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Abstract

In this paper two-sided estimate of the distribution of the exit
time is shown together with off diagonal heat kernel lower bound for
random walks on weighted graphs.

1 Introduction

Today a large amount of work is devoted to upper and two-sided estimate of
heat kernels in different spaces (c.f. [6],[7],[8],[12],[16]) The main challenge
in that is to find connection between structural properties of the space and
the behavior of the heat kernel. The study of the heat kernel in Rn of
course dates back to much earlier results among others to Moser [14],[15] and
Aronson [1]. In these celebrated works and in the recent one’s one or an other
type of iteration takes place, particularly chaining arguments appear at many
points. The present paper would like to demonstrate the incredible power
of the chaining arguments and provide a new one which replaces Aronson’s
chaining argument for graphs to obtain heat kernel lower estimates. The new
approach eliminates the condition on the volume growth. All what follows
is in the discrete graph setting in discrete time, but one can see that most
of the arguments carry over to the continuous case. Also it is generally
believed that the majorty of the essential phenomena and difficulties related
to diffusion are present in the discrete case.

In the course of the study of the pre-Sierpinski gasket ( c.f.[13] [2] and
bibliography there) and other structures heat kernel estimates where given,
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which in the simples case has the form as follows:

pn(x, y) + pn+1(x, y) ≥ 1

cV (x, n1/β)
exp

(
−C

(
dβ(x, y)

n

) 1
β−1

)
(1.1)

pn(x, y) ≤ 1

cV (x, n1/β)
exp

(
−C

(
dβ(x, y)

n

) 1
β−1

)
(1.2)

In [11] sufficient and necessary condition where given for it. The off diagonal
lower estimates without their upper counterpart received less attention. This
paper is intended to provide a contribution in this direction.

During the proof of the upper estimate an interesting side-result can be
observed. The distribution of the exit time from a ball has an upper estimate
under a particular condition. Consider TB, the exit time from a ball B =
B (x,R) . The expected value of TB is denoted by E (x,R) = E (TB|X0 = x)
assuming that the starting point is x. On many fractals (or fractal type
graph) the space-time scaling function is Rβ, E (x,R) ' Rβ, for a β ≥ 2,
and this property implies that

P (TB < n|X0 = x) ≤ C exp

(
−

(
Rβ

Cn

) 1
β−1

)
. (1.3)

This estimate was given first in [5] and later an independent proof was pro-
vided in [10] using also a chaining argument.

One might wonder about the condition which ensures the same (up to
the constant) lower bound.

The other observation one may make is that almost all the known tran-
sition probability lower estimates similar to (1.1) are obtained using the
(diagonal-) upper estimate (1.2). In the present paper we give lower esti-
mates without using an upper one and without assumption on the volume
growth. The main results are illustrated for the particular case E (x,R) ' Rβ

postponing the general statements after the necessary definitions. If the el-
liptic Harnack inequality (see Definition (2.14)) holds , then for n ≥ R

P (Tx,R < n|X0 = x) ≥ c exp

(
−

(
Rβ

cn

) 1
β−1

)
. (1.4)

and

pn(x, y) + pn+1(x, y) ≥ 1

CV (x, n1/β)rD
exp

(
−C

(
dβ(x, y)

n

) 1
β−1

)
(1.5)
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where r =
(

n
d(x,y)

) 1
β−1

, n ≥ d (x, , y) ≥ 0 and D is a fixed constant.

The results are new from several point of view. First of all lower esti-
mates like (1.4) are new in this generality to our best knowledge and help
to understand the tail behavior of the exit time. One should also observe
that this lower estimates match with the upper one’s (1.3) and (1.2) obtained
from stronger assumptions. The key steps are given in Proposition 3.3 and
3.4 which help to control the probability to hit a nearby ball, which is usually
more difficult than to control exit from a ball.

In Section 2 the necessary definitions are introduced. In Section 3 we give
the general form and proof of (1.4). In Section 4 we show a heat kernel lower
bound (better than 1.5) for very strongly recurrent walks and in Section 5
we show a result which contains (1.5) as a particular case.

Acknowledgement
The author is indebted to Professor Alexander Grigor’yan for many useful

discussions and particularly for the remarks helped to clarify the proof of
Lemma 3.6.

2 Basic definitions

In this section we give all the necessary definitions for our discussion. Let us
consider an infinite connected graph Γ. We assume, for sake of simplicity,
that there are no multiple edges and loops.

Let µx,y = µy,x > 0 be a symmetric weight function given on the edges
x ∼ y. These weights induce a measure µ(x)

µ(x) =
∑
y∼x

µx,y,

µ(A) =
∑
y∈A

µ(y)

on the vertex sets A ⊂ Γ. The weights µx,y define a reversible Markov chain
Xn ∈ Γ, i.e., a random walk on the weighted graph (Γ, µ) with transition
probabilities

P (x, y) =
µx,y

µ(x)
,

Pn(x, y) = P(Xn = y|X0 = x).

The transition ”density” or heat kernel for the discrete random walk is defined
as

pn (x, y) =
1

µ (y)
Pn (x, y) .
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To avoid parity problems we introduce

p̃n (x, y) = pn (x, y) + pn+1 (x, y) .

In many cases we will assume that the one step transition probabilities are
uniformly separated from zero, i.e., there is a p0 > 0 such that

P (x, y) ≥ p0 > 0 (p0)

for all x ∼ y, x, y ∈ Γ.

Definition 2.1 The graph is equipped with the usual (shortest path length)
graph distance d(x, y) and open metric balls are defined for x ∈ Γ, R > 0 as

B(x,R) = {y ∈ Γ : d(x, y) < R}

and its µ−measure is denoted by V (x, R)

V (x,R) = µ (B (x,R)) .

Definition 2.2 We use

A = {y ∈ Γ : ∃x ∈ A, x ∼ y}

for the closure of set A, Denote ∂A = A\A and Ac = Γ\A the complement
of A.

Let us introduce the exit time TA for a set A ⊂ Γ.

Definition 2.3 The exit time from a set A is defined as

TA = inf{t ≥ 0 : Xn ∈ Ac},

its expected value is denoted by

Ey(A) = E(TA|X0 = y),

Ey (x,R) = Ey (B (x,R))

and we will use the E = E(x,R) = Ex (B (x,R)) short notations.

The definition implies that E (x, 1) = 1.

Definition 2.4 The hitting time τA of a set A ⊂ Γ is defined by

τA = TAc .
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Definition 2.5 We introduce the maximal exit time for x ∈ Γ, R > 0 by

E (x,R) = max
y∈B(x,R)

Ey (x,R) .

Definition 2.6 One of the key assumptions in our study is the condition(
E

)
: there is a C > 0 such that for all x ∈ Γ, R > 0

E (x,R) ≤ CE (x,R) (2.6)

is true.

Definition 2.7 We say that the time comparison principle holds for (Γ, µ)
if there is a CT > 1 constant such that for any x ∈ Γ, R > 0, y ∈ B (x,R)

E (y, 2R)

E (x,R)
≤ CT . (2.7)

Proposition 2.1 From the time comparison principle it follows that

E (x, 2R)

E (x,R)
≤ CT , (2.8)

E (x,R) ≤ CE (x,R) (2.9)

and there is a constant AT such that for all x ∈ Γ, R > 0

E (x,AT R) ≥ 2E (x,R) . (2.10)

For the easy proofs see [17]. One can deduce from (2.8) that there is a
β > 1 and C > 0 such that for all R > S > 0

E (x,R)

E (x, S)
≤ C

(
R

S

)β

,

E (x,R) ≤ CRβ

and from (2.10) that there is a δ > 0, c > 0 such that

E (x,R) ≥ cRδ.

Definition 2.8 For a given x ∈ Γ, n ≥ R > 0 let us define k = k (x, n, R)
as the maximal integer for which

n

k
≤ q min

z∈B(x,R)
E

(
z,

R

k

)

where q is a fixed constant. Let k = 1 by definition if there is no such integer.
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Definition 2.9 Let us denote the set of vertices in the shortest path con-
necting x and y by πx,y.

Definition 2.10 For x, y ∈ Γ, n ≥ R > 0, C > 0 let us define
l = lC (x, y, n,R) as the minimal integer for which

n

l
≥ Q max

z∈πx,y

E

(
z,

CR

l

)

where Q is a fixed constant (to be specified later.), Let l = R by definition if
there is no such an integer. If d (x, y) = R we will use the shorter notation
lC (x, y, n) = lC (x, y, n, d (x, y))

Definition 2.11 For a given x ∈ Γ, n ≥ R > 0 let us define

ν = ν (x, n, R) = min
y∈B(x,R)c

l9 (x, y, n,R) .

Definition 2.12 In general, aξ ' bξ will mean that there is a C > 0 such
that for all ξ

1

C
aξ ≤ bξ ≤ Caξ.

Definition 2.13 A function h : Γ → R said to be harmonic on A ⊂ Γ if it
is defined on A and

∑
y∈Γ

P (x, y) h (y) = h (x) for all x ∈ A. (2.11)

Definition 2.14 We say that the weighted graph (Γ, µ) satisfies (H) the
elliptic Harnack inequality if there is a constant C > 0 such that for all x ∈
Γ, R > 0 and for any non-negative harmonic function u which is harmonic
in B(x, 2R), the following inequality holds

max
B(x,R)

u ≤ C min
B(x,R)

u . (2.12)

If the weights of the edges are considered as wires, the whole graph can be
seen as an electric network. Resistances are defined using the usual capacity
notion.
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Definition 2.15 On (Γ, µ) the Dirichlet form is defined as

E (f, f) =
∑
y∼z

µy,z (f (y)− f (z))2

and the inner product is

(f, f) =
∑

y

f 2 (x) µ (x) .

Definition 2.16 For any sets A,B the capacity is defined via the Dirichlet
form E by

cap (A,B) = inf E (f, f) ,

where the infimum runs for functions f, f |A = 1, f |B = 0. The resistance is
defined then as

ρ (A,B) =
1

cap (A,B)
.

In particular we will use the following notations:

ρ (x, r, R) = ρ (B (x, r) , Bc (x,R)) .

3 Distribution of the exit time

In this section we prove the following theorem.

Theorem 3.1 Assume that the weighted graph (Γ, µ) satisfies (p0).
1. If

(
E

)
holds , then there are c, C > 0 such that for all n ≥ R > 0, x ∈ Γ

P (Tx,R < n) ≤ C exp (−ck (x, n,R))

is true.

2. If (Γ, µ) satisfies the elliptic Harnack inequality (H), then there are
c, C > 0 such that n ≥ R > 0, x ∈ Γ

P (Tx,R < n) ≥ c exp (−Cν (x, n, R)) . (3.13)

The proof of the upper bound was given in [17]. The lower bound is based
on a chaining argument. First we need some propositions.
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Proposition 3.2 Assume that the weighted graph (Γ, µ) satisfies (p0) and(
E

)
, then there is a c > 0 such that for all x ∈ Γ, n, R > 0

P (Tx,R > n) > c,

if n ≤ 1
2
E (x,R)

Proof. For the proof see Lemma 5.3 of [17]

Proposition 3.3 Assume that the weighted graph (Γ, µ) satisfies (p0) and
(H) . Then there are c0, c1 > 0 such that for all x, y ∈ Γ, r > 0, d (x, y) <
4r,m > 2

c1
E (x, 9r)

Px (τy,r < m) > c0

Proposition 3.4 Assume that the weighted graph (Γ, µ) satisfies (p0) and
the elliptic Harnack inequality (H) . Then there are c, C, C ′ > 0 such that for
all x, y ∈ Γ, r ≥ 1, n > d (x, y)− r

Px (τy,r < n) ≥ c exp [−C ′lC (x, y, n, d (x, y)− r)] .

Lemma 3.5 If (Γ, µ) satisfies (p0) and the elliptic Harnack inequality (H),
then for x ∈ Γ, r > 0, K > L ≥ 1, B = B (x, Kr) , S = {y : d (x, y) = Lr}

min
w∈S

gB (w, x) ' ρ (x, Lr,Kr) ' max
v∈S

gB (v, x) . (3.14)

Proof. See Barlow’s proof ([4], Proposition 2) which generalizes Proposi-
tions 4.1 and 4.3 of [11] where the additional hypothesis of bounded covering
was used.

Lemma 3.6 If (Γ, µ) satisfies (p0) and the elliptic Harnack inequality (H) ,
then there is a c1 > 0 such that for all x ∈ Γ, r > 0, w ∈ B (x, 4r)

Pw (τx,r < Tx,5r) > c1. (3.15)

Proof. The investigated probability

u (w) = Pw (τx,r < Tx,5r) (3.16)

is the capacity potential between Γ\B (x, 5R) and B (x,R) and clearly har-
monic in A = B (x, 5R) \B (x, R) . So it can be as usual decomposed

u (w) =
∑

z

gB(x,5R) (w, z) π (z)
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with the proper capacity measure π (z) with π (A) = 1/ρ (x,R, 5R). From
the maximum (minimum) principle it follows that w ∈ S (x, 4R− 1) and
from the Harnack inequality for gB(x,5R) (w, .) in B (x, 2R) that

min
z∈B(x,R+1)

gB(x,5R) (w, z) ≥ cgB(x,5R) (w, x)

u (w) =
∑

z

gB(x,5R) (w, z) π (z) ≥ cgB(x,5R) (w, x)

ρ (x,R, 5R)

From Lemma 3.5 we know that

max
y∈B(x,5R)\B(x,4R)

gB(x,5R) (y, x) ' ρ (x, 4R, 5R) ' min
w∈B(x,4R)

gB(x,5R) (w, x) .

which means that

u (w) ≥ c
ρ (x, 4R, 5R)

ρ (x, R, 5R)
(3.17)

Similarly from Lemma 3.5 it follows that

max
y∈B(x,5R)\B(x,R)

gB(x,5R) (v, x) ' ρ (x,R, 5R) ' min
w∈B(x,R)

gB(x,5R) (w, x) .

Finally if y0 is on the ray from x to y then iterating the Harnack inequality
along a finite chain of balls of radius R/4 along this ray from y0 to y one
obtains

gB(x,5R) (y, x) ' gB(x,5R) (y0, x)

which results that
ρ (x,R, 5R) ≥ cρ (x, 4R, 5R) ,

and the statement follows from (3.17) .
Now we are ready to give the proof of Proposition 3.3.
Proof of Proposition 3.3. We insert the exit time Tx,9r into the

inequality τz,r < m

Px (τz,r < m) ≥ Px (τz,r < Tx,9r < m)

= Px (τz,r < Tx,9r)− Px (τz,r < Tx,9r, Tx,9r ≥ m)

≥ Px (τz,r < Tx,9r)− Px (Tx,9r ≥ m) .

On one hand

Px (Tx,9r ≥ m) ≤ E (x, 9r)

m
≤ E (x, 9r)

2
c1

E (x, 9r)
< c1/2
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and on the other hand B (z, 5r) ⊂ B (x, 9r) , hence

Px (τz,r < Tx,9r) ≥ Px (τz,r < Tz,5r) ,

and Lemma 3.6 can be applied to get

Px (τz,r < Tz,5r) ≥ c1.

The result follows with c0 = c1/2.

Lemma 3.7 Let us assume that x ∈ Γ,m, r, l ≥ 1, denote n = ml, 0 ≤ u ≤
3l, R = (3l − 2) r − u, y ∈ S (x,R + r) , then

Px (τy,r < n) ≥ min
w∈πx,y,2r−3≤d(z,w)≤4r

Pl
z (τw,r < m) .

where πx,y is the union of vertices of shortest paths from x to y.

Proof. We define a chain of balls. For 1 ≤ l ≤ d (x, y) − r let us
consider a sequence of vertices x0 = x, x1, ...xl = y, xi ∈ πx,y in the following
way: d (xi−1, xi) = r − δi, where δi ∈ {0, 1, 2, 3} for i = 1...l and

u =
l∑

i=1

δi

R = (3l − 2) r −
l∑

i=1

δi = (3l − 2) r − u.

r r r

x x1 x2 y

r-δ1 r-δ2 r-δl

R

Figure 1 Chain of balls
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τi = τxi,r and Ai = {τi − τi−1 < m} for i = 1, ...l, τ0 = 0. One can observe

that
∏l

i=1 Ai means that the walk takes less than m steps between the first
hit of the consecutive Bi = B (xi, r) balls, consequently

Px (τy,r < n) ≥ Ex

(
l∏

i=1

I (Ai)

)

From this one obtains the following estimates denoting z0 = x

Px (τy,r < n) ≥ Ex

(
l∏

i=1

I (Ai)

)
(3.18)

= Ex

(
l∏

i=1

∑

zi∈∂Bi

I (τi < m,Xτi
= zi)

)

= Ex

( ∑

z1∈∂B1

∑

z2∈∂B2

..
∑

zl∈∂Bl

l∏
i=1

I (τi < m, Xτi
= zi)

)

=
∑

z1∈∂B1

∑

z2∈∂B2

..
∑

zl∈∂Bl

Ex

[
l∏

i=1

I (τi < m, Xτi
= zi)

]

∗
=

∑

z1∈∂B1

∑

z2∈∂B2

..
∑

zl∈∂Bl

l∏
i=1

Pzi−1
(τi < m)P (Xτi

= zi)

≥ min
w∈πx,y ,2r−3≤d(z,w)=4r

Pl
z (τw,r < m) ,

where in the
∗
= step the Markov property was used.

Now we can prove the main ingredient of this section, which helps to
control the probability of a nearby ball.

Proof of Proposition 3.4. If n > 2
c1

E (x, 9R), then the statement

follows from Proposition 3.3. Also if r ≤ 9 , then R
3r
≤ l ≤ R, so from (p0)

the trivial lower estimate

Px (τy,r < n) ≥ c exp

(
−27

(
log

1

p0

)
l

)

gives the statement. If n < 2
c1

E (x, 9R) and r ≥ 10, then l9 (x, y, n, R) > 1
and R = (3l − 2) r−u ≥ 34. Let us use Proposition 3.3 and Lemma 3.7. The
latter one states that

Px (τy,r < n) ≥ min
w∈πx,y,2r−3≤d(z,w)≤4r

Pl
z (τw,r < m) .
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and by Proposition 3.3 Pl
z (τw,r < m) > c if for w ∈ πx,y

n

l
>

2

c1

E (w, 9r) =
2

c1

E

(
w, 9

R + u

3l − 2

)
. (3.19)

Consider the following straightforward estimates for r ≥ 10, R ≥ 10.

9r = 10 (r − 1) ≤ 10

(
R + u

3l − 2
− 1

)
≤ 10

(
R + 3l

3l − 2
− 1

)
= 10

R + 2

3l − 2

≤ 4R

(l − 1)
≤ 8

R

l
< 9

R

l
.

If l = l9 (x, y, n, R), then the (3.19) inequality is satisfied and Proposition 3.3
can be applied to get uniform lower bound for all Pl

z (τw,r < m) .
Proof of Theorem 3.1. The upper estimate of Theorem 3.1 can be

seen along the lines of the proof of Theorem 5.1 in [17]. The lower bound is
immediate from Proposition 3.4 minimizing l9 (x, y, n) for y ∈ B (x,R)c and
r = d (x, y)−R > 1, because for any y ∈ B (x,R)c

Px (Tx,R < n) ≥ Px (τy,r < n) .

4 Very strongly recurrent graphs

Definition 4.1 Following [2] we say that a graph is very strongly recurrent
(V SR) if there is a c > 0 such that for all x ∈ Γ, r > 0, w ∈ ∂B (x, r)

Pw (τx < Tx,2r) ≥ c.

In this section we deduce an off-diagonal heat kernel lower bound for very
strongly recurrent graphs. The proof is based on Theorem 3.1 and the fact
that very strong recurrence implies the elliptic Harnack inequality (c.f. [2]).
Let us mention here that the strong recurrence was defined among others in
[17] and one can easily see that strong recurrence in conjunction with the
elliptic Harnack inequality is equivalent with very strong recurrence. It is
worth to note, that the usually considered finitely ramified fractals and their
prefractal graphs are (very) strongly recurrent.

Theorem 4.1 Let us assume that (Γ, w) satisfies (p0) and is very strongly
recurrent furthermore satisfies

(
E

)
. Then there are b, c > 0 such that for all

x, y ∈ Γ, n > 0

p̃n (x, y) ≥ c

V (x, e (x, n))
exp

[
−Cl9

(
x, y,

1

2
n, d

)]
, (4.20)

where d = d (x, y) .
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Remark 4.1 Typical examples for very strongly recurrent graphs are pre-
fractal skeletons of p.c.f. self similar sets (for the definition, and further
reading see [2] and [3]). We recall Barlow’s [2] and Delmotte’s [9] construc-
tions. Let us consider Γ1, Γ2 two trees which are (V SR) and assume that
Vi (x,R) ' Rαi , E (x,R) ' Rβi , α1 6= α2,

γ = β1 − α1 = β2 − α2 > 0

which basically means that

ρ (x,R, 2R) ' Rγ

for both graphs. Such trees are constructed in [2]. Let Γ be the joint of Γ1

and Γ2, which means that two vertices O1, O2 are chosen and identified (for
details see [9]). The resulting graph satisfies the Harnack inequality but
not the volume doubling property. One can also see that Γ is a (V SR) tree
as well using the fact that Γi − s are trees, . This means that Γ is an
example for graphs that satisfies the Harnack inequality but not the usual
volume properties.

It was realized some time ago that the so-called near diagonal lower bound
(4.21) is a crucial step to obtain off-diagonal lower estimates. Here we utilize
the fact that the near diagonal lower bound is an easy consequence of very
strong recurrence. As we shall see the proof does not use the diagonal upper
estimate and assumption on the volume.

Proposition 4.2 Assume (p0) and
(
E

)
, then there is a c > 0 such that for

all x ∈ Γ, n ≥ 0

p2n (x, x) ≥ c

V (x, e (x, 2n))
,

where e (x, .) is the inverse of E (x, .) in the second variable.

For the proof see [17].

Proposition 4.3 Let us assume that (Γ, µ) satisfies (p0). If the graph is
very strongly recurrent,

(
E

)
holds, then there are c, c′ > 0 such that for all

x, y ∈ Γ,m ≥ 2
c′E (x, 2d (x, y))

p̃m (x, y) ≥ c

V (x, e (x,m))
. (4.21)
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Proof. The proof starts with a first hit decomposition and uses Propo-
sition 4.2.

p̃m (y, x) ≥
m−1∑
i=0

Py (τx = i) p̃m−i (x, x) ≥ Py (τx < m) p̃m (x, x)

≥ c

V (x, e (x,m))
Py (τx < m) .

We estimate the latter term as in the proof of Proposition 3.3. Denote
r = d (x, y) ,

Py (τx < m) ≥ Py (τx < Tx,2r < m) ≥ Py (τx < Tx,2r)− Py (Tx,2r ≥ m) .

From (V SR) we have that Py (τx < Tx,2r) > c so from m ≥ 2
c′E (x, 2r) and

from the Markov inequality it follows that

Py (Tx,2r ≥ m) ≤ E (x, 2r)

m
≤ c′/2.

Consequently we have that Py (τx < s) > c′/2 and the result follows.
Proof of Theorem 4.1. If l = l9 (x, y, n, d (x, y)) = 1 , then n >

2
c′E (x, 9d) > 2

c′E (x, 2d) and the statement follows from Proposition 4.3. Let
us assume that l > 1 and start with a path decomposition. Denote m =

⌊
n
l

⌋
,

r =
⌊

R
l

⌋
, S = {y : d (x, y) = r} , τ = τS

p̃n (y, x) =
1

µ (x)
Py (Xn = x or Xn+1 = x )

≥
n−m−1∑

i=0

∑
w∈S

Py (Xτ = w, τ = i) min
w∈S

p̃n−i (w, x)

≥
n−m−1∑

i=0

Py (τ = i) min
w∈S

p̃n−i (w, x) .

The next step is to use the near diagonal lower estimate:

p̃n (y, x) ≥
n−m−1∑

i=0

Py (τ = i) min
w∈S

p̃n−i (w, x)

≥
n−m−1∑

i=0

Py (τ = i)
c

V (x, e (x, n− i))

≥ Py

(
τ <

n

2

) c

V (x, e (x, n))
.
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In the proof of Theorem 3.1 we have seen that

Py

(
τx,r <

n

2

)
≥ c exp−Cl9

(
x, y,

(n

2

)
, d− r

)
,

which finally gives that

p̃n (y, x) ≥ c

V (x, e (x, n))
exp−Cl9

(
x, y,

n

2
, d− r

)

≥ c

V (x, e (x, n))
exp−Cl9

(
x, y,

1

2
n, d

)
.

5 Heat kernel lower bound for graphs

In this section the following off-diagonal lower bound is proved.

Theorem 5.1 Let us assume that the graphs (Γ, µ) satisfies (p0) . Also we
suppose that the time comparison principle (2.7) and the elliptic Harnack
inequality (H) hold. Then there are c, C, D > 0 constants such that for any
x, y ∈ Γ, n ≥ d (x, y)

p̃n (x, y) ≥ c

V (x, e (x, n)) rD
exp

(
−Cl9

(
x, y,

n

2

))
(5.22)

where e (x, n) is the inverse of E (x,R) in the second variable and l =
l9

(
x, y, n

2

)
, R = d (x, y) , r = R

3l
.

In particular if n < c E(x,R)

(log E(x,R))β−1 , then

p̃n (x, y) ≥ c

V (x, e (x, n))
exp

(
−Cl9

(
x, y,

n

2

))
. (5.23)

Corollary 5.2 If we assume (p0) and E (x,R) ' Rβ and that the elliptic
Harnack inequality (H) is true, then

p̃n (x, y) ≥ c

V
(
x, n

1
β

) exp

(
−C

[
Rβ

n

] 1
β−1

)
.

for n < c Rβ

(log E(x,R))β−1 where R = d (x, y) .

This corollary is a direct consequence of Theorem 5.1.
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Proposition 5.3 Let us assume that (2.10) and the Harnack inequality (H)
holds. Then there are D, c > 0 such that for x, y ∈ Γ, r = d (x, y) , m >
CE (x, r) the inequality

p̃m (y, x) ≥ c

V (x, e (x,m))
r−D

holds.

Proof. The proof is based on a modified version of the chaining argument
used in the proof of Lemma 3.7. From Proposition 4.3 we know that

(
E

)
implies

p̃n (x, x) ≥ c

V (x, e (x, n))
. (5.24)

Let us recall (2.10) and set A = max {9, AT} . Consider a sequence of times
mi = m

2i and radii ri = r
Ai . From the condition m > CE (x, r) and (2.10) it

follows that for all i
mi > CE (x, ri) (5.25)

holds as well. Let us denote Bi = B (x, ri) , τi = τBi
and start a chaining.

p̃m (y, x) =
m∑

k=1

P (τ1 = k) min
w∈∂B1

p̃m−k (w, x) ≥
m/2∑
i=1

P (τ1 = k) min
w∈∂B1

p̃m−k (w, x)

≥ P (τ1 < m/2) min
1≤k≤m/2

min
w∈∂B1

p̃m−k (w, x) .

Let us continue in the same way for all i ≤ L := dlogA re . It is clear that
BL = {x} which concludes to

p̃m (y, x) ≥ min
wi∈∂Bi

Py (τ1 < m/2) ...

...Pwj

(
τj <

m

2i

)
..P

(
τL <

m

2L

)
min

0≤k≤m−L
p̃k (x, x) .

From the initial conditions and (2.10) we have (5.25) for all j, so we can
use a slight modification of Proposition 3.3 to get

Pw

(
τi <

m

2i

)
> c2

for all wj ∈ B (x, rj) and j. Consequently, using (5.24) one has

p̃m (y, x) ≥ c

V (x, e (x,m))
cL
2 ≥

c

V (x, e (x,m))
r−D

where D =
log 1

c2

log A
.
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Proof of Theorem 5.1. The proof is a combination of two chain-
ing. Let us recall that the time comparison principle implies (2.10) , so the
conditions of Proposition 5.3 are satisfied. First let us use Theorem 3.1 to
reach the boundary of B (x, r) , where r = d(x,y)

3l−1
, l = l9

(
x, y, n

2
, d (x, y)

)
, then

we use Proposition 5.3. The second inequality (5.23) follows from (5.22) if

n < c E(x,R)

(log E(x,R))β−1 since in this case log r < Cl and it can be absorbed into

the leading constant in the exponent.

References

[1] Aronson D.G. Non-negative solutions of linear parabolic equations.
Ann. Scuola Norm. Sup. Pisa cl. Sci (3) 22 (1968), 607-694; Addendum
25 (1971), 221-228.

[2] Barlow M.T., Which values of the volume growth and escape time ex-
ponent are possible for a graph?, to appear in Potential Analysis

[3] Barlow, M.T., St Flour Lecture Notes: Diffusions on Fractals. In: Lect.
Notes Math. 1690 .

[4] Barlow M.T., Some remarks on the elliptic Harnack inequality, preprint

[5] Barlow, M.T., Bass, F.R., The Construction of the Brownian Motion on
the Sierpisnki Carpet, Ann. Inst. H. Poincare, 25, (1989) 225-257

[6] Barlow M.T., Coulhon T., Grigor’yan A., Manifolds and graphs with
slow heat kernel decay, Invent. Math, 144, 609-649, 2001

[7] Coulhon T., Off-diagonal heat kernel lower bounds without Poincaré,
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