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Overview

My research centers in low dimensional topology. In particular I am interested in contact
geometry, and Heegaard Floer homologies. I have proved results concerning knots in contact
3–manifolds and studied applications of Heegaard Floer homology to contact 3–manifolds
[27, 29]. I will continue my research in this vein, and extend my repertoire with other tools,
such as convex surface theory and contact homology.

Goals

Classify Legendrian knots of some knot types. An ongoing research of mine concerns
classification of Legendrian representatives of positive braids, braids with few (≤ 3) strands,
twist knots and maybe of two bridge knots. I also would like to obtain upper bounds for the
number of Legendrian representatives for a fairly wide class of other knot types.

Compute Heegaard Floer homologies of negative definite plumbings. I would like
to get a better understanding of plumbings with trivial Heegaard Floer homologies. For
instance, does the Heegaard Floer homology remains trivial after deleting a vertex from the
corresponding graph? This question was already researched and tested for many graphs by
others [17, 14].

Understand relations between Legendrian invariants in Heegaard Floer theories.
Using the language of Heegaard Floer homology recently three different invariants were defined
for Legendrian and transverse knots [9, 12, 25]. With Stipsicz we understood the connection
between two of them [27]. Even though the third behaves similarly, its connection with the
other two is yet to be understood.

Characterize contact 3–manifold with vanishing contact invariant. The contact in-
variant in Heegaard Floer homology turned out to be extremely useful in determining prop-
erties such as fillability or tightness of contact structures. In particular it was proved that it
vanishes for overtwisted contact structures [22] (and even for ones with Giroux torsion [7]),
and is nonzero for Stein-fillable contact structures. The goal would be to understand this gap
better.

Research Summary and Background

Heegaard Floer theories. Heegaard Floer homologies, (Ozsváth-Szabó, [20, 21, 23]) the
recently-discovered invariants for 3- and 4-manifolds, come from an application of Lagrangian
Floer homology to spaces associated to Heegaard diagrams. Although this theory is conjec-
turally isomorphic to Seiberg-Witten theory, it is more topological and combinatorial in its



flavor and thus easier to work with in certain contexts. These homologies admit generalizations
and refinements for knots (Ozsváth-Szabó [19] and Rasmussen [26]) and links (Ozsváth-Szabó
[24]) in 3–manifolds and for non-closed 3–manifolds with certain boundary conditions (Juhász
[10]), called sutured Floer homology. The tools used to define the link-version were later
applied to define a completely combinatorial version of knot Floer homology in the 3–sphere.

Contact 3–manifolds. Although contact geometry was born in the late 19th century in
the work of Sophus Lie, it has just recently started to develop rapidly, with the discovery of
convex surface theory and by recognizing their role in other parts of topology. For example
Property P for knots —a possible first step for resolving the Poincaré conjecture— was proved
using contact 3–manifolds (Kronheimer-Mrowka [11]). Also, the fact that Heegaard Floer
homology determines the Seifert genus of a knot was first proved with the help of contact
3–manifolds (Ozsváth-Szabó [18]). Being the natural boundaries of Stein domains, the use
of contact 3–manifolds resulted in a topological description of Stein-manifolds. A contact
structure on an oriented 3–manifold is a totally non-integrable plane field. In other words it
is a plane distribution that is not everywhere tangent to any open embedded surface. Any 3–
manifold admits a contact structure (Martinet [13]). It is more subtle though to understand
the set of all different contact structures on a given 3–manifold. One way to understand
them is by examining lower dimension submanifolds that respect the structure in a way.
The 2 dimensional such submanifolds are called convex surfaces. These are surfaces with a
vectorfield in their neighborhood which is transverse to the surface and whose flow preserves
the contact plane distribution. Contact structures in the neighborhood of a convex surface are
determined by a set of closed curves (dividing curves) on the surface (Giroux [8]). Thus convex
surfaces became the right boundary conditions for contact 3–manifolds. In Heegaard Floer
homology contact invariants were defined for contact 3–manifolds without (Ozsváth-Szabó
[22]) or with (Honda-Kazez-Matic [9]) boundary. These invariants had many applications the
most recent is a new proof for the fact that a contact 3–manifold having Giroux torsion cannot
be Stein-fillable (Ghiggini-Honda-Van Horn-Morris [7]).

Legendrian and transverse knots. There are two ways for a one dimensional submanifold
to respects the contact structure. Its tangents can entirely lie in the plane distribution, in
which case the knot is called Legendrian knot, or if the tangents are transverse to the planes,
the knot is then called a transverse knot. A Legendrian knot with a given knot type has
two classical invariants: its Thurston-Bennequin number and its rotation number. While
for transverse knots there is only one invariant; the self-linking number. The problem of
classifying Legendrian (transverse) knots up to Legendrian (transverse) isotopy naturally leads
to the question whether these invariants classify Legendrian (transverse) knots. A knot type is
called Legendrian (transverse) simple if any two realizations of it with equal classical invariants
are Legendrian (transverse) isotopic. The unknot (Eliashberg-Fraser [3]), torus knots and the
figure-eight knot (Etnyre-Honda [6]) were proved to be both Legendrian and transversely
simple. By constructing a new invariant for Legendrian knots, Chekanov [2] showed that not
all knots are Legendrian simple, in particular he proved that the knot 52 is not Legendrian
simple. Later many other Legendrian non-simple knots were found (Epstein-Fuchs-Meyer [4]
and Ng [15]). The case for transverse knots turned out to be harder. Birman and Menasco [1],
and Etnyre and Honda [5] constructed families of transversely non-simple knots using braid



and convex surface theory. The Legendrian invariant in the combinatorial Floer homology
provided another tool to construct transversely non-simple knots (Ng-Ozsváth-Thurston [16])
By proving a connected sum formula for the combinatorial Legendrian invariant, I proved, the
existence of infinitely many transversely non-simple knots:

Theorem 3.1 (Vértesi [29]). There exist infinitely many transversely non-simple knots.

The definition of the contact invariant in Heegaard Floer homology admits a generalization
for Legendrian and transverse knots L̂ in the knot Floer homology (Lisca-Ozsváth-Stipsicz-
Szabó [12]). The contact invariant of Honda, Kazez and Matic for the complement of a Leg-
endrian knot gives rise to a Legendrian invariant: the EH-class. With Stipsicz we understood
the relation between these two invariants:

Theorem 3.2 (Stipsicz-Vértesi [27]). There is a map from the sutured Floer homology for the
knot-complement to the knot Floer homology mapping L̂ to EH.

A nice consequence of this theorem, which was independently obtained by Vela-Vick [28],
is the following:

Theorem 3.3 (Stipsicz-Vértesi [27]). If the knot complement contains Giroux torsion, then
L̂ vanishes.

Research Plan

Heegaard Floer homologies of negative definite plumbings. Plumbings are spaces
that can be described combinatorially. For every weighted graph one can associate a manifold,
which is a collection of thickened spheres corresponding to the vertices glued together according
to the edges. Despite the easy description, their Heegaard Floer invariants are yet to be
understood. Ozsváth and Szabó gave an algorithm to compute Heegaard Floer homologies of
plumbings associated to plumbing trees not containing “bad” vertices [17], Némethi extended
their result for a wider class of negative definite plumbings [14]. A different kind of approach,
would be an inductive description of the homologies. In this direction the first essential step is
to investigate how the Heegaard Floer homologies of a plumbing change after deleting a vertex
from the corresponding graph. I want to prove that whenever the Heegaard Floer homologies
are trivial for a plumbing then it remains trivial for the plumbing obtained by deleting a
vertex of the corresponding graph. I want to attack this problem by a tricky application of
the exact triangle of Heegaard Floer homology for surgeries along knots. This problem was
first conjectured by András Némethi, and originates in singularity theory. He also checked it
for some classes of plumbings, for which the statement holds.

Heegaard Floer homologies and contact 3–manifolds. It was known [22] that the con-
tact invariant is non-zero for Stein fillable contact structures and zero for overtwisted ones. My
goal is to understand its behavior for some tight but non-Stein fillable manifolds. The contact
invariant for contact 3–manifolds with boundary gave a new way to attack this question, by
the observation, that the contact invariant vanishes whenever the contact 3–manifold contains
a contact submanifold with vanishing invariant (Honda-Kazez-Matic [9]). Since then it was
proved that the contact invariant vanishes for contact 3–manifolds containing Giroux torsion
[7]. As a first step I want to give a wide class of “small” contact manifolds with boundary



with vanishing invariant, and use them as a criteria. The most optimistic idea would be to
find a complete list (if there is one) of these submanifolds that can cause vanishing.

Legendrian and transverse knots. The usual way of classifying Legendrian representatives
of a knot type consist of three steps. The first one is to prove, that any knot with non-maximal
Thurston-Bennequin number is gotten from one with maximal Thurston-Bennequin number
by a sequence of well-understood operations called stabilizations. This is not true for any
knot type (Etnyre-Honda [5]), and can be subtle to prove. The second step is to understand
the maximal Thurston-Bennequin representatives, and at last one needs to understand the
relation between the stabilizations of the maximal Thurston-Bennequin representatives. The
only transversally non-simple knot type with a complete classification is the (2, 3)-cable of the
(2, 3) torus knot (Etnyre-Honda [5]). Using convex surface theory recently with J. Etnyre we
managed to understand Legendrian representations of open braids. These techniques should
allow us to give a complete classification of Legendrian representatives of positive braids,
braids with few (≤ 3) strands. This idea on its own can only be used for knots satisfying
the first condition, and as it cannot distinguish Legendrian knots it can only give an upper
bound for knot types that are non Legendrian simple. For a complete classification one needs
to use other tools as well. Using contact homology and Heegaard Floer homology with Ng we
hope to give a complete classification of twist (aka. Chekanov) knots and maybe of two bridge
knots.

Using the language of Heegaard Floer homology recently three different invariants were
defined for Legendrian and transverse knots. One in the combinatorial settings of knot Floer
homology for the 3–sphere [25]: λ̂, one in knot Floer homology for a general contact 3–manifold
[12]: L̂ and one defined as the contact invariant associated to the knot-complement: EH. With
András Stipsicz [27] we understood the connection between the last two of them; there is a map
between the homologies sending EH to L̂. This suggests, that EH contains more information
about a Legendrian knot than L̂. Morally EH includes all surgery information of the knot.
However there is no known examples, that can be distinguished by the EH-class but not by
L̂. The 52 knot seems to be a good candidate for proving the difference of these invariants. In
the standard contact 3–sphere the first two invariants, though behave fairly similarly; both of
them is in the knot Floer homology, for an unoriented knot there are naturally two of each,
they vanish under the same kind of operations, etc. Thus it is conjectured that for knots in
the 3–sphere the combinatorial invariant equals L̂. Both of them have a concrete description;
λ̂ is defined through grid diagrams on the torus, while L̂ is described using an open book of
the standard contact structure, with the knot being on its page. The proof of the equality
should go by finding an open book that is related to the toroidal grid diagram by a “nice”
sequence of Heegaard moves, under which the transformation of the invariant can be tracked.
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