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so our  constant is 

( _  l)Z-dk + C).( fil(kl)!)-l. 

This constant is nonzero in F  (this follows from the facts that 
m < p  and  p  is a  prime number),  so  the determinant is nonzero.  

W e  want to show that at least (m + 1) of the u, are nonzero.  
Suppose this is not the case. Then  at most m of the yj are 
nonzero.  From the p  equat ions Cv = u, we consider the first m  
equations. The  left side is a  linear combinat ion of at most m 
column vectors ( cojk, ci j,, . . . , c, _  i, Jk)T, while by  definition of the 
vector u  the right side is zero. From the previously proven 
property of the matrix C, we conclude that v =  0. This leads to 
u  =  Cv = 0, contradicting the fact that u, +  0. 

W e  have  shown that at least (m + 1) of the uj are nonzero and  
thereby have  proven that W[P(x)] 2  (m +l)W[Q,(x)]. From 
the definition of m it follows that m .p” I imin < (m + l).p”. 
From the induction hypothesis we see that 

W[Q,(x)] ,W[(x+c)‘m’.‘-“-p’], 
so  

W[P(x)] t(m+l)~W[(x+c)‘m’“-“‘~Pn]. 

However,  

= 2  ( T)(XPn)‘(CP”)“(x+C)imin~““Pn. 

j=O 

In this expression we have  j I m  < p, so  p  does  not divide any  of 
the 

( 1  
7  , also we have  imin - m  .p” < p”, so  

W[(x+c)““‘“] =(m+l).W[(x+c)‘““~“‘Pn]. 

This means  that W[P(x)] 2  W[(x+ c)‘en], and  the proof is 
finished. 
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Superimposed Codes in R” 
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Ahstrucf -Superimposed codes in R” are introduced, and some ex- 
istence bounds are obtained. In particular, asymptotic properties of long 
codes are studied. 

I. INTRODUCTION 

Super imposed codes were first considered by  Kautz-Singleton 
[l], who  considered their application to some retrieval problems 
in data bases.  The  concept  is, however,  also useful in mul- 
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t iple-access communicat ion, and  various general izations and  
results concerning it have  been  obtained in recent times by  
Dyachkov-Rykov [2]-[4], Basalygo-Pinsker [5], Nguyen Quang  
et al. [6], [7], and  others. Mathematically super imposed codes are 
closely related to so-called B, sequences,  which have  been  consid- 
ered by  Lindstrom [8]-[ll], Frankl-Furedi [12], and  others. 

W e  introduce the concept  of super imposed codes in Eucl idean 
n-space R”. Roughly speaking, a  super imposed code in R” is a  
set V of vectors x with the property that all possible sums of any  
m or fewer of these vectors form a  set of points all of which are 
separated by  a  certain minimum distance d. For such codes we 
derive in this cor respondence an  asymptotic existence bound.  The  
proof uses the idea of random coding. It turns out that our  
existence bound  differs only by  a  factor of four from a  nonex-  
istence bound  obtained by  a  simple sphere-packing argument.  

II. THE PROBLEM 

Suppose T users share a  communicat ion channel  that accepts 
and  reproduces real-valued n  vectors. More precisely, suppose 
the T input signals are of the form 

x(~)=(xjf),x~) ,..., x(;i)) ER”, i=l,T;..,T 

where R” denotes Eucl idean n-space and  where xc’) E R” de- 
notes the input generated by  the i th user. The  output y E R” is 
given by  the ordinary sum of the input vectors 

y = i x(i). 
i=l 

Now suppose that each  one  of the T users is equ ipped with 
precisely two codewords,  one  of which is the all-zero sequence 
O=(O,O;.. ,0) E R”, which consequent ly  is shared among  all T  
users. Moreover,  suppose that at each  transmission at most m of 
the T inputs are nonzero,  where m is usually much smaller than 
T. Such a  situation might arise in a  local area data network, or in 
digital mobile radio, where the common zero codeword is used  to 
indicate a  state of inactiveness, while the various nonzero signals 
are used  for identification purposes by  those users who are active 
at the moment.  (Other interpretations are possible, see  [6], [7], 
[13], [14].) The  problem arises as  to how the T nonzero code-  
words should be  chosen to assure that the receiver is always able 
to determine which codewords have  been  transmitted, even  if the 
received sequence y is further contaminated by  some dis- 
turbance. 

The  communicat ion situation descr ibed here is usually referred 
to as  multiple access communicat ion [13, ch. 5.7-5.81. A central 
problem is to determine the trade-off between the codelength n, 
the total number  of users T, the maximal al lowable number  of 
active users m, and  the minimum distance between different 
received vectors. This is the problem we address.  The  mathemati- 
cal formulation follows. 

III. THE BASIC NOTATIONS 

Let V be  a  finite set of unit norm vectors in R”. For any  
subset  A of Q  let ]A] denote the cardinality of A, and  denote by  
f(A) the sum of the vectors x in A: 

f(A) p  c x. 
XGA 

Also, for m = 0, 1, . . . , T  define 

&4(m) P {AgV: IAIIm} 

% ‘(“‘)A {f(A): AE.L@‘(~)} 

d,(@““) AA$;IIf(+f(B)Il; A, BE&(m) 
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The set V will be said to be a superimposed code with 
parameters (n, m, T, d) if IV1 = T and dE(gcrn)) 2 d. Clearly, 
this means that any two sums f(A) and f(B) of at most m 
vectors in %(/Al, tBt I m) are separated by at least distance d. 
The norm 11x11 is the usual Euclidean norm 

tlxtt2 = k $5 
i=l 

so “distance” simply means ordinary Euclidean distance. Notice 
that one possible choice for the pair (A, B) E d(w)2 is A = 
{x} (a singleton) and B = $J (the empty set). In that case, 
IIf(f(B)11 = llxll =l. It follows that dE(%?cm)) is never larger 
than unity, so we restrict the parameter d to the interval 0 < d I 1. 
The set of all superimposed codes V with parameters (n, m, T, d) 
will be denoted B(n, m, T, d). Our problem is to determine for 
which values of the parameters (n, m, T, d) this set is nonempty. 
Equivalently, we want to determine the function 

T(n,m,d) Amax{T: B(n,m,T,d) ++}, 

and in particular we are interested in the asymptotic behavior of 
T(n, m, d) as n tends to infinity with m and d fixed. It turns out 
that T( n, m, d) increases exponentially in n under these cir- 
cumstances. Let the exponent of increase be defined as 

E(m,d) klimsupilogT(n,m,d) 
n+m 

We proceed to obtain upper and lower bounds for this quantity. 

IV. A SPHERE-PACKINGBOUND 

The upper bound is easy. Let V E B( n, m, T, d), and consider 
the induced code %‘cm). As each vector f(A) E %?crn) clearly must 
be located inside a sphere of radius m, and as different vectors 
f(A) are separated by at least distance d, we have the following 
sphere-packing (SP) bound: 

From this follows immediately that the exponent E(m, d) is 
bounded above by the function 

1 
&(m,d)~-log 

m 

For large m this bound has the form 

ESP(m,d) =alogm[l+O(l)],’ m-+oo. 

V. A RANDOM-CODING (RC)THEOREM 
The lower bound is given by the following result. 

Theorem I: We have E(m, d) 2 ERc(m, d), where 

E,&m,d) p max min 

Fh( I) = -log i e64’k2( I fk)2p2’. 
k=-I 

The function E,,( m, d) is positive for all (m, d), m = O,l, 
0 < d 11. For large m it has the form 

ERc(m,d) =- ; $[l,O(l)]. 

. . 

Proof: Consider a sequence { %?n }r=i of codes S9n E B( n, m, 
T,, d), where the 7;, satisfy 

enR-l<T,<enR, n=1,2;.. 

for some fixed constant R. We intend to show that 
B(n,m,~1,d)#+foralllargeenoughnaslongasRislessthan 
E&m, d). The proof utilizes the idea of random coding. This 
means that we are going to choose the codes %‘n in a random 
fashion in such a way that, for large enough n, a positive 
probability exists that all points in 97;“) are separated by at least 
distance d. 

We start by deriving a union bound. Let V be a randomly 
selected code (we suppress the index n for the moment), and let 
%‘crn) be the corresponding induced code with elements f(A), 
A E d(m). We have 

Pr[d(V(“‘))<d] =Pr U {I/f(A)-f(B)II<d} 
[ A,B 1 

5 A~BPr[IIf(A)-f(B)II<dl 

where the union and the sum extend over all A, B E d(m), A f 
B. In fact, it is enough to consider disjoint sets A, B. To see this, 
simply observe the following obvious identity: 

f(A)-f(B) =f(A\B)-f(B\A). 

We will show that Pr[d(%?) < d] is less than unity for large n 
by providing an exponential bound for each one of the terms 
Pr[ 1) f(A) - f( B)ll < d]. The obvious conclusion is then that at 
least one code V exists such that the induced code V(“) satisfies 
d(Vcm)) 2 d, with the consequence B(n, m, T, d) f +. The next 
step is to specify the code ensemble. 

A code V can be specified by its codeword matrix X = { Kj}, 
where Xi, is the j th component in the ith codeword, i = 
1,2;. .) T, j =1,2;. ., n. We specify X (and hence U) by the 
prescription that all the components X, shall be chosen indepen- 
dently, with 

The resulting code will obviously satisfy the requirement that all 
codewords should be on the surface of the unit sphere in R”. 

Now let A and B be two fixed disjoint sets of (random- 
ly chosen) code-words, corresponding to the row indices 
{i,,i,;.. , i,} and { ir+l, i,+*; . ., i,,,} of the codeword matrix 
X. Define the random variables { Z,j} according to 

Then we have 

Notice that the variables { Zlj } are independent, and distributed 
according to 

Pr[Z,,=l] =Pr[Z,,=-l] =i 

We notice next that if r + s is odd, then certainly 11 f(A) - 
f (B)ll 21, so this case can be excluded because of the assumption 
0 < d I 1. Hence assume r + s = 2k for some integer k; 1 I k I m. 
By the Chernoff bound (see, for instance, Gallager [15, ch. 5.41) 
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we have  for any  X 2  0, 

= enXd2 

However,  the Z,, are identically distributed, so  for each  j we 
have  

=.i,e- 2k 4xv2Pr 
[ I 

C Z,j=2v 
I=1 

= f ,-4,.2( ;+kv)2-2*. 

v=-k 

Denote this quantity by  G,(k). W e  obviously have  

O<G,(k) ~1, l<k<m,O<h<l 

Further, define 

F,(k) 4  - logGx( k). 

W e  clearly have  F,(k) >  0, and  our  Chernoff  bound  takes the 
form 

Pr[Ilf(A)-filed] ~exp{-n[fi(k)-Ad2]}. 

A set A of size IA( =  r can  be  chosen from a  set Q  of size 
T IQI=Tin( r) different ways, and  a  disjoint ordered pair (A, B) 

with IAl =  r, IBI =  s can be  chosen in 

(?)(‘7) 
different ways. Observing the simple bound  

(;)( T;‘) <T’+S=Tzk 

and  neglect ing the fact that we actually need  only to consider 
unordered pairs {A, B}, we get the bound  

Pr[d(gi’,‘“)) cd] 

rk~r~2kexp{ -n[F,(k)-Ad’]} 

<kclexp{ -n[&(k)-Xd2-2kR]}. 

W e  have  also neglected the obvious condit ion 2m I T. W e  have  
reintroduced the index n, and  in the last step we have  utilized the 
assumption 

T,<enR. 

By straightforward computat ions the following relations are 
established: 

[Fx@)l,=o=O 

As d  < 1, it follows by continuity that for each  k the inequality 

F,(k) +  Xd2 > 0  

is satisfied for some X > 0. In particular, we have  

E,,(m,d) d  max min h>oI~kam&Aw~d21 ‘0, - 
forall(m,d), m=0,1,2;.. [T/2],O<dsl. 

As our  bound  on  Pr[d(@“‘)) <  d] holds for any  X 2  0, we 
have  for all large enough  n  the bound  

Pr[d(%‘Jm)) cd] sexp{ -n[E,,(m,d)- R-81) 

where 6  > 0  is arbitrary. It follows that as  long as  R is strictly 
less than ERC(m, d) there is, for all large enough  n, a  positive 
probability of f inding a  code q  such that the induced code 9:“‘) 
has  minimal distance d(%‘,$m)) 2  d. Hence such codes do  exist. 
The  exponent  E(m, d) is the supremum of all constants R such 
that B(n, m, T,, d) f (p for all large enough  n  and  all T, I enR. It 
follows that E(m, d) 2  ERc(m, d). 

It remains to derive the asymptotic form of E,,(m,d) as  
m + co. W e  defer this straightforward computat ion to the Ap- 
pendix. This concludes the proof. 

VI. CONCLUDING REMARKS 

It is interesting to notice that for large m the random-coding 
bound  and  the sphere-packing bound  differ only by  a  factor of 
four. It is also interesting that, asymptotically for large m, both 
bounds  are independent  of the distance parameter d. W e  have  
not been  able to determine whether this is also the case with the 
true exponent  E(m, d), but we conjecture this is the case. 

APPENDIX 
ASYMPTOTIC BOUNDS ON E, ( m  , d) AS m + 00  

Recall the definition of G,,(Z): 

G,(I) 0  i e-4Xk2 

k=-I 
( 1yk)2-2’ 

-21 +2,2-2/ f: e-4Ak2 

k=l 

Using e-4Ak2 5  e-4Xk and(lyk)<(y),weget 

G,(Z) I ( ~)2p21[1+2~lep4Ak] 

I 

1+x 
-=- %-X 

where we have  introduced 

W e  get 

c, p x P ep4’. 

1  l-x 
F,(Z) =-logGi(I) zlog;l+. 

I 

By definition we have  for each  X 2  0  (or, which is the same, for 
each  x, Olx<l) 

[ 1  k&(k) >l. 
X=0 

1  1-x 
=  min sog--x 

&,4 
I~l~nl21 c,l+x . 
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In particular, the bound  holds for x =  x0, where x0 satisfies 

l-x 
m a x  -Xd2/4=1-x~‘/4~A(d). 

o<x<11+x 1+x, 

Thus 

E,,(m,d) 2  mh  Log-. 
A(d) 

l~lS:m 21  Cl 

The  quantity c, is bounded  as follows: 

gpC& 

(see Gallager [17, p. 430]), and  as  a  consequence we have  

E,,(m ,d) 2 m in I,rl,;log~A(dh 
Clearly, for large m this bound  reads 

1  logm 
ERc(m,d) >&lognmA*(d) -27. 

On  the other hand,  we also have  

and  thus 

F,(l) slog@. 

W e  general ly have  

Thus for each  I, 1  I I I m, we have  

In particular, choosing I =  m, we get 

1  1  logm 
E,,(m,d) <Gbg&---  

4  m. 

[II 

121  
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On Decoding Rules to Minimize the Probability of 
Information Bit Errors 

BRUCE L. MONTGOMERY,  MEMBER,  IEEE, AND 
B. V. K. VIJAYA KUMAR, MEMBER IEEE 

Abstract -Decoding rules to minimize the probability of information bit 
errors in binary linear block codes are investigated. A new rule is proposed 
and is shown to be the best possible according to a certain criterion. 

1. INTRODUCTION 

Let C be  a  binary linear block code of length n, dimension k, 
and  minimum distance 2e  + 1. W e  shall refer to C as an  [n, k, 
2e  + l] code.  Let H be  a  parity check matrix for C. In the 
decoding of C by a  standard array with coset leaders of mini- 
mum weight, the syndrome s = rHT of the received word r =  c +  e  
is computed,  where e  is the error pattern (all vectors are row 
vectors). Since cHT = 0  iff c  E C, then s =  eHT. The  coset de-  
termined by  s is {x: xHT = s}. An array, which gives for each  
syndrome s a  minimum-weight element z* (the coset leader) in 
the coset determined by  s, is searched (for s), and  the received 
word r is decoded  r + z*. 

The  decoding of binary linear block codes by  the use  of a  
standard array with coset leaders of minimal weight has  been  
shown [l] to minimize the average probability of codeword error 
on  the binary symmetric channel  (BSC). This decoding scheme, 
denoted S,, does  not necessari ly minimize the average probability 
P,, of information bit error [2]. The  following decoding rule, 
denoted &, was shown in [2] to yield a  smaller value of P,, than 
S, (at least for sufficiently small p, the probability of a  bit error 
on  the BSC) for several c lasses of quasi-perfect codes.  

$: For systematic [n, k,2e +1] codes,  correct (using the 
standard array) any  error pattern if the coset leader has  weight e  
or less. Otherwise, take ,the information bits as  received. 

The  number  of cosets of an  [n, k,2e + l] code  is 2n-k, and  the 
number  of cosets having a  coset leader of weight e  or less is 
X;=,( ;) =  F(n, e). Th  us  in implementing S, it is not necessary to 
store the 2”-k - F(n, e) ( >O for any  nonperfect  code)  syn- 
dromes and  coset leaders. Also, the resulting smaller array can be  
searched more quickly than the complete array. Hence S, is 
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