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Constructions of Protocol Sequences for Multiple 
Access Collision Channel without Feedback 

L&z16 Gyiirfi and Istvan Vajda 

Abstract-Constructions of protocol sequences for multiple-access col- 
lision channel without feedback are given. These constructions are the 
extensions of those described by A, GyiiriI, and Massey. If the basic code 
in their constructions, a Reed-Solomon code, is replaced by a BCH code 
then the resulting protocol sequences have the feature that, for a given 
sum rate, the ratio of the total user population to the block length becomes 
much larger. 

Index Terms- BCH codes, collision channel, constant-weight codes, 
cyclically permutable codes, protocol sequences. 

I. CYCLICALLY PERMUTABLE CODES AND PROTOCOL SEQUENCES 

A Gyorfi, and Massey [l] have given a general way to construct 
constant-weight cyclicallypermutable codes. A cyclically permutable 
code CPC(N, T, d,) is a binary block code with block length 
N, size T, and positive cyclic minimum distance d,. The cyclic 
minimum distance d, of a code is defined as the minimum Hamming 
distance from a codeword to its own cyclic shifts or to some cyclic 
shift of another codeword. The condition d, > 0 implies that each 
codeword has N distinct cyclic shifts and that no codeword can be 
obtained by cyclic shifting another codeword one or more times. 
These constructions are the so-called cyclic concatenations of a 
subcode of a linear cyclic code over GF(p) 0, is a prime) with the 
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pulse-position-modulation (PPM) code consisting of all weight-one 
sequences of length p. 

These codes can be the set of protocol sequences for the T possible 
users of the collision channel without feedback when it is known that 
at most M users are actively using the channel at any given time. 
According to a reiteration of the model from the paper [l] the traffic 
to send over a common communications channel is in the form of 
“packets” of some fixed length that we assume take values in the 
finite field GF(Q) for some, in general large, Q. The time axis is 
assumed to be partitioned into slots whose duration corresponds to 
the transmission time for one packet; it is further assumed that all 
users know the slot boundaries but are otherwise unsynchronized. 
When a user transmits a packet, he must transmit it exactly within 
a slot. 

The channel is assumed to be the collision-channel without feed- 
back [5], [6]. If, in a particular slot, none of the users are sending a 
packet (in which case we say each user “sends” the silence symbol), 
then the channel output in that slot is the silence symbol. If exactly 
one user is sending a packet in a particular slot, then the channel 
output in that slot is this packet value, which will be an element of 
GF(Q). If two or more users are sending packets in a particular slot, 
then the channel output in that slot is the collision symbol. There is 
no feedback available to inform the senders of the channel outputs 
in previous slots. 

Each user, say user i, has a protocol sequence, which is a binary 
sequence 5; = [sii, si2,. . . , S;N] of length N that controls his 
sending of packets in the following manner. When user i becomes 
active (after some period of inactivity), he must send a packet in 
the jth slot of this activity (1 5 j < N) if sij = 1 and must 
be silent in this slot if s;j = 0. He continues to use his protocol 
sequence periodically in this manner until he has no more packets 
to send, in which case he again becomes inactive, and he must then 
remain inactive for at least N - 1 slots. If each si has Hamming 
weight w, then user i will send w packets in each frame of N slots 
where his protocol sequence appears. User i will code his packets 
(i.e., transmit redundant packets) in such a way that those of his 
packets that were “lost” in collisions can, under specified conditions, 
be recovered at the receiver. The task of the receiver in each received 
frame is three-fold, viz.: 

1) to determine the set of active users (identification), 
2) to find the beginnings of their frames (synchronization), and 
3) for each active user, to determine the packets sent by this user in 

the w slots of this frame where the user sent packets (decoding). 
The random-accessing problem, where in each received frame 

at most A4 out of the T users can be active in the sense of 
sending at. least one packet in this frame, was introduced in [7] 
and [8]. The set {si, ~2,“’ , ST} of binary sequences is said to be 
a (T, M, N, u) protocol sequence set if these sequences all have 
length N and, when used as protocol sequences, have the property 
that each active user can be identified by the receiver, the receiver 
can synchronize and each active user achieves at least g successful 
packet transmissions in that frame, provided that at most M out of 
the T users are active. The users can code their packets so that each 
user can send ~7 information packets in each frame of his activity and 
the receiver can correctly decode these packets. Each user uses an 
(n’ = w , IE’ = u, d’ = n’ - k’ + 1 = w - 0 + 1) shortened RS code 
over GF(Q) to code his g information packets into his w transmitted 
packets. Such a code exists provided only that n’ = w 5 Q + 1. 
If a user is active and has u successful packet transmissions, the 
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decoding problem at the receiver is equivalent to having erasures in 
the at most n’ - D = 2u - 6 positions where this user’s packets suffer 
collision. Because d’ = ‘w - u + 1, the receiver can always correct 
these erasures by a standard erasure-correcting algorithm for the RS 
code, and hence, can correctly recover the 0 information packets 
from this user. 

A, Gyorli, Massey [l] showed how constant-weight cyclically- 
permutable codes can be used as (T, M, N, u) protocol-sequence 
sets: for any integer u with 1 5 0 2 w, a binary constant-weight- 
w cyclically-permutable code CPC(N, T, d,) is a (T, M, N, g) 
protocol-sequence set for 

where 1.1 denotes rounding down to the nearest integer. 

II. CPC BASED ON RS CODES OVER GF(p) 

In this section, we briefly describe the construction from [l]. Let 
p 2 5 be a prime, let ct be a primitive element of GF(p), and let V 
be the (n, IE, d) Reed-Solomon (RS) code (where n = p - 1, k(3 < 
Ic < p - 1) and d = n - li - 1 are the blocklength, dimension, 
and minimum (Hamming) ,distance, respectively) such that its parity 
check polynomial h(z) can be written as 

(2) 

where 

MJ(X) = 5 - cl-j. 

Note that Mj(z) is the minimal polynomial of a-j, j = 
0, I,...,!$ - 1. 

It is easy to see that V can be written as the direct sum ([4, 
theorem 21): 

v = vo + Vl + vz + ‘. . + VI-l, 

where V, is the RS code of length n over GF(p) with parity check 
polynomial AJj(z), j = 0, l,..., k - 1. 

In the sequel we will use the following properties: 
Pl V is a linear cyclic code and each c E V can be written 

uniquely in the form c = va + vr + . . + vk-1 where 
vz E v, i = 0, 1,. . . , k - 1 ([4], Theorem 2). 

P2 Va = (~1; u E GF(p)}, where 1 is the all-one n-tuple, since 
MO(Z) = z - 1. 

P3 VI has an element c*, the cyclic shifts of which are all 
distinct (for example c* = (1, a!, a2,... ,a?-‘), since n is 
a primitive element). 

Consider the following subcodes of V: 

3 = vo + {c*} + vz +. . . + If-1 

and 

+={C*}+v,+-‘+v,-,. 

Fact 1: Each codeword of p has n distinct shifts and no codeword 
can be obtained by cyclic shifting another codeword one or more 
times. 

The proof of Fact 1 is by contradiction. Suppose that S’U = v 
for two elements Y and v of the code v such that either 2~ = v and 
0 < T < n or u # v. Obviously U, v, and S’U can be decomposed 
into the forms: u = c* + z, v = c* + y and SZL = SC* + S’z, 
where z, y, S’z E VO + V2 + . + v&-l. Thus, 

0 = sru - v = (SC?* - c*) + (S’z - y), 

where (9 C* - c’) E VI and (S’z - y) E I& + V, + ... + V&-l. 
This contradicts Pl). 

Cyclic concatenation of $’ and the PPM code: Let each code- 
word c = [co, c1,.‘. , c,-r] in p determine a p x n array A in 
the manner that the ith column of A is the transpose of the p-tuple 
that is a weight-one vector having 1 at the cith position: 

i(O, 0) ... 

[ . 

a(0, n - 1) 
A= : 

a(p - 1, 0) .. . ! 1. a(p - 1, n - 1) 

Here, p and n are assumed to be relatively prime, i.e., gcd(p, n) = 1. 
Therefore, the Chinese remainder theorem [3, p. 28.51 specifies a one- 
to-one correspondence between the binary array A and the binary 
N = pn-tuple b = [ba, br,. . . , bN-11 in the manner that 

b; = a(i modp, i modn): 

where, here and hereafter, “i mod p” denotes the remainder when i is 
divided by p. Let B denote the set of binary N-tuples b corresponding 
to n-tuples c in V. 

Fact 2: There is a one-to-one correspondence between the sets 

{Stb; b E B, t = 0, I,..., N - l} 

and 

{S”c + jl; c E P, i = 0, 1,. . . , n - 1, j E GF(p)} c V, 

from which it follows that the cyclic minimum distance of B is at 
least twice the minimum distance of V. Thus, B is a constant-weight 
w = n CPC(N, T, d,) code with T = pk-‘, N = p(p - 1) and 
d, > 2(n - k + 1). 

Fact 2 can be proved in the same manner as Construction V in [l] 
such that St6 corresponds to Sic + jl if b corresponds to c and t 
corresponds to (i, j) with i = t mod n, j = t mod p. 

III. CPC BASED ON BCH CODES OVER GF(p) 

Obviously we can get a code B’ with the same parameters if in 
Section II A&j(z) is the minimal polynomial of o?, j = 0, 1,. . . , k- 
1. In this section, we give an extension. Again let a be a primitive 
element of GF($), where p is a prime number and r 2 1. A primitive 
Bose-Chaudhuri-Hocquenghem (BCH) code V of length n = p”’ - 1 
is then defined by the parity-check polynomial h(z): 

h(z) = l.C.m.{M0(2),...,Mk-~(2)}, 

where M,(z) is the minimal polynomial of a? over GF(p), and 
3.5 k <p- 1, j = 0, l,..., k - 1. The minimum distance of code 
V can be bounded below by examining the set of roots of h(z). If Aj 
denotes the set of logs of roots for M](z) (j = 0, 1, . , k - l), then 

Ao = (0) 
A1 = (1, P, P~,...,P'-~) 

A2 = (2, 2p, 2p2,. . . ,2p’-I} 

Ak-1 = {k - 1, (k - l)p, (k - l)p2,*.. , (k - I)$-‘} (3) 

([3], p. 105). We mention that A, n A, = 0, for i # j, i, j = 
0, 1,. . . , k - 1. It follows that 

k--l 

h(z) = n M,(z) 
j=o 
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and 

degh(z) = (k - 1)’ + 1. (4) 

Note that for the particular case T = 1 we get the RS code defined 
in Section II. Introducing the generator polynomial g(z) by 

Xn - 1 = .d~)~(X), 

we get from (3) that 

{(k - l)p’-’ + 1, (k - l)p’-’ + 2,. . . ,p’ - 2) 
C {logs of roots of g(x)}. (5) 

Furthermore, from (4), it follows that 

degg(z) = p’ - 1 - ((k - 1)’ + 1). (6) 

It is known that if aJo, &O+l,. . . , c@2t-1 are different roots 
of g(z) for some ja, ~‘0 E (0, 1,. . . ,p’ - 2}, then the minimum 
distance of the BCH code is at least 2t + 1 ([3, p. 1661). Therefore, 
from (5), we get the following lower bound for the minimum distance 
of code V: 

d > (p’ - 2 - (k - l)p’-‘) + 1 = p’ - 1 - (k - l)p’-‘. (7) 

The parameters of the code V are as follows: 

length: n = p’ - 1, 
size: IV1 = ~('-l)~+l, (8) 
distance: d 2 pp - 1 - (k - 1)~‘~‘. 

We show the properties Pl), PZ), and P3). It is easy to see ([4] 
Theorem 2) that V is given by the direct sum 

v = VO + vl + . . . + v&l, 

where Vj is the code over GF(p) of length n with parity check 
polynomial M3 (x), j = 0, 1,. . . , k - 1. Because MO(Z) = cc - 1, 

Vo = (~1; u E (X(p)}, (9) 

i.e., IV01 = p. Furthermore because deg Mj(x) = r, it follows that 
IV, ] = pr, j = 1, 2,. . , k - 1. Because R is a primitive element 
of GF(p’), MI(Z) is a primitive polynomial and consequently VI 
contains an m-sequence C* ([4, theorem 7]), which has the well- 
known property that all of its n cyclic shifts are different. 

Consider the following subcodes of V: 

and 

v = VO + {C*} + v’ + ' ' ' + vk-1 (10) 

P = {C*} + v2 + "' + v&l. 

If B* is the cyclic concatenation of p and the PPM code, then 
in the same way as in Section III the properties Pl), P2), and P3) 
imply Fact 1 and Fact 2. Therefore, B’ is a binary constant-weight 
cyclically-permutable code with length p(p’ - l), size P(“-~)’ and 
cyclic minimum distance d, 2 2(p’ - 1 - (k - 1)~‘~‘). 

It is easy to see that B’ is the special case of B* when T = 1. The 
question is are there possible advantages of the choice T > 1 when 
J3* is used as protocol sequence set for collision channel without 
feedback? 

IV. PROTOCOL SEQUENCESFORTHE 
M-OUT-OF-T-USER COLLISION CHANNEL 

In this section, we will show how the constant-weight cyclically- 
permutable code given in Section III, performs as a protocol sequence 
set for an M active out of the T users multiple access collision chan- 
nel without feedback. Because a (T, M, N, g) protocol-sequence set 
allows each of the M active users to send successfully D information 
packets in a frame of N slots when the users code their packets 
as described above, it follows that R,,,, the total information 
transmission rate that can be achieved is 

R 8”In = $ (packets/slots). (11) 

The code B’ can be used as a (T, M, N, g) protocol sequence 
set with parameters: 

T = p(“-2b 

N = p(p’ - 1) 
w = pr - 1. 

For D - 1 2 (k - 1)~‘~l the third term in (1) is the smallest one, thus 

02) 

Therefore, 

M > (k ” ;;-1 ’ 

Thus, for the sum rate (ll), 

R 
u(w - u) 

s”m 2 N(k _ l)pr-l’ 

the maximum of which is for u = w/2 when for w/2 - 1 2 
(k - 1)~‘~‘. Choosing c = w/2, we get 

(13) 

The right side of (13 is usually independent of T and equals either 
to [&I + 1 or /&I. The sum rate is 

R 
MU Mw/2 M/2 8um=-=-=-) 
N PW P (14) 

which is independent of r if M is independent of T. In any case, 
(13) and (14) imply that 

R 
1 

sum = 4(k- 

for large p, so R,,, remains the Same for RS (r = 1) and BCH 
(r 2 1) codes. 

The ratio of the total population T to the block length N is 
(p’“-“‘)/(p(p’ - 1)). For k = 3, this ratio is M p-l. For T = 1, 
we get the results on the protocol sequence construction based on 
RS code [l]. For T > 1 T/N increases considerably, i.e., for fixed 
k > 3, it is a monotone increasing function of T and is M p(k-3)r-‘, 
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so the BCH code is better than the RS code. Note however that the 
increase in the number of potential users per slot does have a price: 
The increase in the code length n’ = w (and, therefore, in the frame 
length N and in the number u = w/2 of successful packets per slot) 
increases the decoding complexity per slot, since the erasure-decoding 
algorithm of the other shortened RS code is super linear in w (it is 
quadratic in w for most standard erasure-decoding algorithms). 

Example: Consider the numerical Example 5 in [l]. Take p = 
13, k = 4. The following table illustrates the parameters of the 
protocol sequence sets for RS and BCH codes, resp.: 

) RS (r= 1) 1 BCH (T = 2) 
T 169 28561 
M 

I 
3 

I 
3 

N 156 2184 
RU SUnI 3126 6 3126 84 

TIN 1.08 13.08 
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A Note on Distributed Estimation and Sufficiency 

R. Viswanathan 

Abstract-In relation to.distributed parameter estimation, the notion of 
local and global sufficient statistics is introduced. It is shown that when 
a sufficiency condition is satisfied by the probability distribution of a 
random sample, a global sufficient statistic is obtainable as a function of 
local sufficient statistics. Several standard distributions satisfy the said 
sufficiency condition. 

Index Terms-Estimation, sufficiency, fusion of estimates. 
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I. IHTR~DLJ~TI~N 

In distributed estimation, inferences about a parameter are to 
be made based on partial information. A typical situation is the 
following. Several partial (local) data sets are available and separate 
inferences based on local data sets, such as local estimates or 
sufficient statistics pertaining to local data, are used to obtain an 
overall assessment of the parameter. If all the local data are available 
together, then the problem is one of classical estimation [l]. In 
distributed detection and estimation, some interesting and counter 
intuitive results are possibl,e [2], [6]. Here, only those probability 
distributions that admit sufficient statistics are considered [l]. The 
utility of the sufficient statistic is that it is of reduced dimension 
as compared to the dimension of the data and that it achieves this 
reduction without any loss of information, because it carries all 
the relevant information that the data has, regarding the parameter. 
(The whole data is trivially sufficient, but this has no dimensionality 
reduction. Hence, it is assumed that those distributions that admit only 
the trivial sufficient statistic do not possess any sufficient statistic). 
In this discussion it is assumed that conditioned on the parameter, 
the data samples are statistically independent. In the next section 
we have some preliminaries that define the terminologies. In Section 
III, we pose the question: Given several local sufficient statistics 
and a global sufficient statistic pertaining to the whole data, does a 
function of local sufficient statistics exist such that this function is the 
global sufficient statistic? A sufficient condition on the probability 
distribution assures the existence of such a function. Also, several 
standard distributions are shown to satisfy this condition. 

II. PRELIMINARIES 

Consider the problem of estimating a parameter 0 using the ob- 
servations 21, 22, . . . , 2~. In the context of distributed processing, 
the whole data can be called global data and any proper subset 
of the global set local data. Whenever several local data sets are 
considered, we assume them to be mutually exclusive and collectively 
exhaustive. Hence, the conditional distribution of the global data 
given the parameter 0 and the prior distribution of 0 provide a 
complete characterization of the estimation problem. Any sufficient 
statistic [l] that pertains to the whole data will be called a global 
sufficient statistic. A sufficient statistic that pertains to local data 
will be called a local sufficient statistic. One could similarly define 
local and global likelihood functions, locai estimates, and global 
estimates. The definition of local and global sufficiency given here 
is different from the one used by Barankin and Katz [7]. In [7], 
the variation of the dimensionality of a sufficient statistic as the 
sample (~1, ~a,‘.., ZN) ranges over Euclidean N-space, leads to 
the definition of local and global sufficient statistics. 

III. LOCAL AND GLOBAL SUFFICIENCY 

Using the terminology of distributed sensor processing [2], [3], 
let us consider a group of n sensors, with the ith sensor receiving 
observations {&, &, . . . , Zini }, for i = 1, 2,. . . , n. Let G denote 
the global data set {ZZ,, i = 1, 2,...,n, j = 1, 2,...,n;} and 
let each Z;j be independent and identically distributed with either 
a probability mass function f(~ ) O), when the observations are 
discrete, or with a probability density function f(.z ] O), when 
the observations are continuous. Here 0 denotes a one-dimensional 
parameter defined on an appropriate parametric space. For the sake 
of notational convenience, f (.) is used to denote both the marginal 
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