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Abstract

In this paper we introduce the resolvent metric, the generalization of the resistance metric used for
strongly recurrent walks. By using the properties of the resolvent metric we show heat kernel estimates for
recurrent and transient random walks.
© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper is motivated by Kigami’s results [10,11] on resistance forms, resistance metric,
and several further studies in the same spirit, among others the paper by Barlow et al. [3] and
Grigor’yan et al. [7]. All these works present heat kernel estimates under mild conditions thanks
to the resistance metric which links the potential theoretic properties of the space to the properties
determining the heat propagation. Unfortunately in transient spaces the resistance metric does not
carry enough information to describe heat propagation. In the present paper we introduce a new
metric, the resolvent metric and apply it to analyze random walks on weighted graphs. The new
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metric has similar properties as the resistance metric and heat kernel estimates can be achieved
under similar conditions used in the recurrent case. In that respect the paper is a generalization
of [3,7]. It is particularly interesting that in the strongly recurrent case Barlow, Coulhon and
Kumagai [3] obtained the elliptic Harnack inequality basically from volume doubling and a
resistance estimate:

df (x,y)
Vx,r)’

This relation connects the effective resistance R (x, y) between points x, y with distance r =
d (x, y), the volume of the ball V (x, r) about x with radius r and the gauge function dP (x,y)
for the mean exit time E (x, r). The mean exit time, E (x,r) = E (TB(XJ)|X0 = x), is the time
needed for the walk to escape from a ball B (x, r) starting the walk at x. Here § plays the role
of the walk exponent which is in many cases responsible for the growth of the expected time.
Kigami obtains several equivalent conditions for the two-sided heat kernel estimates (c.f. [11]
Theorems 15.10, 15.11), among others volume doubling and the Einstein relation. The latter one
can be considered as a resistance estimate too:

E(x,r)
Vix,r)

In what follows we need a similar but weaker assumption, a lower bound for the newly introduced
iterated resistance (see below (2) and Definition 3.4), inspired by the condition used in [7] for the
standard effective resistance. It might be interesting to observe that condition (2) is necessary and
sufficient for the parabolic Harnack inequality and implies the elliptic one (though in an implicit
way).

Our main results can be summarized as follows. We consider a weighted graph (I', ) and a
random walk on it. We assume that there is a pg > 0 such that for all 11, , > 0 we have

R(x,y) <

R (x, B¢ (x, r)) =

P (x,y) = po (po)

uniformly, this condition will be assumed in the whole paper and will be referred by (pg). We
construct the resolvent metric p based on the iterated resistance R,, (A, B) (form > Qand A, B
disjoint sets), (see Definition 3.4 and Corollary 3.1) and consider B, (x,r), balls in p (more
precisely, connected subset of them containing x), their volume V, (x, r) and define the scaling
function F (x,r) = (r?V, (x, r))l/m for a well chosen m. Denote f (x,-) = F~!(x,-) and
Dn (x,9) = pp (x,¥) + ppai (x, y) the sum of the transition kernel.

Definition 1.1. We define a set Wy of strictly increasing, doubling functions, F € Wy if F : I' x
[0, o0] — RT is strictly increasing and there is a C > 0 such that forallx € I',7 > 0

F (x,2r) <C

Fx,r) —

Volume doubling (V' D), is a particular case of that, means that V, (x,r) = u (Bp (x, r))
e Wo.

Definition 1.2. In the whole paper we will use the standing assumption (M) that there is an
m € Z such that for all x € I’

e8]

anp,, (x, x) = oo. (D

n=0
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The key notions of the paper are the iterated resistance R, (A, B) and the resolvent metric
o (x, y). The proper definition of them needs some preparation hence deferred to Sections 2 and
3. The next definition is adopted from [7].

Definition 1.3. We say that (R;) holds if there is a ¢ > O such that forallx € I',r > 0

R ({x}, By (x, r) > cr?. )

Here m is the same as in (1) and in the whole sequel.

Theorem 1.1. If (pg), volume doubling and (M) hold then there isa C > 1 and an F € Wy
such that for all x € I" and n > 0 (DU E), the diagonal upper estimate holds:

C
Pn (X, x) < m-

3)
Theorem 1.2. Assume (po) and (M). Volume doubling and (R») for u with respect to p hold if
and only if there are C > ¢ > 0,8 > 1,8 > 0and an F € Wy such that for all x,y € I' and
n>0 (UE):

c F(x,p(x,y)\ 1
DPn (x9 )7) S m eXp |:_ (T) :| (4)

holds and the particular lower estimate (PLE) holds: there are c¢,5 > 0 such that for all
xel',r>0,B=B(x,r),n<38F(x,r)

PE(x,y) > (5)

C
Vo (x, f (x,m))
Here p® is the heat kernel of the random walk killed when exits from B.

We will see that the scaling function is F (x,r) = (r2 Vy (x, r))l/m.

It is well-known that (5) is the key to obtain heat kernel bounds. Surprisingly enough the
upper estimate follows from it as well as the parabolic Harnack inequality (c.f. [7,9]).

To obtain our results we assume (pg), volume doubling and (M), that is the existence of
an m which makes the A = 0 resolvent divergent. It is clear that the latter one is a very weak
assumption, but essential in the construction of the resolvent metric. The former one is needed
only in the very last step in the proof of the diagonal upper estimate. The two-sided estimate
needs a bit more. In general two-sided estimates are equivalent with much stronger conditions,
like the elliptic Harnack inequality (c.f. [8]) or the cut-off Sobolev inequality (c.f. [2]). Here we
use (2), analogous used in several works among others in [7].

The main results are given in Theorems 4.1, 6.1 and 6.2. The paper ends with examples that
we hope will be useful to the readers.

2. Basic definitions

We consider (I, 1), weighted graph, I' is a countable infinite set of vertices and py y =
My x = 0asymmetric weight. Edges are formed by the pairs for which p, y > 0. We assume
that the graph is connected. These weights define a measure on vertices:

ux) = Z Mx,y

yel’
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andonsets A C I'
A=) n@.

zeA

Due to the connectedness w (x) > 0 for all x. It is natural to define the random walk on weighted
graphs, which is a reversible Markov chain given by the one-step transition probabilities:
lu’)C sy

P (x, = .
=0

For any A C I', P4 stands for the transition probability of the above random walk killed at
exiting from A. Similar superscript notation will refer to the corresponding killed walk objects.
In what follows we always assume the condition (pg): there is a constant py > 0 such that for
all x, y with pty y > 0

P (x,y) = po

holds. One can define the transition operator P on ¢y (I') functions Pf (x) = >_ P (x, y) f ().

The inner product for I (I", n) is defined by (f, g) = (f, &), (). = 2on [ (X) g (X) @ (x).
If p is a metric, balls are defined with respect to it by

ﬁp(x,r)={y¢p(x,y)<r}-

Consider the induced subgraph I', (x, r) of §p (x, r), it contains only the points of Ep (x,r)and
edges between them. Two points are belonging to the same component of I, (x, r) if they can be
connected with a path running in §p (x, 7). Denote by B = B, (x, r) the connected component
of Eo (x, r) containing x. The volume of the connected part B is denoted by V, (x,r) =

" (Bp (x, r)).
3. The resolvent metric

Denote by P the transition operator on /1 (I'). Pf (x) = Zy~x Px,y) f ().

For a finite A C I' let P4 be the transition operator restricted to A, corresponding to the
random walk killed on exiting A.

Definition 3.1. The A-Laplace operator is defined as A = P — [. The Dirichlet form correspond-
ing to the Laplace operator is given by

E(fie)=(=Af,e) = -P) [ g
for f,g el (I', ).

Definition 3.2. For A, B C I', AN B = () we define the resistance
R(A,By= _inf [E(f,f):fla=1 flg=01"".
feb(I',w)

2

In case of recurrent spaces Kigami’s observation (c.f. [10,11]) is that the effective resistance
is a metric. The existence of the resistance metric has a particular consequence that, for any f in
the domain of the Dirichlet form &

lf )= fFDP<R@NVEW ). (©6)
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Unfortunately in the transient case, the resistance metric is bounded, in particular R(x, Bfe
(x, r)) — Rp > 0 as r — oo and the rate of convergence can be understood from the decay of
R (Bg (x,r), B (x,2r)). It is not suitable for the derivation of heat kernel bounds.

In several previous works resolvents are used with success to analyze transient walks and
diffusions. The simplest resolvent is the following:

o
Do (4" Py (xy).
n=0

For technical reasons we prefer instead the resolvent which is based on 04 = (PA)2 for any
A C I'. We drop the index A for A =TI'.

Do+ 08 (x, )

n=0

and our final choice is

G, @)=Y (+0"" 2, ) 0 (x.y)
n=0

where 2, (n) = <”+m_1) and it is worth noting that £2,, (n) ~ n™ ! and g;:‘,m (x,y) =

m—1

M(#”Gf’m (x, y) its kernel.
It is clear that this resolvent is always convergent, and monotonically increasing in m and
A. We fix an m € N which will be specified later and reserved as the parameter of the resolvent.
In [8] we started the utilization of polyharmonic functions, Green function as well as Green
operators (or resolvents). Now we follow this direction with slight modification and find a new
metric for non strongly recurrent graphs (weakly recurrent and transient) which possess nice

features.

Definition 3.3. Let q,f‘ (x, y) be the transition density corresponding to Q4. Let us recall that
the stationary distribution of Q is u.

LetAC T, A} =04 —1(1+2), D =—A and
A a\"
DA,m:(DA)

form > 1 integer and A > 0. If A = I" or A = 0 we drop it from the notation.
Consider the bilinear form D)/i wONACT

DL, (f.9) = (Df,mf, g)IZ(A "

and define the domain of the A, m-Dirichlet form on A by f)ém = FA (Df’m> = { f €
—1
b (I, 1), DL, (. f) < 00, flac = o]. Itis clear that G4, = (D;{m) .
Now we define the iterated resistance setting A = 0.
Definition 3.4. ForA, BC DCI,ANB=9

If )= fOI*

R,f(A,B)zm}p{ DA ) -f|A=1,f|B=0,f€f£}~
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The quasi resolvent metric on A is defined as

If ) = f (I

. A

R;,‘; (x,y) =sup
f
Note that R,ﬁ is decreasing in A since D is increasing by definition, consequently

If () — f (I

: , Fm 7
Do (f. F) FX#FO), fe€ } @)

Ry (x,y) = Sl;p [

exists.
Lemma 3.1. 1. Forany f € F (Dy,)
If (X) = f DI* < R (x, ) Do (> ). (®)

2. Let A, B C I' and AN B = ¥ and belong to the same connected component then,
0< R, (A, B) < o0.
3. Forany A C F,AzOf,geff"m

D}, (f.9) =Dy, (g f). ©)

Proof. The statements follow from the definition. W
Remark 3.1. It is clear that g (x) = g)/i m (X, ) possesses the reproducing property: for any

u e ]:)ém we have that D, (g, u) = u (x), in particular Dy, (g, g) = gi‘{m (x, x).

Lemma 3.2. The minimal value in the definition of R) ,, (x, A°) of Dj.m (f, f) is attained at
80 = 8 () and

Rim (x, A%) = g3, (x,x). (10)

Proof. Let & be another function with 4 (x) = 1 h|a4c =Oandletd =h — gthenh =d + g,
Djm (h,h) =Dy m (8, 8) +Dim(d,d) +2Dj 1w (d, 8)
but D) ;m (d,d) > Owhile D) ,,, (d,8) =cd (x) =0. N

Lemma3.3. I[f AC B C D C I then

Rim (A, BY) < Rym (A, D). (11)

Proof. 1. By the definition of D¢ C B¢

Ry (A, BY) = inf{Dy (f. f): fla (¥) = 1, flpe =0}
> inf{Dy (f, ) fla () = 1, flpe =0}
=R, (A,D°). W
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Lemma 3.4. R, (x, y) is a quasi metric: forany x,y € I,
Ry (x,y) = Ry (y, %),
Ry (x,y)=0 ifandonlyif x =y
Ry (x,y) <2 (R (x,2) + Rin (2, ) -

3971

(12)
13)
(14)

Proof. The first statement is ensured by the definition. For the second see the end of the proof

of [12, Proposition 3.1]. The weak triangular inequality can be seen as follows:

R (x,y) = sup{lg (1) =g ) : 0 < D (3. 9)}
8

IA
wn S

sup {215 (1) — g (P +218 () =g WI?: 0 < Do 3. 9)]

IA

sup {21g (1) = g @7 : 0 < Dy (2. 9)
8

+sup {218 @) — g P :0 <Dy (8. 9]
8

=2(Ry (x,2) + Ry (z,y)). N

The next result of Mac1as and Segovia [13] is essential in our work.

Theorem 3.1. If X is a non-empty set and d is quasi-symmetric on it with constant K :

d(x,y) =K(d(x,2)+d(zy))

then, there are a metric p, and a C > 1 such that forall x, y € X

1
Eany)Sd”u,wfst@,w

. 1
with pP = m
Corollary 3.1. There are a metric p and C > 1 > ¢ > 0 such that forall x,y € I’

c0® (x,¥) < R (x, ) < Cp*(x,y).

Definition 3.5. In what follows p will play a crucial role and is called the resolvent metric.

5)

Based on this theorem we define balls with respect to p: Ep (x,r)={y:px,y) <r}. Asin
the case of the resistance metric it can be that the balls are not connected. Let B = B (x,r) =
B, (x,r) C B, (x,r) be the connected subset of B, (x, r) containing x. With slight abuse of

notation we shall use By for the sets (balls) with respect to the quasi-metric Ry,.

Remark 3.2. We need nesting of balls in the quasi-metric R,, and in p, which can be ensured

thanks to (15), to the comparability of R, and p.

Lemma 3.5. Letr > O and x € I'. There is a ¢ > 0 such that forall x € I',r > 0if s = cr

then,

Br(x,s) C B, (x,r).

2
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Proof. For a given r we set s = cr?, where ¢ is the constant on the Lh.s. of (15). Let us pick
up a vertex z € Bp (x,s), that means that R, (x,z) < s and z belongs to the connected
component of the subgraph of Bg (x, s) which contains x. From the choice of s we have that
c,o2 (x,2) < Rp(x,2) <5 = cr?, ie. p(x,z) < r.If z € Bgr(x,s), then on one hand
R, (x, z) < s, and on the other hand z belongs to the connected component of x within Bg (x, ).
Let us consider a path, xo = x, x1, ..., xy = z running fully in Bg (x, s) which connects x and
z. (Note that this path is not necessarily the shortest path in any metric we use.) It is clear that for
all x;, R, (x, x;) < s and x; connected to x foralli =1, ..., N, consequently p (x, x;) < r and
the path provide connection from x along itself up to z, which means that z is in the connected
component of I', (x, r) containing x, thatis z € B, (x, r). From that the statement follows. W

4. The diagonal upper estimate

The following proofs are adaptation of the ones developed in the works [3,4,12,11], all on
resistance forms in case of recurrent (or strongly recurrent) spaces, graphs.

A fairly simple but powerful method is developed in the mentioned works (see in particu-
lar [4]). The key observation is the following (see for the simplified proof [11, Theorem 10.4]).
Without any further assumption for any finite set A C I'

2R (x, A) N V2
n w(A)’

where with slight abuse of the notation R(x, A) = supyc4 R(x, y). Let us introduce analogously

Pn (x,x) <

Ry (x, A) = SUP A R, (x, y). We have the following version of the statement.

Proposition 4.1. There is a C > 0 such that, for any finite set A C I' and x € A

Ry (x, A) 1
T M(A)>

P (x,x) =C ( (16)

holds for all n > 0.

Before we prove the statement we show how one can obtain the diagonal upper bound from
it.
Theorem 4.1. Assume (po), (VD), and (M) then there is a C > 1 such that for all n > 1,
xel

C
DPn(x,X) £ —————, a7
! Vo (x, f (x,n))
where f (x,n) is the inverse of F (x,r) = [erp (x, r)]l/m in the second variable, furthermore
C
Pn (X, (18)

y) = .
\/Vp (xvf(x’n)) Vp ()’,f(y,”))

Proof. Let A = B = B, (x,r) and choose in (16) r to have ;—,2,, =
then

% andn = CF (x,r)

D m b S - - . N\
Pyl Ry (x.BYV, (x.)]" (x, x) 1 (B, x, 1))
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and by (VD),

C
p2n (xsx) S Vp (.X, f(x,n))

This shows the statement for even n, for odd » it can be seen together with (18) as in [8]. In that
way Theorem 1.1 is shown. W

Definition 4.1. We introduce the discrete difference for f :Nx I' > R, k> 1,n>0
RY = o= far
1= 10 = 30
where £, () = f (n, ).
Let us recall that D4 = (I — (PA)2> and for f, (y) =qn (x,y) x,ye k>1,n>0

D fy=(DMf) = fu= fus
() £ = 10

and the corresponding bilinear form Dy (f,,, f,) = ((DA)k Frs f,,). Here and in the next lemmas

the case A = I is also included, the observations will be used for I" and for finite subsets as
well.

Lemma 4.1. If f, (y) = ¢2 (x, y), then
D (fa- f) = fan (2.

Proof. First observe that (PA)2 fn = fnt2- We show the statement by induction

Do (fs fr) = Fi7 (x) (19)
D (fat1. fo) = fandy ). (20)
For m = 1 consider

Dy (s ) = ([1 = @] S 1)
= (fn, Jn) = (fng1s fn)
= fon — font1 = DAon = fz(,i),

and with the same steps it is easy to see that (20) holds as well for m = 1. We assume that both
(19), (20) hold for all n > 1 and for k < m and show for m + 1.

Dot (f.fo) = ((1 —o")" . f,,) =((1-0")" (1-7*) . 1)
=((1=0")" fu 1) = ((1-0")" 2" 1)

_ p(m) (m)

= fon = Jont1 O
_Am+D)

- J2n ‘

A similar trick leads to the proof of (20) form + 1. W
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Lemma 4.2. For all k > 0 there is a C > 0 such that forall A C I')k > 0,n > 0,x € I, if
fa () = q;} (x, ) then

1
ﬁNmsc;ﬂuy 1)

Proof. From the spectral decomposition of p?n (x, x) for any finite A’ C I' we know that

/ (k)
[pg‘n (x, x)] > 0; consequently it holds in the limit A" — A; f,,(k) (x) >0forallk > 0

(k=1)
n+1
statement by induction using a slightly stronger statement. Assume it holds for all 0 <i < &,

and the same implies that the map n — fn(k_l) - ) (x) is non-increasing. We show the

z(i) = ;fn—b,ﬂ] ()C) )
"7 (Lsin))!

where ¢; = 2=U+D 5 = s¢_1 + cx, and note that for i = 0 the assumption holds.

(k) _[ (k—1) (H)]

2n T 2n 2n+1
R wen aen
< R .
) LcknJ ; I:f2nfl 2n+171:|
1 (k=1 k=1)
= 2 lemn] I:f2n—LcknJ ~ Jont1 ]

1
(k—1)
2 LcknJ f2nf|_cknj .

IA

Now by induction, if [ = 2n — |cxn]

*) U -y _ 1 1
f2n = Lckan[ = = Lean) (Lsk—an)k_l f2n7|_sk,1n_] (x).

Let us recall that f;, (x) is non-increasing in n and find that
2n — [sg—1n] = 2n — |skn],

which leads to the needed inequality.

1
k)
= J2n-2ls X).

fzn @ LSknJ)kfn Lsgn) (X)
Finally observing that s; = Z{'c:o 2-(+2) we have that s; < % and we obtain (21). W

Proof of Proposition 4.1. Let x € A C [’ be a finite, connected set. Let Ay = {z e A :
pan (x,z) > 0} and choose y* so that

,v*) := min ,
pan (x,y%) min pas (x, )

P (X, 9%) Y @ < Y pan(x, D) ()

z€Ay ZEAy

Y Pu(x,0) <1,

zel’

IA



A. Telcs, V. Vespri / Stochastic Processes and their Applications 124 (2014) 3965-3985 3975

and
1
n(A2)
Now we use the consequence (see [14, Proposition 2.1]) of the condition (pg) that each vertex

has a bounded neighborhood and for x ~ y, u(x) < @ (y) from which we have that u (A)
= Cu(Az)and

P2n (-x7 y*) S

" C
P2n (x,y ) = m

For f, (y) = g» (x, y) using the above lemmas we have that

1
S = K07+ 1@ = 0

=< ,bL2 A + R (x, A) Dy (fus f)

1 — C
< e + R (x, A) ﬁfn (x, x),
where in the last step Lemma 4.2 is used. Solving this for f, (x, x) we obtain

fax) =C

R A C R A 12
(X, )+< (X, )) )

C
Mz (A) +C2 l‘2m

Ru (x, A) C
C . n 23
Y (AR -

tm

5. The tail distribution of the exit time

This section contains two key results. One establishes an estimate similar to the Einstein
relation, the other presents the estimate of the tail distribution of the exit time. In the sequel of
the paper, the condition (R) (see (2)) will be used in several places. For the rest of the paper
we need the additional assumption that (I', p) is an unbounded metric space, more precisely the
following holds.

Condition 5.1. In the whole sequel we assume that (I', 1) is unbounded and for all x and r > 0
the balls B, (x, r) are finite, and contain finite number of vertices.
For brevity we will use the following notations:

Qm(n)=(”+’"_l>,

m—1
Em (Alx) =E (241 (Ta) 1 X0 =x),
Ey,(A) = I;lEaAXE (41 (Ty) | X0 = x),

Ey(x,r)=E (Qer] (TB,,(x,r)) |Xo = x) .
We will use the particular notation form = 1,
E, (x,r) =E(Tg,x.nlXo = x)

is the usual mean exit time, where p emphasizes the metric in use.
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The scaling functions are H (x,r) = erp (x,r)and F (x,r) = [H (x,r)]'/™.
Please note that the definition of E,, is based via {2,411 on T and not on an (m — 1)-th
power.

5.1. Preliminary estimates

First we need a little technical adjustment. We defined the exit time with respect to P while
the resolvent is based on Q = P2. The next Lemma shows that if we estimate the mean exit
time, that does not make significant difference. Denote by E”, EC the expected value and the
exit times T;(X’r), Tl?(x,r) with respect to P and Q.

Lemma 5.1. Let A C I’ be a finite set, x € A then

Tf <orp (24)
and

EP (Tfp(o - x) > E2 (TAQlXo — x) . (25)

Proof. If X ,? = Xy then X ,? has the transition probability Q. Let TAQ = k, then it is clear that
Tf < 2k. For (25) consider the decomposition of the mean exit time:

o0
EP (Tf|X(’)’ = x) =Y Y PH )+ Poyy (. )
n=0yeA
o0
>3 Y P =E2(T{1X¢ =x). ®
n=0yeA

Remark 5.1. Having Lemma 5.1 we shall use interchangeably E (74| X¢ = x) for P and Q if
the arguments are not sensitive to the constant multiplier.

Theorem 5.1. If (I', w) satisfies (po), (VD) , (M) and (R) then, (ER),,:
Ep(x,2r) < Ry (x,2r) V, (x, 2r) (26)

holds, where B = B, (x,r), Ey (x,1r) = Ey (B|x) and Ry, (x,7) = Ry, (x, By (x, r)) .

From now on the notation R,, (x,r) = R,, (x, B°) = R, (x, B;' (x, r)) will be used depend-
ing on the context.

Let us recall that E,, (B|x) = E (2,41 (Tg) | X0 = x).

Also let us note that we need that m is an integer for which the sum (1) is infinite. That condi-
tion, (1), is needed to ensure, that the resolvent provides enough information on the asymptotic

of the heat kernel.
The first lemma is elementary.

Lemma 5.2. Let B= B, (x,r), T = Tg,m € Z* then
Eyx (2ny1 (1)) < By (T™).
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Proof. Let T = TB,(x.r)- Assume that r is large enough to ensure 7 > 2m i.e. By (x,2m + 1) C
B, (x, r) and obtain

(2T)’">(T+m)’" (T —m)" >C<T—m)m>(T)m.

| = | > -Qm+1 (T) > |

2m

For small r values the inequality follows by adjusting the constants. Wl

Of course the statement holds for arbitrary finite set as well.

Lemma 5.3 (Feynman—Kac Formula, c.f. [8] or [14, p. 102. Section 8.5.3]). Let f be a function
onl',A CI', >0, satisfying

Af —Af=0 inB.
Then forany x € A, w = (1 —i—k)_1 ,T =Ty
f 0 =B o £ (xp)]

and for any m > 0

Gt @) = ([ b Zut ) P £) @) = Ex (@it (D™ f (xX1) . @D)

Corollary 5.1. If we choose f = 1 we have from 5.3 that

En (Al0) = Ex (et Ta) = Y _ G (x.). (28)
yeB

Proof of Theorem 5.1. Denote B = B, (x, 2r). We start with (8): If f € F (Dy,)
|f ) = f O)I* < R (X, 9) Do (f. f)
in particular let g (z) = g,ﬁ (x,z) and z € B, (x, r) then

lg () — g (D)I* < R (x,2) D (g, 8) - (29)

From the reproducing property of g,lng (x, z) and (2) we have that D,, (g, g) = g,lfl (x,x) =
R (x, B)

lg(¥) — g @I* < R (x,2) g (x) < Crlg (x) < Cg* (x), (30)

where in the last step (2) has been used. If g (y*) = max,cp g (z), (30) yields
g(y) =Ce 31)

and Eyy (x,2r) =} cp g8 (x, () <g () V,(x,r) < CRy (x, BV, (x,7).

The proof of the lower estimate is similar. One will find that (V D), is used once, only at the
very end of the proof and condition (2) is essential in the next argument. We proceed from (29).
From the reproducing property of gﬁ (x, z) and from (Ry) we have that &, (g, g) = g,ﬁ (x, x)
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= Ry (x, B) > cr?
lg () — g @I> < C8r?g () < C8%¢ (x)°.

We can choose § such that C8% < 2, and we obtain from g (z) < g (x), that for z € B, (x, r)
1
g (4:2) 2 S8 (6. %)

Now we finish immediately using the definition and (V D),,.

En@x2r) =) gne,ypmM= Y gn(xdn@E

yeB z€B,(x,0r)

v

1 5
Egm (xs X) V/J (-xv CSV)
> cRy (x, B (x, 2r)) V, (x,2r),

where the last step follows from (2), cr? < R, (x, B; (x, 2r)) < 4r%and (vD),. N

Lemma 5.4. Foraset A C I', x € A, there is a Cy > 1 depending on m € Z, such that

En (A) Con™

P, (T, <1- — — .
Ta=m=1=CE o B

(32)

Proof.

Ta <2n+1(Ta >n)Tyo0 6,,
TR <2"(2n)" +1(Ta > n) Ty 0 6,),

where 6, is the time shift operator. From the strong Markov property one obtains with C = 21

En(A) < C*n™+ CE, (I (T4 > n)Ex, (T}"))
C’n™ + CPy (T4 > n) Ep (A).
En(A) _ Cn"
CEn(A)  En(A)

and the statement follows. W

=
=<

+ P, (T4 > n)

Let us recall here that under (V D), the scaling function H (x,r) = r2 V, (x,r) has nice
regularity properties.

Corollary 5.2. If (po), (VD), , (M) and (Ry) hold then there are co > 0 and Co > 1 such that
. _ 1/m
ifn= (%Co 2Em (x, r))

Py (TBp(x,r) > n) = €o. (33)
Here Cy is given by Lemma 5.4.
Proof. From (32) follows the statement if we have that

Ep (B, (x,1)) < CEp (x,1). (34)
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Let xo € B (x, r) such that E,, (B, (x,r)) = Ep (x0, r) then it is clear that
Ey (B, (x,7)) = Ep (By (x, 1) | X0 = x0) < Ep (B (x0,2r) | Xo = x0)
but from Theorem 5.1 we have that
En(Bx,2r)|Xo=x) X Ry (x,2r)V, (x,2r) < Ry, (x, ) V (x,r) < Ejy (x,7)

and we obtain (34). Let us observe that the conditions (V D), , (M) and (R;) are needed in the
application of Theorem 5.1. W

Theorem 5.2. If (I, p) satisfies (po), (VD), . (M) and (Ry) then, for B = B, (x,r)
Py (Tp <n) < Cexp(—cky (x,n,r)) (3%)
where k = ky, (x,n,r) > 1 is the maximal integer for which
" ¢ min En (B, (v 7)), (36)
k y€B,(x,r) k

where c is a small fixed constant (c.f. [14, p. 72. Definition 6.1]).

Definition 5.1. Let us define 8 = S, as the smallest possible exponent for which
R2V R R Bm
RV, R) o (BY™ (37)
r2V, (x,r) r
and observe that (37) is equivalent to (VD) ,.
From the definition of 8 and (V D), it follows that 8 > 2.

Remark 5.2. There are several further equivalent forms of (35). In the simplest case if [rQVp
(x,r)] < rf, B = B, (x, r) one has

P\ P
P, (Tp <n) <Cexp| —c (—) . (38)

nm

Remark 5.3. From (38) one can see that the estimate is weaker as m increases. However it should
be recognized that the increase of m not only increases the upper bound but the probability on
the left hand side of (38).

Proof of Theorem 5.2. The proof follows the old, nice idea of [1] (see also [5, Lemma 3.14]).
The only modification is that we use the very rough estimate:

k
m m
T3 wn 2 D1
i=1

where 71; is the exit time of Bp(
Lemma 5.4 we have that with t =

e

i %) ,& = Xy_, and k > 1 will be chosen later. From

ki N

P(t<t)<p+at” (39)
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where p € 1 l1—¢landa = =2 — . Let n be such that P (t <t) = (p +at™) A 1. The
2

En(x.7)
relation (39) can be rewritten as
P (<" <s) <p-+as
E (exp (—Arm)) <E (exp (—Anm)) <p+ ar~ L.

From that point the proof can be finished asin [5]. W

Remark 5.4. From the definitions, from Theorem 5.2, (V D), and (ER),, it is immediate that

n™ r
> i E. (B ,— 40
k+1 — yeg},l(r;,r) m( 'O(y k>> “0)
> in E, (B, (y,r)k P, 41
> cq min m (Bo (v, 7)) (41)
Bu—1 Em (B" (X’ r))
(k+1) zg——, (42)
nm
1

E, (B)\Bn-T

k+12c< n( )) , 43)
n
where B = B (x, r), which yields
1
E B Pm—1

P, (Tg < n) < Cexp (—c( mri )> ) (44)

n

H (_x’ l‘) ﬁml—]

P, (Tg <n) < Cexp|—c — ) 45)

n

5.2. The Einstein relation

The relation between the mean exit time of a ball, its volume and resistance is regarded as a
key tool to obtain heat kernel estimates. In this section we obtain the corresponding relation with
respect to the distance p.

Theorem 5.3. If (I', ) satisfies (po), (VD),, (M) and (Ry) then, it satisfies the Einstein
relation, (ER),:

1/m

E, (x,2r) < [Ry (x, B) V, (x,2r)] (46)
with B = B, (x,2r), E, (x,r) =Ej, (Bp (x,r)|Xo = x) .
Corollary 5.3. Under the same conditions
5 1/m
E,(x,2r) < [r V, (x, 2r)] . “n

Theorem 5.3 will follow from Theorem 5.1, the next statement and from the tail estimate (38)
of the exit time.
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Lemma 5.5. Under the same conditions of Theorem 5.3

E,(x,r) < Epy (x, nm.

Proof. Let B = B, (x,r), T = Tp From the Jensen inequality we obtain that for m > 1
Ep (x,7) =By (Qnt1 (TBrern)) < Ex (T7) = [E, (x, 0)]"
For the opposite estimate denote £ = E,, (x, r) and

26‘()(E)l/m
E,(x,r) = ZP(T >n) > Z P (T > n)
n

n=co(E)!/™
> coE/"P (TB > 2c0E‘/'").

Now we use Theorem 5.2, in particular (45)

1
P, (T <n) < Cexp <—c (H(x,r)>ﬁ1> . (48)

nm

Given that we assume that B (x, r) is the connected component containing x it and finite as
assumed (c.f. Condition 5.1), it follows that P, (T" < co) = 1, that means that

P.(T>n)=1-P(T <n)

1
H(x,r)\ 7T
zl—Cexp(—e( Ofﬂ”) )31/2
n
p—1

1
if we chose n™ > H (x, r) and cg such thatlog C—c (2170) e 1/2i.e.co = % <10gC+1/2) ,

the proof is complete. W

Proof of Theorem 5.3. The statement is immediate from Lemmas 5.2, 5.5 and Theo-
rem5.1. W

6. Two-sided estimates

In this section we show that (V D), , (Ry) implies the off-diagonal upper and near diagonal
lower estimates.

6.1. The off-diagonal upper estimate
The off-diagonal estimate can be easily obtained from the diagonal one.

Theorem 6.1. Assume (po), (V D), , (M) and (Ry) and (DUE) then

C
(x,y) < mexp(—ck (x,n,r))

c (Fp (x,d (x, y)))ﬂni"—l
<———exp|—c| ——F— .
Vp (x, f (x,n)) n

The proof'is word by word the same as for Theorem 8.5 in [14, p. 110] or an alternative proof is
a combination of Theorems 8.6 and 8.10 in [14, pp. 113, 129].

pn
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6.2. Lower estimates

It is standard to deduce a diagonal lower estimate and its stronger form from (33) (see also
in [14, p. 73 Theorem 6.2 and p. 76 Remark 6.1]).

Proposition 6.1. If (33) holds there is a ¢ > O such that for alln : ¢F > n > 0,R >
f(x’zn)9B =Bp(-xvr)

c

B <
Ph (6 X) 2 s (LDLE)
~ c
Pn (X, X) = m, (DLE)

where f (x,-) is the inverse of F (x, -) in the second variable.
Corollary 6.1. We have that (po), (VD,)) , (M) and (R») imply both inequalities (DLE) and
(LDLE).

The next task is to show the Near Diagonal Lower Estimate (N DLE): There are 6 and ¢ > 0
such that, forallx € I',r >0,y € B(x,r),n > 0if p (x,y) <§f (x, n) then,

P (x, y)_m

and its stronger form the Particular Lower Estimate (P LE): There are ¢, §, ¢ > 0 constants such
thatforallx,y e I'yn>r >0

~B,(x,R)
Dn (x,y) > —V G 49)

provided thatd (x,y) < 4f (x,n),n <eF (x,r).

Theorem 6.2. If (I', ) satisfies (V D) ,, (DLE) and (DU E) then, (NDLE) and (PLE) hold.

Proof. First we prove

~Bp(x r) (X y)
Vo (x, f(x n))

for x,y € I' satisfying d (x,y) = 0 mod 2. Let us choose r such that n = F, (x,r) =
1
[r2Vp (x, r)] /m and denote B = B, (x,7) fu (y) = p,f (x,y)+ pr (x,y), then

| o ) = fa DI* < Rin (X, ¥) Do (fus f0) -
By Lemma 4.1 we have that

| fu () = fu OV < R (6, Y) Do (fns f) = Ron (x, ) V.

Now we can apply Lemma 4.2 to f;, and the diagonal upper and lower estimates

Iﬁm—ﬁ@WSR(xw — fa (x)
< Rm‘ﬁar{m<x)
n
8272

1 2
< Cmfn (x) < an (x),
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if § is small enough. The above inequality and Proposition 6.1 mean that

1
~ ~B »B
Pn(x,y) Z py (X, ) Z 5Py (X,X) = m

Proof of Theorem 1.2. The diagonal upper estimate follows from Theorem 4.1, The off-
diagonal upper estimate is stated in Theorem 6.1. The combination of Proposition 6.1 and Theo-
rem 6.2 shows (5).

The reverse direction can be seen easily. The implication (UE) + (PLE) — (DUE) +
(DLE) = (V D), is immediate. The inequality (R;) follows from the connection of g,lz (x,x)

and R,, (x, B (x, r)°) and direct calculation using (DLE): Let F = F (x, r) = [r?V, (x, r)]l/m

2F
Ry (x,7) =g (x,x) = ¢ Y _n"pP(x,x)
n=F

then we have

r2Vp (x,1)

2F
R, (x,r)>c n"pB(x,x)>c¢
m ( ) — r; pn ( ) — Vp (x’r)

which yields (R;). W

Remark 6.1. Kigami in [11] constructed a metric which is quasi-symmetric to d (x, y) Vr(x, d
(x,¥) +d(x,y)Vr (v,d (y, x)). This procedure can be applied to 0% (x,y) Vo (x, p(x,y) +
02 (x,y) V, (v, p (x,y)) as well. All the conditions are satisfied to obtain a new metric o which
is quasi symmetric to p. We know that (V D), implies (V D), and our heat kernel estimates can
be obtained in a new form:

Pn(x,y) < m

pary) € ——S e —c (M)“
Vo (x, 871 () n

~ c
p ('x3 y) 2 <, 7/ 1.,

" Vo (x, 871 ()

under the same conditions as in Theorems 1.1 and 1.2, where g~ ! (n) is the inverse of g (r) =
r*Vy (x, r) and a is the exponent determined by construction of o from p. The parabolic Harnack
inequality follows for o as well. It should be noted here, that with the introduction of the second
new metric the dependence from x in the exponential term is eliminated and F (x, r) replaced
by g (r).

7. Examples

Example 7.1. Let us consider first the simplest possible example. Collapsing a slowly opening
spherically symmetric tree with fractal dimension « = 3 and walk dimension 8 = 2 (c.f. [6])
to ZT = {0, 1, ...} one obtains a transient weighted graph. The edge weights are 0,1 = 1 and
pjo1,j =2%"Dif j e [2/, 2 fori € Z,i = 1. Denote D = ZT\ {2'} . k = 2'. It is clear
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that « = 3, 8 = 2 and with m = 2 we have
Pn(0,0) < n~?

00 kP
> " pP 0,0) <Y npP (0,0)
n=0 n=0

k2 k2
-1/2 N\ _ i
Y 1pa (0,00 < Y /x(k) =2
n=0

n=0

X

Gy (0,0)

X

and in general for N > 0
GZWY (0,0) =< N.
This means that
R, (0,N) =< N
and
0 (0, N) =< N2,

At the same time (R») is satisfied.

Example 7.2. Now we consider the simple symmetric random walk on Z¢, and first the case
d = 2k. The vertex set of the graph is Z¢, vertices x, y € Z¢ form an edge if ||x — y| = 1. Edge
weights are uniform, p, y, = 1/. From the diagonal estimates we have that

ay/Bp =d/2. (50)
On the other hand we know from (47) that the proper scaling:

1/

P — [ﬂvp (O, I’)] " b
24«

bo= =

Due to the spherical symmetry we can assume that d = wa,, for some w > 0. Consequently we
have 8, = 2w as well. The solution of these identities is:

_ 2d
ap_Zm—d
g, = 4
P dm—d
and
2m —d
w =
2

‘We have the restriction w > 0 and m > ’7#] an integer, that yields ford = 2k,m = k+1, 0w =
1. As a result we have
p(x,y)=xd(x,y).

Ford = 2k + 1 we have w = 1/2,d (x,y) < p (x, y)l/z. The correction would be the use
of m = % but at present we cannot handle non-integer derivation in Lemma 4.2. If we use
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the quasi-metric R, instead of p we obtain for Z, d = 2k + 1 that R,, (x,y) =< d (x, y). In
fact the use of the metric p is not essential in the whole work. One can see that the use of the
weak triangular inequality would cause controllable cumulation of constants and the heat kernel
estimates hold with respect to R,,,.
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