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Abstract

We extend to the BV case a measure theoretic lemma previously
proved by DiBenedetto, Gianazza and Vespri ([1]) in W 1,1

loc . It states
that if the set where u is positive occupies a sizable portion of a open
set E then the set where u is positive clusters about at least one point
of E. In this note we follow the proof given in the Appendix of [3] so
we are able to use only a 1−dimensional Poincaré inequality.

1 Introduction

For ρ > 0, denote by Kρ(y) ⊂ RN a cube of edge ρ centered at y. If y is the
origin on RN , we write Kρ(0) = Kρ. For any measurable set A ⊂ RN , by |A|
we denote its N -dimensional Lebesgue measure.
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If u is a continuous function in a domain E and u(x0) > 0 for a point x0 ∈ E
then there is a r > 0 such that u(x) > 0 in Kr(x0) ∩ E. If u ∈ C1 then we
can quantify r in terms of the C1 norm of u.
The Lusin Theorem says if u is a measurable function in a bounded domain
E, than for any ε > 0 there is a continuous function g such that g = u in E
except in a small set V ⊂ E such that |V | ≤ ε.
In this note we want to generalize the previous property in the case of
mesaurable functions. Very roughly speaking, we prove that if u ∈ BV (E)
and u(x0) > 0 for a point x0 ∈ E than for any ε > 0 there is a positive r,
that can be quantitatively estimated in terms of ε and the BV norm of u,
such that u(x) > 0 for any x ∈ Kr(x0)∩E except in a small set V ⊂ E such
that |V | ≤ ε|Kr(x0)|. Obviously we wil state a more precise result in the
sequel.
Such kind of result has natural application in regularity theory for solutions
to PDE’s (see for instance the monography ([2]) for an overview). The first
time it was proved in the Appendix of ([3]) in the case of W 1,p(E). It was
generalized in the case of W 1,1(E) in ([1]). Here we combine the proofs of
([3]) and ([1]) in order to generalize this result in BV spaces. Moreover in this
note we use a proof based only on 1-dimensional Poincaré inequality. This
approach could be useful in the case anisotropic operators where it is likely
that will be necessary to develop a new approach tailored on the structure
of the operator (a first step in this direction can be found in ([4])).

We prove the following Measure Theoretical Lemma.

Lemma 1.1 Let u ∈ BV (Kρ) satisfy

(1.1) ‖u‖BV (Kρ) ≤ γρN−1 and |[u > 1]| ≥ α|Kρ|

for some γ > 0 and α ∈ (0, 1). Then, for every δ ∈ (0, 1) and 0 < λ < 1
there exist xo ∈ Kρ and η = η(α, δ, γ, λ,N) ∈ (0, 1), such that

(1.2) |[u > λ] ∩Kηρ(xo)| > (1− δ)|Kηρ(xo)|.

Roughly speaking the Lemma asserts that if the set where u is bounded away
from zero occupies a sizable portion of Kρ, then there exists at least one point
xo and a neighborhood Kηρ(xo) where u remains large in a large portion of
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Kηρ(xo). Thus the set where u is positive clusters about at least one point
of Kρ.
In Section 2, we operate a suitable partition of Kρ. In Section 3 we prove the
result in the caseN = 2 ( an analagous proof works for N = 1. We consider
more meaningful to prove the result in the less trivial case N = 2). In Section
4, by an induction argument, we extend the lemma to any dimension.

2 Proof – A partition of the cube

It suffices to establish the Lemma for u continuous and ρ = 1. For n ∈ N
partition K1 into nN cubes, with pairwise disjoint interior and each of edge
1/n. Divide these cubes into two finite subcollections Q+ and Q− by

Qj ∈ Q+ ⇐⇒ |[u > 1] ∩Qj| >
α

2
|Qj|

Qi ∈ Q− ⇐⇒ |[u > 1] ∩Qi| ≤
α

2
|Qi|

and denote by #(Q+) the number of cubes in Q+. By the assumption∑
Qj∈Q+

|[u > 1] ∩Qj|+
∑

Qi∈Q−

|[u > 1] ∩Qi| > α|K1| = αnN |Q|

where |Q| is the common measure of the Ql . From the definitions of the
classes Q±,

αnN <
∑

Qj∈Q+

|[u > 1] ∩Qj|
|Qj|

+
∑

Qi∈Q−

|[u > 1] ∩Qi|
|Qi|

< #(Q+)+
α

2
(nN−#(Q+)).

Therefore
#(Q+) >

α

2− α
nN .

Consider now a subcollection Q̄+ of Q+. A cubeQj belongs to Q̄+ ifQj ∈ Q+

and ‖u‖BV (Qj) ≤
2α

(2− α)nN
‖u‖BV (K1).

Clearly

(2.1) #(Q̄+) >
α

2(2− α)
nN .
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Fix δ, λ ∈ (0, 1). The idea of the proof is that an alternative occurs. Either
there is a cube Qj ∈ Q̄+ such that there is a subcube Q̃ ⊂ Qj where

(2.2) |[u > λ] ∩ Q̃| ≥ (1− δ)|Q̃|

or for any cube Qj ∈ Q̄+ there exists a constant c = c(α, δ, γ, η,N) such that

(2.3) ‖u‖BV (Qj) ≥ c(α, δ, γ, λ,N)
1

nN−1
.

Hence if (2.2) does not hold for any cube Qj ∈ Q̄+, we can add (2.3) over all
such Qj. Therefore taking into account (2.1), we have

α

2− α
c(α, δ, γ,N)n ≤ ‖u‖BV (K1) ≤ γ.

and for n large enough this fact leads to an evident absurdum.

3 Proof of the Lemma 1.1 when N = 2

The proof is quite similar to the one of appendix A.1 of ([3]) to which we
refer the reader for more details. For sake of semplicity we will use the same
notation of ([3]).
Let K 1

n
(xo, yo) ∈ Q̄+. WLOG we may assume (xo, yo) = (0, 0). Assume that

(3.1) |[u ≤ λ] ∩K 1
n
| ≥ δ|K 1

n
| and

∣∣∣[u > 1] ∩K 1
n

∣∣∣ > α

2
|K 1

n
|

(3.2) ‖u‖BV (K 1
n

) ≤
2α

(2− α)n2
‖u‖BV (K1).

Denote by (x, y) the coordinates of R2 and, for x ∈ (− 1

2n
,

1

2n
) let Y(x) the

cross section of the set [u > 1]∩K 1
n

with lines parallel to y-axis, through the
abscissa x, i.e.

Y(x) ≡ {y ∈ (− 1

2n
,

1

2n
) such that u(x, y) > 1}.
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Therefore

|[u > 1] ∩K 1
n
| ≡

∫ 1
2
n

− 1
2n

|Y(x)|dx.

Since, by (3.1), |[u > 1] ∩K 1
n
| > α

2
|K 1

n
|,

there exists some x̃ ∈ (− 1

2n
,

1

2n
) such that

(3.3) |Y(x̃)| ≥ α

4n
.

Define

Ax̃ ≡ {y ∈ Y(x̃) such that ∃x ∈ (− 1

2n
,

1

2n
) such that u(x, y) ≤ (1 + λ)

2
}.

Note that for any y ∈ Ax̃ the variation along the x direction is at least
(1− λ)

2
. If |Ax̃| ≥

α

8n
, we have that the BV norm of u in K 1

n
is at least

α(1− λ)

16n
and therefore (2.3) holds.

If |Ax̃| ≤
α

8n
, we have that there exists at least a ỹ ∈ Y(x̃) such that

u(x,ỹ) ≥ (1 + λ)

2
for any x ∈ (− 1

2n
,

1

2n
).

Define

Aỹ ≡ {x ∈ (− 1

2n
,

1

2n
) such that ∃y ∈ (− 1

2n
,

1

2n
) such that u(x, y) ≤ λ}.

Note that for any x ∈ Aỹ the variation along the y direction is at least
(1− λ)

2
.

If |Aỹ| ≥
δ

n
we have that the BV norm of u in K 1

n
is at least

δ(1− λ)

2n
and

therefore (2.3) holds.

If |Aỹ| ≤
δ

n
we have that |[u > λ] ∩K 1

n
| ≥ (1 − δ)|K 1

n
| and therefore (2.2)

holds.
Summarasing either (2.2) or (2.3) hold. Therefore the alternative occurs and
the case N = 2 is proved.
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4 Proof of the Lemma 1.1 when N > 2

Assume that Lemma 1.1 is proved in the case N = m and let us prove it
when N = m+ 1.
Let z a point of Rm+1. To make to notation easier, write z = (x, y) where
x ∈ R and y ∈ Rm.
Let K 1

n
(z) ∈ Q̄+. WLOG we may assume z = (0, 0). Assume that

(4.1) |[u ≤ λ] ∩K 1
n
| ≥ δ|K 1

n
| and

∣∣∣[u > 1] ∩K 1
n

∣∣∣ > α

2
|K 1

n
|

(4.2) ‖u‖BV (K 1
n

) ≤
2α

(2− α)nm+1
‖u‖BV (K1).

For any x ∈ (− 1

2n
,

1

2n
) consider the m -dimensional cube centered in (x, 0),

orthogonal to the x−axis and with edge 1
n

and denote this cube K̄ 1
n
(x).

Define Ā as the set of the x ∈ (− 1

2n
,

1

2n
) such that∣∣∣[u > 1] ∩ K̄ 1

n
(x)
∣∣∣ > α

4
|K̄ 1

n
(x)|

and

‖u‖BV (K̄ 1
n

(x)) ≤
16

(2− α)nm
‖u‖BV (K1).

It is possible to prove that

|Ā| ≥ α

8n
.

Let x̄ ∈ Ā and apply Lemma 1.1 to K̄ 1
n
(x̄) (we can do so because K̄ 1

n
(x̄) is

a m-dimensional set).
So we get the existence of a constant η0 > 0 and a point yo ∈ K̄ 1

n
(x̄) such

that if we define the set

A ≡ {(x̄, y) ∈ K̄ η0
n

(x̄, y0) such that u(x̄, y) ≥ (1 + λ)

2
}

where K̄ η0
n

(x̄, y0) denotes the m−dimensional cube of edge
η0

n
, centered in

(x̄, y0) and orthogonal to the x−axis, we have

(4.3) |A| ≥ (1− δ

2
)(
η0

n
)m.
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Define

B ≡ {y ∈ A such that ∃x ∈ (− 1

2n
,

1

2n
) such that u(x, y) ≤ λ}.

Note that for any y ∈ B the variation along the x direction is at least
(1− λ)

2
.

If |B| ≥ δ

2
(
η0

n
)m, we have that the BV norm of u inK 1

n
is at least

δ(1− λ)

4
(
η0

n
)m

and therefore (2.3) holds.

If |B| ≥ δ

2
(
η0

n
)m, taking in account (4.3) we have that in the cylinder

(− 1

2n
,

1

2n
) × K̄ η0

n
(0, y0) the measure of the set where u(x, y) ≥ λ is greater

than (1− δ) ηmo
nm+1

. Therefore (2.2) holds in a suitable subcube of K 1
n
.

Summarasing either (2.2) or (2.3) hold. Therefore the alternative occurs and
the case N > 2 is proved.
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