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Abstract  

 

Our aim is to forecast stock returns using various market models. Assuming portfolio 

optimization policies for investors, we infer expected returns based on market behavior. We 

investigate three pricing models: Capital Asset Pricing Model, Carhart Four-Factor Arbitrage 

Pricing Model, and a Growth Optimal Pricing Model. We derive the non-parametric, multi-

period growth optimal pricing formula based on growth optimal portfolio theory. Our out-of-

sample tests run through Standard & Poor's 500 index's constituents from 1970 to 2008. 

Contrary to previous findings, our results show that the Growth Optimal Pricing Model 

significantly outperforms its competitors in a test of approximately 65,000 estimations. 

 

Key Words: Asset pricing, Growth optimal investment, Reverse optimization, Return 

estimation 
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INTRODUCTION 

 

In contrast to pure statistical reasoning based on efficiency of average, reverse optimization 

(Black & Litterman, 1992; Sharpe, 2002) uses knowledge about behavior of market 

participants. While investors optimize portfolios based on anticipated covariances and 

expected returns, we utilize the result of their optimization, the market portfolio. Estimating 

covariances historically, we derive expected returns that market participants have in mind. 

Comparing out-of-sample predictive power, our experiments establish solid ordering among 

the investigated models. 

 

We compare four approaches to estimate returns: historical average, the Capital Asset Pricing 

Model (Sharpe, 1964; Lintner, 1965 and Mossin, 1966), the Four-Factor Arbitrage Pricing 

Model (Carhart, 1997) and a Growth Optimal Pricing Model. Our aim is to distinguish the 

model minimizing sum squared errors, therefore providing us with the most efficient 

estimations of expected returns. To avoid overfitting, we do out-of-sample tests on Standard 

mailto:mhorvath@math.bme.hu
mailto:urban@finance.bme.hu


2 

 

& Poor's (S&P) 500 index's constituents, using 65,000 samples. Contrary to previous 

research, we show significant differences in accuracy of the Growth Optimal Pricing Model 

(GOPM in the sequel) versus the Capital Asset Pricing Model (CAPM). Carhart's Four-Factor 

Model clearly underperforms, while GOPM significantly outperforms its competitors. To our 

knowledge this is the first test of the model in the literature by means of out-of-sample 

squared error. 

 

Asset pricing models are based on assumptions about utility – return and risk preferences – of 

market participants. Both CAPM and GOPM estimates returns based on the stochastic relation 

of the given asset to the market portfolio. Both models assume rational investors with 

homogeneous expectations, thus the proportional portfolio of any investor coincides with the 

market portfolio. 

 

CAPM assumes that investors optimize quadratic utility (see Sharpe, 2007) in a single period 

investment framework. The latter means they follow a buy-and-hold approach. In contrast 

with that, growth optimal investment of Kelly (1956) and Latané (1959) is a multi period 

investment strategy. Here investors consider the fact that they are allowed to rebalance their 

portfolios several times in the future. The strategy optimizes asymptotical average rate of 

growth, hence it can be shown that it outperforms any other investment strategy on the long 

run, almost surely. While "In the long run, we're all dead" (Keynes), GOPM has favorable 

properties on the short term, as well. We summarize aspects of growth optimal investment in 

Section Properties of Growth Optimal Investment. 

 

After pioneering papers about empirical testing of growth optimal pricing (Roll, 1973; Fama 

& MacBeth, 1973), there were no other works in the literature to our knowledge. Most recent 

empirical studies are that of Györfi et al. (2006; 2007). Works of Roll and Fama & MacBeth 

investigate whether the growth optimal approach can be significantly distinguished from 

CAPM. Although, neither studies reject the hypothesis that New York Stock Exchange listed 

stocks are priced growth optimally, they do not find significant evidences in favor of GOPM 

versus CAPM. Fama and MacBeth conclude that while monthly returns might be 

characterized by any of the two models, GOPM achieves notably higher gains in sense of 

wealth achieved. Grauer (1981) affirms results of Fama and MacBeth on artificially generated 

monthly time series. In his experiments Grauer cannot significantly distinguish the two 

models, but observes higher gains of growth optimal investment. 

 

While our growth optimal framework uses discrete time setting, analysis in continuous time is 

documented in the literature. Luenberger (1998) presents a comprehensive survey and a 

continuous time pricing model. Assuming lognormality of returns, he also finds that the 

Continuous-time Growth Optimal Pricing Formula is similar to CAPM. Also Bajeux-

Besnainou and Portait (1998) analyze continuous rebalancing mean-variance efficient 

strategies, and find a CAPM like growth optimal pricing equation. 

 

Difficulties in comparing the two pricing models is a consequence of their similarity. Kraus, 

Litzenberger (1975) and Ottucsák and Vajda (2007), show close correspondence between the 

mean-variance and the growth optimal approach. Our empirical tests are different from the 

aforementioned experiments in the sense that we improved volatility and covariance estimates 

by using higher frequency weekly data and exponential weighing. 
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INVESTMENT FRAMEWORK 

 

Our notations for asset prices and returns are as follows. Consider a market consisting of d  

assets. The evolution of the market is represented by a sequence of return vectors 
dR,, 21 rr , where  

 

 ),,,(= )((1) d

ttt rr r  

 

and )( j

tr  denotes return of the j -th asset at the end of the t -th trading period. At any given 

time tr  is drawn randomly from the unknown probability distribution .tR  

 

In our models short selling is allowed, and results with immediate income. Our only 

constraint is that we have to invest our total wealth: 
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For the second trading period 1S  is the new initial capital, hence  
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The asymptotic average growth rate of this portfolio selection is defined as:  
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Without loss of generality, we can assume in the sequel that the initial capital 1=0S . 
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Capital Asset Pricing Model 

 

Markowitz (1952) established modern portfolio theory (MPT) assuming investors, whose 

utility is quadratic (see Sharpe, 2007), hence it is completely captured by mean and variance 

of returns. This means that for any given level of risk – i.e. variance –,  investors choose the 

portfolio that maximizes expected return. 

 

It is possible to show that introducing a risk-free bond with known constant interest rate, the 

risky part of any investor's portfolio is the same. Thus, assuming rationality of investors and 

homogeneous expectations, the market portfolio is mean-variance efficient, as well. Capital 

Asset Pricing Model (Sharpe, 1964; Lintner, 1965 and Mossin, 1966) describes the relation 

between expected returns, variances and covariances, that holds if and only if the market 

portfolio is mean-variance efficient:  
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tR  is the return on asset i, )( f

tr  is the constant risk-free rate, and 
)(M

tR  is the return of the 

market portfolio. The pricing equation is ofter referred to as Sharpe-Lintner-Mossin equation. 

From the equation if follows that 

 

 .
)(

),(
=

)(

)()(
)(

M

t

M

t

i

ti

t
RVar

RRCov
  

 

Equation (1) introduces risk premium for assets with high covariance with the market. This is 

similar to the Growth Optimal Pricing Model, although the latter considers higher moments, 

as well. 

 

Whilst the CAPM considers a mean-variance efficient market portfolio, an efficient multi-

period strategy is not mean-variance efficient between any two points in time in general 

(Hakansson, 1971). Being a multi-period investment framework, GOPM naturally solves this 

problem. 

 

Roll (1977) criticizes the model's testability since equation (1) is true for all efficient 

portfolios different from the market portfolio. Testing validity of the equation is equivalent to 

testing mean-variance efficiency of the used market proxy. Although, mean-variance 

efficiency of the market portfolio is the question we pose too, our tests reveal that the model 

has significant predictive power, as well. 

 

Carhart Four-Factor Model 

 

Carhart's Four-Factor Model (Carhart, 1997) is an arbitrage pricing model based on Stephen 

Ross' arbitrage pricing theory (Ross, 1976). While CAPM uses a single regressor – the market 

portfolio –, the Four-Factor Model extends this with three other market indices: Fama and 

French's value-weighted indices on size, book-to-market equity ratio and Carhart's momentum 

portfolio. Fama and French (1993) and Carhart (1997) show that these factors significantly 

improved in-sample explanatory power.  
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The model states that 
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where )(i

tR  denotes returns on asset i, )( f

tr is the risk-free rate and 
)(M

tR  is the return of the 

market portfolio. Fama and French's small-minus-big factor ( tSMB ) measures return 

difference between small and large capitalization stocks, and high-minus-low factor ( tHML ) 

is return difference between stocks with high and low book-to-market equity ratio. The 

momentum factor ( tMOM ) measures excess return of past winners above past losers. The 

regression error )(i

t  has zero mean, and the intercept is )(i

t . Assuming zero alpha, expected 

value of returns is expressed as 
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Roll criticizes arbitrage pricing theory based factor models (Roll, 1977). He points out that it 

is always possible to construct in-sample pricing models that satisfy equation (2). Hence in-

sample validity of the pricing model may be the result of data dredging
1
. 

 

Growth Optimal Pricing Model 

 

The pricing model is based on the assumption that investors follow the dynamic, multi-period, 

growth optimal – i.e. log-optimal – investment strategy. A representative example of dynamic 

portfolio selection is the constantly rebalanced portfolio (CRP), introduced and studied by 

Kelly (1956), Latané (1959), Breiman (1961), Markowitz (1976), Finkelstein and Whitley 

(1981), Móri (1984), Móri and Székely (1984) and Barron and Cover (1988). For a 

comprehensive survey see Cover and Thomas (1991), Luenberger (1998) and Györfi et al. 

(2007). 

 

Assume independent identically distributed (i.i.d.) returns ( dRR ). Following the CRP 

strategy we fix a proportional portfolio vector db . Our hypothetical investor neither 

consumes nor deposits cash, but reinvest his portfolio at each trading period with regard to b . 

Asymptotic average rate of growth of this portfolio selection is 
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almost surely, given that },ln{ RebE  is finite. The key to the approach lies in the 

recognition that average rate of growth densifies around },ln{ RebE  due to Law of Large 

Numbers (Györfi et al., 2007). Since in general 
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1
 Overfitting on past data which is not valid on other datasets. 
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optimization of expected return results in a misleading estimation, that is almost surely not 

achieved asymptotically. 

 

The best constantly rebalanced portfolio (BCRP) is the CRP, that maximizes asymptotical rate 

of growth: 

 

 

}.,ln{:= RebEb
b

maxarg
d  

 

The BCRP strategy is growth optimal in case of i.i.d. return distributions in a frictionless 

market (see Györfi et al., 2007). 

 

Properties of Growth Optimal Investment 

 

Besides maximization of asymptotic rate of growth, log-optimal investment has several other 

attractive properties: 

  

 • Short term competitive optimality: In case of known market distribution, the growth optimal 

strategy is optimal on the short term in the sense that 
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where tS  is wealth of the growth optimal portfolio and 
'

tS  is the wealth achieved by any 

other investment strategy. This means that given two portfolio managers, the manager of a 

growth optimal portfolio probably outperforms the other (Bell & Cover, 1980). 

 

• Goal driven optimality: Time required to achieve certain capital A  is minimized by growth 

optimal investment in the limit, as A  (Bell & Cover, 1980). It is suspected, that the 

probability of reaching a given level of wealth in a finite period is also maximized by the 

growth optimal portfolio (see Roll, 1977). 

 

• Short term proportional optimality: From the Kuhn-Tucker characterization of growth 

optimal portfolio follows that 
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For more details see Luenberger (1998). 

 

• Consumption optimality: According to Fama and MacBeth (1973) the growth optimal 

portfolio with consumption is also growth optimal. 

 

 • Historical optimization property: Simplicity of growth optimal investment can be seen on 

the following example. Consider empirical estimation of logarithmic growth on an i.i.d. 

market: 
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Thus maximizing wealth historically is asymptotically growth optimal. While the example 

demonstrates an interesting aspect of the strategy, it is easy to overfit this way given 

insufficient number of historical observations. 

 

Reverse Optimization of Growth Optimal Portfolio 

 

We introduce growth optimal pricing model based on the assumption, that investors choose 

growth optimal portfolios in each investment period. We assume changing series of return 

distributions (
d

t RR ), and market participants optimizing based on homogeneous 

expectations about future market conditions. The optimal portfolio is determined according 

to: 

 

 

}.,ln{:= t

d

t maxarg RebEb
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Roll (1973) and Cover (1984) introduced characterization of the growth optimal portfolio, 

which allows us reverse optimization of returns. At each investment period investors optimize 

their portfolios by minimizing 
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An equivalent formulation of this convex optimization problem follows from theory of 

Lagrange multipliers. We aim at minimizing 
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with regard to dRb  and R . Being at the global minimum means that the derivative of 

(3) is zero. For the optimal portfolio 1=,ebt , and the following equations hold for 
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We prefer another form of the equation – in a similar manner to Roll (1973) –, using  
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From this it follows that 
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Due to rationality and homogeneous expectations of market participants, they will choose to 

the same optimal portfolio. In a market composed of growth optimal investors, the global 

market portfolio is growth optimal, i.e. .,=1 )(

tt

M

tR Reb  Finally we can state the pricing 

equation of GOPM as follows: 
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While the formula does not explicitely contain the risk free rate, in our empirical investigation 

we denominate value of assets and the market portfolio in bond (
)( f

tr ). 

 

EMPIRICAL RESULTS 

 

The strength of our empirical tests lies in the fact that we focused on estimation of covariance. 

Inreasing accuracy was necessary because (5) is sensible to this quantity. In contrast to 

previous research (Roll, 1973; Fama & MacBeth, 1973), we use weekly data and 

exponentially weighted covariance estimates. As mentioned earlier, we also denominate 

returns for GOPM in risk free rate. 

 

To verify expected return forecasts provided by our models, we use out-of-sample testing on 

non-overlapping weekly periods through our data. At time 1t  an investor's sense of returns 

tR  and 
)(M

tR , is estimated by historical observations. Half-life of exponentially weighted 
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volatility and covariances is 20 weeks. Estimations of )( )(M

tRE , 
)(1

1
M

tR
E , )( tSMBE , 

)( tHMLE  and )( tMOME  are based on averaging through 1,1, t . 

 

Data 
 

We use the CRSP value-weighted total return market index (CRSP-VW) of all New York 

Stock Exchange, American Stock Exchange and NASDAQ listed stocks as market proxy. We 

obtained S&P 500 constitutents from 1st of January 1967 to 26th of December 2008. The 

risk-free rate is the proxied by yields of one-month treasury-bills from Ibbotson and 

Associates. Small-minus-big, high-minus-low and momentum factor time series are obtained 

from Kenneth French's homepage. 

 

Instead of dealing with noisy series of single assets, we create 32 portfolios out of 1411 

stocks of S&P 500. First dividing our set of stocks to two cohorts by beta, we divide these 

again to two by )
1

1
,(

)(

)(

M

i

R
RCov , and so on by )(is , )(ih  and )(imom . We create portfolios 

based on the resulted 32 cohorts. Backtesting of forecasts starts at 2nd of January 1970, in 

order to establish sensible historical estimates for expected returns. 

 

Statistics for Comparison 
 

The following two statistics are used to describe accuracy of any two models in comparison: 

  

 • Portfolios statistic: We calculate sum squared error of both models for each portfolio, along 

the 39-year long time series. We obtain 2x32 sum squared errors. A model is preferred over 

an other, if it outperforms in majority of the portfolios. While the portfolio statistic is a 

roboust tool for comparing models, it does not incorporate the magnitude of differences in 

squared errors. 

 

 • SNSE statistic: Relying solely on the previous statistic, it may happen that a model performs 

better in most of the cases, but at the rare exceptions it performs unreasonably bad. The SNSE 

statistic compares sum of normalized squared errors along all estimations. Since expected 

value minimizes squared error due to Steiner's theorem, this is the most relevant statistic 

regarding expected return estimations. We establish SNSE by normalizing time series of each 

asset by its empirical variance. This way estimation of assets with different volatilities have 

the same importance. 

 

In case of the portfolios statistic, we establish p-values based on two-sided tail probability 

tests, assuming binomial distribution. To compare models based on SNSE, we construct two-

sided paired tests on the null-hypothesis that 
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where )(

1,

i

tE  and )(

2,

i

tE  denotes forecasted returns of the two models, and )( )(iRVar  stands for 

empirical variance estimate of assets. Because estimation errors are serially correlated (see 
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Figure 1), we account for this correlation by splitting the the time series to 20 blocks. Based 

on these 20 blocks, we perform both two-sided paired block bootstrap and Student’s t-test. 

 

Results 
 

Our results establish statistically significant ordering between estimation methods, with the 

exception of Four-Factor Model versus CAPM. Models in order of increasing forecasting 

accuracy are historical average, Four-Factor Model, CAPM and GOPM.  

 

Table  1:  Statistical comparison of pricing models 

   

Method  Portfolios P-value SNSE 

diff. 

Bootstrap 

p-value 

Student’s 

p-value 

Four-Factor - Average 30/32 0.00% 311 0.86% 2.15% 

CAPM - Four-Factor 27/32 0.00% 104 31.67% 39.05% 

GOPM - CAPM 31/32  0.00% 51   4.42%  3.33% 

 

 

Comparisions between pairs of these methods can be found in Table 1. The portfolios column 

shows the number of cases where the first method outperforms the other out of the 32 test 

portfolios. P-values show solid statistical significances in each case. SNSE difference column 

shows the difference in sum of normalized squared errors. Differences are significant with the 

exception of CAPM versus Four-Factor Model. The fact that both CAPM and GOPM perform 

better than the Four-Factor Model may indicate change of factor exposures over time. For our 

most interesting test of GOPM versus CAPM, we also include evolution of SNSE difference 

on Figure 1.  

 

Figure 1: Evolution of SNSE difference over time 

 
 

Note that SNSE difference stays almost continuously under two standard deviations, in the 

statistically significant region. In contrast with Roll's (1973) and Fama and MacBeth's (1973) 

findings, our statistics reject the hypothesis, that CAPM based forecasts are as accurate as 

GOPM.
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CONCLUSION 
 

We compared three pricing models by forecast accuracy of expected returns. In contrast to 

earlier attempts of Roll (1973), and Fama and MacBeth (1973), we show significantly that the 

growth optimal pricing model provides superior expected value forecasts compared to CAPM 

and the Four-Factor Model. Success in doing so is a consequence of more accurate 

estimations of covariance using weekly data and exponential weighting. 
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