A Quantitative Lusin Theorem for Functions in BV

András Telcs^{*}, Vincenzo Vespri[†]

November 19, 2013

Abstract

We extend to the BV case a measure theoretic lemma previously proved by DiBenedetto, Gianazza and Vespri ([1]) in $W_{loc}^{1,1}$. It states that if the set where u is positive occupies a sizable portion of a open set E then the set where u is positive clusters about at least one point of E. In this note we follow the proof given in the Appendix of [3] so we are able to use only a 1-dimensional Poincaré inequality.

1 Introduction

For $\rho > 0$, denote by $K_{\rho}(y) \subset \mathbb{R}^N$ a cube of edge ρ centered at y. If y is the origin on \mathbb{R}^N , we write $K_{\rho}(0) = K_{\rho}$. For any measurable set $A \subset \mathbb{R}^N$, by |A| we denote its N-dimensional Lebesgue measure.

^{*}Department of Quantitative Methods, Faculty of Economics, University of Pannonia, Veszprém, Hungary & Department of Computer Science and Information Theory, Budapest University of Technology and Economic, Magyar Tudósok Kőrútja 2, H-1117 Budapest, (HUNGARY), telcs.szit.bme@gmail.com

[†]Dipartimento di Matematica ed Informatica Ulisse Dini, Universitá degli studi di Firenze Viale Morgagni, 67/a I-50134 Firenze (ITALIA) vincenzo.vespri@unifi.it. Member of GNAMPA (INdAM).

If u is a continuous function in a domain E and $u(x_0) > 0$ for a point $x_0 \in E$ then there is a r > 0 such that u(x) > 0 in $K_r(x_0) \cap E$. If $u \in C^1$ then we can quantify r in terms of the C^1 norm of u.

The Lusin Theorem says if u is a measurable function in a bounded domain E, than for any $\varepsilon > 0$ there is a continuous function g such that g = u in E except in a small set $V \subset E$ such that $|V| \leq \varepsilon$.

In this note we want to generalize the previous property in the case of mesaurable functions. Very roughly speaking, we prove that if $u \in BV(E)$ and $u(x_0) > 0$ for a point $x_0 \in E$ than for any $\varepsilon > 0$ there is a positive r, that can be quantitatively estimated in terms of ε and the BV norm of u, such that u(x) > 0 for any $x \in K_r(x_0) \cap E$ except in a small set $V \subset E$ such that $|V| \leq \varepsilon |K_r(x_0)|$. Obviously we will state a more precise result in the sequel.

Such kind of result has natural application in regularity theory for solutions to PDE's (see for instance the monography ([2]) for an overview). The first time it was proved in the Appendix of ([3]) in the case of $W^{1,p}(E)$. It was generalized in the case of $W^{1,1}(E)$ in ([1]). Here we combine the proofs of ([3]) and ([1]) in order to generalize this result in BV spaces. Moreover in this note we use a proof based only on 1-dimensional Poincaré inequality. This approach could be useful in the case anisotropic operators where it is likely that will be necessary to develop a new approach tailored on the structure of the operator (a first step in this direction can be found in ([4])).

We prove the following Measure Theoretical Lemma.

Lemma 1.1 Let $u \in BV(K_{\rho})$ satisfy

(1.1)
$$||u||_{BV(K_{\rho})} \le \gamma \rho^{N-1}$$
 and $|[u > 1]| \ge \alpha |K_{\rho}|$

for some $\gamma > 0$ and $\alpha \in (0, 1)$. Then, for every $\delta \in (0, 1)$ and $0 < \lambda < 1$ there exist $x_o \in K_\rho$ and $\eta = \eta(\alpha, \delta, \gamma, \lambda, N) \in (0, 1)$, such that

(1.2)
$$|[u > \lambda] \cap K_{\eta\rho}(x_o)| > (1 - \delta)|K_{\eta\rho}(x_o)|.$$

Roughly speaking the Lemma asserts that if the set where u is bounded away from zero occupies a sizable portion of K_{ρ} , then there exists at least one point x_o and a neighborhood $K_{\eta\rho}(x_o)$ where u remains large in a large portion of $K_{\eta\rho}(x_o)$. Thus the set where u is positive clusters about at least one point of K_{ρ} .

In Section 2, we operate a suitable partition of K_{ρ} . In Section 3 we prove the result in the case N = 2 (an analogous proof works for N = 1. We consider more meaningful to prove the result in the less trivial case N = 2). In Section 4, by an induction argument, we extend the lemma to any dimension.

2 Proof – A partition of the cube

It suffices to establish the Lemma for u continuous and $\rho = 1$. For $n \in \mathbb{N}$ partition K_1 into n^N cubes, with pairwise disjoint interior and each of edge 1/n. Divide these cubes into two finite subcollections \mathbf{Q}^+ and \mathbf{Q}^- by

$$Q_j \in \mathbf{Q}^+ \quad \iff \quad |[u > 1] \cap Q_j| > \frac{\alpha}{2} |Q_j|$$
$$Q_i \in \mathbf{Q}^- \quad \iff \quad |[u > 1] \cap Q_i| \le \frac{\alpha}{2} |Q_i|$$

and denote by $\#(\mathbf{Q}^+)$ the number of cubes in \mathbf{Q}^+ . By the assumption

$$\sum_{Q_j \in \mathbf{Q}^+} |[u > 1] \cap Q_j| + \sum_{Q_i \in \mathbf{Q}^-} |[u > 1] \cap Q_i| > \alpha |K_1| = \alpha n^N |Q|$$

where |Q| is the common measure of the Q_l . From the definitions of the classes \mathbf{Q}^{\pm} ,

$$\alpha n^{N} < \sum_{Q_{j} \in \mathbf{Q}^{+}} \frac{|[u > 1] \cap Q_{j}|}{|Q_{j}|} + \sum_{Q_{i} \in \mathbf{Q}^{-}} \frac{|[u > 1] \cap Q_{i}|}{|Q_{i}|} < \#(\mathbf{Q}^{+}) + \frac{\alpha}{2}(n^{N} - \#(\mathbf{Q}^{+})).$$

Therefore

$$\#(\mathbf{Q}^+) > \frac{\alpha}{2-\alpha} n^N.$$

Consider now a subcollection $\bar{\mathbf{Q}}^+$ of \mathbf{Q}^+ . A cube Q_j belongs to $\bar{\mathbf{Q}}^+$ if $Q_j \in \mathbf{Q}^+$ and $||u||_{BV(Q_j)} \leq \frac{2\alpha}{(2-\alpha)n^N} ||u||_{BV(K_1)}$. Clearly

(2.1)
$$\#(\bar{\mathbf{Q}}^+) > \frac{\alpha}{2(2-\alpha)} n^N$$

Fix $\delta, \lambda \in (0, 1)$. The idea of the proof is that an alternative occurs. Either there is a cube $Q_j \in \overline{\mathbf{Q}}^+$ such that there is a subcube $\tilde{Q} \subset Q_j$ where

(2.2)
$$|[u > \lambda] \cap \tilde{Q}| \ge (1 - \delta)|\tilde{Q}|$$

or for any cube $Q_j \in \overline{\mathbf{Q}}^+$ there exists a constant $c = c(\alpha, \delta, \gamma, \eta, N)$ such that

(2.3)
$$||u||_{BV(Q_j)} \ge c(\alpha, \delta, \gamma, \lambda, N) \frac{1}{n^{N-1}}.$$

Hence if (2.2) does not hold for any cube $Q_j \in \overline{\mathbf{Q}}^+$, we can add (2.3) over all such Q_j . Therefore taking into account (2.1), we have

$$\frac{\alpha}{2-\alpha}c(\alpha,\delta,\gamma,N)n \le \|u\|_{BV(K_1)} \le \gamma.$$

and for n large enough this fact leads to an evident absurdum.

3 Proof of the Lemma 1.1 when N = 2

The proof is quite similar to the one of appendix A.1 of ([3]) to which we refer the reader for more details. For sake of semplicity we will use the same notation of ([3]).

Let $K_{\frac{1}{n}}(x_o, y_o) \in \bar{\mathbf{Q}}^+$. WLOG we may assume $(x_o, y_o) = (0, 0)$. Assume that

(3.1)
$$|[u \le \lambda] \cap K_{\frac{1}{n}}| \ge \delta |K_{\frac{1}{n}}|$$
 and $|[u > 1] \cap K_{\frac{1}{n}}| > \frac{\alpha}{2} |K_{\frac{1}{n}}|$

(3.2)
$$\|u\|_{BV(K_{\frac{1}{n}})} \leq \frac{2\alpha}{(2-\alpha)n^2} \|u\|_{BV(K_1)}.$$

Denote by (x, y) the coordinates of \mathbb{R}^2 and, for $x \in (-\frac{1}{2n}, \frac{1}{2n})$ let $\mathfrak{Y}(x)$ the cross section of the set $[u > 1] \cap K_{\frac{1}{n}}$ with lines parallel to y-axis, through the abscissa x, i.e.

$$\mathfrak{Y}(x) \equiv \{ y \in \left(-\frac{1}{2n}, \frac{1}{2n}\right) \text{ such that } u(x, y) > 1 \}.$$

Therefore

$$|[u > 1] \cap K_{\frac{1}{n}}| \equiv \int_{-\frac{1}{2n}}^{\frac{1}{2n}} |\mathfrak{Y}(x)| dx.$$

Since, by (3.1), $|[u > 1] \cap K_{\frac{1}{n}}| > \frac{\alpha}{2}|K_{\frac{1}{n}}|$, there exists some $\tilde{x} \in (-\frac{1}{2n}, \frac{1}{2n})$ such that

$$(3.3) \qquad \qquad |\mathfrak{Y}(\tilde{x})| \ge \frac{\alpha}{4n}$$

Define

$$A_{\tilde{x}} \equiv \{ y \in \mathfrak{Y}(\tilde{x}) \text{ such that } \exists x \in \left(-\frac{1}{2n}, \frac{1}{2n}\right) \text{ such that } u(x, y) \le \frac{(1+\lambda)}{2} \}.$$

Note that for any $y \in A_{\tilde{x}}$ the variation along the x direction is at least $\frac{(1-\lambda)}{2}$. If $|A_{\tilde{x}}| \geq \frac{\alpha}{8n}$, we have that the BV norm of u in $K_{\frac{1}{n}}$ is at least $\frac{\alpha(1-\lambda)}{16n}$ and therefore (2.3) holds. If $|A_{\tilde{x}}| \leq \frac{\alpha}{8n}$, we have that there exists at least a $\tilde{y} \in \mathfrak{Y}(\tilde{x})$ such that $u(x,\tilde{y}) \geq \frac{(1+\lambda)}{2}$ for any $x \in (-\frac{1}{2n}, \frac{1}{2n})$. Define

$$A_{\tilde{y}} \equiv \{x \in \left(-\frac{1}{2n}, \frac{1}{2n}\right) \text{ such that } \exists y \in \left(-\frac{1}{2n}, \frac{1}{2n}\right) \text{ such that } u(x, y) \le \lambda\}.$$

Note that for any $x \in A_{\tilde{y}}$ the variation along the y direction is at least $\frac{(1-\lambda)}{2}$. If $|A_{\tilde{y}}| \geq \frac{\delta}{n}$ we have that the BV norm of u in $K_{\frac{1}{n}}$ is at least $\frac{\delta(1-\lambda)}{2n}$ and therefore (2.3) holds. If $|A_{\tilde{y}}| \leq \frac{\delta}{n}$ we have that $|[u > \lambda] \cap K_{\frac{1}{n}}| \geq (1-\delta)|K_{\frac{1}{n}}|$ and therefore (2.2) holds.

Summarising either (2.2) or (2.3) hold. Therefore the alternative occurs and the case N = 2 is proved.

4 Proof of the Lemma 1.1 when N > 2

Assume that Lemma 1.1 is proved in the case N = m and let us prove it when N = m + 1.

Let z a point of \mathbb{R}^{m+1} . To make to notation easier, write z = (x, y) where $x \in \mathbb{R}$ and $y \in \mathbb{R}^m$.

Let $K_{\frac{1}{2}}(z) \in \overline{\mathbf{Q}}^+$. WLOG we may assume z = (0, 0). Assume that

(4.1)
$$|[u \le \lambda] \cap K_{\frac{1}{n}}| \ge \delta |K_{\frac{1}{n}}|$$
 and $|[u > 1] \cap K_{\frac{1}{n}}| > \frac{\alpha}{2} |K_{\frac{1}{n}}|$

(4.2)
$$\|u\|_{BV(K_{\frac{1}{n}})} \le \frac{2\alpha}{(2-\alpha)n^{m+1}} \|u\|_{BV(K_{1})}.$$

For any $x \in \left(-\frac{1}{2n}, \frac{1}{2n}\right)$ consider the *m*-dimensional cube centered in (x, 0), orthogonal to the *x*-axis and with edge $\frac{1}{n}$ and denote this cube $\bar{K}_{\frac{1}{n}}(x)$. Define \bar{A} as the set of the $x \in \left(-\frac{1}{2n}, \frac{1}{2n}\right)$ such that

$$\left| [u>1] \cap \bar{K}_{\frac{1}{n}}(x) \right| > \frac{\alpha}{4} |\bar{K}_{\frac{1}{n}}(x)|$$

and

$$\|u\|_{BV(\bar{K}_{\frac{1}{n}}(x))} \le \frac{16}{(2-\alpha)n^m} \|u\|_{BV(K_1)}.$$

It is possible to prove that

$$|\bar{A}| \ge \frac{\alpha}{8n}.$$

Let $\bar{x} \in \bar{A}$ and apply Lemma 1.1 to $\bar{K}_{\frac{1}{n}}(\bar{x})$ (we can do so because $\bar{K}_{\frac{1}{n}}(\bar{x})$ is a *m*-dimensional set).

So we get the existence of a constant $\eta_0 > 0$ and a point $y_o \in \overline{K}_{\frac{1}{n}}(\overline{x})$ such that if we define the set

$$A \equiv \{(\bar{x}, y) \in \bar{K}_{\frac{\eta_0}{n}}(\bar{x}, y_0) \text{ such that } u(\bar{x}, y) \ge \frac{(1+\lambda)}{2}\}$$

where $\bar{K}_{\frac{\eta_0}{n}}(\bar{x}, y_0)$ denotes the *m*-dimensional cube of edge $\frac{\eta_0}{n}$, centered in (\bar{x}, y_0) and orthogonal to the *x*-axis, we have

(4.3)
$$|A| \ge (1 - \frac{\delta}{2})(\frac{\eta_0}{n})^m$$

Define

$$B \equiv \{y \in A \text{ such that } \exists x \in (-\frac{1}{2n}, \frac{1}{2n}) \text{ such that } u(x, y) \le \lambda\}$$

Note that for any $y \in B$ the variation along the x direction is at least $\frac{(1-\lambda)}{2}$. If $|B| \ge \frac{\delta}{2} (\frac{\eta_0}{n})^m$, we have that the BV norm of u in $K_{\frac{1}{n}}$ is at least $\frac{\delta(1-\lambda)}{4} (\frac{\eta_0}{n})^m$ and therefore (2.3) holds. If $|B| \ge \frac{\delta}{2} (\frac{\eta_0}{n})^m$, taking in account (4.3) we have that in the cylinder $(-\frac{1}{2n}, \frac{1}{2n}) \times \bar{K}_{\frac{\eta_0}{n}}(0, y_0)$ the measure of the set where $u(x, y) \ge \lambda$ is greater than $(1-\delta)\frac{\eta_0^m}{n^{m+1}}$. Therefore (2.2) holds in a suitable subcube of $K_{\frac{1}{n}}$. Summarasing either (2.2) or (2.3) hold. Therefore the alternative occurs and the case N > 2 is proved.

Acknowledgments: This research was supported by the Italian-Hungarian executive project HU11MO10 "NonLinear Diffusion Processes and Mathematical Modelling in Finance".

References

- E. DiBenedetto, U. Gianazza, V. Vespri, Local clustering of the non-zero set of functions in W^{1,1}(E). Atti Accad. Naz. Lincei Cl. Sci. Mat. Appl., 9, (2006), 223-225.
- [2] E. DiBenedetto, U. Gianazza, V. Vespri, Harnack's inequality for degenerate and singular parabolic equations Springer Monographs in Mathematics (2011).
- [3] E. DiBenedetto, V. Vespri, On the singular equation $\beta(u)_t = \Delta u$. Arch. Rational Mech. Anal. **132** (1995), 247-309.
- [4] F. G. Düzgün, P.Marcellini, V. Vespri, NonLinear Anal., 94 (2014), 133-141.