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a b s t r a c t

We propose a new node centrality measure in networks, the lobby index, which is inspired
byHirsch’s h-index. It is shown that in scale-free networkswith exponentα the distribution
of the l-index has power tail with exponent α (α + 1). Properties of the l-index and
extensions are discussed.

© 2009 Elsevier B.V. All rights reserved.

Efficient communication means high impact (wide access or high reach) and low cost. This goal is common in
communication networks, in society and in biological systems. In the course of time many centrality measures have been
proposed to characterize a node’s role, position, or influence in a network but none of them capture the efficiency of
communication. This paper is intended to fill this gap and propose a new centrality measure, the lobby index.
Hirsch [1] proposed the h-index: ‘‘the number of papers with citation number ≥ h, as a useful index to characterize the

scientific output of a researcher ’’. Barabási et al. [2] devised a very simple network model which has several key properties:
most importantly the degree distribution has a power-law upper tail, the node degrees are independent, and typical nodes are
close to each other. Schubert et al. [3] used the h-index as a network indicator, particularly in scale-free networks. This paper
is devoted to the characterization of network nodes with an h-index type measure.

Definition 1. The l-index or lobby index of a node x is the largest integer k such that x has at least k neighbors with a degree
of at least k. (See also (1).)

In what follows some properties of the lobby index are investigated; it is shown that in Scale Free (SF) networks, with
exponent α, the distribution of the l-index has a fat tail with exponent α (α + 1). Furthermore the empirical distribution of
the l-index in generated and real life networks is investigated and some further extensions are discussed.

1. Centrality measures

Freeman’s prominent paper [4] (1979) pointed out that: ‘‘Over the years, a great many measures of centrality have been
proposed. The several measures are often only vaguely related to the intuitive ideas they purport to index, andmany are so complex
that it is difficult or impossible to discover what, if anything, they are measuring ’’. It is perhaps worth noting that research in
this field dates back to Bavelas [5] (1949).
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At the time of Freeman’s paper most centrality measures were equivalents or modifications of the three major and
widely accepted indexes, the degree (cf. Ref. [6]), closeness (cf. Refs. [7,8]) and betweenness (cf. Ref. [5]) centrality (see
also Borgatti [9]).
As time passed, many new centrality measures were proposed. After years of research and application, the above three

and eigenvector centrality (a variant of which computer scientists call PageRank [10] and Google uses to rank search results)
can be said to have become a standard; the others are not widely used. The historical three and eigenvector centrality are
thus the conceptual base for investigating centrality behavior of nodes and full networks.
Notwithstanding Freeman’s wise warning the present paper proposes the lobby centrality (index) in the belief that

Hirsch’s insight into publication activity (which produces the citation network) has an interesting and relevant message
to network analysis in general.
The diplomat’s dilemma. It is clear that a person has strong lobby power, the ability to influence people’s opinions, if he

or she has many highly connected neighbors. This is exactly the aim of a lobbyist or a diplomat [11]. The diplomat’s goal
is to have strong influence on the community while keeping the number of his connections (which have a cost) low. If x
has a high lobby index, then the l-core L (x) (those neighbors which provide the index) has high connectivity (statistically
higher than l (x), see (6) and the comment there). In this sense, the l-index is closely related to the solution of the diplomat’s
dilemma.
Communication networks. Research of communication networks and network topology is in interaction. Node centrality

measures are essential in the study of net mining [12], malware detection [13], in reputation-based peer-to-peer
systems [14], delay tolerant networks [15] and others (see Refs. [16,17] and the references therein). We expect that in the
case of social and communication networks (some of which are also based on social networks) the lobby-index is located
between the bridgeness [18], closeness, eigenvector and betweenness centrality. Based on this intermediate position of the
lobby index we expect that it can be a useful aid in developing good defence and immunization strategies for peer-to-peer
networks as well as help create more efficient broadcasting schemes in sensor networks and marketing or opinion shaping
strategies.
The distribution of the l-index. Let us consider scale-free networks and assume that the node degrees are independent. The

degree is denoted by deg (x) for nodes and the l-index is defined as follows. Let us consider all yi neighbors of x so that
deg (y1) ≥ deg (y2) · · ·; then,

l (x) = max {k : deg (yk) ≥ k} . (1)

Theorem. If the vertex degrees are independent and P (deg (x) ≥ k) ≈ ck−α for all nodes x, then

P (l (x) ≥ k) ' k−α(α+1) (2)

for all nodes x.1

The proof is provided in the Appendix.
The Hirsch index. The original Hirsch index is based on a richer model: author↔ paper and paper↔ citing paper links.

Let x be a randomly chosen author of the scientific community under scrutiny and n = n (x) is the number of his/her papers
(either in general or within a defined period). Let yi denote the individual papers (where i = 1, . . . n,) and c (yi) their citation
score (in decreasing order), so that c (y1) ≥ c (y2) ≥ · · · ≥ c (yn). h (x) is the Hirsch index of x :

h (x) = max {k : c (yk) ≥ k} .

Assume that the paper productivity has an α-fat tail: GPl = P (n (x) ≥ l) ≈ cl−α and the citation score has a β-fat tail:

GQl = P (c (y) ≥ l) ≈ cl−β .

Along the lines of the argument that led to (2) one can see that h has an α (β + 1)-fat tail [19]:

P (h (x) ≥ k) ' k−α(β+1). (3)

How good is an l-index of k? If a node x of degree n has an l-index of k, Glänzel’s [20] observation provides a preliminary
assessment of this value:

l (x) ≈ c deg (x)
1
α+1 (4)

where α is the tail exponent of the degree distribution. Consequently a lobbyist is doing a good job of solving the diplomat’s
dilemma if l (x) � deg (x)

1
α+1 . On the other hand our result shows that l (x) ≥ k means that x belongs to the top

100cαk−α(α+1) percent of lobbyists.
The lobby gain. The performance of a lobbyist is indicated by a measure called the lobby gain. The lobby gain shows how

the access to the network is multiplied using a link to the l-core. Let us use the notation Di (y) = {z : d (x, y) = i} and set
DL2 (x) = ∪y∈L(x) D1 (y) \ [D1 (x) ∪ {x}] then the number of second neighbors reachable via the l-core is deg

L
2 (x) =

∣∣DL2 (x)∣∣
1 Here and in what follows an ≈ bn means that anbn → c as n→∞ and an ' bn means that there is a C > 1 such that for all n, 1C ≤

αn
bn
≤ C .
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(a) The BA graph. (b) The GBA graph.

(c) The AS graph. (d) The IG graph.

Fig. 1. The log–log plots for the distribution of l-index.

and the lobby gain is defined as

Γl (x) =
degL2 (x)
l (x)

. (5)

The lobby gain Γl (x) is much larger than one if a typical link to the l-core provides a lot of connections to the rest of the
network for x via that link. It can be shown (see Ref. [20]) that the number of second neighbors reachable via the l-core (with
multiplicity) is l (x)2.
The degree distribution within the l-core. The influential acquaintances of a given lobbyist follow a fat tail distribution

provided the underlying network is SF. In other words if y ∈ L (x) and l = k then the truncated distribution (by k) of the
degree distribution of y again follows a fat tail distribution: form > k > 0

P (deg (y) ≥ m|y ∈ L (x) and l = k) ≈ c
(m
k

)−α
. (6)

Let us note that this conditional or truncated distribution has a higher expected value than the original one.

2. Network examples

The analysis of different networks received particular attention in the last decades. The research goals and tools vary
greatly. Here we regress to the roots and consider some ‘‘classic’’ networks and study the distribution of their lobby index.
Generated scale-free networks. We have generated 50 20000-node Barabási (BA) networks [2] with 10 new links each

step, starting with 10 initial nodes. The degree distribution passed the preliminary test and has α = 1.96, i.e. a 1.96-fat tail.
As Fig. 1(a) shows, the empirical distribution of the lobby index has η̂ = 5.14 while the theory predicts η = 5.76.
We have used the generalized Barabási model (GBA) [21] which can provide arbitrary α > 1. We generated 50 graphs

of 10000 nodes with the proposed algorithm and obtained networks with α = 1.9186 in average, which would imply
η = 5.60; we observed η̂ = 5.28.
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Table 1
Spearman rank correlation.

l cl bw ev

l 1 .652 .768 .604
cl .652 1 .500 .972
bw .768 .500 1 .479
ev .604 .972 .479 1

Table 2
The tail exponents of networks.

α η η̂

BA graph 1.96 5.76 5.14
Generalized BA 1.92 5.60 5.28
AS 1.61 4.21 4.14
IG 1.23 2.74 2.45

Let us remark that the estimate of the tail exponent of fat tail distributions has a sophisticated technique [22] superior
to the line fit on the log–log scale. The careful analysis and application of these methods to the l-index will be published
elsewhere.
The AS level graph. TheAutonomous System (AS) level of the Internet infrastructure has already been investigated in depth

(c.f. Ref. [23] and its bibliography). It turned out that it not only has a scale-free degree distribution but displays the rich
club phenomenon aswell. High degree nodes aremore densely interlinked than expected in a BA graph. The standard choice
for AS a source of sample data is the CAIDA [24] project. We determined the exponent of the tail of the degree distribution
and compared it with the exponent of the tail of the empirical distribution of the l-index. We found that α = 1.61 and
η = α (α + 1) = 4.21 and η̂ = 4.14 is estimated from the empirical distribution of l.
The IG model.Mondragón et al. [23] proposed a modification of the Barabási network model, the Interactive Growth (IG)

model to generate scale-free networks which exhibit the rich club behavior. In each iteration, a new node is linked to one or
two existing nodes (hosts). In the first case the host node is connected to two additional peer nodes using the preferential
attachment schemewhile in the latter case only one of the involved (randomly chosen) hosts is connected to a new peer.We
implemented this algorithm and again compared the exponents extracted from sample data. In this case the network size
was 3000 and the probability of one host was 0.4 and of two hosts was 0.6. Again the log–log fit of the degree distribution
tail yielded α = 1.23, η = 2.74 and η̂ = 2.45 given by the empirical distribution of l.
The place of the lobby index among other centralitymeasures.Aswe already indicated above the lobby index lies somewhere

between the closeness centrality (cl), betweenness (bw) and eigenvector (ev) centrality. Strong correlation with degree
centrality is out of the question in the light of (4). In order to gain a better picture on the behavior of the lobby index we
determined the Spearman correlation between these centrality measures in the AS graph.
The correlations in Table 1 indicate that the l-index contains a well-balanced mix of other centrality measures; the l-

index is slightly closer to the three ‘‘classical’’ centralities than they are to each other (the quadratic mean of the three
correlations, in boldface, is 0.638 while the quadratic mean of of the correlations, in italic, with the l-index is 0.678). The
Kendall correlations of the investigated centralities have been calculated and yielded a very similar picture. For biological
networks the Spearman correlation between the closeness and eigenvector centrality is high (c.f. Ref. [25]); high Pearson
correlation can be observed in other networks as well (c.f. Ref. [26]). One centrality measure can be used to approximate
the other, which is not the case with the l-index for the AS graph, but may happen in other types of networks. This will save
computation time given the simplicity of the calculation of the l-index. Freeman’s paper [4] as well as Refs. [27,26] are calls
for a further analysis of centrality measures and the l-index in different types of networks.
Conclusion.Anewcentralitymeasure, the l-index is proposed andexamined. It is shown that the distribution of the l-index

has α (α + 1)-fat tail in SF networks with exponent α. There is a good match between empirical observations (collected in
Table 2) and the theoretical result. In this case the aim of the empirical results was not to verify the theory but to emphasize
that the investigated networks behave in the expected way with respect to the lobby index.
The lobby index is placed on the map along other centrality measures. Some further extensions and properties are

discussed as well: the relation to the diplomat’s dilemma is investigated and the lobby index is demonstrated to be a good
performance measure for lobbyists.
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Appendix

In what follows we provide a rigorous derivation of (2). 2 Let us use the notation lk = P (l (x) = k) for the distribution of
the l-index, and Gk = P (deg (x) ≥ k) = 1− Fk

lk =
∞∑
l=0

P (l (x) = k, deg (x) = k+ l)

=

∞∑
l=0

P (l (x) = k| deg (x) = k+ l) P (deg (x) = k+ l) .

Partition of unity and conditional probability is used (Bayes Theorem). As a result we have to investigate what is the
probability that a node has k links, each has degree ≥ k and l other links with degree not higher than k given that it has k+ l
links in total. That criteria makes exactly l (x) = k.
First we develop a lower estimate for lk.

lk ≥ ck1k
−αk

∞∑
l=0

(k+ l)−(α+1)
(
k+ l
l

) (
1− c1k−α

)l
.

We estimate lk using 1− c1k−α ≈ e−c1k
−α
and

(
k+l
l

)
≥
lk
k!

lk ≥ c
ck1k
−αk

k!

∞∑
l=0

lk−(α+1)e−
c1 l
kα

≥ c
ck1k
−αk

k!

∫
∞

0
xk−(α+1)e−

c1x
kα dx

≥ cck1k
−αkΓ (k− (α + 1)+ 1)

k!

(
kα

c1

)k−(α+1)+1
= ck−α

2 Γ (k− α)
k!

≥ ck−α
2 (k− α)k−α−1/2 ek−α+Θ/12(k−α)

kk+1/2ek+Θ/12(k)

≥ ck−α(α+1)−1

where the Stirling formula has been used for Γ (k− α) and k! as well and 0 < Θ < 1. The upper estimate works similarly
as follows.

lk = (Gk)k
∞∑
l=0

(k+ l)−(α+1)
(
k+ l
l

)
(Fk+1)l .

lk ≤ c
ck1k
−αk

k!

∞∑
l=0

(k+ l)k−(α+1) e−
c1 l

(k+1)α

≤ c
ck1k
−αk

k!

∞∑
l=0

(k+ l)k−(α+1) e−
c1 l
kα

(
k
k+1

)α

= c
ck1k
−αk

k!

∞∑
l=k

lk−(α+1)e−
c1(l−k)
kα

(
k
k+1

)α

= c
ck1k
−αk

k!

∞∑
l=k

lk−(α+1)e−
c1 l
kα

(
k
k+1

)α

≤ c
ck1k
−αk

k!

∞∑
l=0

lk−(α+1)e−
c1 l
kα

(
k
k+1

)α

≤ c
ck1k
−αk

k!

∫
∞

0
xk−(α+1)e−

(
k
k+1

)α
c1x

kα dx.

2 Henceforth c will be an arbitrary positive constant unless specified otherwise. Its value may change from occurrence to occurrence.
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Introducing a new variable one obtains

lk ≤ c
ck1k
−αk

k!

∫
∞

0
xk−(α+1)e−

(
k
k+1

)α
c1x

kα dx

= c
ck1k
−αk

k!

[( k
k+1

)α
c1

kα

]−k+α ∫
∞

0
yk−(α+1)e−ydy

= cck1k
−αkΓ (k− (α + 1)+ 1)

k!

(
kα

c1

)k−α [(k+ 1
k

)α]k−α
≤ ck−α

2 Γ (k− α)
k!

(
1+

1
k

)k
≤ ck−α

2 (k− α)k−α−1/2 ek−α+Θ/12(k−α)

kk+1/2ek+Θ/12(k)

≤ ck−α(α+1)−1

where at the end the Stirling formulas have been used as in the lower estimate.
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