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Abstract. We investigate the computational complexity of de-
ciding whether or not a given polynomial is identically 0 over a
finite ring. It is proved that if the polynomial is presented as a
sum of monomials, then the complexity depends only on the factor
by the Jacobson-radical; it belongs to P if the factor is commuta-
tive, and coNP-complete otherwise.

1. Introduction

A ring is a set equipped with three operations; the multiplication ·,
the addition + and the additive inverse operation −. A term over a
ring is an expression t(x1, . . . , xn) built up from variables and the fun-
damental operation symbols in the usual manner. A term t(x1, . . . , xn)
over any ring R defines a so called term-function tR : Rn → R. A ring
R satisfies an equation s(~x) ≈ t(~x) or R |= s ≈ t if the corresponding
term-functions sR and tR are the same functions. Note that terms over
a ring are polynomials with integer coefficients.

The (term) equivalence problem for a ring R is the problem of de-
ciding which equations are satisfied by R. Over a given ring R the
instance of the equivalence problem is an equation s(~x) ≈ t(~x), and
the question is whether or not it is satisfied by R. If s(~x) 6≈ t(~x), then
there is a substitution over R where the two term-functions sR and
tR do not agree, so the equivalence problem is in coNP. Several times
we refer to the equivalence problem as the word problem. This latter
expression is used in the literature in several contexts. We use it for
the equivalence problem.

Early investigations into the equivalence problem for various finite
algebraic structures were carried out by computer scientists at Syracuse
University where the terminology the term equivalence problem was
introduced. In particular they considered finite commutative rings and
finite lattices. In the early 1990s it was shown by Hunt and Stearns
[5] that for a commutative ring R the equivalence problem is in P if
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R is nilpotent and coNP-complete otherwise. Burris and Lawrence [1]
proved that the same holds for rings in general.

The formal definitions of terms and polynomials allow us to use it-
erated addition and multiplication, for example the expression (x1 +
y1)(x2 + y2) · · · (xn + yn) is a term over a ring. If we expand this term
into a sum of monomials, we obtain a sum of 2n many monomials of
length n. The length of a term is crucial from the computational point
of view. Moreover, when a ring-term is presented, in most cases it is
given as a sum of monomials. If one restricts the terms that are allowed
as instances of the equivalence problem to, for example, monomials or
sums of monomials, then the complexity of the problem can change.
And, indeed, the complexity of the problem changes: as it is shown by
Lawrence and Willard [6]; If J(R) denotes the Jacobson radical of the
ring R, then the equivalence problem in R for sum of monomials is in
P if R/J(R) is commutative.

This is the reason why Lawrence and Willard introduced the Σ ver-
sion of the identity checking problem for rings. In the following we
investigate a version of the equivalence problem where the instance
terms must be given as sums of monomials. Of course every term
over a ring can be written in such a form, but, as we saw, during the
expansion its length can grow exponentially.

As we shall see, in most cases the multiplicative semigroup of a ring
guarantees the hardness of the word problem for the ring itself. It
means that to decide whether or not two monomials are equivalent is
already coNP-complete for several rings. Hence hardness of the word
problem for semigroups implies the hardness of the word problem for
rings.

The main result of the paper is the following:

Theorem 1. Let R be a finite ring, and let J(R) denote its Jacobson-
radical, then

(1) If R/J(R) is commutative, then the equivalence problem for sum
of monomials is in P;

(2) The equivalence problem for sum of monomials is coNP-complete,
otherwise.

For matrix rings the complexity of this version of the equivalence
problem is already known; the equivalence problem for sum of mono-
mials is in P, if the matrix ring is commutative and coNP-complete
otherwise. This result was shown by Lawrence and Willard [6] for ma-
trix rings whose group of units form non-solvable groups, and by Szabó
and Vértesi [9, 8] for the remaining cases, M2(Z2) and M2(Z3).



THE EQUIVALENCE PROBLEM OVER FINITE RINGS 3

If we restrict the inputs of the equivalence problem to monomials,
then we are working in the multiplicative semigroup of the ring R. In
this paper we examine the complexity of the equivalence problem over
matrix semigroups, and it turns out that it has the same complexity
as the equivalence problem for sum of monomials for the matrix rings.
Our second result is the following:

Theorem 2. For a matrix semigroup the equivalence problem is in P
if the semigroup is commutative and coNP-complete, otherwise.

For groups the characterization of the equivalence problem is far less
complete. In 2004 Burris and Lawrence [2] proved that if G is nilpo-
tent or G ' Dn, the dihedral group for odd n-s, then the equivalence
problem for G is in P. Towards the hard side Horváth, Lawrence, Mérai
and Szabó [4] proved, that for a non-solvable group G the equivalence
problem is coNP-complete.

2. Preliminaries

Let Mn(q) denote the ring of n by n matrices over the q = pβ element
field, Fq. The general linear group GLn(q) is the group of invertible
elements of Mn(q), and the special linear group, SLn(q) is the subgroup
containing the elements of determinant 1. All normal subgroups of
SLn(q) are contained in its center, Z(SLn(q)). The projective linear
group PSLn(q) is defined as the factor of SLn(q) by Z(SLn(q)). If
n > 2 or q > 3, then PSLn(q) is simple.

The proof of Theorem 2 is a reduction to the equivalence problem
to its group of units. Firstly, we focus on properties of matrix groups,
and then show how our reduction works.

2.1. Verbal Subgroups. We start with some definitions and easy ob-
servations about verbal subgroups of groups and commutators using
the terminology and notation of [4].

A subgroup H of a group G is a verbal subgroup, if it is generated by
the ranges of a set of group terms T that is if H = 〈∪t∈T tG(G)〉. Note
that verbal subgroups are normal. Obviously {id} and G are verbal
subgroups of any group. If {id} and G are the only verbal subgroups
of G then G is called verbally simple. For a group G let dG be the
smallest positive integer such that for any set X of generators of G we
have G = ∪0≤k≤dG

Xk. Given a term t(x1, . . . , xm), define the term td
by

td
(
x1, . . . , xmd

)
:= t(x1, . . . , xm) · t(xm+1, . . . , x2m) · · ·︸ ︷︷ ︸

a product of d terms t(· · · ), with distinct variables
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Note, that for a finite group G a verbal subgroup can always be ex-
pressed as a range of a single term. Indeed, for T = {t1, . . . , tk} let
t = t1 · · · tk. Then 〈∪t∈T tG(G)〉 = tGd (G) for any d ≥ dG.

The commutator is a group term defined by c(x, y) = [x, y] :=
x−1y−1xy. For a ∈ G let [a,G] :=

〈{
[a, g] : g ∈ G

}〉
. [a,G] is a

normal subgroup of G. If G is a non-abelian simple group then

[a,G] =

{
id if a = id

G if a 6= id .

If n > 2 or q > 3, the commutator subgroup of GLn(q) is SLn(q) and

[a,GLn(q)] =

{
id if a ∈ Z(GLn(q))

SLn(q) if a 6= id .

Our starting point will be the following result form [4].

Lemma 3. For every graph, Γ and integer d there is a group term t
such that

(a) for every group G the image of the term is contained in the
commutator subgroup, t(G) C G′

(b) if Γ is not |G| colorable then t(G) = {id}.
(c) If G is a simple group and d ≥ dG, then G |= td ≈ id if and

only if Γ is not |G| colorable and td(G) = G otherwise. Note
that d is a parameter of the term t and so a double parameter
of the term td.

(d) t (and td) can be constructed in polynomial time in the size of
Γ.

Now we are able to make the first step towards the reduction.

Theorem 4. Let p be a prime, q = pβ, q1 = pα1 , . . . , qm = pαm.

(1) Let n > 2 or q > 3 and k = |PSLn(q)|. Then for every graph Γ
and for every d ≥ dGLn(q) there is a group term t such that:
• GLn(q) |= td ≈ id if Γ is not k colorable and
• td(GLn(q)) = SLn(q) otherwise;
• t can be constructed in polynomial time in the size of Γ.

Note that, as before, d is a parameter of the term t and so a
double parameter of the term td.

(2) Let GLni
(qi),. . . ,GLnm(qm) be matrix groups. Suppose, that

ni > 2 or qi > 3 for all 1 ≤ i ≤ m. And let k = max1≤i≤m{|PSLni(p
αi)|}.

Then for every graph Γ there is a group word u such that
• if Γ is not k colorable then GLni

(qi) |= u ≈ id for every i;
• if Γ is k colorable then u(GLni

(qi)) = SLni
(qi) for some

1 ≤ i ≤ m.
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• u can be constructed in polynomial time in the size of Γ.

Proof of item 1. Let Γ be a graph. We show that t, the term con-
structed in Lemma 3 with any d ≥ dG will do. Suppose that Γ is k col-
orable. Then we claim that td(GLn(q)) = SLn(q) holds for d ≥ dGLn(q).
By Lemma 3 td(GLn(q)) C GLn(q)′ = SLn(q). As PSLn(q) is simple,
td(PSLn(q)) = PSLn(q), hence the image of t over SLn(q) is not con-
tained in the center of SLn(q). The subgroup td(GLn(q)) is normal in
GLn(q), so td(GLn(q)) = SLn(q).

If Γ is not k colorable, then, again by Lemma 3, td(GLn(q)) = {id}.
Thus t satisfies the conditions of the lemma. ¤
Proof of item 2. Now, for item 2, let Γ be a graph and let t be the
term constructed in Lemma 3 with d = maxi{dGLni (qi)}. Now, for
every i we have td(GLni

(qi)) = SLni
(qi) if Γ is not |PSLni

(qi)| col-
orable and td(GLni

(qi)) = {id}, otherwise. Let us assume that Γ
is not k-colorable. Then Γ is not l-colorable for any l ≤ k. Thus
td(GLni

(qi)) = {id} for every 1 ≤ i ≤ m. Now, assume that Γ is
k-colorable. Then td(GLnj

(qj)) = SLnj
(qj) whenever |PSLnj(p

αj)| =
k = max1≤i≤m{|PSLni(p

αi)|}. Thus u = td satisfies the conditions. ¤

2.2. Matrix Semigroups. For every matrix ring we will present an
integer N such that for almost all matrices, A – except for a few in-
vertible matrices – AN is idempotent. The sizes of the groups GLm(q)
and SLm(q) for q = pβ are given by the following wellknown formulas.

|GLm(pβ)| = (pβm − 1)(pβm − pβ) · · · (pβm − pβ(m−1))

= pβ
m(m−1)

2 (pβm − 1)(pβ(m−1) − 1) · · · (pβ − 1)

and

|SLm(pβ)| =
|GLm(pβ)|

pβ − 1

Our main lead will be the following theorem of K. Zsigmondy ([10]).

Theorem 5. Let a, k be integers greater than 1. Then except in the
cases k = 2, a = 2γ − 1 and k = 6, a = 2, there is a prime r with the
following properties

(1) r divides ak − 1.
(2) r does not divide ai − 1, whenever 0 < i < k.
(3) r does not divide k.

In particular, k is the order of a modulo r.

Lemma 6. Let Mn(q) be a matrix ring where n > 1 and q = pα. There
is a positive integer N such that: for every A ∈ Mn(q) either AN is



6 CSABA SZABÓ AND VERA VÉRTESI

idempotent (a projection) or AN is invertible in Mn(q). Moreover there
is at least one element in B ∈ SLn(q), such that BN 6= id.

Proof. Case 1. Let q = pα not among the exceptional cases of Zsig-
mondy’s theorem. Then there is a prime r satisfying the require-
ments of Zsigmondy’s theorem for a = qn. Define k such that rk|qα −
1 and rk+1 - qα−1, and let N = α |GLα(q)|

rk . Let A be an arbitrary matrix
in Mn(q). For every m ≥ n the matrix Am acts on W = Im(Am) as a
linear transformation and the action is invertible. Thus if dim(W ) = l,
then (Am)|GLl(q)| a projection (idempotent). Obviously,

• α ≥ n and
• |GLl(q)| divides |GLn(q)| for every n > l, and
• (r, |GLl(q)|) = 1 for every n > l.

Hence, if l < n, then |GLl(q)| divides GLn(q)|
rk . Thus for every matrix

A ∈ Mn(q), where A is not invertible, the matrix AN is idempotent.

Finally, r divides |SLn(q)| = |GLn(q)|
q−1

. Thus by Cauchy’s theorem there

is an element B ∈ SLn(q) of order r. Clearly, BN 6= id.
Case 2. Let p = 2γ−1 and nα = 2 then Then N = 2(p− 1) works.

Indeed, |GL1(p)| = p−1 and |SL2(p)| = (p2−1)(p2−p)
p−1

. Every nonzero,

not invertible matrix A ∈ M2(p) is of rank 1. Thus A2(p−1) is a projec-
tion. If B is of order p (such an B exists by Cauchy’s theorem), then,
B2(p−1) = Bp−2 6= id.

Case 3. Finally, let us consider the most unlucky case, where q = 2
and nα = 6. The exponents of the appropriate groups are the following.

The exponents of GLm(2β):

β m 1 2 3 4 5 6

1 1 6 84 420 26040 78120
2 3 30 1260
3 7 126

The exponents of SLm(2β).

β m 1 2 3 4 5 6

1 1 6 84 420 26040 78120
2 1 30 420
3 1 126

Let A be an arbitrary matrix in Mn(q). As in the previous two
cases, for every m ≥ n the matrix Am acts on W = Im(Am) as a linear
transformation and the action is invertible. Now, 11 ≥ n in each case,
and 11 relatively prime to the exponent of each group. Hence A11 acts
invertible on its image and every invertible matrix in each of these
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matrix rings is of the form A11. So we need a number K such that
expSLn(q) - K and expGLl(q)|K for every l < n, and then N = 11K
will do. For SL2(6) we can choose K = 26040, for SL3(4) we can
choose K = 30 and for SL2(8) we can choose K = 7.

¤
Lemma 7. Let Mn1(q1), . . . ,Mnm(qm) be matrix rings, where qi = pαi

for a fixed prime p. Let α = max{niαi}. Then there is a polynomial
f(x) over the p-element field Fp such that for every A ∈ Mni

(qi) with
niαi < α the equation f(A) = 0 holds. Moreover, if njαj = α, then
and there is a matrix in C ∈ SLnj

(qj) such that f(C) ∈ GLnj
(qj).

Proof. Let g ∈ Fpα be a field element of degree α with norm 1 over Fqj
.

Such an element exists by Hibert’s Theorem 90. E.g. if h is a
generator of the multiplicative group of F∗pα that is 〈h〉 = F∗pα , then

g = h1−qj works. The norm of the element in this case is the constant
term of its minimal polynomial.

Let m(x) be the minimal polynomial of g over Fp. Let C ∈ Mnj
(qj)

be a matrix with minimal polynomial m(x) (over Fp). Now as det(C) is
the norm of g, the determinant of C is equal to 1, C ∈ SLnj

(qj) and its
minimal polynomial m(x) is irreducible over Fp of degree njαj = α. Let
g(x) be the least common multiple of all polynomials of degree at most

α and let f(x) = g(x)
m(x)

. Now (m(x), f(x)) = 1, hence f(C) ∈ GLnj
(qj).

Let A ∈ Mni
(qi) for some i with niαi < α mA(x) its minimal polynomial

over Fp. The degree of mA(x) is less then α, hence mA(x)|f(x) and
f(A) = 0 as we wanted. ¤

3. The Equivalence Problem for Rings

Proof of Theorem 2 . For M2(Z2) and M2(Z3) the theorem was proved
in [8] and [9]. Let n > 2 or q > 3. We reduce the equivalence problem
of Mn(F) to graph k-coloring where k = |PSLn(q)|. Let Γ be a graph.
By Theorem 4 there is a group term s (of polynomial length in the size
of Γ) such that s ≈ id over GLn(q) if and only if Γ is not k-colorable
and if s 6≈ id then s(GLn(q)) = SLn(q). Let us substitute x|GLn(q)|−1 for
every occurrence of the inverse of the variable x to obtain a semigroup
word, t. The terms t and s are equivalent over the (semi)group GLn(q).
The length of t is at most |GLn(q)| − 1 times the length of s, hence
polynomial in the size of Γ. Let N be the integer chosen in Lemma 6.
We claim that t ≈ id over the (semi)group GLn(q) if and only if t2N ≈
tN over the semigroup Mn(q). For a non invertible matrix A the identity
AN = A2N holds by assumption, hence t2N ≈ tN over Mn(q) if and only
if t2N ≈ tN over GLn(q). If t ≈ id , then t2N ≈ tN obviously holds. Let
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us assume that t 6≈ id . Then t(GLn(q)) = SLn(q) and by Lemma 6
there is an B ∈ SLn(q), such that BN 6= id, hence t2N 6≈ tN . Thus
t ≈ id if and only if Γ is k-colorable, and the equivalence problem for
the semigroup Mn(q) is coNP-complete. ¤

Proof of Theorem 1. Item (1) is proved in [6].
For part (2) let n denote the nilpotency class of J(R). It is the least

integer such that J(R)n = 0. The factor ring R/J(R) is a direct sum
of matrix rings over finite fields, say R/J(R) = Mn1(p

α1
1 )⊕Mn2(p

α2
2 )⊕

· · · ⊕ Mnm(pαm
m ). Let p = pi be a prime such that ni > 1. Let P

denote the product of all primes occurring amongst {p1, p2, . . . , pm}
distinct from pi. Let qi = pαi

i and Mn1(q1), Mn2(q2), . . . Mnl
(ql) be the

matrix rings with characteristic p. Let s be the term constructed in
Lemma 4, item 2 for the groups GLn1(q1), . . . , GLnl

(ql), let f(x) be
the polynomial from Lemma 7 for Mn1(q1), . . . , Mnl

(ql) and let α =
max{niαi | i = 1, 2, . . . , l}.

So, the following hold for the number P , semigroup term s and
polynomial f :

• P ·Mni
(qi) =

{
Mni

(qi) if qi = pαi and

0 otherwise .

• s(GLni
(qi)) =

{
SLni

(qi) if Γ is k colorable and

id otherwise .

• f(C)

{
6= id ∈ GLni

(qi) for some C ∈ SLni
(qi) if α = niαi

= 0 otherwise.

Here, Px = x + x + · · ·+ x, the addition is iterated P times.
Now, the polynomial P · f(s) ≈ 0 over R/J(R) if and only if Γ is

k-colorable. We check this identity coordinatewise. If qi 6= pβ for some
β, then multiplying by P annihilates the ith coordinate. For q = pαi if
Γ is not k-colorable, then s(GLni

(qi)) = 1 for every i and every other
value of s is not invertible. Thus f(s(Mni

(qi))) = 0. If Γ is k-colorable,
then s(GLni

(qi)) = SLni
(qi) for some i and so f(s(Mni

(qi))) 6= 0.
Finally, we claim that R |= (P · f(s))n ≈ 0 if and only if R/J(R) |=

P · f(s) ≈ 0. Indeed, if R/J(R)P · f(s) ≈ 0, then P · f(s)(R) ⊆ J(R),
so P · f(s))n ≈ 0 over R. If the identity P · f(s) ≈ 0 fails in R/J(R),
then there is an invertible matrix C ∈ P · f(s)(R/J(R)). Obviously
Cn 6= 0 in R/J(R), thus (P · f(s))n ≈ 0 fails in R, as well.

The length of s is polynomial in the size of Γ. The length of f(x)
and P depend only on R, and so the length of the term is polynomial
in the size of Γ, when expanded as a sum of monomials. ¤
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E-mail address: csaba@cs.elte.hu
E-mail address: wera13@cs.elte.hu


