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Abstract

We extend to the BV case a measure theoretic lemma previously
proved by DiBenedetto, Gianazza and Vespri ([1]) in VV;DC1 It states
that if the set where u is positive occupies a sizable portion of a open
set E then the set where u is positive clusters about at least one point
of E. In this note we follow the proof given in the Appendix of [3] so
we are able to use only a 1—dimensional Poincaré inequality.

1 Introduction

For p > 0, denote by K,(y) C RY a cube of edge p centered at y. If y is the
origin on RY, we write K,(0) = K,. For any measurable set A C RY, by |A4]
we denote its N-dimensional Lebesgue measure.
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If u is a continuous function in a domain E and u(z) > 0 for a point zy € F
then there is a r > 0 such that u(z) > 0 in K,(zo) N E. If u € C"' then we
can quantify r in terms of the C! norm of w.

The Lusin Theorem says if u is a measurable function in a bounded domain
E than for any € > 0 there is a continuous function g such that ¢ = u in E
except in a small set V' C E such that |V| <e.

In this note we want to generalize the previous property in the case of
mesaurable functions. Very roughly speaking, we prove that if u € BV(E)
and wu(zg) > 0 for a point xy € E than for any € > 0 there is a positive r,
that can be quantitatively estimated in terms of € and the BV norm of u,
such that u(z) > 0 for any x € K,(x¢) N E except in a small set V' C E such
that |V| < ¢|K,(x0)|. Obviously we wil state a more precise result in the
sequel.

Such kind of result has natural application in regularity theory for solutions
to PDE’s (see for instance the monography ([2]) for an overview). The first
time it was proved in the Appendix of ([3]) in the case of W'?(F). Tt was
generalized in the case of W (E) in ([1]). Here we combine the proofs of
([3]) and ([1]) in order to generalize this result in BV spaces. Moreover in this
note we use a proof based only on 1-dimensional Poincaré inequality. This
approach could be useful in the case anisotropic operators where it is likely
that will be necessary to develop a new approach tailored on the structure
of the operator (a first step in this direction can be found in ([4])).

We prove the following Measure Theoretical Lemma.

Lemma 1.1 Let u € BV(K),) satisty
(1.1) lullsye,y <" and lu> 1] > of Ky

for some v > 0 and a € (0,1). Then, for every § € (0,1) and 0 < A < 1
there exist z, € K, and n = n(«a, 4,7, A\, N) € (0,1), such that

(1.2) [[u > A] N Koy ()] > (1 = 0)[ K (o).
Roughly speaking the Lemma asserts that if the set where u is bounded away

from zero occupies a sizable portion of K ,, then there exists at least one point
z, and a neighborhood K,,(x,) where u remains large in a large portion of



K,,,(z,). Thus the set where u is positive clusters about at least one point
of K,.

In Section 2, we operate a suitable partition of K,. In Section 3 we prove the
result in the caseN = 2 ( an analagous proof works for N = 1. We consider
more meaningful to prove the result in the less trivial case N = 2). In Section
4, by an induction argument, we extend the lemma to any dimension.

2 Proof — A partition of the cube

It suffices to establish the Lemma for uw continuous and p = 1. For n € N
partition K; into n’V cubes, with pairwise disjoint interior and each of edge
1/n. Divide these cubes into two finite subcollections Q* and Q™ by

o
Qeq = |u>1nal> 3510
_ o
QiceQ = |u>1nQil <l
and denote by #(Q7) the number of cubes in Q. By the assumption

> > 0nQl+ Y > 10Q) > ol = an[q)
Q;€QT QicQ~

where |@Q)| is the common measure of the @);. From the definitions of the
classes QF,

any < Z MJF Z llu> 110 @il < #(Q+)+%(nN—#(Q+)).

o 19 oa- 1@l
Therefore o
+ N
Consider now a subcollection Q" of Q*. A cube @; belongs to Q" if Q; € Q*
2a

and ||ul|pv(g;) < m”UHBV(Kl).
Clearly

_ a

2.1 Ny @ N
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Fix §, A € (0,1). The idea of the proof is that an alternative occurs. Either
there is a cube @; € Q% such that there is a subcube @ C @; where

(2:2) lu>ANQI=(1-d)Q)|

or for any cube ); € Q™ there exists a constant ¢ = c(«, , 7,71, N) such that

1

(23) HUHBV(QJ') > C(aadaﬁ)@)‘aN)anl‘

Hence if (2.2) does not hold for any cube Q; € Q*, we can add (2.3) over all
such @;. Therefore taking into account (2.1), we have

(6]
9 _ ac(aa57%N)n < ||u||BV(K1) < -

and for n large enough this fact leads to an evident absurdum.

3 Proof of the Lemma 1.1 when N =2

The proof is quite similar to the one of appendix A.1 of ([3]) to which we
refer the reader for more details. For sake of semplicity we will use the same
notation of ([3]).

Let K1 (70,7,) € QF. WLOG we may assume (,,7,) = (0,0). Assume that

(31) |u<ANNKi|>6Ki  and [u>1NK. >%|K;|
2w
(3.2) ||U||BV(K%) < WHUHBV(I@-

1 1

Denote by (z,y) the coordinates of R? and, for z € (—2—, 2—) let Y(x) the
n’ 2n

cross section of the set [u > 1]N K1 with lines parallel to y-axis, through the

abscissa z, i.e.

V(x)={y € (—%, %) such that u(x,y) > 1}.



Therefore

Since, by (3.1), |[u > 1] N K1| > %u@y,

1 1
there exists some = € (—2—, 2—) such that
n’ 2n

a
. r)| > —.
33) D) >
Define
1 1 1
A; ={y € Y(Z) such that Iz € (—%, %) such that u(z,y) < ( ;A)}

Note that for any y € A; the variation along the x direction is at least

1—A
%. If |Az| > 8i’ we have that the BV norm of v in K1 is at least
n n

a(l =N)
on o
If Azl < L have that there exists at least a § € (&) such that
n
A) 11

for any x € (—%, %)

and therefore (2.3) holds.

1
u(eg) > L
Define

B 11 11
Ay ={z e (—%, %) such that Jy € (—%, %) such that u(z,y) < A}
Note that for any x € Aj; the variation along the y direction is at least
(1-X)
2 5

If |A;| > — we have that the BV norm of v in K1 is at least

n n
therefore (2.3) holds.

J

If |Az] < — we have that |[u > A]N K1| > (1 —0)|K1| and therefore (2.2)
n n n

holds.

Summarasing either (2.2) or (2.3) hold. Therefore the alternative occurs and
the case N = 2 is proved.

51—\

2n

and



4 Proof of the Lemma 1.1 when N > 2

Assume that Lemma 1.1 is proved in the case N = m and let us prove it
when N =m + 1.

Let z a point of R™*!. To make to notation easier, write z = (x,y) where
r € R and y € R™.

Let Ki(z) € Q". WLOG we may assume z = (0,0). Assume that

(41)  |u<NNKi|>6Ki|  and M>HQK;>%W4
2¢
(4.2) lull vz, < m“ﬂbwmr

1 1
For any x € (—2—, 2—) consider the m -dimensional cube centered in (z,0),
n’ 2n _
orthogonal to the z—axis and with edge L and denote this cube Ki(z).

_ 1
Define A as the set of the x € (—

. %) such that
[u>umkgmz>%K4@|
and
16
lullavey o < = lellavacy
It is possible to prove that
- a
|A] > —.
8n
Let Z € A and apply Lemma 1.1 to K1 () (we can do so because K1 (Z) is

a m-dimensional set). )
So we get the existence of a constant 79 > 0 and a point y, € K1 (Z) such
that if we define the set "

” 14+ A
A={(7,y) € Kn(7,yo) such that u(z,y) > ( ; )

}

where K (Z,yo) denotes the m—dimensional cube of edge @, centered in
n n

(Z,yo) and orthogonal to the z—axis, we have

(4.3 412 (- ()



Define

1 1
B = {y € A such that 3r € (—=—, —) such that u(z,y) < A}.

2n' 2n
L P (I1—=2X)
Note that for any y € B the variation along the x direction is at least 5
o ol —A
If |B| > 5(@)’”, we have that the BV norm of u in K1 is at least g(@)m
n n n

and therefore (2.3) holds.

If |B] > g(%)m, taking in account (4.3) we have that in the cylinder

1 1
Con o) X
than (1 —0) nZ;’ - Therefore (2.2) holds in a suitable subcube of K 1.
Summarasing either (2.2) or (2.3) hold. Therefore the alternative occurs and
the case N > 2 is proved.

) x Km(0,90) the measure of the set where u(x,y) > \ is greater
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