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Summary. A characterization theorem based on the proportional relation
between two truncated moments is proved for both continuous and discrete
distributions. The results are applied for characterizing distributions of
Pearson’s system and its discrete analogon.

1. Introduction

Recently, growing interest has been focussed on characterization of both con-
tinuous and discrete distributions by truncated moments (Galambos and Kotz
1978). The most general results (Kotz and Shanbhag 1980) will be reformulated
in our Propositions 2.1 and 3.1. However general, these characterizations
reduce to a form simple enough for any kind of application only in case of a
rather limited class of distributions. A possible way of overcoming this limi-
tation is to use the relation between two different moments for characterizing
the distribution.

In our paper, a characterization theorem based on a simple proportionality
between two different moments truncated from the left at the same point will
be proved. Applications to a wide class of continuous and discrete distri-
butions of great practical significance will be presented.

2. The Continuous Case

Let (Q,.o7. P) be a given probability space and let X be a continuous random
variable such that X: Q—H, where H=[0,qa) for some aelRj or H=Rg. For a
given real function hh defined on H we consider the function

EhX)|XZx)=¢,(x); xeH (2.1)

provided it is defined. Assume that the distribution function F(x) of the
random variable X is absolutely continuous and let f(x) be its density. Finally,
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put G(x)=1-F(x). We give the following proposition without proof as it is a
reformulation of the results of Kotz and Shanbhag (1930).

Proposition 2.1. Let H and X be the same as above. Further let h be a
continuous and monotonic function defined on H such that

Algy, )~ 1 5 CONSL

Jor any finite ye H. Assume thar
Ax)= | —_g; 2.2)

is infinite for x=a if H is bounded; else, if H=R;, lim A(x) is infinite. Then
X=s 0

the distribution function F(x) of the random variable X is absolutely continuous
and uniquely determined by e,; particularly

0 Jor x<0
F(x)=y1—exp(—A(x)) for x=0 (if H is bounded then for xe[0,a)) (2.3)
I for xza if H is bounded.

In the following we try to answer the question: under which conditions the
distribution of a given random variable can be characterized by a simple
proportional relation

e, =Ahe,

between ¢, and ¢, the truncated moments belonging to the real functions g
and h defined on H in the sense of Eq. (2.1); 4 is a real function defined on H.

In the following we use the notation CZ (H) for the class of two times
continously differentiable and strictly monotonic functions defined on the set
H.

Theorem2.1. Let X:Q— H be a continuous random variable with the distribution
Junction F and let g and h be two real functions defined on H such that

e,=eyA} (2.4)

is defined. Assume that g, he C'(H), 23 C*(H) and FeCZ,(H). Finally, assume

that the equation
hit=g (2.5)

has no solution on int H. Then F is uniquely determined by the functions g,h and
"N

2

'\-Ho

Proof. Both sides of Eq. (2.4) are differentiable by assumption. After differen-
tiation and putting 2§ =4 we have

A(x) [ hie) f (1) dt=f(x)(A(x) h(x)—g(x)). (2.6)

where a=max H il H is bounded or a=w0 if H=R.
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Because by assumption neither f nor (Lh—g) can be zero on intH, A
cannot change its sign. Thus A is a strictly monotonic function. On the other

hand . :
ey(x)+0, xeintH

follows. After dividing Eq. (2.6) with 4" and after differentiation of the resulting
equation

S A (Ah—g) = A (A h+ Ak —g)y—i"h
pa— . N ’] : (") -f}
7 2 (ih—g) :
is obtained. The solution of Eq. (2.7) is
) ; i_;:h o
A el (28)

where the constant C has to be chosen so that | f(x)dx=1.

0
Remark 2.1. If h=const, or more specially if h=1, then a version of Proposi-
tion 2.1 restricted to distribution functions of the class C7,(H) is obtained; the
milder condition e, 4 ¢ on int H substitutes the monotonicity condition of g in
Proposition 2.1.

Remark 2.2. Let g,h and 1§ be real functions defined on H and assume that the
conditions of Theorem 2.1 are satisfied. Let g* and h* be real functions defined
on H such that

h*=ah+p; xzeR\{0}, feR
and

gf=yg+4d; yeR“ {0}, delR.

Then Eq. (2.4) is equivalent with

e =rey+ o, (2.9)
where

njr:i).-ﬁ and @=—pBY+4. (2.10)

Applications

Let (€2, ./, P) be a probability space and let X: Q—-H<R; be a continuous
random variable with differentiable distribution function, where H=[0,a] for
aeRy or H=R].

Definition 2.1. The distribution of a continuous random variable belongs to
Pearson’s system, if its density function f is differentiable and satisfies the
following equation:

1 df dlogf x+ A

e e e PRt : ) r’l,B, i . 21
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Theorem 2.2. Ler X be a nonnegative random variable. Then X has a distribution
belonging to Pearson’s system if and only if the functions in Eq.(2.10) have the
forms

@(t)=at+b; a>0, b=>0
and

wit)=ct; c¢+ayb>0 (a,=min(a,1))

Jor r=—1and s=1, provided e~" and e' exist and are differentiable. In the case
a>1 the sum c+b may be zero.

Proof. Assume that ¢~ and e' exist and consider Eq. (2.10)

e'(x)=cxe~"(x)+ax+b. (2.12)

[t 1s clear that both sides of Eq. (2.12) are differentiable. Since ¢ and 1 are
differentiable, the density function f is differentiable too. From q.(2.12) we
get by repeated differentiation

fflogj'(x} [’M——l]a-ﬁ-c
dx - {u—l]x +{b+¢:}

1.e., under the given conditions the distribution of X is a member of Pearson’s
system indeed.

Assume that the distribution function ol X belongs to Pearson’s system.
Then lht. density is differentiable and satisfies Eq. (2.11). Since X =0 we have D
=0, i.e. Z(x)=Bx>*+Cx+D=0 (cf. Eq. (2.11)) has always the solution x=0.
We can d:.rn” four types of distribution functions:

(i) C=>0.B=0 and one solution of Z(x) is negative: infinite Beta distribution

(i) C=>0, B40 and one solution of Z(x) is positive: finite Beta distribution

(1) C>0. B=0. A< C: Gamma distribution

(Iv) C=0, B=1 and 4<0: a distribution with the density function f(x)

Al
I=K - X _Iﬁl?_. where K is a positive value depending on A and B such that
[fix)dx=1.
0

Assume that X has a distribution of type (i). Then the density function can
be written in the form

1, gl
Bl f) (y+x)**#°

fx)= o f,7>0. (2.14)

Since the expectation exists, «> 1 has to be assumed. By definition,

‘i * “r g z'
T ar
e e +£':”ﬁ _.x[.}_i_i.]:u.iul
¢ ('\'“} o r,rJ‘_i T @ U@—I i
E }+-_‘"‘"‘_ﬁm _Jiizsz}""” .

or, equivalently
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| xP
B (p+xpF+f-1 g4p—1
el ﬁ Sl i
] { I):\( -+ I '“
X r
on the other hand
Li r."‘z{f+"—“} i __1_ | x‘“‘_‘__
]:r\ ,;, I__“”:(r.‘f 9 _1{ ] I 1 [ +1}:+,‘]-1+3{__tﬁ___ |-
w -1 D Lu‘f—l T
| rper L

From the last two equations Eq. (2.12) can directly be derived with a= = T b

By -1 o
=3f:'1 and ¢= _f—i 7. The validity of Eq. (2.12) for the types (ii)-(iv) can be

shown similarly.

Discussion. Consider the following cases resulting from special choices of the
parameters in Eq. (2.12); note that b has to be positive.

Case |. a>1.

1. ¢= —b: Type (iv) of Theorem 2.2. The density function is

o

(c&fl)u—1 ol

f(x)=— ¢ a-1x,
o L |
r ( ) - Xa-1
a—
1.2, —=b—c<0: Type (i) of Theorem 2.2. The parameters of this infinite Beta
b b
distribution are g=—— f=——>1and y= Ris —— (cf. Eq. (2.14)).
a—1 b+c a—1

1.3. ¢=0: Infinite Pareto distribution (a special case of the Beta distribution).

The density function results from the preceding one with ﬁ—b-;—:l:
c

S(x)=— (a_b ---i—.\‘) a1

b
1.4. ¢>0: Same as case 1.2 with 0< — <1,
b—i—c

Cases 1.2.-1.4 coincide with type (i) of Theorem 2.2.
Case 2, a=1.
2.1, ~b<ce<0: Gamma distribution; its density function is

b E

= b
f(X)=——————— with ——>1.
2 b b b+c¢

r (__+) (b+c)p+c i
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2.2, ¢=0: Exponential distribution (a special case of the Gamma distribu-
X

1 x
tion). The density 1s ‘,f'{x]zg -e b,

X b
2.3. ¢>0: Same as case 2.1 with 0 < <l
b+c
Case 2 coincides with type (iii) of Theorem 2.

Case 3. 0<a<1. Type (ii) of Theorem 2.2. Since a<1, we obtain a finite Beta
distribution if ¢> —a -b. The density takes the form

[b_!-:-r}_ (.’J +c \_) r.ﬁ";{:;:]rj?, G511
; e |l —a ST T
Jx)= b+c¢ E'l“
=

Note that for ¢=0 the right-hand side of Eq. (2.12) does not depend on ¢~ '(x).

3. The Discrete Case

Let (€, 7. P) be a probability space and suppose in the following that X is a
nonnegative random variable such that X: Q—H with H={0,1,2,...,n} for
some neN or H=IN,. Parallel to the continuous case, consider

E(h(X)|X 2k)=e¢,(k); keH, (3.1)

where h is a given function defined on H such that Eq. (3.1) is defined. Put p,
=P(X =k), I,=P(X <k) and G,=1-F, for cach keH. The following proposi-
tion is a consequence of the results of Kotz and Shanbhag (1980).

Proposition 3.1. Let X and H be the same as above. Further let h be a
monotonic function defined on H such that
mnu.m- 1..am T CODNSL

for any finite me H. Assume that if H is finite and n=max H the equality ¢,(n)
=h(n) holds; else, if H=IN,, assume that

k—1 T
A(k)= 2, log e, (i) — (i)

b e, (i+1)—h(i) )

is infinite for k—oo. Then the distribution of the random variable X is
uniquely determined by ¢, particularly.

“ e,()—h(i) | ek+1)—e k) if H=IN, or H is finite
im0 e i+ 1) —=h(i)) e k+1)—h(k) and k<n=max H

N =

o HM%JM) if i is finite
i=o ¢(i+1)=h() and n=max H. (3.3

To find another way for characterizing a discrete distribution we proceed in
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analogy to the continuous case from a simple proportional relation between
two truncated moments, now in the form of the ratio:

Note that in the discrete case 4§ can be defined only if ¢, does not vanish on
H.

Theorem 3.1. Let X: Q—H be a discrete random variable and let g and h be two

Sunctions defined on H such that
w &
Af=-EL (3.4)
ell
is defined. Assume that 2§ is strictly monotonic and p, %0 for each finite ke H.
Then the distribution of X is uniquely determined by the functions g, h and 4.

Proof. Put A=1% and B, = Z h(i)
=, if H=N,.

where n=max H, if H is bounded, or n

J' 1

Consider the case H=1{0,1,2,...,n} for some nelN. For k<n the following
two equations can be derived from Eq. (3.4) by elementary calculations:

h(k) Ak + 1) — g(k) = { Ak + 1) — A(k)} % (3.5)
k
and
B
h(k) A(k) — g(k) = {A(k + 1) — A(k)} === (3.6)
k

According to the assumptions the right hand sides of Egs. (3.5) and (3.6)
cannot be zero: thus the corresponding left hand sides cannot be zero either.
Using Eq. (3.5) for k=i+1<n—1 and Eq. (3.6) for k=i<n—1 we obtain the
following result:

P, A(kyh(k) — g(k) AMk+2)—Ak+1) (3.7)
P Ak+2h(k+ D—gk+1) Ak+1)— ik :
For k=n-1
Pu__Mn—Dhin—1)—gn—1) (3.9)

g - {2(n)— A(n— 1)} h(n)

results directly from Eq. (3.6). p, has to be chosen so that ) p,=1. Consider
iell

now the case H=IN,. Equation (3.7) is obviously valid for each flinite keH.

Consequently we have

ke H

4 =p_k=»1(k+1)"~)~(!_c_) fl Mi—1h(i—1)—g(i-1)
“po  AM—A0) LY Ai+1Dh()—gi)

A -1
and p,= (l + > Ak) . This completes the proof.

k=1
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Remark 3.1. If h=const, a version of Proposition 3.1 analogous to that de-
scribed in Remark 2.1 is obtained.

Applications

Let (Q,.«7,P) be a probability space and let X: Q—=H<N, be a discrete
random variable, where H=1{0,1,2,...,n} for some nelN or H=N,. For given
jeZ the j-th descending factorial is defined as

0 if k<j
K= k! g

keN,.

The j-th descending factorial moment of the random variable X is defined as

il
E(XW)= — . P(X =i),
=2 i y

provided it exists. Consequently, we define the truncated j-th descending fac-
torial moment of X as

EX9X2k)=Y

) P(X=i|X=k); keH,
ieq U—1J)-

provided the series at the right-hand side is convergent for all ke H. Put ¢"(k)
=¢, (k) for h(k)=k" and j=+0. Taking into account that the statement of
Remark 2.2 is valid in the discrete case Loo, it is reasonable to consider the
following equation

Ny =ek) k) + (k)  keH, (3.9)

where ¢ and ¥ are functions according to Egs. (2.10) such that Eq. (3.4) has

sense.

Definition 3.1. We say that the distribution of a given discrete random variable

X belongs to Irwin's system (Irwin 1975) if
(k+p)(k+7) .

m+1+ﬁ+ﬂm+up“

keH (3.10)

Pri1=

where =, ff and y are parameters such that the distribution has a sense.
Remark 3.1. Condition (3.10) is obviously equivalent with the following one:
Poar1 =P Ak+B ‘
Pr k*+(C+Nk+C’
A=a+1, B=a+4+1—-(1-pf(1—-7). C=a+p+7

(3.11)

Thus we can consider Irwin’s system as a discrete analogon to the nonnegative
class of Pearson’s system (cf. proofl of Theorem 2.2). Note that the denominator
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of the right-hand side of Eq. (3.11) has always a root in k= —1. The following
lemma (cf. Chen 1980) is given without proof.

Lemma 3.1. Consider a distribution of Irwin's system as defined by Eq. (3.10)
with such parameters that the distribution is infinite. Then p, is characterized by
the following property:

k'**p,—d as k—oo oacRT, (3.12)

where d is a positive constant depending on the parameters but independent of k.

Theorem 3.2. Let X be a nonnegative discrete random variable. Then X has a
distribution belonging to Irwin's system if and only if the functions in Eq. (3.9)
have the forms

p(k)=ak+b; a>0, b>0

and
I . I "
I,i'(k}:(.’k: C+Mub+2a—-1}0 La“:]‘nln (2__}1))
a
for i=—1 and j=1, provided ¢V exists and the distribution has a sense.

Proof. Note at first that ¢'=! is defined for any nonnegative discrete distri-
bution. Assume that ¢! exists too, and consider Eq.(3.9) in its actual form:

eVk)y=cke'=V(k)+ak+b. (3.13)

By definition, we obtain

Y ip;=ck ) pil +akG,+bG,,

icHy icHy !

where H,=H-{0,1,2,..., k—1}. By subtracting from this equation the anal-
ogous one for k+ 1, the following result is obtained:

k . D
k .pk-—_~c'-&-:+lpk—c o j—-:-i—r:kpk—qu-l—bpk.

ieHy v
Repeating the same procedure on the result

plla=1) k24 (b+c+a—1) -k+b}=p,. (k+D{(a=1) - k+b+c+2a—1))
follows, leading directly to

P~ Pk _ (2a—1) -k~+—[c'+2{t_——.l] _
Py (k+D[a—1)k+(c+2a—1)+b]

(3.14)

According to Remark 3.1, the distribution {p},.5 belongs to Irwin's system,
provided it has a sense.

Assume that the distribution of the random variable X is a member of
Irwin’s system. Let ke H be fixed and put ¢,=P(X =i|X = k). Then Eq. (3.10) is
obviously valid also for the pair (g;, g, , ,), provided i=k:

(ot B+N+1D g — B+ +1) ¢,=0. (3.15)
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Suppose that the distribution is infinite. Since the expectation exists we have to
assume that «>1. Consider now Eq. (3.15) for the pair (g, 4, ,,) and add to it
the same equation for the pairs (¢, 1,9y 2)s (G s 2: @iy 3)s--- (@5_154;), where j is
an arbitrary natural number with j>k+ 1. The resulting equation is:

J J=1 j-1
(t+p+y=1) ¥ igi+j*q;—k*q.—PBy 3 ai—(f+y) ) ig;=0. (3.16)
i=k+1 i=k i=k

If j—» o0 each term of Eq. (3.16) is convergent because the expectation exists by
assumption and according to Lemma 3.1,

. i A , /
lim j*q;=1imj* 7—-=Ilim -_:_ =0
j— == j—
Thus we have
(a—1)eV(k)=Fy+(a+p+y—1) kg, +k*qg,. (3.17)

On the other hand, after dividing Eq. (3.15) by i+1 the following equation is
obtained in analogous manner:

(B—1)yp—De~"Nk)y=a—(z+f+y—1)q,—kg,. (3.18)
Equations (3.17) and (3.18) lead directly to our statement:

egy= —L=HO=D gy + 2 ket A (3.19)

o —1 o — o— 1

Equation (3.19) is obviously valid for all keH.
Consider now the case H=1{0,1,2,...,n}. Equation (3.16) holds for j<n in
this case too. For i=n Lq. (3.15) takes the following form:

—Byq,—(B+7v)ng,—n*q,=0.

From this equation and Eq. (3.16) with j=n—1 Eq. (3.17) can be obtained.
Equation (3.18) and consequently Eq. (3.19) can be derived similarly, Thus the
proof is completed.

Remark 3.2. According to Theorem 3.2 the case ¢c+ay,b+2a=0 can be consid-
ered as defined for a=0.5, if 2belN. Then ¢=0 and a discrete uniform distribu-
tion with H=1{0,1,2,...,2b} and the expectation b is obtained.

Remark 3.3. Substituting the parameters f and y by y'=p+y—1 and f

Iy
- ﬁf-.}---l we obtain Eq. (3.19) in the form
=

I o I gr' '
eM(k) = _'% -,u‘ke“”{k}+x—i-Tk+g-I (3.20)

that corresponds directly to the continuous case (cf. proof of Theorem 2.2).
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Discussion

Consider the following cases resulting from special choices of the parameters in
Eq. (3.13); note that b has to be positive.

Case 1. a>1.

1.1, =2a-b+1l<c<—a-b+1-2ybla—1): This is possible only il
a>Vbla—1), ie. a}l]/ﬂy. Then the quadratic expression (@ —1)k*+(b+c+a
—1)k+b has two positive roots. The condition for obtaining a distribution is
that the smaller root is a natural number (extensions for real roots were given
by Kemp and Kemp 1956). Under these conditions the distribution is a
hygergeometric one.

1.2, max{—-2a-b+1,—a—b-+1 —2],/:5[(.' 1)} <e<—a=b+142Yb(u—1):
This corresponds to the case when the parameters § and 7 are complex con-
jugate (lrwin 1975).

1.3. —a—-b+1+ 2]/b(n —1)=c¢: Inverse Polya-Eggenberger distribution.
The special case ¢ =0 corresponds to a Waring distribution.

Case 2. a=1.

2.1. —b—1<c< —b: Binomial distribution if o eZ. The parameters are
+c
n= 4 and p=—(b+c)
" b4c P= '
2.2, ¢= —b: Poisson distribution with the parameter b.

2.3. ¢> —b: Negative binomial distribution, particularly

b

—t k- Y
e b+C+ 1 1 )r?fﬁ' b+c )"
Pe= k b+c+1 (b—kcrlr'l, '

Case 3. a<]1.

1 : i
3.1. ¢>—2a- (2—;) b+1: Polya-Eggenberger (negative hypergeometric)
distribution. Note that for ¢ <0.5¢ has to be positive.

3.2. ¢=0 and a=0.5: Discrete uniform distribution, provided 2beN (cf.

Remark 3.2).
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The following text was inadvertently omitted between Definition 2.1 and Theo-
rem 2.2 (pp. 175-176):

For an arbitrary relR we define the r-th truncated moment function by
E(X"| X 2 x), provided it exists for all xeint H. Put ¢"=e, for h(x)=x" and
r#0. According to Remark 2.2., we can consider the special case

. P r
ef=e 4 .

where iy and ¢ are real functions such that the conditions of Theorem 2.1 are
satisfied.



