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Abstract

Diffusive capture processes are known to be an effective method for infor-
mation search on complex networks. The biased N lions-lamb model provides
quick search time by attracting random walkers to high degree nodes, where
most capture events take place. The price of the efficiency is extreme traffic
concentration on top hubs. We propose traffic load balancing provided by type
specific biased random walks. For that we introduce a multi-type scale-free
graph generation model, which embeds homophily structure into the network
by utilizing type dependent random walks. We show analytically and with sim-
ulations that by augmenting the biased random walk method with a simple type
homophily rule, we can alleviate the traffic concentration on high degree nodes
by spreading the load proportionally between hubs with different types of our
generated multi-type scale-free topologies.
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1. Introduction

First-passage processes have been actively researched due to their prevalence
in modeling dynamical natural phenomena [1]. A particular branch of research
mainly focuses on a special case of this process, called diffusive capture process
(or the moving trap model), where two different particles diffuse in some media
until they meet [2]. The diffusing particles are intuitively called lions and lambs,
and the process is also referred to as the diffusing predator-prey model. With
the imminent proliferation of network science, the dynamical properties of this
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process on complex networks has been widely researched recently and was linked
to many physical and chemical phenomena [3, 4, 5].

From a technological point of view, it is of special interest, how this process
could be employed for information search in todays communication networks.
The appropriate discovery and localization of resources is a key issue in any
kind of networked application. During the last decade resource localization has
been addressed in diverse systems with different purposes. The proliferation of
distributed algorithms is imminent in P2P networks [6, 7]. On the other hand,
we know from many empirical studies that complex social structures are very
efficient in resource discovery. Inspired by the related physics literature, the
diffusive capture process was proposed for information search in P2P networks.
In [8] it has been investigated, how the N lions and lamb (NLL) model can be
adapted to information search in a peer-to-peer network setting. NLL is a special
case of the diffusive capture process, where N lions (information markup packets)
try to catch one lamb (query packets), while both diffuse on the underlying
network.

The dynamical properties of this process is closely related to the first passage
times of the coupled random walks. Among firsts, [9] showed an analytical
formula for the mean first passage time of a random walk between two arbitrary
nodes of a scale-free network, and the analysis was generalized to actual first
passage times in [10, 11]. Lee et al. in [12] thoroughly analyzed the capture
probability of a lamb by several lions performing independent random walks
on a scale-free network with tree structure and also on networks with loops.
They found that on general scale-free networks which usually contain loops, the
capture time is much smaller than the mean first passage time. This effect is
due to the phenomenon that both walkers approach the stationary distribution,
which is biased towards high degree nodes, hence they meet shortly after they
arrive to the subset or close proximity of high degree nodes. Furthermore, it is
shown that the capture probability is dependent on the degree exponent of the
scale free network.

It is shown in [13] that the search process can be improved in terms of the
search time by biasing the random walk to prefer high degree nodes. This makes
the diffusing particles to quickly move to the core of the network consisting of
the high degree nodes where the capture events take place. The average capture
time 〈T 〉 of the RWrs in the the biased NLL (BNLL) model is analyzed in [3, 13]
in the specific case of one lion and one lamb. From [13] we know that the capture
time 〈T 〉 on looped scale free networks grows with Nβ , where β = 0.5 on scale-
free networks with γ = 2.4. In [3] the formula for the probability that two
walkers are on the same node is shown to be proportional to k2(α+1), and it
it shown that there exists a crossover value αc = (γ − 3)/2, where γ is the
exponent of the power-law degree distribution of the graph. For α < αc the
lamb survives with a finite probability, and for α ≥ αc the lion surely captures
the lamb. Although the biasing modification speeds up the capture process, it
puts a high resource allocation burden on the hubs in the network. To the best
of our knowledge, no one has addressed this open problem.

We propose a method to improve the BNLL model in terms of balancing the
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traffic load on the inner core of the network by constructing a scale-free over-
lay network with embedded community structure. We exploit this clustered
topology to balance the load of the core. It is a well-known fact, that many nat-
ural complex networks have some kind of community structure, and to identify
these clusters is a widely researched area [14, 15, 16]. Furthermore, many graph
generation models have been proposed to reproduce the naturally emerging com-
munity structure in synthetically built graphs [17, 18, 19, 20, 21, 22, 23, 24].
However, these models try to mimic various specific aspects of the phenomenon
and so the graph generation methods are often quite complex. For our purposes,
we show a simple overlay graph generation model, where we embed basic ho-
mophily structure into the graph. We label the nodes with different types. We
employ random walks to find nodes where new nodes are connected during the
graph generation process. The link generation process is then carefully adjusted
to create links between nodes with the same type, and also between nodes with
different types. The ratio of intra-type links and inter-type links is set as an
input parameter of our model. By adjusting this parameter we can control the
cliquishness of the community structure of the graph, which in turn will have
an effect on the search process.

Type dependent random walks are also used in the search process, where
the types are assigned also to the random walkers. Since the lions carry the
information packets, their type is determined by the type of their origin. On
the other hand, the lamb carries the search term, and does a random walk
defined by the type associated to the query. The biased random walk transition
rule is modified to use the degree based power bias only on the neighboring nodes
with the same type as the random walker. This forces the random walkers to
prefer nodes with the same type as themselves as their next hops. It is shown
that the random walkers diffuse between the subgraphs of the different types of
nodes evenly. The load is spread from the top degree nodes to smaller hubs as
well, while still maintains the advantageous properties of the model, such as the
high capture probability and low capture time.

In our analysis we show that the walks spend almost all their time on nodes
with their own type, consequently the search is limited to a subnetwork of size
N/t, where N is the number of nodes and t is the number of types in the graph.
The gain on the speed is dependent of the ratio of intra-type and inter-type
links in the generated multi-type scale-free graphs. With simulations it is found
that, for appropriate parameter settings, the average capture time is lower in
case of many types than in case of one type, which is the equivalent of the BNLL
model with one lion and one lamb. The metric we used to assess our model is the
amount of traffic going through the network core consisting of the top hubs. The
traffic on the core consisting of a set number of hubs is inversely proportional
to the number of types built into the network. We support this result with
matching simulation results. One should take into consideration that there is
a processing delay on the nodes, because all visiting lamb-lion pairs should be
matched. If the traffic is decreased by a factor of t, the processing time is
linearly decreasing by t as well.

The rest of this paper is structured as follows. In Section 2 we describe
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the multi-type scale-free graph generation model and prove that both the typed
subgraphs, and the whole graph has power-law distribution to aid the capture
process. Section 3 presents the modified biased NLL capture process with the
analysis and simulation of capture times. In Section 4 we show the load bal-
ancing capabilities of our capture process on the generated multi-type scale-free
graphs both analytically and by simulations. Finally, section 5 summarizes our
results.

2. Multi-type scale-free graph generation

In this section the method for generating multi-type scale-free graphs (MTSF)
is described. We create graphs with inherent homophily structure by assigning
different types to nodes and control the edge creation process between nodes
with the same type and also between the nodes with different types. Later
in this section it is proved, that the degree distribution of both the resulting
subgraphs consisting of nodes with same types and also the whole graph follow
the power-law. The importance of this structure is that it provides low average
capture times for the biased search process. Based on the types we introduce
to the graphs, we make the biased capture process to concentrate the random
walkers to their corresponding type subgraphs, and this creates natural load
balancing in the capture process (detailed in Sec. 4).

We demonstrate the multi-type graph generation process, when there are two
types of nodes in the network. Naturally, the process can be easily generalized
for an arbitrary number of types. Let G = (Γ, E) be an undirected graph. The
set of nodes with the two types are referred to as A and B, Γ = A∪B. Let |A|
denote the number of nodes with type A and N = |Γ|, the number of all nodes
in the network. The degree of a node x ∈ A is divided into two parts. The first
part, labeled as kAx , consist of the links from x to neighbor nodes with type A.
The other part is the links from x to neighbor nodes with type B denoted as
kA,B
x . The total degree of x is then kx = kAx +kA,B

x . Assume that we insert new
nodes with type A and B into the graph with a predefined ratio r, |A| = rN ,
|B| = (1 − r)N , (0 < r ≤ 1). For the sake of simplicity, our multi-type graph
is started from a full graph. The size of this initial full graph equals two times
the number of types we build into the network, so every type is represented by
two nodes at start. This enables the first homophilic walk of the initial nodes
to find a target node with the same type. This is a simple architectural choice
in the model. The initial conditions of the model depending on the number of
types can be further investigated in the future.

The multi-type graph generation is executed by iteratively adding new nodes
to the graph. We create a new node y with a random type according to the
above defined parameter r. We start RWs on G from a randomly chosen node
s which has the same type as y. We run two different kinds of RWs on the
network to determine where to connect the new nodes and choose between the
two kinds of walks probabilistically. The homophilic RW uses links that connect
nodes with same type, we choose this one with probability p. The heterophilic
RW uses links that run between nodes with different types, this one is chosen
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with probability 1− p. The new node is connected to the node where the RW
is at after a defined step length m. This process is repeated until the new node
has a predefined number of links.

One should note that the walk is not restarted again and again from the
same node s but from a uniformly randomly selected new one. In this way the
local nature of the algorithm is not violated. In [26] the effect of choice of the
number of steps (denoted by l there) is discussed in details, investigating its
effect on clustering. They claim that for m >> 1, the original BA model with
low clustering is attained. Since our main concern is the proper generation of the
graph, low m values are not effecting our main goals. Note that for low m, the
network generation has memory, which causes degree correlation and clustering,
but an easy alternation of the algorithm may increase the memory loss. Instead
of choosing uniformly a new node each round, after finishing the insertion of
edges for a node, we do M extra steps with the walk and the endpoint will be
the initial node for the next round (M >> m). This method provides very good
mixing between node insertion.

Let us denote the number of links between nodes with type-A as |EA|. Also,
|EB | is the number of links between nodes with type-B. We denote the number
of inter-type edges between type-A and type-B nodes that are created by type-
A nodes with |EA,B |. Similarly, |EB,A| denotes the number of edges between
type-A and type-B nodes that are created by type-B nodes. Note that, we
can create new nodes with different types according to the parameter r, so
|EA,B | and |EB,A| might not always be equal. Using these notations, the total
number of inter-type links equals |EA,B |+ |EB,A|. Also, |EA| and |EB | will be
the number of type A and B intra-type links respectively. With this method
we can generate topologies, where the ratio of intra-type links (between same
types of nodes) and inter-type links (between different types of nodes) can be
set arbitrarily with the parameter p independently of the parameter r, which
only makes our model more general.

The results of this process can be seen on Figure 1, where we plotted two
small MTSF with 200 nodes with p = 0.4 and p = 0.8. Our results are inde-
pendent of the number of new links. In our simulations this number is set to 3.
Also we use r = 1/t, where t is equal to the number of types in the network.
The length of the walks is set to m = 5.

This process, as it is shown in the following, gives similar results in terms
of the degree distribution as the Barabasi-Albert graph generation model, but
this method does not require global knowledge of the topology.

Lemma 1. In the whole graph all the created links follows the preferential at-
tachment rule giving the graph power law degree distribution. In the subgraph
A (or other type) all the created links follows the preferential attachment rule
giving the subgraph power law degree distribution.

Proof. Our proof follows the line of thoughts in [26]. Our contribution is that
we extend it to hold for the typed subgraphs as well. We want to show that if we
connect new nodes to the endpoints of the random walks, it yields preferential
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(a) p = 0.4
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(b) p = 0.8

Figure 1: The figure shows a MTSF graphs with five types, N = 200, plotted with the
Fructerman-Reingold spring-based graph drawing algorithm [25]. The type of the nodes are
written inside the nodes. In case of p = 0.8 the intra-type links, that are running between
nodes with the same type, construct clearly separable type groups. This effect is weaker in
case of p = 0.4. The intra-type links are connecting the type subgraphs together forming a
global connected graph. (Color online)

attachment in the form

P (x) =
kx∑
i ki

. (1)

Let a1, a2 ∈ A. The homophilic transition probability is given as PA,A (a2|a1) =
1/kAa1

. This equals the probability that the RW will go to node a2 given that
it was in a1, and a2 is a neighbor of a1. Similarly, PA,A (a1|a2) = 1/kAa2

. The
heterophilic transition probability for b ∈ B is given as PA,B (b|a1) = 1/kA,B

a1
.

Assume that a new node y is created and it is of type A, and that the initial
site of the random walk is chosen uniformly from type A nodes in the network,
PA (s) = 1/|A|. Next, let us calculate the probability that the homophilic
random walk finds itself at node dA ∈ A after one step by employing the Bayes-
rule:

PA,A (dA) =
PA,A (dA|s)PA (s)

PA,A (s|dA)
=

kAdA

kAs

1

|A|
.

Since node s was chosen randomly, its type A degree kAs equals, the average
type A degree of the network

〈
kA

〉
, and since |A|kAs = |A|

〈
kA

〉
= 2|EA|,

PA,A (dA) =
kAdA

2|EA|
.

Similarly, the probability that the heterophilic RW is at node dB ∈ B is

PA,B (dB) =
kA,B
dB

2|EA,B |
.
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The probabilities PA,A and PA,B invariant of the length of the walk, so we can
use them to calculate the probability P (d) in the stationary sense1 that the RW
is at node d as P (d) = p r PA,A (d) + p (1− r)PB,B (d) + (p− 1) r PA,B (d) +
(p− 1) (1− r)PB,A (d). If we iterate the graph generating process for long
enough, we can approximate |EA| ≈ p r |E|, |EB | ≈ p (1− r) |E|, |EA,B | ≈
(1− p) r|E| and |EB,A| ≈ (1− p) (1− r) |E|, and we get

P (d) =
1

2|E|

(
kAd + kBd + kA,B

d + kB,A
d

)
. (2)

As a special case, when we are interested in the type A subgraph, dA ∈ A,

P (dA) = PA,A (dA) =
kAdA

2|E|
. (3)

From these equations it can be seen that the subgraphs of a single type, and
also, the whole graph follows the preferential attachment rule.

In Figure 2 the degree distributions of MTSF are shown in case of two types
for N = 105, (a) p = 0.4 and (b) p = 0.8. The plots show that both the whole
graph and the typed subgraphs follow power-law distribution. It can be seen
that the feature is invariant of the parameter values p. However, for p = 0.8
the typed subgraphs contain more intra-type links than in case of p = 0.4. The
distribution of inter-type links is not counted in the diagrams, hence the bigger
gap between the distribution of typed subgraphs and the whole graph in case
of p = 0.4. In the following sections we analyze how the ratio of intra-type and
inter-type links effect the performance of our type dependent biased capture
process in terms of the average time of the captures and the distribution of the
load on nodes.

3. Type dependent biased capture process

In this section we show how a small modification of the BNLL model defined
in [13] allows us to leverage the homophilic structure of the graphs generated
by the multi-type scale-free graph model presented in Sec. 2 to distribute the
traffic load.

3.1. Type dependent biased random walks

In the graphs generated by our model, different types are assigned to the
vertices. In our type based BNLL process the random walkers (RWrs), i.e. the
lamb and the lion, are also assigned one of these types. This enables us to
construct the transition probabilities for the RWrs, such that they favor links,
which will take them to nodes with the same type as themselves. Our formalism

1This can be easily deduced when we substitute the derived results into a longer walk, the
terms corresponding to the steps in the middle fall out.
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Figure 2: Cumulative degree distribution of MTSF in case of two types, N = 105. The plots
show the degree distribution for both the whole graph and the subgraphs of the different types
as well. The black line shows the slope of the degree distribution exponent γ. (Color online)

of the type dependent random walks adopts the mathematical treatment of
random walks detailed in [27]. Let us assume that a random walker (RWr) has
type A ∈ T. We define node attractiveness for a node x as

aA (x) = aA (type (x) , kx) =

{
kαx if type (x) = A
1 if type (x) 6= A

(4)

We define the type dependent random walk on the graph giving type dependent
weights to the edges employing the node attractiveness. We define µA

x,y = µA
y,x

(x, y ∈ Γ) as a symmetric weight-function on Γ× Γ,

µA
x,y = aA (x) aA (y) . (5)

It is easy to see, that if there is only one type in the graph, Eq. (5) is equivalent
with the symmetric weight defined in [3] (Eq. (5)). The one-step transition
probability is then defined for the type−A random walk by

PA (x, y) =
µA
x,y

µA (x)
. (6)

where µA (x) =
∑

y∼x µ
A
x,y. This way we can define type dependent transition

probabilities for every type of random walkers on the graph.

3.2. Time spent by walkers on types

We know that the time the RWrs spend on x is proportional to the station-
ary distribution, which is proportional to µ (x) = kα

∑
y∼x a (y), so τ (x) ∼

kα+1〈a (y)〉. We used the fact that the degrees of the nodes are uncorre-
lated in the graph, so we can substitute the a (y) values corresponding to
the neighbors of x with the average attractiveness value. We calculate 〈a (y)〉
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from the type dependent attractiveness definition and the distribution of inter-
type and intra-type links in the MTSF graph: 〈a (y)〉 = (1/N)

∑
y a (y) =

(1/N)
∑N−1

k=1 Nk−γ [pkα + (1− p)]. This gives us for the average attractiveness

〈a (y)〉 =
N−1∑
k=1

pkα−γ + (1− p) . (7)

We calculate the ratio between the time that a RWr spends on its own type
and on all other types. This intuitively shows that a RWr prefers to stay on
the subgraph consisting of the nodes with the same type as itself. For the sake
of simplicity we do the calculations for two types, but our formalization can be
generalized to more types. Let us recall, that in a MTSF graph with two types,
the number of nodes with type A and B are |A| = rN, |B| = (1− r)N respec-
tively. We calculate the time spent on the set of nodes with type A similarly to
the calculation of time on individual nodes. First we calculate the µ (A) mea-

sure of the type-A node set as µ (A) =
∑

x∈A µ (x) = |A|
∑N−1

k=1 ck−γkαk〈a (y)〉.
The time spent on other type of nodes is proportional to µ (B) =

∑
z∈B µ (z) =

|B|
∑N−1

k=1 ck−γk〈a (y)〉. The ratio of the time spent on same and other type of
nodes by the walk is then given by

τ (A)

τ (B)
∼ µ (A)

µ (B)
∼

∑N−1
k=1 kα−γ+1∑N−1
k=1 k1−γ

. (8)

If one chooses γ > 2, which is typical for social networks and α > γ − 2

τ (A)

τ (B)
∼ Nα+2−γ

c− c′N2−γ
∼ Nα+2−γ . (9)

The picture is still satisfactory if α = γ − 2, because then τ(A)
τ(B) ∼ c logN . If

α < γ−2 then τ(A)
τ(B) ∼ c, which means we cannot guarantee that the walker will

spend most of its time among its type. For γ ≤ 2, the ratio τ(A)
τ(B) goes to infinity

if α ≥ 0. In this case the walker stays mostly on its type as well.

3.3. Average capture time of type dependent biased capture process

We run simulations to determine the parameter dependence of our model
with respect to parameter p on the average capture time 〈T 〉. We run the
simulation of 105 type dependent capture process on graphs of size N = 104,
and averaged over 10 graph realizations, setting the parameter p of the MTSF
graph generation model. We simulated one iteration with one lion and one
lamb, and set the type of the RWrs randomly among the iterations. The results
can be seen on Figure 3 for α = 1, 2, 3 and 4. The plot shows that on graphs
generated with high values of p the average capture times 〈T 〉 degrades. This
can be explained by the low number of inter-type links in case of high p, which
would allow the RWrs to quickly find their way into their own typed subgraph.
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This phenomena is independent of α. However, for high values of α ≥ 4 the
performance of 〈T 〉 decays for low values of p as well. This anomaly can be
explained as the effect of the typed subgraphs not being connected in case of
low values of p. In this case, setting α to a high value prevents the RWrs to
escape a subgraph island where they might get stuck for a while.
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Figure 3: The average capture time for
MTSF graphs with 10 types and different
p values. (Color online)
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Figure 4: The scaling of the average capture
time 〈T 〉 with network growth for different α
values in case of 10 types, p = 0.6. The inset
shows 〈T 〉 for N = 104 for a finer resolution
of α. (Color online)

The scaling behavior of the average capture time 〈T 〉 is also measured in case
of different network sizes. We generated graphs with p = 0.6 in the size range
N = 103..105. The capture process was run on each graph five times the size of
the graph, and results are averaged over 10 different graph realizations. Figure
4 shows that the scaling of 〈T 〉 of our type based BNLL model is in accordance
with the results in [13]. It is shown on Figure 4 that 〈T 〉 ≈ 10..15 for α ≥ 2
when there are 10 types in the MTSF graph. The inset shows that for α > 4,
〈T 〉 converges to a optimal value.

Figure 5 shows how the number of types in the MTSF graph effects the
average capture time. Our calculations suggest that by introducing more than
one type into the graph, the average capture time decreases, because the type
based bias forces the walkers to stay on the subgraph of their own type, which
is a smaller graph than the whole graph. The single-typed graph is a special
case of the multi-type graph model, which represents the original BNLL model
with one lion and one lamb. In general, the 〈T 〉 values on graphs with many
types are similar to the results on single-typed graphs. On Figure 5 (a) the
graphs were generated with p = 0.4, which yields more inter-type links. This
makes it easier for the RWrs to find their way into the subgraph corresponding
to their own type which results in lower 〈T 〉 values. Figure 5 (b) shows the
average capture times on graphs with p = 0.8. On this figure it can be seen that
the high number of intra-type links slightly degrades the average capture times.
With more number of types the effect is stronger, as it gets harder for the RWr
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to find its way into its own type. The simulations were run with α = 2.
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Figure 5: Figures show the effect of parameter p on the scaling of 〈T 〉 in case of 1, 2, 3, 5 and
10 types. (Color online)

4. Load balancing properties of capture process

The original BNLL search strategy proved to be successful except with re-
spect to the load of high degree nodes. In this section we demonstrate that the
use of multi-type graphs and the type dependent search algorithm provides load
balancing between high degree nodes with different types. We define the load
τ (x) of a node x as the time that the RWrs spend on x.

4.1. Load on hubs

It is well-known that the degree of the top degree node on a scale free network

(with fat tail exponent γ and with N nodes) scales with N
1

γ−1 (c.f. in [28] below
(135)). That determines the traffic load on the top node as well.

A random walker is either of the same type as the top degree node with
probability 1

t or other with probability 1 − 1
t . In the former case the load is

N
α+1
γ−1 〈a (y)〉 while in the latter N

1
γ−1 〈a (y)〉. The traffic load is than τ (xtop) ∼

1
tN

α+1
γ−1 〈a (y)〉+

(
1− 1

t

)
N

1
γ−1 〈a (y)〉:

τ (xtop) ∼
1

t
N

α+1
γ−1 〈a (y)〉 (10)

We checked the analytical expectations of the load balancing feature of the
proposed process on the MTSF graphs. Simulations of 105 type dependent
capture processes were run on MTSF graphs of size N = 104, generated with
different values of p, and averaged over 10 graph realizations. During these
simulations we set α = 3. Figure 6 shows the simulation results for the load on
the top hubs in our generated MTSF graphs. The simulation results seemingly
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contradict the analytic results, because τ (xtop) ∼ c t−η with η ≈ −0.6 fits
the measured data better than a + b t−1. However, this is an artifact of the
least square method due to the heteroscedasticity and finite size effects. Also,
on Figure 6 (a) we see that the simulation data deviates from our analytical
expectation in case of t = 2. This abnormality looks coming from the difference
of the network structure for p = 0.4 and 0.8, where the network for p = 0.4 has
more inter-type links than the network in case of p = 0.8. In the network with
low number of inter-type links (large p) and t > 1, RWrs are mainly walking
around their own type hubs and they are locked into the cluster of own type
nodes for long time. As a result, the load is distributed on high degree hubs of
different types, as it is shown on Figure 6 (b). However, with more inter-type
links and t > 1, RWrs can walk in and out of different type of clusters more
easily. In particular, if there are two types of nodes (t = 2), the top hub has
one of two types and the higher ratio of inter-type links helps to visit it. As a
result, the load is not decreased as much as it is expected, and as it does in case
of smaller number of links between types. This anomaly can be seen in case of
t = 2 on Figure 6 (a).
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Figure 6: Figures show the simulation results for the load on the top hub (circles) and the
analytical trend line fitted to the data (line) in case (a) p = 0.4 and (b) p = 0.8

High traffic is effected not only by the top hub but other high degree nodes.
A possible choice of the identification of this part of the graph is to consider the
Hirsch-core introduced in [29]. A network has a h-index of h, if not more than
h of its nodes have a degree of not less than h. The Hirsch-core H ⊂ V then is
the set of the top h nodes, all has degree not less then h. The cumulated traffic
on the core can be calculated easily as τ (H) ∼ µ (H) =

∑
x∈H µ (x):

τ (H) ∼ 1

t
N

α+2
γ−1 〈a (y)〉 (11)

Figure 7 (a) and (b) shows the comparison of the load on the Hirsch-core
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in case of 1, 3 and 10 types embedded into the MTSF graph. On the x-axis
we plotted the degrees k of the member nodes of the Hirsch-core in ascending
order. The y-axis shows the load, which correspond to the node with degree k.
We plotted the the average of simulation results of 10 graph realizations on each
plot. On Figure 7 (a) and (b) it can be seen that the load on the top degree
node is about 10 times lower in case of t = 10 than in case of t = 1, which
coincides with our analytical expectations. The figures clearly show that when
there are 10 types in the MTSF graph, the very high load of the top hubs is
shared out among the lower degree hubs in the core. As it can be seen from the
figures, the load balancing feature is virtually independent of the value p, i.e.
the ratio of the inter-type and intra-type links in the MTSF graph.

The distribution of the number of captures is important aspect of a search
system built on the diffusive capture process. The node, where a capture event
takes place, must inform the party with the requested resource to send it to the
user who is looking for that resource. On Figure 7 (c) and (d) it is shown that
in case of many types, the number of capture events is distributed similarly well
to the load among the top hubs.

5. Conclusions

In our paper an improved version of the biased diffusive capture process
was presented, which distributes the traffic load of the high degree nodes in the
network. A multi-type scale-free graph generation model was proposed to em-
bed homophily structure into the overlay graph with the use of type dependent
random walks. It was shown that both the whole graph and also the typed sub-
graphs have power law degree distribution, which speeds up the capture process.
The biased capture process has been improved to employ type dependent tran-
sition probabilities, which efficiently spreads the load among the top hubs with
different types. The paper demonstrated through analysis and simulations that
the modified capture process achieves similar or better average capture times,
as the original BNLL model in case of one lion and one lamb. Also, it was shown
that the traffic load incurred by the capture process on the high degree nodes
are spread evenly among the typed subgraphs. The proposed system lends itself
to applications in which the available resources can be effectively categorized
into a small number of categories. As a future improvement the types can be
embedded into a metric space, which could allow more sophisticated means of
categorization. In this current paper we showed that with such a simple model
detailed here, the advantageous features of balancing the load on the high degree
nodes are already available.
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