability of an Error that is O(1/ Vn Y. Letfbea dénsity
on | —w,w}, and let f, be the trigonometric series estimate with parameter m.
Then limsup, . E([|f, = f1)¥n < cc implies that limsup, ., m < oo.

Proof. Tt suffices to show that for all densities f on [~#, #] with []5,.(f)
—fl—0asm— o0, lim, _, m= oo implies

E(f[f,, —fl) > %@(A +0(1))

for some universal constant 4 > Q.
We have for all /, as m — o0,

E(fif, =) 2 3E{ ff.~ U} (emma1)

2 (32n) " [E(1D,(x - X,)} - E(D,(x - X)) dx

{(Lemma 5.27)

> (320) 7" [(E(ID,{x = X)1) = 1S,(f)1) dx

2 (32) " iD= fisatr) =11~ 1),

If fi1S,.(f}Y—fl—0 as m — oo, then the lower bound ~ (4/7?)
(log m)/(v32n) (Lemma 4). This concludes the proof of Lemma 9.

The necessity of the condition m/n = o(l) for consistency can be
obtained with some work from lemma 5.27 as well. This will not be done
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here. We should mention here that Bosq and Bleuez (1978) and Bleuez and
Bosq (1979) have shown that for densities f € L,[ —», »} having an every-
where convergent Fourier series expansion, the following conditions are
equivalent, assuming that lim m= 0!

(1) f, — f in probability, all x, all given f.
i) E(|f, ~f1)— 0, all x, alt given f.
(i) EW{f, — f)*) — 0, all x, all given /.
(iv) E(f(f,—f)*)— 0.all given f.

(v) lim,_, m/n=10

With the information available (see, e.g., Lemma 2}, the reader should have
little difficulty with the proof of this result. In the cited work of Bleuez and
Bosq, results of this type are obtained for many orthogonal series estimates
as a special case of a very general theorem.

5. THE TRIGONOMETRIC SERIES ESTIMATE: RATE
OF CONVERGENCE

From *he previous section we can directly conciude that the rates of
convergence for the trigonometric series estimate and the kernel estimate are
ncy comparable. For the uniform density on [ -, 7], the trigonometric
series estimate has f, =f when m = 0, while no kernel estimate can
converge faster than n~'/?. The same lower bound applies to densities that
are mixtures of the uniform density and densities proportional to cos® (x),
r a positive integer, ix} < «. For these densities, the trigonometric series
estimate achieves the rate 1/va when m remains bounded, m > 2’. On the
other hand, the trigonometric series estimate is often not even consistent
(Theorem 1).

Our first objective here is to show that the trigonometric series estimate
has a unifermly bounded L, error over the Lipschitz classes W(s, a, C) (sce
Section 4.2) when m is appropriately chosen, and that the bound comes to
within a constant of the minimax lower bound of Theorem 4.6. This
property is thus shared with the kernel estimate. We will conclude this
section with some remarks about the behavior of the trigonometric series
estimate on Bretagnolle-Huber classes and Sobolev classes. In the definition
of W(s, a, C), the interval [0,1] should be replaced by [—=, 7], and the
Lipschitz and smoothness conditions imposed on f are assumed to hold on
the real line (as in Chapter 4). This is very important, because it forces f to
be 0 at —# and +m, and to be sufficiently smooth near the endpoints. We
will thus not be interested in Gibbs' phenomenon (see, e.g., Hall, 1981).
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The study of rates of convergence for individual f is much more difficult
than in the case of the kernel estimate since it depends upon the speed with
which f{S_(f}~ f| tends to 0 (see Lemma 1}, and this is not related to
standard quantities such as f]f{7|, at least not directly. Consider for
example densities with a finite Fourier series expansion, and one notices
that the trouble starts when one wants (o obtain lower bounds for the
expected L, error.

LEMMA 10. Iffis a density in L,| —w, w], with Fourier coefficients a,, then

fISm(f)-fisJZ_w]/ __f -

Proof. By the Cauchy-Schwarz inequality and orthonormality,

s N1 2wy [0 S =V 1

LEMMA 11 (Lorentz’s Inequality. See also Bary (1964, Vol. 1, pp. 215-217)).
Let f& W(0,a,C) for some a € (0,1}, and let its Fourier coefficients be
a,iz0. Then

o0 C2 2a+l
Y atg —%, wherey=—wa———, mz1.
i=2m—1 m (4-1)

Proof. For convenience in notation, we assume that f is periodic with
pericd 27 (define it outside [ — 7, w] by periodicity). If f has Fourier series
expansion

s Bl )

then f{x + h) — fix — k) considered as a function of x {h is a constant)
has Fourier series expansion

2% ( sm]/(;:x) B aihlco:gx)

i=1
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By Bessel's equality and the Lipschitz condition,
4 Y (adi_, + ad)sin(in) = [ (f(x + k) = f(x = W)Y dx
i=1 -

< [" (C(2h)") dx = 20CH2h)* .

- -7
Therefore, for any m,
2m-1 -
L (a3 + @} )sin’(ih) < S4°Ch%,

i=m

If we take A =w/4m and note that for m < i < 2m — 1,sin(ih) =
sin(7/4) = 1/ y2, we obtain

Zm—1 2a+l~2
T C
:I:m (agi—l + agi) < PENETEL
Thus,
oo ©
X al=%Y (agr‘*l + a%i)
i=2m-1 iwm

o m2iti-)

Z Z (a%f 1+ a%f)

J=0  jem2i

o ﬂl.2m+1(:‘2

j=0 4°(m27)*"

A

1?2“+1C2 1
4am2a 1 -4

which was to be shown.

LEMMA 12. Let f € W(s,a,C) for some integer s = 0, and some a €
(0,1). In the notation of Lemma 11,
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where

17'20+l

7==Za—_—4:;, mz>1,

Proof. We note first that if f has 5 — 1 absolutely continucus derivatives
and %) is Lipschitz, then differentiation of the Fourier series expansion is
formally allowed, and /%) has a Fourier series expansion

£ (-7, 2 ()70, ) seven,

Q=1
and

(,+1)/2 sm(ix) N U_l,/zcos(ix) s
Z:(( 1) —__ﬂr_ +(—1) ————‘/‘; ), odd.

=]

By Bessel’s equality,

- +]

Y (ad 1 +a3)i _[(fm)

i=1

an equality that will be useful elsewhere. For s even, one can easily venfy
that f¢Nx + h) — f¢)(x — &), for  fixed, has Fourier series expansion

For s odd, we have a similar expression. Thus, arguing as in the proof of
Lemma 11,

4% (ad,, + al)isint(ih) = J (90 + 1) =1~ )

i=1

< f_" (C21)*Y- dx = 27C?(2h)>".

Thus, as in Lemma 11, we obtain

2m—1
w2a+ lCZ

Em (@i +a3)i* < e
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Therefore,
Q0 o0
Y al= Y (a3 ,+ad)
(=2m-—1 P=m
o m2/tl-1 ,
2y iy 28
<)Y X (agt—l"'a%i)’z -(m27)
i=0 j=m2/
20 2n+l 2
< Z C ( 2_‘)*2& 2s
wla+lc2 1

T geplatis 1 — 470

which was to be shown.

THEOREM 3. Let a €(0,1],C > 0 and s = 0, 5 integer, be fixed. Then,
Jor the trigonometric series estimate f, with parameter m,
Tta
i)

e (flf fl) <2 n+‘1 +C\/2W_7(mi

where

w2a+l

Y= 4o _g—

is the constant of Lemma 12. In particular, if m ~ (Cymy2(a +
s))Z/(l+2(rx+.r))nl/(l+2(a+s]) then

limsup  su (flf fl)n(rx+$]/(1+2(a+s))
n—oo fe W(s a,C)
1 enarsy| 1+ 2(a + 5)
< (Cymy e + Pl Sl IV 5 2
(CYryafa +) Nats) )2

Proof. The first inequality follows from Lemmas 8, 10, and 12. The bound
is of the form wy/m + om™*** plus smaller order terms if lim,, _, ,, m = c0.
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Here u = y2/n, v = Cy2#y. It is minimal (in m) if m is the solution of
the equation

u pla+s)
2{’1_1 - ma+:+l -

0.

This suggests values of m that are ~ (2o(a + s5)/u)?/1+3=+s) Resub-
stitution in the bound gives us our result.

REMARK. For the important class W{(0, 1, (), we obtain

21173
limsup  sup n‘/3E( [f,,—-f|)s(2cw—) V2
n—w few0,1,0) j \/3_

when m ~ (4C%*r*/3n)'/. This value should be compared with the lower
bound of Theorem 4.7, after replacing the C there by 27 (because
Theorem 3 is valid for densities on [ —#, w], not [0, 1]). In general, we note
that the upper bound of Theorem 3 has the same dependence on C and # as
the minimax lower bound of Theorem 4.6. To achieve a similar result for the
kernel estimate, we had to change the kernel according to s and «. Here, in
contrast, only the smoothing parameter m needs adjusting.

From Theorem 3, we conclude that the trigonometric series estimate has
the power to achieve any rate of convergence up to n '/ depending upon
the smoothness of f. Bretagnolle-Huber classes are defined in terms of
JIf® and f/f. To achieve a rate of convergence that is asymptotically
comparable to that of the minimax lower bound for these classes, we see
from Lemma 8 that it suffices to bound [[§,(f) — f| from above by an
expression that is proportional to [} f“!/m* under some smoothness condi-
tions on f. Unfortunately, we cannot quite achieve this because we have an
extra multiplicative factor of log(m). To obtain such an upper bound
quickly, we can proceed as follows, Let AC, be the class of all densities on
{—7, 7] with 5 — 1 absolutely continuous derivatives (on the seal line) and
JIf ) < co. Let T, be the space of all trigonometric polynomials of degree
m, that is, linear functions of cos(ix)} and sin{ix), 0 < i < m. The, by
Jackson’s second theorem (see, e.g., Butzer and Nessel, 1971, pp. 97-99),

: 36Y i
- kit : AC,.
it fir=sis (32) fuen seac
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This gives us a quick upper bound for the bias:
J15.05) =112 18200 = 1i + fltw— 1] (1, T,)
< f|Dm|f|f— 1+ f|f— t,| (Young’sinequality)

= (3 + %IOS(M))IU- t,,| (Lemma 4),

and by taking the best ¢,, in T, , we can conclude the following:

THEOREM 4. Let f be a density on [—x, w] in the class AC,, where s =
is a fixed integer. Then, for the trigonometric series estimate f, with parame-
ter m,

E{fir—n1) s 25 43+ Sioem))( 2] firen

n

The first term on the right-hand side can be replaced by (yym/wn X f 1/? +
o(1)).

The question thus arises of whether the extra logm factor is really
necessary. For 5 = 0, we know it is (see, e.g., Theorem 1). For 5 > 0, it
seems likely that it cannot be replaced by a smaller factor (see, e.g., Butzer
and Nessel (1971, p. 108) or Quade (1937)). It is precisely this obstacle that
has kept several researchers from studying the performance of the trigono-
metric series estimate in terms of f|f'’. Wahba (1975) for example
considers Sobolev spaces, that is, spaces of densities f with s — 1 absolutely
continuous derivatives, and [|f‘)]”? < M < o0, where p > 1 is another
parameter defining the Sobolev space. In her famous study, she compares
the performances of several density estimates in these spaces. For the
trigonometric series estimate, all cases p > 1 can be handled easily via the
Hausdorff-Young inequality (see Bary, 1964, Vol. 1, p. 218) which links the
gth norm of the Fourier coefficients with the pth norm of a function, where
1/p+1/p =1. For p =2, this reduces to Bessel’s equality, and it is
worthwhile to show for this special case how one can proceed.

LEMMA 13. Let f be an absolutely continuous density with support con-
tained in [0,1), and let {f " < 0. Then, for the trigonometric series estimate
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f. with parameter m,

B(fir.-n) <y = 4 Yl{?,

where Yy = w3/ 3.

REMARK. The upper bound of Lemma 13 decreases at the rate O(n~'/?)
when m increases as n'/°. By generalizing the argument given below in the
manner of the extension of Lemma 11 in Lemma 12, we can treat all
Sobolev spaces withp = 2 (and obtain bounds in terms of [{f©))?). A
quick comparison with Theorem 4 shows that we have effectively eliminated
the log m factor at the expense of an additional condition, that is, /&
Ly—m, 7]

Proof of Lemma 13, We will use Lemmas § and 10. In addition, a
replacement is needed for Lemma 11. In the proof of Lemma 11, the
expression that needs to be treated differently is

f_ww(f(x +h) = f(x - k) dx.

Again making f periodic, we see that this equals

f’f(fx+h )dx«:f 2h(fx+;, )

-

= kY f£7.

Thus, the remainder of Lemma 11 can be repeated if we formally replace «
by 1 and 22C? by ff". In particular,

o ff’z 2 17

s T ——=21
i-z;nﬂ ' 20 m? 6 m?

This concludes the proof of Lemma 13.
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6. THE HERMITE SERIES ESTIMATE

On the real line, the Hermite series estimate is without any doubt the most
popular orthogonal series estimate {Schwartz, 1967; Bosq and Bleuez, 1978,
Bleuez and Bosq, 1979; Walter, 1977; Greblicki, 1981). In this section, we
will briefly analyze its main properties. Nearly everything that is said below
remains valid for the Laguerre series estimate on [0, 20).

THEOREM 5 (Nonconsistency of the Hermite Series Estimate). The
Hermite orthonormal system is not a basis for L, for any p €1, 41, or
p € [4,00). If f, is the Hermite series estimate with parameter m, and partial

sum S,, (), then, provided that

limm,=o0,|m,—m,_[|<1, alln,
n— o0

we can find a density f such that
timsup [iS,,(f) = fi = =,
n-—roe
and thus

limsupE(ﬁf,,—fl) = .

n—oo

That the condition on L, cannot be removed easily is seen from the

following classical resuit in analysis:

LEMMA 14 (Askey and Wainger, 1965; see also, Muckenhoupt, 1970).
Forallfe L, andallp € (%,4),

tim fis,(f) /17 = 0.
oG
For all p & (5,4), there exists an f € L, such that

limsup f15,,(/) = f17 > 0.

nm— Q0

LEMMA 15 (Skovgaard’s Bounds; see Askey and Wainger, 1965, p. 700).
Let p; be the ith function in the Hermite orthonormal system. Then there exist
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positive constants C,, C,, Cy, C; not depending upon i or x such that
Ci~ ', all x, i,

P (X)) < { GiTA, all |x| < Vai, | |x| = VZi| = (20) ",
Cexp( — Cyx?),  all |x| = Vai.

Proof of Theorem 5. Because S, is a linear operator, we have for any
functions f,, f;,

[15.0+ 1) =+ 21 < f1S,0) = fit + [1S,(£) = £l

Taking f, = (f),, fo=(f)_ for some f& L, it is easily seen that it
suffices to prove that limsup, _ . fIS,, (f) — f| = e for some f € L,. By
the vniform boundedness principle (see, e.g., Butzer and Nessel, 1971, pp.
18-19), we are done if we can show that

[15.001
sup sup =
m IS i

o0,

We will argue now by contradiction. If we assume that there exists a finite
M such that [|S,(f) < Mf|f}, all m, f€ L, then

J18.07) = Spes( )1 = flanpal < 2M fi11.

But fla,, Pl = | /Pl ) Pl We know that for some f € L,

| f /-

and thus we would have

1
2 5 [iflesssup|p,|

ess sup| p,,| f| 7l < 4M.

This is clearly impossible in view of esssupi{p,,| = cm~ 2 all m large

enough, some ¢ > 0 (the supremum being reached near y2m ), and f|p,| =
cm ™% m = 1, for another constant ¢ > 0. (These relations do not follow
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from Skovgaard’s bounds, but they would if the bounds were sharp, and

they are (Askey and Wainger, 1965).) This gives us our contradiction. If we

replace m by m, and require that m, diverges and |m, — m,_,| does not

exceed 1 for any », then limsup, _ _ (IS, (f) — f| = oo for some f € L,.
The first statement of Theorem 5 will not be proved here.

LEMMA 16. Let f, be the Hermite series estimate based on X,..., X,,, an
independent sample drawn from density f. Then, for all n > 1, and all
parameters m = 1,

lim flf.,(x +a, X +a,... X, +a)|=0 almostsurely,
a—* o0
and
lim E(ﬁf,,(x +a X, +a,. .. X+ a)[) = 0.
a—ac

Proof.

m

f|f,,(x+a,.)(1 +a,... X, +a)< Y
=0

<15 S in(x+a)fin

J=1i=0

flpi(x +a)l

1 H
n }:lpf()(; + a)

j—

< (m+ Dsup [|pisup|p.(X, + a)).
i i J

But sup, | p| is finite by Skovgaard’s bounds (Lemma 15), and sup, ;| p( X;
+ a)] = 0 as a — oo, again by Lemma 15. This concludes the proof of
Lemma 16.

That the Hermite series estimate could not possibly be translation
invariant follows from Lemma 3 about orthogonal series estimates on the
real line. The property given in Lemma 16 is puzzling since we have no
guarantees whatsoever as to the size of [|f, | let alone [f,. Together with
Theorem 5, we must conclude that the Hermite series estimate seems ill
suited as a general purpose density estimate on the real line.

The Hermite series estimate is consistent in L, for all p € (4,4, fe L,
In Lemma 17, we will show this for p = 2. The problem with obtaining
convergence in L, is that we cannot obtain an upper bound for /|S,.(f) ~ f|
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from some L, norm of §,,(f) —f by Holder’s inequality because we are
integrating over R. We can come close to L, convergence via other devices.
For example, Muckenhoupt (1970} has shown that for fixed 4> 0, B =
max(b + 1, — 3),

flS ml Y11

as nmt — 00,
t+ [xHf?

provided that [flog, f < oo, [fIx|%log, f < o, {f|x|¥*? < co. Unfor-
tunately, in his result, we cannot set b =0, B = 1,

'LEMMA 17 (L, Convergence of the Hermite Series Estimate}. Let f, be
the Hermite series estimate with parameter m, and let

. .. m
lim m = o0; lim - = 0.
n—*o0 n-+c0 B

Then, for all densities fin L,, E({(f,—f)) = 0asn— .

Proof. By Lemma 2 and Bessel's equality (see also Lemma 14), we see that
it suffices to show that the variance term E( (f, — E(f,))?) tends to 0. This
follows from

J1Z 9= oln)

By Skovgaard's bounds, for |x| = V4m,

m
L p? < (m + 1)Clexp( - 2C,x?) < (m + 1)Clexp(—8Cym)
i=0

so that

fma mfg:op, O(e=Sm) = o(n).

Define next

m

qm(x) Z( _1/12) I[|x|_<.ﬂ [l —y2i | = 2i)"1/8)-



316 Estimators Based on QOrthogonal Series

Then, by Lemma 15,

ji 1 c 8C
f‘tlﬂ/“_mfxp. < [fan + c_‘:l )+ | El Jexp( - !)
=L+ 5L+1,

Clearly, I, = O(1). Also, I, = O(/m) = o(n). Finally, with' a little work
one can show that the indicator function in the definition of ¢,_(x) is
nonzero for almost Cgm'/* indices, uniformly over all |x| < v4m , where
Cs > O is a given constant. Thus, uniformly over such x, g, (x) = O(m*/1¥%)
= o(n), and we are done.

REMARK. Lemma 17 was obtained by Schwartiz under the stronger
condition m = o(n) (Schwartz, 1967), and by Greblicki (1981) under the
condition m = o(n®/3). The necessity of the conditions on m given in
Lemma 17, if convergence is to hold for all f € L,, was obtained by Bleuez
and Bosq (1979).

REMARK. We have not discussed the pointwise convergence of the
Hermite series estimate up to this point. Based on the Carleson—Hunt
theorem, Muckenhoupt (1970) proved that S,,(f) — f at almost all x when
Jf (og, f)* < oo. This, together with Skovgaard’s bounds, can be used to
obtain the pointwise convergence of this estimate,

REMARK. The Laguerre series estimate behaves very much like the
Hermite series estimate. For important references on the bias term, see
Askey and Wainger (1965) and Muckenhoupt {1970a, b, c).

7. THE LEGENDRE SERIES ESTIMATE

The Legendre series estimate was suggested for use in density estimation by
Crain (1974) and Hall (1982) (sce also Vioilaz, 1980). In many respects, the
estimate converges and diverges under circumstances that are similar to the
Hermite series estimate. This is apparent when one compares the following
lemma with Lemma 14,

LEMMA 18. The Legendre polynomials form a basis for L,[—1,1] if
H <p<4 and only for those p. For f€ L,[-1,1], § <p <4,
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flSm(f) —fIP>0 asm— cc.

For all p & (4,4), there exists an f in L,[—1,1) suck that

timsup {|S,,(f) ~ f1? > 0.

Mmoo

Lemma 18 is due to Pollard (1947) and Newman and Rudin (1952). For
its extension to Jacobi polynomials, see Pollard {1948, 1949). See also
Muckenhoupt (1969). Since we are mainly interested in L, ©t is perhaps of
interest to exhibit a density that cannot be estimated by the Legendre series
estimate,

THEOREM 6 (Nonconsistency of the Legendre Series Estimate). Ler us
consider the density

)= L20-07M <L

Then fis in L[-11] forallp € {1, ),
timisnt( [1S,(7) =11+ [1S021) =11} > 0,

timsup [iS,,(f) /1> 0,

m— o0

and

i’,‘f,(E(ﬁfmm‘fl) +E(flf...m+1 —fl)) > 0,

where f, . is the Legendre series estimate with parameter m and sample size n.

Proof. It is easy to verify that f€ L,,1 < p < 4/3. The remainder of the
Theorem follows from Lemma 1,

[18.00) =11+ f15, 205 = 112 f15,(7) = Sues )] = Ll f1 22

d,2A4 +e),f|p,|=24,+ o(1), as m — o0, where A, A, are positive
constants {see Szegd, 1975, p. 256 and p. 173, respectively).
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REMARK. In Theorem 6, we stopped short of showing that for the given
density

int £( fif, .~ 11) > 0.

This requires-a much more sophisticated argument.

THEOREM 7 (Consistency of the Legendre Series Estimate). If fis a
density on [—1,1], f€ L,[—1,1] for some p > 4/3,

[ -3 (x)dx < oo,
-1
and
lim m = o0, lim Ud =0,
ns o n—oo N

then

im E{ fif, - 11} -0,

n— o0

where [, is the Legendre series estimate with parameter m.

Proof. Define g by 1/p+1/94=1. If p > 4, replace p by 2 first. By
Lemma 18, and Holder’s inequality,

fi5u(0) =112 244 fis, (1) -flp)lfp S0 asm- o,

By Lemma 1, the Cauchy-Schwarz inequality and Lemma 2, we have

E(f|f,, - E(f,,)|) < NE((f" - E(£,)))

< \2fE((,~ E4))

S\/Z_\/'}!-ff-iopf
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By Stieltjes’ first theorem (Sansone, 1977, p. 199),

[2i +1 2.. _L o2yl
. ipils 2 4 p ﬁ(l X)
s]/1+ 1_4\/3(1-12)‘1/“
1 Lid

< Sa-x) i
T

Since p, = 1/v2, the bound is valid for { = 0 too. Thus,

st -x)"
i=0

so that we can conclude that E([|f, — E(f,)}) — G

None of the conditions of convergence in Theorem 7 can be entirely
omitted. Hall (1982) gives convincing arguments in favor of the Legendre
series estimate, for example, very few terms are needed to achieve good rates
of convergence in L,[—1,1] for certain classes of densities. The rate of
convergence will not be dealt with here. It is perhaps noteworthy too that
the estimate is not translation invariant, but that nevertheless [f = 1, all
n, m.

8 SINGULAR INTEGRAL ESTIMATES

The singular integral estimate of f with kernel K_, is defined by

(6 = 2 ¥ K, (x- X).

J=1

Estimates of this form include the kernel estimate, and the trigonometric
series estimate (where the kernel is the Dirichlet kernel). We could have
written K, (x, X)) to gain generality (such estimates are called Dirac delta
function estimates under some conditions on K,, see Walter and Blum
(1979)), baut translation invariance forces to consider the case K, (x — X))
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only, We will treat estimation of densities on [—#, 7] only, and impose
some conditions on X

K, (x)=K_(-x); f_ K, =1; K, is periodic with period 2,

f_""|1<m| < . (1)

In view of the periodicity of X, the integral of K, over the real line would
be oo, and the kernel estimate is thus no longer a special case of the singular
integral estimate with kernels satisfying (1).

Singular integral estimates are given the standard treatment: first we will
show that we can choose sequences of kernels such that the singular integral
estimate is consistent for all f& L,[—#,7]. We can even choose all the
K, ’'s nonnegative, so that f, is a density on [ —w, 7], all n, m. Then, we will
analyze the rate of convergence, and observe for example that if K,, > 0,
the expected L, error cannot decrease 1o 0 faster than n~2/%, just as for the
kernel estimate.

First, a few definitions are in order. We define the singular integral S_,(f)

(or §,,(f,x) by

Su(1) = [ £~ w)K () d,

where f is extrapolated over R by periodicity. Thus, Young’s inequality
remains valid:

[15.001 < fif1iK,.)

Following Butzer and Nessel (1971, p. 31), we say that K, is an approxi-
mate identity when (1), (2), and (3) hold:

supﬁK,,,l < C < %0; (2)
m

tim f |K,(u){du=0, alld>0, (3)

m—oo YE<iy|xm
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K, is a strong approximate identity if (3) is replaced by

m”m

lim sup (K, (u)]=0, all 8>0. (4)

M= Felug

LEMMA 19.  For all approximate identities and all f € L,[—m, 7],
[iA1)=f1= 0 asm— co.
Proof.
Sul£) =f= [ (e = ) = 1)) Kp(w) .

Let g{uybe [T _|f{x — u} — f(x)|dx. By Yourg's inequality,
J1su1) =115 [ g(u)iK,p(u) e

< sup g(v}|K,, (u)| du

|ul<8 p<f

*)

< Csupg(v) + o(1).

v=<d

K ()ldu - 2 {111

<ju|sw

But we know that lim, ,g(v) =0 for all f€ L,[—x,«]. This concludes
the proof of Lemma 19.

THEOREM 8 (Consistency of Singular Integral Estimates). Let f, be a
singular integral estimate with parameter m, where lim,_  m = 0. The
sequence of kernels K, is assumed to be an approximate identity, and
KL= o(n) asn— . Then

E(ﬁf,I —f|) —0 asn— o, alldensitiesfon|[—m, 7]

Proof. By Lemma 19, it suffices to prove that E([|f, — E(f,)]) > 0 as
n— oo. (Note that E(f)=S_(f).) By a double application of the
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Cauchy—Schwarz inequality, we have
-1 n
LE (ke %) - £k )|

B fir— £ - fE ,
o et
< V27| L [varl K, - )
2| K- %)

where all integrals are over [— 7, 7]. This concludes the proof of Theorem 8.

We have already encountered an approximate identity. For example, the
Fejér kernel

K, (u) = F,(u) = 1 (sin((m+ 1)us2)\?

2e{m+ 1) sin{u/2)

is nonnegative, and defines an approximate identity. To see this, we recall
from Lemma 4 that (F, =1, [|F, =1, and that f5_, . F,(2)du<
Js <tugs-T2mu?Yy Tdu < 7(2md)"t — 0 as m — o0, all § > 0.

On the contrary, D, is not an approximate identity in view of Theorem 1
and/or Lemma 4. Here is a short list of several approximate identities—all
but two of these are also nonnegative:

(i) The Rogosinski kerne! (Butzer and Nessel, 1971, pp. 56fT)

%(D"'(x * 2m+ﬂ+T) N D'"(x - T )]

(1) Jackson’s kernel (Butzer and Nessel, 1971, pp. 60-61)

3 (sin(mx/z))“
2am(2m* + D\ sin(x/2) |7
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(iii) The Fejér—-Korovkin kernel (Butzer and Nessel, 1971, pp. 79-80)

sin?(w/(m + 2)) ( cos((m + 2}x/2) )2
a(m + 2) cos(m/(m + 2)) —cos(x} ]~

{iv) The de la Vallée Poussin kerne!l (Butzer and Nessel, 1971, p. 112)

(—2-;’7"(%;-5? (2 cos( %))2"’.

(v) The Jackson-de la Vallée Poussin kernel (Butzer and Nessel, 1971,
p. 131)

2 + cos(x) ( sin{ mx /2) )4
4mm3 sin(x/2) |~
(vi) de la Vallée Poussin’s second kernel (Butzer and Nessel, 1971, p.
108)

(1 + 2cos(mu))F, ,(u).

The Fejér, Rogosinski, and Fejér—Korovkin singular integral estimates
were analyzed and compared (from an L, point of view) by Hall (1983),
Some properties of the Fejér singular integral estimate were obtained by
Krzyzak and Pawlak (1982). Under certain continuity conditions on f, the
Rogosinski singular integral estimate achieves for example the same rate of
convergence for the expected L, error as the kernel estimate, but has a
smaller asymptotic constant, provided that m is chosen optimally (Hall,
1983). This intriguing observation adds a little excitement to the study of
the singular integral estimates, and will motivate us in our analysis of the
rate of convergence in IL,. Before we do so, we would like to point out the
close connection between singular integral estimates and the trlgonometnc
series estimate.

The singular integral estimates can often be written as

1 cos(ix) sin(ix) -
f(x)— + 2( Ap2i-1 I + 4, = )Amif’

where the a,;’s are as for the trigonometric series estimate, that is, they are
the standard estimates of the Fourier coeflicients a, of f for the trigonomet-

=1
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ric system. This form of the singular integral estimates follows from the
decomposition

Ko(w)= o + ix,ﬂ,%,

i=1

valid for all even kernels with a convergent Fourier series {(use the formula
cos(i(x — y)) = cos(ix)cos(iy) + sin(ix)sin(iy)). The A,,,’s in the definition
of f, are thus the Fourter coefficients of the kernel X,

The given form of f, is of particular interest to the practitioner when the
A,,’'s are zero for all i large enough: this would provide the flexibility of
computing and storing the a,,’s instead of the X’s.

Watson (1969) and Rosenblatt (1971) have suggested the smoothed
orthogonal series estimators 12, A .4, p;, where the weights A, play the
role of smoothers. For the choice A, =1, i< m A, = 0,7 > m, itisclear
that no smoothing is done, and we obtain the orthogonal series estimate
again. Smoothing has may uses: roughly speaking, if we smooth well, we
will obtain consistency in L, for all densities. A case in point is the singular
integral estimate with an approximate identity. But we loose in fine-tuning,
that is, for certain classes of densities, the rate of convergence of the
smoothed estimate is inferior to that of the original orthogonal series
estimate. This too will be illustrated in this section. [nterestingly, Watson
(1969) has obtained the best form for A,,, for fixed n when one wants to
minimize E([(f, — f)*):

a?

e a; +(1/n)('ffpf - af)

(this can be verified in two lines). Unfortunately, this is of little help, since
the a,’s are unknown, and because we are dealing with the L, error. Various
suggestions have been made in the literature as to how the A,,;'s should be
chosen both in general and for particular orthonormal systems, see, for
example, Whitde (1958), Fellner (1974), Brunk (1977, 1978), Kronmal and
Tarter (1968), and Wahba {1978). The motivation for these suggestions is
often different. Brunk, for example, uses a Bayesian argument, and allows
for the use of a priori information in A ’s of the form c¢./(¢c; + 1/n),
1 < i < n. Wahba (1978) discusses estimators with A, = (1 + ¢i*)"}, 1 <
i < n, where ¢, p > b are constants. From Watson’s formula, we can
immediately think of automatic methods for choosing the A,,’s. The
automatization of orthogonal series estimates or their smoothed versions is
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dealt with, for example, in Kronmal and Tarter (1968), Tarter and Kronmal

(1976), Crain (1973), Asselin de Beauville (1978), and Wahba (1977, 1978).
Let us return now to the singular integral estimates, that is, smoothed

trigonometric series estimates. If we consider the Dirichlet kernel

1 o 1
D (u)= — 2 cos(i
. (u) 5r :‘)=:1 5 cos(ix),
we note immediately that

A=

nti

{I/J-;, 1<i<m,

0, i>m.

Here are a few other examples;

(i) The Fejér kernel:

(1 i | 1 [ <
Ami\f"?z _m+l)’ sism

0, i>m.

(il) Rogosinski’s kernel:

(_L) l<i<
Mdr = (N1 T EIET
0, i>m.

(iii) The Fejér—Korovkin kernel:

}\mi‘/;

, . i+1 . . i-1
{m—f+3)Sln(wm+2)-(m—t+l)sm(7rm+2) _
- - JAgism,
2Am + 2)sm(m + 2)
0, i>m.
(v) de la Vallée Poussin’s kernel:
m!?

Apdm = (m— i) (m+i)" l<i<m,
0, P> m.
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(v) de la Vallée Poussin’s second kernel:

1, l<i<m,
i .
AT = 2_2m+1’ m<i<lm-—1
0, i>2m.

The weights A . are of crucial importance in the study of the rate of

mi

convergence of singular integral estimates. The fundamental inequality
where one can start from is given in Lemma 20:

LEMMA 20. Let S,(f), S*(f) be the singular integrals for f with kernels
K, and K2/[K2, respectively, and let f, be the singular integral estimate
with kernel K,,. Then, for all densities f on [— 7, 7],

fisun) =< £( fir, - 1)

e
Vn

1/2

< fis.(f)-f1+

K,
27 fISp(f) - fi

+
"

The upper bound is [|S {f)—[f|+ (f,/f + o(1)) (JKL/n)'/? whenever
K2/{K} is an approximate identity. All integrals are over [—m, 7.

Proof. Let us return to the proof of Theorem &, and note the inequality

B fir - BN < [/ 5K - %) ax

= n 2\ [K2x - 0)1(0) b de

.

e V| [R2G 0) -1 ] e
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The last term does not exceed

\/ITI-NS‘ f{srx‘mﬁﬁ_w\/ ISw(f)-fl.

and this is o(first term) if K2/fK?2 is an approximate identity (Lemma 19).

REMARK. K K,, is an approximate identity, then K2/fK?2 is an ap-
proximate identity whenever

K (u)

Jx-

From here onward, we will only be concerned with [|S_(f) — f|, and will
leave the standard argument of choosing m to minimize the upper bound of
Lemma 20 to the reader. From Lemma 20, we can obtain of course both
uniform and individual bounds. For example, if {|S,(f) ~f|=0(m™"%)
and sup,|K, ()} = O(m*) for some a, 8 = 0, then the choice m ~ p*/(F+2)
gives

(6)

sup sup

E{ fis, - 11) = o(-erim2en,

For all the kernels, except de la Vallée Poussin's (when 8 = %), we have
B = 1. The important values for @ to remember are &« = 1 and « = 2. For
the kernels with 8 = 1, the rates of convergence that are attainable are
n™% and n ¥ respectively. The remainder of this section is largely
devoted to the computation of a for large classes of densities and large
classes of kernels. -

We recall first that AC, is the class of all functions f € L,[— 7, =] with
s — 1 absolutely continuous derivatives and f|f‘| < co. While everything
that will be said below is valid when these conditions hold for the periodi-
cally continued version of f, we will assume that they hold on the real line
for the original f; this will allow us further on to make meaningful
comparisons with other estimates.

Following Butzer and Nessel (1971), we define the L, modulus of continu-
ity for a function f€ L|[~n,#] by

w(£,8)= swp ["1f(x+ ) - f(x)ldx,  8>0,

|h|<8" —7
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and the second I, modulus of continuity by

w(£,8) = sup [ If(x+ k) +f(x=h) = 2f(x)idx, >0,

|h|=8Y -7

We also recall the definition of the Lipschitz classes W{(s, o, C) for a € (0,1],
C > 0,5 >0 integer: W(s,a,C) is the class of all densities in AC, for
which

) -y <Clx—y|* alx,yeR.

LEMMA 21 (Bounds for the L, Moduli of Continuity).
A, &*(f,8) < 2w(f,d), all 8> 0. This tends to 0 as §)0, for all
feLy-—=nm=)
B. Forfe WU, a,C)
w(f,8) < 20C8°, w*(f,8) < 4wC8%,8 > 0.

C. Forfe Wi,a,C):
w*(f,8) < 2wC8*1,8 > 0.

D. Forfe AC,
w(£,8) <8115
w*(f.8) < 3u(f,8);
w*(f,8) < 2af|j'i,a > 0.
E. Forfe AG,

w*(f.8) < 82j|f"|,a > 0.

We omit the proof of this simple Lemma. In Lemma 22, we will see how
the second L, modulus of continuity can be used to obtain upper bounds
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for [|5,.(f) — f|. We will need the guantities
ri=1-vmA,,, izl
LEMMA 22 If K, is an even kernel, then for all f € L\{—7, 7],
[18.(£Y = f1= [0/, u) K, (w)) du.

If K, is an even nonnegative kernel, and{ € L[ —m, 7],

[15.00) = 11 < Aw*( £, )

where A = (1 + n/y2)? is a universal constant.

Proof. Note that
Su(£) =F = [[((x+w) + fx = ) = 2/ () Kp(w) s,
so that

J1Su(£) =115 ["*(£, 01K ()1

The second half of Lemma 22 requires some extra work. We have

f” ukK, (u)du < f_” wzsinz(g-)Km(u)du

-

f_’ﬂi;u ~ cos(u)) K., (u) du

329
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and
fjﬂ|u|km(u) du < (f”usz(u) duf_’;le|)l/2 < 7‘;:‘/;;

If we use the fact that w(f,18)< (1 + Y ([, 8),0*(f,t8) < (1 +
0)%*(f,8),1,8 > 0, then we have

fis.() = flsur ( %)f(l+ru) K. (u)du

Sm"‘f,l + 2t uk_(w)du+t*| uK,{u)du
({5 - 2ef s 2 koo

1 — 7?’2 )

sw{r

+ 21 Vo O .

L7
23"
Substitute the value 1/t = J;T .

For nonnegative kernels, r_, gives us a clue about the goodness of the’

kernel: smaller values for 7,,, mean a smaller bias under the same continuity
conditions on f. Consider a few of the kernels we have described above:

(i) Feér's kernel: r,, = 1/(m + 1).

(i) Jackson’s kemnel: r_, = 3/(2m? + 1).

(iii) The Fejér-Korovkin kemnel: r,, = 1 — cos{(w/(m + 2)) < w%/2m?

(and r, ~ 72/2m?).

(iv) de la Vallée Poussin’s kernel: r,, = 1/(m + 1),

(v) Rogosinski’s kernel: r,,, ~ #2/8m?.

{vi} de la Vallée Poussin’s second kernel: r,,, = G.
Kernels (v) and (vi} take negative values, and should thus not be compared
on the basis of the second statement of Lemma 22. Based on Lemma 22 and
these values of r,, the Jackson and Fejér—Korovkin kernels are more

powerful than the Fejér and de la Vallée Poussin kernels. A combination of
Lemmas 21 and 22 gives the following explicit bounds:

THEOREM 9 (Bounds for the Bias). Let K, = 0 be an even kernel, and
letr,, < C,/m? forsome Cy,p > 0. IfA is the constant of Lemma 21, then
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f1S,..(f) — f| does not exceed the following quantities:
AdaCCE2m=?% f e W(0,a,C);

A2nCC{E* Vi P+ 2 f e W(l,a,C);
42T, fi71m=7, 1 € 4C;

AC, [If"im*, [ € AG,.

If we combine Theorem 9 with the bounds of either Theorem 8§ or
Lemma 20, we see that for some choice of m, the Jackson singular integral
estimate and the Fejér—-Korovkin singular integral estimate satisfy

E(f'fn _f|) = O(n (rr O/ A ey

a € (0,1], s=0o0rs =1 E([|f, — fi)is in fact uniformly bounded from
above over these Lipschitz classes by the minimax lower bound for these
classes times a constant not depending upon C or n. Thus, these estimates
behave as the kernel estimate with nonnegative kernel. Also, for individual
/, the asymptotic behavior of the bounds in Lemma 20 and Theorem 9 is
similar to that of nonnegative kernel estimates, for example, the dependence
upon [V, fIf1(f € AC;)and [|f”|(f € AC,) is the same. Unfortunately,
when K, = 0, we encounter the same limitations as for the kernel estimate.
This follows from the following Lemma taken from Butzer and Nessel
(1971):
LEMMA 23 (Limitations of the Singular Integral Estimates). Let K,, be a
kernel satisfying the following properties:

(i) X, =0,i > m (this can be replaced by i > cm, some ¢ > ()

(i) liminf m?r,, >0, somep >0, allk 2 1.

Lo ]

Then, if f is a density on [—m, 7],

liminfm? f1,(f) - fi=0

= o0

implies that f(x) = 1/2m, almost everywhere, [xi < w. If K, satisfies (i)
and is nonnegative, then for all functions f € L\[—m, w] not almost every-
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where equal to a constant function,
liminfmzflsm(f) —fi>0.
m— o0

Proof. Note that 5, (f) is a trigonometric polynomial of degree at most m
(i.e., it is a linear combination of sin(kx), cos(kx), k < m). Also,

cos(kx) ,  [VEX a5 ., l<k=xm,
fS(f - Vo dx_{O, k > m;
sin(kx) , [VEA,ay, 1<ksm,
fS(f )= v dx—{o’ k>m.
Thus,
B cos(kx) — isin(kx) 5
J(5u7.20) = ) S Lenlkn) )

= (‘[;’:)‘mk - ])(azk~1 — iy, ),

where i is the imaginary /. Therefore,
1 a3
—‘f|Sm(f) -flz |J;Amk - ll'.’agk—l + a3
Vo

{2 1
Mely@3e_1 + a3 .

Assume first that for all &k # 0,a?, | + a3, = 0. Then clearly, since the
Fourier coefficients determine f uniquely, S, (f,x)=1/2=, all m, and
f(x)=1/2m, almost all x. If on the other hand a3, _, + a3, > 0 for a
given k + (, then for this &,

[18.06) =11
liminf ————— > Vo yal, _, + a2, > 0,
m— oo i)
which shows the first part of the lemma. For the second part, we use the
Boas—Kac inequality (1945): if int(:) denotes the integer part of a real
number, the inequality states that if K as in Lemma 23,

Amk‘/; =< COS(

1<k<m.

)
in(m/k)+2/°
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Thus,

al

.. 2 I 2 1 '-’Tzkz
liminfm~ir,,,| = liminfm 73 = > 0,
m— o m=o  (int(m/k) +2) 2

We can now apply the first part of the lemma with p = 2.

Thus, for nonnegative X,,, no degree of smoothness imposed on f can
help reduce [|S,,(f) — f| below O(m™?). Thus, for these kernels, we cannot
do better than the Jackson or Fejér—-Korovkin kernels except perhaps by a
constant factor. Our only hope for a reduced bias is a negative-vatued kernel
K, This will be further illusirated below.

Lemma 23 contains a lot of information about the best possible rates of
convergence. In particular, for kernels X, = 0 satisfying condition (i) of
Lemma 23, we have

hmmfm f|S (f)=fl= supf Vazk 1+ ag,

k=1

and this is infinite whenever

limsupk?|a,| =

k—oc

For the Fejér and de la Vallée Poussin kernels, and nonconstant f, the
bias is bounded from below by a constant divided by m. Theorem 9 tells us
this happens for W(1,1, C) and AC,, but for no other classes given there. In
fact, the Fejér singular integral estimate attains an O(1 /m) bias for f € AC,
and for f € W(l,a,C), all a > 0. Thus, the argument given 1n Theorem 9
could give sub-optimal bounds in some cases. To obtain upper bounds of
the right order, the first inequality of Lemma 22 can be vsed, as will be
illustrated now on the Fepér singular integral.

LEMMA 24. Let S, (f) be the Fejér singular integral for a density f on
[—m, 7} Then,

[is.(£) =11

o(1/m), fe wWl,a,C), alla €(0,1], or f € AG,;
={ O(logm/m), fe W(0,1,C)orfec AC;;
o(m™*), fe w(0,a,C),a < (0,1).
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Preof.  In our argument, we will use a bounding argument of Butzer and
Nessel (1971, p. 81): by Lemma 4, for u > 0,

22 g(m+1)7% O<u<l/mO<acxl;

2ruF, (u) < .
rlu® (m+1), O<u<m0<as?2.

Thus, f}/™uF,(u)du <m °0<a<1,and

. 71 - 'm 0<asy;
ap du <

S B0 S 1 tog(nm) a=1

2 m+1°

This gives the bounds

'S
1+ N c (0,1);
" 201 )) ac @1
. 1 7 log(mm)
F, ¢ = -
j;u lu)du < m YT a=1;
gl 1
=(1,2).
a-1) m’ ae(1,2)

Lemma 24 follows if we combine these bounds with Lemma 21 and the
first inequality of Lemma 22. (For all the classes of densities of interest to
us, [|S,{(f)—f| < C[Ju®F,(u)du for some constants C and a.)

Essentially, with the Fejér singular integral estimate, there is no hope of
obtaining E([|f, — f|) = o(n™'/*) except for the constant density on
[—=, =] In this sense, the Fejér and de la Vallée Poussin singular integral
estimates behave as the histogram estimate. At the other end of the scale are
the singular integral estimates with unlimited power, that is, estimates with

[185.01) = fi = 0(m™?)

for any power p > ; provided f is “smooth enough.” From Lemma 23 we
can see that necessarily X is negative-valued and for all 1 # 0, all p > 0,

liminfm?r,,; = 0.

"me= o
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The latter condition is satisfied by de la Vallée Poussin’s second kernel
(because r,, = 0,1 <i<m) and by the Dirichlet kernel. Basically. the
A,..’s must be flat near the origin (¥x A, = 1, all i smaller than a number
diverging to infinity as m — o). For such kernels, there is hope to obtain
any rate of convergence of the bias without changing kernels along the way.
For similar behavior, we refer to the trapezoidal kernel estimate.

it is worth pointing out that Rogosinski’s negative-valued kernel satisfies
(1) and (i) of Lemma 23 with power p = 2. Thus, it has the same limitations
as Jackson’s kernel and positive-valued kernels. This is disappointing, for if
we are sacrificing positivity in our density estimate f,, we might as well
choose a kernel with unlimited power as described above. Hall (1983) has
compared Rogosinski’s singular integral estimate with other estimates based
on positive kernels, and found the same rate of convergence (in L,) but a
smaller constant. In a sense, that is “cheating”. In fact, for unlimited power
kernels, we will see that a better rate of convergence is obtainable under the
same smoothness conditions on f.

We conclude this section with the description of the properties of one
kernel with unlimited power. To obtain refined rates of convergence, we will
use Jackson’s first and second theorems. This technique provides the reader
with another set of tools (recall that in Section 5, we used Lorentz’s
inequality to handle the trigonometric series estimate).

LEMMA 25 (Jackson's Theorems). Let T, bhe the class of all trigonometric
polynomials of degree at most m, and let [ € L\|—7, 7]
Jackson’s First Theorem

inf f|t, — f| < 24%*(f,1/m),

,ET,

where A is the constant of Lemma 22.
Jackson’s Second Theorem

E ' LU
cerdim -fl= (3::()36{{(1);’ |
o € T _T_”*(f(’),;)’

“forallfe AC,, all s > 0.

Proof. No attempt will be made to obtain the best possible constants (see,
e.g., Butzer and Nessel (1971) for references dealing with the best possible
constants, and for a complete proof of Jackson’s second theorem). We wiil
merely prove Jackson’s first theorem.
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We observe that for the Fejér—Korovkin kernel, S_(f) € T,, and thus

inf it~ fl< [ISa(f) =11

t&T,

Also,

[18.05) - 1< Aw*(f,(l - cos( e ])1/2] (Lemma 22)

saot(r. om )

e el

m

_ 1 7\, 1
= 2(1+ ﬁ) w (f,m).
This concludes the proof of Jackson’s first theorem.

THEOREM 10 (The Singular Integral Estimate with de la Valiée Poussin’s
Second Kernel) Ler f, be the singular integral estimate with de la Vallée
Poussin’s second kernel (denoted here by K,)), and let 8, (f) be the corre-
sponding singular integral for a density f on [ — 7w, 7].

A. K is an approximate identity, and thus
[15.(£) = 1= 0(1), alif.

J15.£8) < 3f|g|, all g € Ly[—m, 7],
[I1S(f) = fl < 4inf, or [lt, —fl

JKi/n < 9m/4n.

K2/[K} is an approximate identity.

If im, , . m= oo, im,_ _(m/n) =0, then

TEoO=

£ fiss-11) = o), aty.
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(V7 + ow))yomzan

H. If M is a constant integer, f € Ty, and m is constant, m > M, then
J15,(f)~f1=0, and

3

G. E(f|f,,-—f|)s4tmi1€1frmf|r,,,—fl+

E()f,— f1} = 0(n7'7).

L Iff€ AC,s > 0 integer, then
int£( f1f, 1) = o(n~/20).
J. Iffe AC, s > 0 integer, then

)2 o {17 )

K. Iffe W(s,a,C) for some integer s = 0,a € (0,1), C > 0, then

E(flf,. —fl) < a(36) (367 + 1) o1 4 /207

and

infE(ﬁfn —f|) = O(n Gra/Hstat Dy
Proof. A follows from Lemma 19. For B, we note that

JIK < fi(l + 2c08(mu))|E,_(u) du < 3me_1(u) du =3,

and thus that

Jis.(&)1 =< fig1fK,.| < 3figl.
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Fort, € T, wehave S (¢ )= t,. Thus,
[15:00) =15 int ( fi8u9) = Sl + fitu=11)

<4 inf [lr, -1l

nt m

which proves C. D follows from the crude bounds of Lemma 4:

JKis< [9F2, <9supF, < 97'".

Property E is trivial. The consistency (property F) follows from properties A
and D, and Theorem 8. Properties C and D and the inequalities of Theorem
8 and Lemma 20 give us property . Property H follows directly from this.
If we use the fact that *(f©,1/m) = o(1) for f € AC,, then property I
follows from property G and the last inequality in Jackson’s second
theorem. Using the first inequality in Jackson's second theorem gives us
property J. Finally, property K can be deduced from property G, Jackson’s
second theorem and part B of Lemma 21:

The singular integral estimate of Theorem 10 is only a slight modification
of the trigonometric series estimate; yet it is safer to use because it is
universally consistent. Also, the estimate on the bias (property C) improves
over the corresponding estimate for the trigonometric series estimate (Theo-
rem 4) by a factor of log m. Just as the trigonometric series estimate or the
trapezoidal kernel estimate, this estimate has an expected L, error that
comes to within a constant of the minimax lower bound for W (s, a,C), all s
(see property K). This is why we could call this an estimate with unlimited
power. Even the rate O(n1/?) is attainable, coupled with unbiasedness for
all »n (property H). Finally, property I shows how the estimate improves
over all singular integral estimates with K, > 0 and Rogosinski’s estimate,
even for AC,: for the latter estimates, all we could hope for is an error of
size O(n~2/%) since the bias must at least be of the order of m~* (Lemma
23).
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Bretagnolle-Huber classes, 38, 46, 121,
121-129, 364, 309

Bretagnolle-Huber theorem, 38

Cantelli’s inequality, 138
Carleson-Hunt theorem. 300, 302, 316
Carlson’s inequality, 8/
Cauchy density, 152, 154, 247
choice of smoothing factor, 109-111
estimated of scale, 246
Cauchy-Schwarz inequality, 26, 54, 89, 92,
103, 124, 125 224 225 226, 279 2RT 301,
305, 318, 322
Cauchy’s inequality, yee Cauchy-Schwarz
inequality
Ceiling function, 67, 164
Central limit theorem, 63, 64, 90, 96
local, 272, 273
Chavacteristic function, 2-4, 133-136, 139-146,
198-199
inversion, 133
Chebyshey's inequality, 28, 138, 166, 188
Christofiel-Drarboux summation formula, 248
Communication theoretic applications, 279
Complete orthonormal system, 286
Composition, see Mixture
Composition method, 222
Concave majorant, 213
Conditional density, 253
Conditional probability of error, 254
Cone, 260-26!
Consistency of:
automatic kernel estimate, J48-14%9,
158-159, 169-172
Bartlett’s estimate, 207
cross-validated kernel estimate, /54, 154
cubic histogram estimate, 20-23
Deheuvels” estimate, 194-199
detectors, 280
Grenander's estimate, 213-214
Haar series estimate, 292
Hermite series estimate, 315-316
histogram estimate, 20-23
kernel estimate, 12-19, 150, 172-174
Legendre series estimate, 318, 319
maximum likelihood estimates. 202-203
recursive kernel estimates, 194-199
singular integral estimate, 12/, 321-323,
336-338

Terrell-Scott estimate, 272
transformed kernel estimate, 250-252
trigonometric series estumate, 367, 302
variable histogram estimate. 204-20%
variable kernel estimate, 192
Wolverton-Wagner estimate, 199-201
Convexity, 281, 282
Convolution:
of densities, 272, 273
operator, 6, 77
sieve, see Sieve
Covering lemmas, 176, 260-261
¢ -inequality, 96
Cramer-Rao inequality, 40
Cross-validated histogram estimate, 155
rate of convergence, 156
Cross-validated kernel estimate, t52-155
consistency, /53, 154
nonconsistency, 154
rate of convergence, 155
Cross-validation, 152-155

Data, I, 227, 253-254
Deheuvels® estimate, 193
consistency, 194-199
De la Vallee Poussin:
density, 135, 142
kernel, 135, 323, 325, 327, 330, 333
second kernel. 323, 326, 330, 335, 336-138
singuiar integral estimate, 333-334
singular integral estimate with second
kernel, 336-338
Density:
beta. see Beta, density
Cauchy, see Cauchy density
conditional, see Conditional density
de la Vallee Poussin, see De la Vallee
Poussin, density
exponential, se¢e Exponential density,
choice of smoothing factor
with finite Fourier series expansion, 302-303
isosceles.triangular, see Isosceles
triangular density
Laplace, see Laplace density
with large tails, 247-250
marginal, see Marginal density
mixtures of densities, vee Mixture
monotone, see Monotone density
multivariate Pearson 11, see Multivariate
Pearson 1T density
normal, see Normal, density
parametric families of densities, 246



Pareto, see Pareto density

with polynomial tails, 154

product, yee Product density

radially symmetric. see Radially symmetric
density

rectangular, see Rectangular density

with regularly varying tails, 82, 248-249

resiriction of densities, see Restriction of
densities

Riemann integrable, see Riemann
integrable density

stable, yee Stable density

Student’s 1, see Student’s t density

triangular, see Triangular density

with unbounded support, 129-133

uniform, see Rectangular density

unimodal, see Unimodal, density

Density estimate, /

automatic kernel estimate, 748, 148-190

Bartlett’s estimate, 38, 145, 206-207, 269

cubic histogram estimate, 20

Deheuvels’ estimate, 193

Dirac delta function estimate, /84, 184-185,
283, 319

Fourier integral cstimate, /34

Fourier series estimate, see Trigonometric
series ¢stimate

Grenander's estimate, 213, 213-216

Haar series estimate, 29/-292

Hermite series estimate, 290-291, 312-316

histogram estimate, 3, /9, 19-23, 76, 201,
261

jackknife estimate, 210-212

kernelestimate, 3, /2, 12-19, 37, 76, 244, 282

Laguerre series estimate, 291, 312, 316

Subsect Index 349

variable histogram estimate, 204, 205
variable kernel estimate, /92, 193
Wolverton-Wagner estimate, /93
Density-guantile function estimate, 246
Detection, 274-281
problem, 274
signal, 279
theory, 274
Detector:
consistent, 280
L, error based, 276, 277, 278-280
maximum likelihood, 274-276
optimal, 274-275
pattern recognition based, 276, 277, 280
robust, 276
sample-based, 280, 281
winsorized maximum likelihood, 287
Difference operator, 161
Differentiation of integrals. 6-11
Dirac delta function estimate, /84, 184-i85,
283, 319
scale invariance, 185
translation invariance, 185
Dirichlet kernel, 289-290, 295-297, 319, 322,
325, 335
Discrimination, 253-266
histogram method, 258-259
kernel method. 257-258
nearest neighbor method, 259-265
Dominated convergence theorem, see
I.ebesgue, dominated convergence
theorem

Embedding device, 50, 53, 57, 58-59
Empirical distributien [unction, 174, 213

Fmpirical measure, 14, 21, 100, 161, 162, 262
Epanechnikov's kernel, 80, 107, 108, 117, 126,
127, 132, 232, 234, 235, 236, 234, 247, 25]
random variate generation, 236
Equvalence theorem:
cubic histogram estimate, 20-23
Deheuvels’ cstimate, 194-199
kernel estimate, 1219
Excellence, k-excellence, 230
Exponential convergence, 72, 207, 257, 258,
259, 264, 265
Exponentiai density, choice of smoothing
factor, 110-111
Extremal set, 230

Legendre series estimate, 290, 316-319
Lofisgaarden-Quesenberry estimate, see
Nearest neighbor estimate
maximum likelihood estimate, 201-204
nearest neighbor estimate, 192-193, 259
orthogonal series estimate, 288, 286-341
Parzen-Resenblatt estimate, see Kernel
estimalte
recursive kernel estimate, f93, 193-201
singular integral estimate, 379, 3[9-338
singular integral estimate with de la Vallee
Poussin's second kernel, 3136-338
Terrell-Scott estimate, 210-212
transformed kerncl estimate, 237, 244-252
trapezoidal kernel estimate, /35, 136, /43,
144-146
trigonormetric series estimate, 289, 294-31 1

Fatou's lemma, 53, 64, 82, 87, 89,96, 100, 103,
123, 141, 177, 182, 197
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Fejer-Korovkin kernel, 323, 325, 330, 333, 336

Fejer-Korovkin singular integral estimate
consistency, 323
Fejer-Lehesgue thearem, 297, 298, 302
Fejer singular integral, 333-334
Fejer singular integral estimate, 331
consistency, 323
rate of convergence, 333-334
upper bounds for bias, 313-334
Fejer's kernel, 295, 295-297, 322, 325,
330, 333-334
Ferrer's functions, 290
Fourier:
coefficicnts, 286, 305, 310, 323, 324, 132
partial sum of series expansion, see
Partial sum
pointwise convergence of series, 300
series, 286
serics estimate, see Trigonometric scries
estimate

scries expansion, 286, 302, 303, 304, 305, 307

Fubini’s theorem, |1

Geffroy's lemma, 26
Generalization of a sample, 227-241
Gibbs' phenomenon, 304

Glick’s theorem, /0, 149, 169, 172, 195, 252,

23]
Glivenko-Cantelli lemma, 175
Goodness-of-{it tests, 274
Grenander's estimate, 213, 213-216
asymptotic law for L, errer, 213-214
consistency, 213-214
rate of convergence, 214
Grenander's maximum likelihood estimate,
see Grenander's estimate
Guide tables, 240-241

Haar:
orthonorma) system, 28]
series estimate, 29/-292
Hausdorff-Young inequality, 310
Hellinger distance, 225, 270-271
Heuristic estimates, 152
Hermite orthonormal system, 312-313
Hermite series estimate, 290-297, 312-316
consistency, 375-316
integral of, 314
nonconsistency, 312-314
translation invariance, 314
Hermite series expansion, 290

Histogram estimate, 3, 9, 19-23, 201, 231, 29|
bias, /03, 104
choice of smoothing factor, 151-152, 155
consistency, 20-23
cross-validated, 155
cubic, 20
definition, 79
Jower bound for L, error, 98
random variate generation, 239-24¢
rate of convergence, 97-106
relative stability, 28-29, 31-33
transtation invariance, 184
variable, 204, 205
variance, /02, 103
Hoeffding's inequality, 17, 263, 264, 277
Halder's inequality, 224, 315, 318

Ibragimov-Khasminskii theorem, 133
Indicator of error, 274, 279
Ineguality:

Bennett’s. {46, 163, 200, 278

Berry-Esseen, 129

for binomial distribution, 17, 25, 10}, 138,
139, 164, 165

Boas-Kac, 332

Cantelli's, 138

Carlson’'s, 8/

Cauchy-Schwarz, 26, 54, 89, 92, 103, 124,
125, 224, 225, 226, 279, 287, 301, 105,
3is, 322

Chebyshev's, 28, 138, 166, 188

for convolutions of densities, 130-131,
175-176

c. 96

Cramer-Rao, 40

between density and characteristic function,
139-140, 143-144

Hausdorff-Young, 310

Hoeffding's, 17, 261, 264, 277

Holder's, 224, 315, 318

involving the total variation, 221-227

Jensen's, 23, 24, 26, 62, 87,95, 114, 131,
137, 138, 177, 202, 216, 223, 224

Khinchine's, /38-13¢

Kolmogorov's lower bound, 260

Kullback-Csiszar-Kemperman, 222-224

Le Cam's, 226

Loreniz’s, 305, 306, 307, 335

Marcinkiewicz-Zygmund, /36-137

Marshall-Proschan, 281-282

moment, /94, 195



for muitinomial distribution, 13
for Poisson distribution, 14, 174
Serfling's, 224, 227
Skovgaard's bounds, 312-313, 314,315,316
for sums of independent random
variables, 90, 136-13%, 160
Szarek’s, 137, 138, 139
triangle, 23
Young's. 4, 85, 89, 310, 320, 321
Information theorelic inequality, see
Kullback-Csiszar-Kemperman inequality
Integrated square error, 31
limit law for kernel estimate, 31
Ilimit law for normal density estimate, 49
Introduction, 1-5
Invariance, /84, 183-185
under monotone transformations, 1-2, 225,
244-245, 247,275
permutation, 281-284
scale, /84
translation, 184, 293, 314, 319
Invariant density estimates, /84, 183-185
Inversion:
of characteristic function, 133, 144
of distribution function, 220-221
method, 220, 2319, 240-241
lsolated bump, 247
Isosceles triangular density, 80, 86, 88, 120,
127, 132, 214, 232-233, 245, 246
choice of smaoothing factor, 109-111, 245
1solated bumps, 247, 249-250
as a kernel, 117, 120, 126, 232

Jackknife method, 210-212
Jackson:
-de la Vallee Poussin kernel, 323
first theorem, 333. 136
kernel, 322, 330, 333, 335
second theorem, 309, 335 336, 338
singular integral estimate, 331
Jacobi polynomials, 290, 317
Jensen’s ineguality, 23, 24, 26, 62, 87,95, 114,
I31, (37, 138, (77, 202, 216, 223, 224

Kernel:
associated, 122
Bartletr’s, see Epanechnikov's kernel
choice, 209
conditions, 76, 122, 130, 136, 207, 320
de la Vallee Poussin's, /35, 327, 325
de la Vallee Poussin's second. 323, 326

Subject Index 35)

Dirichlet, 289-290, 295-297, 322, 325
Epanechnikov's, &0, 107, 108, 117,123,127,
132, 232, 234-235, 236, 238, 247, 251
Fejer's, 295, 195-297, 322, 325
Fejer-K orevkin, 323, 325
functional minimization problem, /i4
isosceles triangular, 117, 120, 126, 232
Jacksan's, 322
Jackson-de la Valiee Poussin, 323
method in discrimination, 257-258
nonnegative, 129-334
optimal, 236
of an orthogonal series expansion, 288
Rogosinski's, 322, 323
smooth, 209
Kernel estimate, 3, /2, 37, 76, 231, 247, 282
asymptotic law of integrated square error,
3]
auwtomatic, /48, 148-190
Bartlett’s, 38, 145, 206-267, 211, 269
bias, 86, ¢/, 92-23, 118
cansistency, 12-19, 150, 172-174
cross-validated, J152-155
definition, 12, 76
lower bound for L, ¢rror, 79
random variate generation, 235-239
rate of convergence, 46, 50, 78, 76-97,
119-121, 151, 214-215
recursive, 93, 193-201
with reduced bias, 205-213
relative stability, 29-31
scale invariance, (85
transformed, 237, 244-252
translation invariance, 184
trapezoidal, /35, 136, 143, 144-146_335, 338
uniform upper bound for L, error, 725, 126
universal lower bound for L, error, 79
variable, /92, 193
Khinchine's inequality, 134-139
Khinchine's theorem, 273
Kolmogorov's counterexample, 300
Kolmogorov's lower bound, 260
Kullback-Csiszar-Kemperman inequality,
222-224
Kullback-Leibler numbers, 276, 271, 275

1.\ distance, 7, 3

L: error based detector, 276, 277, 278-280
L, distance, 2, 3

Label, 253

Lagrange multiplier method, 203
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Laguerre series estimate, 29/, 312, 316
l.aplace density, 1i0-111
Large deviation inequality, 174
Lebesgue:
constant, 295
density theorem, 3, 6, 7, 13, 93, 96, 105,
119, 131, 140, 142, 159,177, 178, 182,
195, 199, 248, 297
dominated convergence theerem, 9, 10, 11,
19, 64, 93, 131, 142, |78, 212, 248, 262,
264, 281
point, & 160, 165, 167, 169, 172
Legendre polynomials. 127, 296, 316
Legendre scries estimate, 290, 316-319
consistency, 3/8, 319
nonconsistency. 317
translation invariance, 319
Lemma:
Assouad’s, 40, 40-46, 226
Borel-Cantelli, 33, 167, 174, 182
covering, 176, 260, 261
Fatou's, 53, 64, 82, 87, 9, 96, 100, 105, 123,
141, 177, 182, 197
Geffroy's, 26
Glivenko-Cantelli, 175
Toeplitz’s, 199
Linear operator, 313
Lipschitz;
class, 42, 45, 66-72, 12F, 121-129, 304,
308-309, 328, 331, 337
function, 42, 124, 156
Llogl. norm, 177-178
Locally adapted smoothing parameter,
192-193
Location parameter, [09-110
Lofisgaarden-Quescnberry estimate, see
Nearest neighbor estimate
L.ogarithmic series, 177
Lorentz's inequality, 305, 306, 307, 335
Lower bound:
individual, 35, 231
individual for BS, 49
individual for G, G-, U. UL, 36
individual for H{g), 36, 37
individual for Il(g). 39
i, error, 35-75
L+ error, 50
minimaXx, 35, 40-42
for sample size, 230-233
uniform far F..., 38, 121
uniform for G, G, H(g), U.U,, 36
umiform for Lipschitz classes, 42-43, 43-44,

121, 126
uniform for My, 45
uniform for Q.{g). 44
uniform for g}, 79

Marcinkiewicz-Zygmund incquality, /36-137
Marginal density, 267, 268
Marshall-Proschan inequality, 281-282
Maximum likelihood:
detector, 274-276, 281
estimate, 201-204, 225
principle, 39, 152-155, 201-204
Mills' ratio, 77
Minimax:
error, 35, 40
lower bounds, 35, 121, 126, 213
upper bounds, 35, 125-126, 128, 144-146,
215-216, 308-309, 331
Mixture, 268
Modulus of continnity, 327-328
Moment:
inequality, 194, 195
matching, 233-235
Monotone canvergence theorem, 97
Monotone density, 36, 213-216
Monotene transformations of data, 153,
184-1835, 225, 275, 287
Monte Carla:
evaluation of functionals, 221
variance reduction in simulation, 239
Multimodal density, 111-112
Multinomial distribution:
Geffroy's lemma, 26
inequatity, 13
Multiplicative variation of an estimate.
206, 212-213
Muitivariate Pearson 11 density. 236-237

Nearest neighbor estimate, 192-193, 259
choice of smoothing parameter, 152
Nonconsistency:
cross-validated kernel estimate, /54
Hermite series estimate, 3/2-314
Legendre scries estimale, 377
trigonometric serics estimate. 294-295,
298-300
Nonnegative projection, 269-270
Nonnegative projection theorem, 135, 206, 270
Normal:
choice of smoothing factor, 108111, 151
convolution sieve, 201-202
density, 101, 108, 109, 151, 201, 246



density estimate, 49
distributien function. 63, 90, 214, 237
isolated bumps. 247 250
second moment mismatch, 234-235
Normalization. 205, 212, 213
Nygquist's theorem, 134

Observation, 253
One-observation problem, 40
Optimal detector, 274, 275
Order statistics, 109, 111, 154, 185, 204, 24/,
246
Order statistics method, 236
Orthogonal:
function, 286
polvnomials, 288
series expansion, 286-287
Qrthogonal series estimate, 288, 286-341
bias, 287
regular form, 288
smoothed, 324
translation invariance, 185
Orthonormal system, 285, 289
complete, 286
Oscillation factor, 82, §2-86

Parametric:
class, 134
families of densities, 246
method for choosing smoothing factor,
107-113, 151-152
method {ar choosing transformations,
246-247
Pareto deasity, 54
Partial sum, 287, 300
Partition:
cubic, 9
nested, ¢
Parzen-Rosenblatt estimate, see Kernel
estimate
Pattern classification, see Discrimination
Pattern recognition, yee Discrimination
Pattern recognition based detector, 276,
277, 280
Penalized maximum likelihood.
203-204
Penalty function, 203
Permutation invariance, 281-284
Pointwise convergence, see Consistency
Poisson distribution, 181
inequality for, 14, 174
Poissonization, 13, 181-183

Subject index 353

Polar method, 237
Preprocessing, 238-239, 241
Probability of error, 252

Bayes, 254

conditional, 254
Probability mcasure, 253, 260, 272
Product density. 27(-27}

Quantile, 109
Quick and dirty estimates, 246

Radialty symmetrie density, 274, 272
Radial majorant, 8, 136, 142, 194, 195, 199
Random variate generation, 220-222,
227-241
alias method, 240
composition method, 222
for histogram estimate, 239-24/
inversion method, 220, 239, 240-24)
for kernel estimate, 235-239
method of guide tables, 240-241
moment matching, 233-235
order statistics method, 236
pelar method, 237
rejection method, 222, 236, 237, 238
sample independence, 228, 229
sample indistinguishability, 229-233
spacings method, 237
Rate of convergence:
automatic kernel ¢stimate, 186-188
Bartletr's estimate, 207-208, 209-210
cubic histogram estimate, 98-992, 97-106
in diserimination, 255-237
Grenander’s estimate, 213
keroel estimate, 46-50, 76-97. 78, 119-12}
154, 214-215
lower bounds, 35-75
singular integral estimate, 330-338
singular integral estimate with de la Vallee
Poussin’s second kernel, 336-338
trigonometric series estimate, 304-311
variable histogram estimate, 204
Rectanguiar density, 99, 101, 152, 220,
232-233, 236, 245, 247, 256, 304
choice of smoothing factor. 110-F11
L: error with Grenander's estimate, 214
L error with kernel estimate, 113-117
Recursive kernel estimate, /93, 193-201
consistency, 194-199
Regression function, 253, 256
Regular form, 288
Reguiar measure, /6
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Regular variation, 167, 171, 248-249
Regularly varving tail, 92
Rejection method, 222, 236, 237, 238
Relative stability, 23
cubic histogram estimate, 31-33
histogram estimate, 28-29
kernel estimate, 29-3!1
Restriction of densities, 269
Riemann integrable density, 149, 150, 153,
160, 167, £72, 205
Robust:
detector, 276
estimate of location, 246
estimate of scale, 109-111, 151, 246
Rodrigues’ formula, 290
Rogosinski singular integral estimate:
consistency, 323
rate of convergence, 335, 338
Rogosinski's kernel, 322, 325, 330, 335

Sample, 253-254
based detector, 280, 281
covariance matrix, 237
independence, 224, 229
indistinguishability, 229-233
size, 230-233
Scale:
nvariance, /84
parameter, 109-111
Scheffe’s theorem, £, 3, 10, 149, 156, 169,
172, 229
Schur convexity, 281-284
Schwarz’s inequality, see Cauchy-Schwarz
inequality
Semimonotone, /49, 172, 173
Sensitivity analysis, 112
Sequential scarch, 240, 241
Serfling's inequality, 226, 227
Shape parameter, 109
Sieve, 201, 203
convolution, 201-202
method of sieves, 201
normal convolution, 201-202
Stgnal detection, 279
Simulation, 220-221, 227-24{
Singular integral, 320-321, 326, 336
Singular integral estimate, 379, 319-338
bias, 329-336
consistency, 32/, 321-323
de la Vallee Poussin, see De la Vallee
Poussin, singular integral estimate

with de la Vallee Poussin's second kernel,
see De la Vallee Poussin, second kernel
Fejer, see Fejer singular integral estimate
Fejer-Korovkin, see Fejer-Korovkin
singular integral estimate
individual upper bound lor L, crror, 327
Tackson, see Jackson. singular integral
estimate
rate of convergence, 330-338
Rogosinski. see Rogosinski singular
integral estimate
as smoothed trigonometric series
estimate, 323-326
uniform upper bound for L, error, 327, 331
upper bound for L, error, 326-327
Skovgaard's bounds, 312-313, 314, 315, 316
Slow convergence theorem, 36, 44, 255-257
Slow variation, 248, 249
Smooth kernel, 209 -~
Smoothed orthogonal series estimate, 324
automatic choice of parameters, 324-325
optimal form, 324
Smoothing factor. see Smoothing parameter
Smoothing parameter, 76
adaptive estimate, 128
automatic choice, 148-190
cross-validatory choice, 152-155
heuristic estimate of, 152
locally adapted, 192-193
maximum likelihood method for choosing,
152-155 .
minimax strategy lor choosing, 117121,
214-215
optimal choice for cubic histogram
estimale, 106-108
optimal choice for kernel estimate, 78,
[07-108, 151-152
parametric method for choosing, 107-113,
151-152
sensitivity analysis, [12-113
trigonometric series estimate, 309
two-step procedure for choosing, {5]-152
upper bound for, 113
Sobolev class, 304, 310, 311
Sobolev space, see Sobolev class
Spacings method, 237
Stable density, 154
Standard kernel estimate, see Kernel estimate
Statistically equivalent blocks, 204
Stieltjes” first theorem, 319
Stirling's formuta, 25, 101, 165



Strong approximate identity, 321
Strong law of large numbers, 276, 277, 278
Student’s t density, 154
choice of smoothing factor, 109-111
isolated bumps, 249
Sufficient statistic, 62
Supremum norm, 226, 227
Symmetrization, 215, 281-284
Szarek's inequality, 137, 13R, /3¢

Taylor series expansion, 83, 103, 112, 123,
209, 210, 211, 223, 225
Terrell-Scott estimate, 212
consistency, 212
random variate generation, 239
rate of convergence, 213
Theorems:
Abou-Jaocude's, /0, 28, 29
Berry-Essen, 90, 96
binomial expansion, 68
Boyd-Steele, 49
Bretagnolle-Huber, 38
Carleson-Hunt, 304, 302, 316
central limit, 53, 64, 90, 96
Fejer-Lebesgue, 297, 298, 302
Fubini’s, 11
Glick’s, I0, 149, 169, 172, 195, 252, 281
lbragimov-Khasminskii, /33
Jackson's first, 735, 336
Jackson's second, 309, 335, 336, 338
Khinching's, 273
Lebesgue density, 3, 6, 7, 13,93, 96, 105,
119,131, 140,142,159, 177, 178, 182, 195,
199, 248, 297
Lebesgue dominated convergence, 9, 10, 11,
19, 64, 93, 131, 142, 178, 212, 248, 262,
264, 281
local central limit, 272, 273
monotone convergence, 97
nonncgalive projection, 135, 206, 270
Nyquist's, 134
Scheffe’s, I, 3, 10, 149, 156, 169, 172, 229
slow convergence, 36
Stieltjes’ first, 319
Toeplitz's lemma, 199
Total vanation, 227
Transtormations of data, 246-247
Transformed kernel estimate. 244-252
Translation invariance, 184, 293 314, 319
Traperoidal kernel estimate, /35, 136, 143,
144-146, 335, 338

Subject Index 355
Tnangular density, 88
Trigonometric polynomials, 309, 332, 335
Trigonometric series estimate, 289, 294-3H

bias, 295, 300, 310

consistency, 294-304

multivariate, 289

nonconsistency, 294-295, 298-300

rate of convergence, 304-311

smoothed, 323-326

uniform upper bound for L, error, 308,

305-310

upper bound for L error, 307
Trigonometric system, 289
Two-quantile method, 246

Unbiasedness, 133-146, 287-288, 338
Uniform boundedness principle, 313
Uniform density, see Rectangular density
Uniform random variable, 220, 222, 227, 233,
236, 238
random variate generation, 237
on the unit sphere, 236-237
Uniform upper bound, {25
Unimedal:
convolution of distributions, 102
density, 36, 109, 111, 213-216, 247, 273-274
Universal lower bound, 79
Upper bound:
for L, error of kernel estimate, /25, 128
minimax, 35
uniform for Ac...c, 144-146
uniform for F..., 128
uniform for My, 215
uwniform for Sobolev classes, 310-311
uniform for W(s,&,C}, 125-126, 308-309,
331, 337

Variable histogram estimate, 204, 205
consistency, 204-205
random variate generation, 241
rate of convergence, 204 .
Variable kernel estimate, /92, 193
random variate generation, 237
Variance: \-\
component, 78
of the histogram estimate, /02-703
of the kernel estimate, 20, 92
reduction, 239
Vanation:
of density estimate, 23, 9/
uniform upper bounds, /24, 125
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von Neumann's rejection method, see Winsorization, 281
Rejection method Wolverton-Wagner estimate, /93
consistency, 199-201
Winsorized maximum likelihoad detector,
281 Young's inequality, 6, 85, 89, 310, 320, 321
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