
Random walks on graphs with volume and
time doubling∗

András Telcs
Department of Computer Science and Information Theory,

Budapest University of Technology and Economics

telcs@szit.bme.hu

September 16, 2004

Abstract

This paper studies the on- and off-diagonal upper estimate and the
two-sided transition probability estimate of random walks on weighted
graphs.
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1 Introduction

Let us consider a countable infinite connected graph Γ. A weight function
µx,y = µy,x > 0 is given on the edges x ∼ y. This weight induces a measure
µ(x)

µ(x) =
∑
y∼x

µx,y, µ(A) =
∑
y∈A

µ(y)

on the vertex set A ⊂ Γ and defines a reversible Markov chain Xn ∈ Γ, i.e.
a random walk on the weighted graph (Γ, µ) with transition probabilities

P (x, y) =
µx,y

µ(x)
,

Pn(x, y) = P(Xn = y|X0 = x).

For a set A ⊂ Γ the killed random walk is defined by the transition operator
restricted to c0 (A) , and the corresponding transition probability is denoted
by PA

n (x, y)
The graph is equipped with the usual (shortest path length) graph dis-

tance d(x, y) and open metric balls are defined for x ∈ Γ, R > 0 as B(x,R) =
{y ∈ Γ : d(x, y) < R} and its µ−measure is denoted by

V (x,R) = µ (B (x, R)) . (1.1)

If Γ = Zd and µx,y = 1 if d (x, y) = 1 we get back the classical, simple sym-
metric nearest neighbor random walk on Zd. This random walk serves as a
discrete approximation and model for the diffusion in continuous space and
time. It is widely accepted that the interesting phenomena and results found
on continuous space and time have their random walks counterparts ( and
vice versa) (c.f. just as example [13],[3] of the link between the two frame-
works). The first rigorously studied fractal type graph was the Sierpinski
triangle, (see Figure 1.).
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Figure 1 The Sierprinski graph

On this graph the volume growth is polynomial

V (x,R) ' Rα

with exponent α = log 3
log 2

. Here ' means that the ratio of the two functions of
r is uniformly separated from zero and infinity. On this infinite graph the
transition probability estimate has the form ( c.f. [12])

pn (x, y) ≤ C

nα/β
exp

(
−c

(
dβ (x, y)

n

) 1
β−1

)
,

pn (x, y) + pn+1 (x, y) ≥ c

nα/β
exp

(
−C

(
dβ (x, y)

n

) 1
β−1

)
,

where C, c > 0, and the walk dimension is β = log 5
log 2

> 2. This walk moves
slower than the classical one due to the big holes and narrow connections.
This is reflected in the exponent β > 2. In the classical Zd case the mean exit
time E (x,R) ' R2, which is the expected value of the time needed by the
walk to leave the ball B (x,R) . For the Sierpinski graph it is E (x,R) ' Rβ

with β = log 5
log 2

> 2. Many efforts have been devoted to the investigation of
other particular fractals and general understanding what kind of structural
properties are responsible for the leading and exponential term of the upper
and lower estimate (for further background and literature please see [1], [10]).
The next challenge was to obtain such kind of ”heat kernel” estimates on
a larger class of graphs and drop the Alforth regularity: V (x,R) ' Rα.
An easy example for such a graph is described in [8]. The Vicsek tree is
considered, which is built in a recursive way. If the weights assigned to the
edges are slightly increasing by the distance to the root, the resulted weighted
graph is not Alforth regular any more, (see Figure 2)
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Figure 2 The Vicsek tree with increasing weights

but satisfies the volume doubling condition (see Definition 1.1.) In [8] the
authors gave necessary and sufficient conditions for two-sided sub-Gaussian
estimates of the following form,

pn (x, y) ≤ C

V (x, n1/β)
exp

(
−c

(
dβ

n

) 1
β−1

)
, (1.2)

pn (x, y) + pn+1 (x, y) ≥ c

V (x, nα1/β)
exp

(
−C

(
dβ

n

) 1
β−1

)
(1.3)

which is local in the volume V (x,R) but the mean exit time is uniform with
respect to the space, E (x,R) ' Rβ . (See [1],[7],[8] or [16] for further remarks
and history of the the heat kernel estimates.) One can rise the next natural
question.

What can be said if the mean exit time is not polynomial, and
what if it depends on the center of the test ball?

The present paper answers both questions. Before we explain the results
let us see an example based again on the Vicsek tree. Now the edges replaced
with paths of slowly increasing length (as we depart from the root) (see Figure
3). Let us consider a vertex x in a middle of a distant path.
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Figure 3 The Vicsek tree with path of increasing lenght

Let be the radius r of the test ball is smaller (or comparable) to the half
of the length of the path, then we have a classical one dimensional walk in
that ball, consequently E (x, r) ' r2. While for big R we have the large scale

behavior of the Vicsek tree, hence E (x,R) ' R
log 15
log 3 >> R2 for large R. On

the other hand all balls centered at the root has the usual behavior of the
Vicsek tree E (x,R) ' R

log 15
log 3 . We shall see that this stretched Vicsek tree

has all the properties needed to obtain an upper bound for the heat kernel.
The details of this example will be given in Section 5. Several further graphs
can be constructed in a similar way. For instance we consider a graph
which possesses some nice properties and replace the edges (or welldefined
subgraps) with elements of a class of graphs (again with increasing size as we
depart from a reference vertex) connecting them on a subset of prescribed
vertices. Such a construction is demonstrated in Figure 4.
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Figure 4 Vicsek tree with embedded triangles

Figure 5 Enlarged part of the tree

Here we replace the edges of the Vicsek tree with diamonds formed by two
Sierpinski triangles As the distance grows from the root, bigger Sierpin-
ski triangles are inserted. (To keep the needed properties of the graph the
increase of the size of the triangles should be slow.)

In order to present the main results we have to introduce the essential
notions of the paper.

Definition 1.1 The weighted graph has the volume doubling (VD) property
if there is a constant DV > 0 such that for all x ∈ Γ and R > 0

V (x, 2R) ≤ DV V (x,R). (1.4)

Notation 1 For convenience we introduce a short notation for the volume
of the annulus; v = v(x, r, R) = V (x,R)− V (x, r).
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Notation 2 For two real sequences aξ, bx we will write

aξ ' bξ

if there is a C ≥ 1 such that for all ξ

1

C
aξ ≤ bξ ≤ Caξ.

Now let us consider the exit time

TB(x,R) = min{k : Xk /∈ B(x,R)}

from the ball B(x,R) and its mean value

Ez(x,R) = E(TB(x,R)|X0 = z)

and let us use the
E(x,R) = Ex(x,R)

short notation.

Definition 1.2 We will say that the weighted graph (Γ, µ) satisfies the time
comparison principle (TC) if there is a constant CT > 1 such that for all
x ∈ Γ and R > 0, y ∈ B (x,R)

E(x, 2R)

E (y, R)
≤ CT . (1.5)

Definition 1.3 We will say that (Γ, µ) has time doubling property (TD) if
there is a DT > 0 such that for all x ∈ Γ and R ≥ 0

E(x, 2R) ≤ DT E(x,R). (1.6)

Remark 1.1 It is clear that from the time doubling property (TD) it follows
that there are C > 0 and β > 0 such that for all x ∈ Γ and R > r > 0

E(x,R)

E(x, r)
≤ C

(
R

r

)β

. (1.7)

Basically the volume doubling condition (1.4) and the time comparison
principle (1.5) specify the local framework for our study. It is clear that (TC)
implies (TD) , the time doubling property while the reverse seems to be not
true even if (V D) is assumed.
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The goal of the present paper is twofold. First we would like to give
characterization of graphs which have on- and off-diagonal upper estimate
if neither the volume nor the mean exit time is uniform in the space like
in the above examples. Secondly we give characterization of graphs which
have two-sided heat kernel estimates. For that we consider graphs with
the volume doubling property and it is assumed that the mean exit time is
uniform in the space, more precisely satisfies (E):

E(x,R) ' E (y, R) (1.8)

holds, i.e. the mean exit time does not depend on the center of the ball.
The semi-local framework will be the determined by the conditions (V D)
and (E) .

In [16], it was shown that for strongly recurrent graphs upper estimates
can be obtained in the local framework and two-sided estimates in the semi-
local framework. Here we present similar result dropping the condition of
strong recurrence and generalize them in many respect.

Condition 1 In several statements we assume that condition (p0) holds,
that is, there is a universal p0 > 0 such that for all x, y ∈ Γ, x ∼ y

µx,y

µ(x)
≥ p0. (1.9)

Notation 3 For a set A ⊂ Γ denote the closure by

A = {y ∈ Γ : there is an x ∈ A such that x ∼ y} .

The external boundary is defined as ∂A = A\A.

Definition 1.4 A function h is harmonic on a set A ⊂ Γ if it is defined on
A and

Ph (x) =
∑

y

P (x, y) h (y) = h (x)

for all x ∈ A.

Theorem 1.1 For any weighted graph (Γ, µ) if (p0) , (V D) and (TC) hold,
then the following statements are equivalent:

1. The mean value inequality (MV) holds: there is a C > 0 such that for
all x ∈ Γ, R > 0 and for all u ≥ 0 harmonic functions on B = B (x,R)

u (x) ≤ C

V (x,R)

∑
y∈B

u (y) µ (y) , (1.10)
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2. the local diagonal upper estimate (DUE) holds: there is a C > 0 such
that for all x ∈ Γ, n > 0

pn(x, x) ≤ C

V (x, e(x, n))
, (1.11)

where e (x, n) is the inverse of E (x,R) in the second variable.

3. the upper estimate (UE) holds: there are C, β > 1, c > 0 such that for
all x, y ∈ Γ, n > 0

pn (x, y) ≤ C

V (x, e (x, n))
exp

[
−c

(
E (x, d (x, y))

n

) 1
β−1

]
. (1.12)

The existence of e will be clear from the properties of the mean exit time
(c.f. Section 3).

This theorem can be given in a different form if we introduce the skewed
version of the parabolic mean value inequality.

Definition 1.5 We shall say that the skewed parabolic mean value inequality
holds if for 0 < c1 < c2 constants there is a C ≥ 1 such that for all R >
0, x ∈ Γ, y ∈ B = B (x,R) for all non-negative Dirichlet solutions uk of the
heat equation

PBuk = uk+1 (1.13)

on [0, c2E (x,R)]×B (x,R)

un(x) ≤ C

V (y, 2R)E (y, 2R)

c2E∑
i=c1E

∑

z∈B(x,R)

ui(z)µ(z) (1.14)

satisfied, where E = E (x,R) , n = c2E.

Remark 1.2 One can see easily with the choice of ui (y) ≡ 1 that (1.14)
implies (V D) and (TC) .

Having this condition the above theorem can be restated as follows.

Theorem 1.2 If (Γ, µ) satisfies (p0) then the following conditions are equiv-
alent:

1. the skewed parabolic mean value inequality, (1.14) holds,

2. (V D) , (TC) and (MV ) holds,
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3. (V D) , (TC) and the diagonal upper estimate, (DUE) holds,

4. (V D) , (TC) and the upper estimate (UE) holds.

The above results deal with graphs which satisfy the volume doubling
property and time comparison principle. Let us observe that the exponent
in (1.12) depend on x not only on the distance between x and y. To find
matching exponents for the upper and lower off-diagonal estimates it seems
plausible to assume that the mean exit time is (up to a constant) is uniform
in the space, that is it satisfies (E) :

E(x,R) ' E (y, R) .

It is connivent to specify a function F (R) for R ≥ 0

F (R) = inf
x∈Γ

E(x,R),

for which from (E) it follows that there is a C0 > 1 such that for all x ∈ Γ
and R ≥ 0

F (R) ≤ E(x,R) ≤ C0F (R). (1.15)

This function inherits certain properties of E(x,R), first of all from the time
doubling property it follows that F also has doubling property:

F (2R) ≤ DEF (R). (1.16)

We shall say that F is a (very) proper space time scale function if it has
certain properties which will be defined in Section 4 (c.f. Definition 4.3).

The function F with the inherited properties will take over the role of Rβ

(or R2). The inverse function of F, f(.) = F−1(.) takes over the role of (R
1
β )

R
1
2 in the (sub-) Gaussian estimates. The existence of f will be shown in

Section 4.

Definition 1.6 The sub-Gaussian kernel function with respect to a function
F is k = k(n,R) ≥ 1, defined as the maximal integer for which

n

k
≤ F (

⌊
R

k

⌋
) (1.17)

or k = 0 by definition if there is no appropriate k.
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Definition 1.7 The transition probability satisfies (UEF ) , the sub-Gaussian
upper estimate with respect to F if there are c, C > 0 such that for all x, y ∈
Γ, n > 0

pn(x, y) ≤ C

V (x, f(n))
exp−ck(n, d(x, y)), (1.18)

and (LEF ) , the sub-Gaussian lower estimate is satisfied if

p̃n(x, y) ≥ c

V (x, f(n))
exp−Ck(n, d(x, y)), (1.19)

where p̃n = pn + pn+1.

In the semi-local framework we have the following result.

Theorem 1.3 If a weighted graph (Γ, µ) satisfies (p0) then the following
statements are equivalent:

1. for a very proper F (UEF ) and (LEF ) hold

2. for a very proper F the F-parabolic Harnack inequality holds,

3. (V D), (E) and the elliptic Harnack inequality hold.

The definition of the elliptic and parabolic Harnack inequality and some
other definitions are given in Sections 2 and 4.

In Section 4 characterization of graphs satisfying separately the upper
estimate (UEF ) will also be given

Let us mention that in this generality Hebisch and Saloff-Coste in [11]
proved the equivalence of 1. and 2. of Theorem 1.3.

The complete characterization of graphs which have two-sided heat kernel
Gaussian estimates (c.f. (1.2), (1.3) with β = 2 ) was given by Delmotte [4].
This characterization has been extended to two-sided sub-Gaussian estimates
( β ≥ 2 ) in [8].

In a recent work Li and Wang [14] proved in the context of complete Rie-
mannian manifolds that if the volume doubling property holds then the follow-
ing particular upper bound for the Green kernel, gB (x, y) =

∫∞
0

pB
t (x, y) dt,

for B = B (x,R)

gB (p, x) ≤ C

∫ (CR)2

d2(x,p)

dt

V
(
p,
√

t
) , (1.20)

implies the mean value inequality

u (x) ≤ C

V (x,R)

∫

B(x,R)

u (y) dy (1.21)
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for u ≥ 0 sub-harmonic functions. The opposite direction remained open
question. Here we show that for weighted graphs in the semi-local framework,
namely under conditions (V D) , (TD) and (E) , the mean value inequality
(MV ) implies a Green’s function bound equivalent to (1.20).

The organization of the paper is the following. In Section 2 we collect
the basic definitions and preliminary observations. In Section 3 we discuss
the local framework and present a much more detailed version of Theorem
1.1. In Section 4 we study the semi-local setup and prove Theorem 1.3.

Acknowledgment
The author is deeply indebted to Professor Alexander Grigor’yan. Neither

this nor recent other papers of the author would exists without his ideas and
friendly support. Particularly he proposed to study what is the necessary and
sufficient condition of the off-diagonal upper estimate.

2 Basic definitions and preliminaries

In this section we recall basic definitions and observations (mainly from [16]
but we warn the reader that there are minor deviations from the conventions
have been used there).

Definition 2.1 The random walk defined on (Γ, µ) will be denoted by (Xn).
It is a reversible Markov chain on the state space Γ, reversible with respect
to the measure µ and has one step transition probability

P(Xn+1 = y|Xn = x) = P (x, y) =
µx,y

µ(x)
.

2.1 Volume doubling

The volume function V has been already defined in (1.1).

Remark 2.1 It is evident that on weighted graphs the volume doubling prop-
erty (V D) is equivalent with the volume comparison principle, namely there
is a constant CV > 1 such that for all x ∈ Γ and R > 0, y ∈ B (x, R)

V (x, 2R)

V (y,R)
≤ CV . (2.1)

Proposition 2.1 If (p0) holds, then, for all x, y ∈ Γ and R > 0 and for
some C > 1,

V (x,R) ≤ CRµ(x), (2.2)
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p
d(x,y)
0 µ(y) ≤ µ(x), (2.3)

and for any x ∈ Γ

|{y : y ∼ x}| ≤ 1

p0

. (2.4)

Proof. (c.f. [7, Proposition 3.1])

Remark 2.2 It follows from the inequality (2.2) that, for a fixed R0, for all
R < R0 V (x,R) ' µ(x).

Remark 2.3 It is easy to show (c.f. [5]) that the volume doubling property
implies an anti-doubling property: there is an AV > 1 such that for all x ∈
Γ, R > 0

2V (x, R) ≤ V (x, AV R). (2.5)

One can also show that (V D) is equivalent with

V (x,R)

V (y, S)
≤ C

(
R

S

)α

,

where α = log2 DV and d(x, y) ≤ R, which is the original form of Gromov’s
volume comparison inequality (c.f. [9]). (For the proof see again[5])

Remark 2.4 An other direct consequence of (p0) and (V D) is that

v (x,R, 2R) = V (x, 2R)− V (x,R) ' V (x,R) (2.6)

2.2 The resistance

Definition 2.2 For any two disjoint sets, A,B ⊂ Γ, the resistance, ρ(A,B),
is defined as

ρ(A,B) =
(
inf

{
((I − P ) f, f)µ : f |A = 1, f |B = 0

})−1

and we introduce

ρ(x, S,R) = ρ(B(x, S), Γ\B(x,R))

for the resistance of the annulus around x ∈ Γ, with R > S ≥ 0.

Definition 2.3 We say that the product of the resistance and volume of the
annulus is uniform in the space if for all x, y ∈ Γ, R ≥ 0

ρ(x,R, 2R)v(x,R, 2R) ' ρ(y, R, 2R)v(y, R, 2R). (2.7)

Corollary 2.2 For all weighted graphs, x ∈ Γ, r ≥ s ≥ 0

ρ(x, s, r)v(x, s, r) ≥ (r − s)2, (2.8)

Proof. The idea of the proof taken from [15], for the details see [17].
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2.3 The mean exit time

Let us introduce the exit time TA.

Definition 2.4 The exit time from a set A is defined as

TA = min{k : Xk ∈ Γ\A},
its expected value is denoted by

Ex(A) = E(TA|X0 = x)

and let us use the E = E(x,R) = Ex(x,R) short notation.

In this section we introduce several properties of the mean exit time which
will play crucial role in the whole sequel.

The time comparison principle evidently implies the following weaker in-
equality: there is a C > 0 such that

E(x,R)

E(y, R)
≤ C (2.9)

for all x ∈ Γ, R > 0, y ∈ B (x, R) . One can observe that (2.9) is the difference
between (TC) and (TD) . It is easy to see that (TC) ⇐⇒ (TD) + (2.9) . It
also follows easily that (TC) is equivalent with the existence of a C, β ≥ 1
constants for which

E(x,R)

E(y, S)
≤ C

(
R

S

)β

, (2.10)

for all y ∈ B (x,R) , R ≥ S > 0.

Remark 2.5 It is easy to see that condition (p0) implies that for all x ∈
Γ, R ≥ 1

E (x,R) ≤
(

1

p0

)R

Definition 2.5 The maximal mean exit time is defined as

E(A) = max
x∈A

Ex(A)

and particularly the E(x,R) = E(B(x,R)) notation will be used.

Definition 2.6 The local kernel function k, k = k(n, x, R) ≥ 1, is defined
as the maximal integer for which

n

k
≤ min

y∈B(x,R)
E(y,

⌊
R

k

⌋
) (2.11)

or k = 0 by definition if there is no appropriate k.
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2.4 Mean value inequalities

Definition 2.7 The random walk on the weighted graph is a reversible Markov
chain and the Markov operator P is naturally defined by

Pf (x) =
∑

P (x, y) f (y) .

Definition 2.8 The Laplace operator on the weighted graph (Γ, µ) is defined
simply as

∆ = P − I.

Definition 2.9 For A ⊂ Γ consider the Markov operator PA restricted to
A. This operator is the Markov operator of the killed Markov chain, which is
killed on leaving A, also corresponds to the Dirichlet boundary condition on
A. Its iterates are denoted by PA

k .

Definition 2.10 The Laplace operator with Dirichlet boundary conditions
on a finite set A ⊂ Γ defined as

∆Af (x) =

{
∆f (x) if x ∈ A

0 if x /∈ A
.

The smallest eigenvalue of −∆A is denoted in general by λ(A) and for A =
B(x,R) it is denoted by λ = λ(x,R) = λ(B(x,R)).

Definition 2.11 The energy or Dirichlet form E (f, f) associated to the elec-
tric network can be defined as

E (f, f) = − (∆f, f) =
1

2

∑
x,y∈Γ

µx,y (f (x)− f (y))2 .

Using this notation the smallest eigenvalue of −∆A can be defined by

λ (A) = inf

{E (f, f)

(f, f)
: f ∈ c0 (A) , f 6= 0

}
(2.12)

as well.

Definition 2.12 We introduce

GA(y, z) =
∞∑

k=0

PA
k (y, z)

the local Green function, the Green function of the killed walk and the corre-
sponding Green’s kernel as

gA(y, z) =
1

µ (z)
GA(y, z).
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Definition 2.13 We say that the parabolic mean-value inequality holds on
(Γ, µ) if for fixed constants 0 ≤ c1 < c2 there is a C > 1 such that for
arbitrary x ∈ Γ, n ∈ N and R > 0, using the notations E = E (x,R) , B =
B (x,R) , n = c2E, Ψ = [0, n] × B for any non-negative Dirichlet solution of
the heat equation

PBui = ui+1

on Ψ, the inequality

un(x) ≤ C

V (x,R)E (x,R)

n∑
i=c1E

∑

y∈B(x,R)

ui(y)µ(y) (2.13)

holds.

Remark 2.6 Let us observe the difference between the definitions of the
parabolic and skewed parabolic mean value inequality in Definition 1.5 and
2.13. As it was noted in Remark 1.2 the skewed parabolic mean value in-
equality implies (V D) and (TC) , which yields in fact the equivalence

(1.14) ⇐⇒ (2.13) + (V D) + (TC) .

Remark 2.7 The above definitions of the parabolic mean value inequality
and mean value inequality can be extended to sub-solutions and the corre-
sponding results remain valid.

Definition 2.14 We say that the a mean-value property holds for the Green
kernels on (Γ, µ) if there is a C > 1 such that for all R > 0, x ∈ Γ,
B = B (x,R) and y ∈ Γ, d = d (x, y) > 0

gB(y, x) ≤ C

V (x, d)

∑

z∈B(x,d)

gB(y, z)µ(y) . (2.14)

Definition 2.15 We say that the Green kernel satisfy upper bound with re-
spect to a function F (c.f. [14]) on (Γ, µ) if for a C ′ > 1 there is a C > 1
such that for all R > 0 and y ∈ Γ, d =: d (x, y) > 0, B = B (x,R)

gB(y, x) ≤
C′F (R)∑

i=F (d)

C

V (x, f (i))
(2.15)

where f (.) is the inverse function of F (.) .

Definition 2.16 The Green kernel is bounded by the ratio of the mean exit
time and volume on (Γ, µ) if there is a C > 1 such that for all R > 0 and
y ∈ Γ, d =: d (x, y) > 0, B = B (x,R)

gB(y, x) ≤ C
E (x,R)

V (x, d)
. (2.16)
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3 The local theory

In this section we shall prove the following theorem, which implies Theorem
1.1 and by Remark 2.6. Theorem 1.2 as well.

Theorem 3.1 For a weighted graph (Γ, µ) if (p0) , (V D), (TC) conditions
hold, then the following statements are equivalent:

1. The local diagonal upper estimate (DUE) holds; there is a C > 0 such
that for all x ∈ Γ, n > 0

pn(x, x) ≤ C

V (x, e(x, n))
,

2. the upper estimate (UE) holds: there are C, β > 1, c > 0 such that for
all x, y ∈ Γ, n > 0

pn (x, y) ≤ C

V (x, e (x, n))
exp

[
−c

(
E (x, d (x, y))

n

) 1
β−1

]
.

3. the parabolic mean value inequality, (2.13) holds,

4. the mean value inequality, (MV ) holds,

5. (2.14) holds,

6. (2.16) holds.

Proposition 3.2 For any weighted graph (Γ, µ) if the inequality

E(x, R) ≤ CE(x,R). (3.1)

holds then the local diagonal lower estimate

P2n(x, x) ≥ cµ(x)

V (x, e(x, 2n))
(3.2)

is true and
P(Tx,R < n) ≤ C exp−ck(x, n, R), (3.3)

where k is local sub-Gaussian kernel defined in (2.11).

The statement (3.3) is given in [16, Theorem 5.1], (3.2) in [16, Proposition
6.4, 6.5].

Remark 3.1 It is worth to observe that the diagonal lower estimate (3.2)
and the diagonal upper estimate (1.11) matches up to a constant.
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3.1 Properties of the mean exit time

In this section we recall some results from [17] which describe the behavior
of the mean exit time in the local framework. The first one is the Einstein
relation below in its multiplicative form.

Theorem 3.3 If (p0) , (V D) and (TC) hold then (ER) , the Einstein rela-
tion

E(x, 2R) ' ρ(x,R, 2R)v(x,R, 2R) (3.4)

holds.

For the proof see [17].

Lemma 3.4 On all (Γ, µ) for any x ∈ Γ, R > S > 0

E (x,R + S) ≥ E (x, R) + min
y∈S(x,R)

E (y, S) .

Proof. Let us denote A = B (x,R) , B = B (x,R + S). First let us
observe that from the triangular inequality it follows that for any y ∈ S (x,R)

B (y, S) ⊂ B (x,R + S) .

From this and from the strong Markov property one obtains that

E (x,R + S) = Ex

(
TB + EXTB

(x,R + S)
)

≥ E (x, R) + Ex

(
EXTB

(XTB
, S)

)
.

But XTB
∈ S (x,R) which gives the statement.

Corollary 3.5 The mean exit time is strictly increasing in R ∈ N and hence
E (x,R) has an inverse in the second variable

e (x, n) = min {R ∈ N : E (x,R) ≥ n} .

Proof. From Lemma 3.4 and E (x, 1) ≥ 1 it follows that

E (x, R + 1) ≥ E (x,R) + 1. (3.5)

Definition 3.1 We shall say that the mean exit time has the anti doubling
property if there is an AE > 1 such that for all x ∈ Γ, R > 0

E(x,AER) ≥ 2E(x,R). (3.6)
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Proposition 3.6 If (p0) and (TC) hold then (3.6) , anti-doubling for the
mean exit time holds.

Proof. In [17] it is shown that (2.9) implies (3.6) but from (TC) the
inequality (2.9) follows.

The anti-doubling property of the mean exit time is equivalent with the
existence of c, β′ > 0 such that

E (x,R)

E (x, S)
≥ c

(
R

S

)β′

(3.7)

for all, R > S > 0, x ∈ Γ, y ∈ B (x,R) .
Sometimes we will refer to the pair of doubling and anti-doubling property

as doubling properties. The properties of the inverse function e of E (which
exists by Corollary 3.5 ) and properties of E are linked as the following
evident lemma states.

Lemma 3.7 The following statements are equivalent

1. There are C, c > 0, β ≥ β′ > 0 such that for all x ∈ Γ, R ≥ S > 0,
y ∈ B (x, R)

c

(
R

S

)β′

≤ E (x, R)

E (y, S)
≤ C

(
R

S

)β

, (3.8)

2. There are C, c > 0, β ≥ β′ > 0 such that for all x ∈ Γ, n ≥ m > 0,
y ∈ B (x, e (x, n))

c
( n

m

)1/β

≤ e (x, n)

e (y,m)
≤ C

( n

m

)1/β′

. (3.9)

Remark 3.2 Let us recall that the doubling property and the anti-doubling
property of E is equivalent with the right and left hand side of 3.8 for y = x.

The following corollary is from [17].

Corollary 3.8 If (p0),(V D) and

max
y∈B(x,R)

Ey (x,R) ≤ CE (x,R) (3.10)

hold then
E(x,R) ≥ cR2, (3.11)

i.e.,
β ≥ 2. (3.12)
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Remark 3.3 In the present context we need a weaker statement, (p0) +
(V D) + (TC) =⇒ (3.11),(3.12). This immediately follows from Theorem
3.3 and (2.8) and the fact that (TC) implies (3.10).

Lemma 3.9 If (p0),(V D) and (TC) hold, then for k = k(x, n, R) defined
in (2.11)

k + 1 ≥ c

(
E(x, R)

n

) 1
β−1

. (3.13)

for all x ∈ Γ, R, n > 0 for fixed c > 0, β > 1.

Proof. The statement follows from (TC) easily, β > 1 is ensured by
β ≥ 2 from Corollary 3.8.

3.2 The resolvent

In this section we recall from [8] the key intermediate step to prove the diag-
onal upper estimate. We introduce for a finite set A ⊂ Γ the λ,m−resolvent

GA
λ,m =

(
(λ + 1) I − PA

)−m

for λ ≥ 0,m ≥ 0 and let us define the kernel corresponding to the resolvent
as

gA
λ,m (x, y) =

1

µ (y)
GA

λ,m (x, y) .

Theorem 3.10 Assuming (p0) , (V D) and (TC) the condition (2.16) im-
plies, for a large enough m > 1 and for all 0 < λ < 1, x ∈ Γ, the inequality
:

gλ,m(x, x) ≤ C
λ−m

V (x, e(x, λ−1))
. (3.14)

The proof closely follows the corresponding proof of [8, Theorem 5.7] so
we omit it. One may reproduce it simply replacing the space-time scale
function Rβ by E (x,R) and using the doubling properties repeatedly.

3.3 The local diagonal upper estimate

We start with the application of the λ,m−resolvent bound to obtain the
local diagonal upper estimate.

Theorem 3.11 The conditions (p0) , (V D) , (TC) and (3.14) imply (DUE) ,

pn(x, x) ≤ C

V (x, e(x, n))
.
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Again the proof is easy modification of [8, Theorem 6.1] therefore we skip
it.

Lemma 3.12 If (p0) , (V D) and (TC) hold then

(2.14) ⇔ (MV ) =⇒ (2.16) .

Proof. First we show (2.14) =⇒ (MV ) . Denote B = B (x,R) , U =
B(x, 2R).

Let u ≥ 0 a harmonic function on B(x,R) and consider it’s representa-
tion:

u (z) =
∑
w∈U

gU (z, w) ν (w)

which always exists with a ν ≥ 0, ν ∈ c0 (U) charge (the standard construc-
tion can be reproduced following the proof of [7, Lemma 10.2]). Applying
this decomposition and (2.14) to u (x) the mean value inequality follows.

u (x) =
∑
w∈U

gU (x,w) ν (w) ≤ C

V (x,R)

∑
w∈U

∑
z∈B

gU (z, w) ν (w) µ (z)

=
C

V (x,R/2)

∑
z∈B

∑
w∈U

gU (z, w) ν (w) µ (z) ≤ C

V (x,R)

∑
z∈B

u (z) µ (z) .

The opposite implication (MV ) =⇒ (2.14) follows simply applying (MV ) to
u (x) = gU (x,w). Finally (MV ) =⇒ (2.16) is immediate. If d = d (x, y) > R
then gB(x,R)(x, y) = 0 and there is nothing to prove. Otherwise, consider the
function u(z) = gB(x,2R)(y, z). This function is non-negative and harmonic
in the ball B(x, d). Hence, by (MV ), (V D) and (TC)

u(x) ≤ C

V (x, d)

∑

z∈B(x,d)

u(z)µ(z) ≤ C

V (x, d)
E(x, 2R) ≤ C

E(x, R)

V (x, d)
.

Finally (2.16) follows from gB(x,R) ≤ gB(x,2R).

3.4 From (DUE) to (UE)

The proof is easy modification of the nice argument given in [6] for the
corresponding implication.

Lemma 3.13 Let r = 1
2
d (x, y) then

p2n (x, y) ≤ Px (Tx,r < n) max
n≤k≤2n

v∈∂B(x,r)

pk (v, y) + Py (Ty,r < n) max
n≤k≤2n

z∈∂B(y,r)

pk (z, x) .

(3.15)
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Proof. The statement follows from the first exit decompositions staring
from x (and from y respectively) and from the Markov property.

Theorem 3.14 (p0) + (V D) + (TC) + (DUE) =⇒ (UE) .

Lemma 3.15 If (p0) , (V D) and (TC) hold then for all ε > 0 there are
Cε, C > 0 such that for all k > 0, y, z ∈ Γ, r = d (y, z)

√
V (y, e (y, k))

V (v, e (z, k))
≤ Cε exp εC

(
E (y, r)

k

) 1
(β−1)

.

Proof. Let us consider the minimal m for which e (y,m) ≥ r,

e (y, k) ≤ e (y, k + m)

and use the anti doubling property with β′ > 0 to obtain
√

V (y, e (y, k))

V (z, e (z, k))
≤

√
V (y, e (y, k + m))

V (z, e (z, k))

≤ C

(
e (y, k + m)

e (z, k)

)α/2

≤ C

(
k + m

k

) α
2β′

= C

(
1 +

m− 1 + 1

k

) α
2β′

≤ C

(
1 +

E (y, r) + 1

k

) α
2β′

≤ Cε exp εC

(
E (y, r)

k

) 1
(β−1)

.

Here we have to note that by Remark 3.3 it follows that β > 1 furthermore
from the conditions that α, β′ > 0. The manipulation of the exponents used

the trivial estimate 1 + x
a
a ≤

(
1 + x

1
a

)a

, where x, a > 0. As a result we

obtain by repeated application of (TC) that
√

V (y, e (y, k) + r)

V (z, e (z, k))
≤ Cε exp εC

(
E (y, r)

k

) 1
(β−1)

.

Proof of Theorem 3.14. If d (x, y) ≤ 2 then the statement follows
from (p0) according to Remark 2.5. We use (3.15) with r = 1

2
d (x, y) and

start to handle the first term in

Px (Tx,r < n) max
n≤k≤2n

v∈∂B(x,r)

pk (v, y) .
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Let us recall that from (TC) it follows that

P(Tx,r < n) ≤ C exp−ck(x, n, r), (3.16)

and use r ≤ d (v, y) ≤ 3r furthermore (3.13) to get

Px (Tx,r < n) ≤ C exp

[
−c

(
E (x, r)

n

) 1
β−1

]
.

Let us treat the other term. First we observe that

p2k+1 (y, v) ≤
∑
z∼y

P2k (y, z) P (z, v)
1

µ (v)
(3.17)

=
∑
z∼y

P2k (y, z) P (v, z)
1

µ (z)

≤ max
z∼y

p2k (y, z)
∑
z∼v

P (v, z)

= max
z∼y

p2k (y, z) .

and recall that
p2k (x, y) ≤

√
p2k (x, x) p2k (y, y),

which yields using the doubling properties of V , E and for w ∼ v d (y, v) '
d (y, w) (provided v, w 6= y) that

max
n≤k≤2n

w∈∂B(x,r)

pk (w, y) (3.18)

≤ max
n≤2k≤2n

v∼w∈∂B(x,r)

p2k (v, y) (3.19)

≤ max
n≤2k≤2n

v∼w∈∂B(x,r)

C√
V (y, e (y, 2k)) V (v, e (v, 2k))

(3.20)

≤ max
n≤2k≤2n

v∼w∈∂B(x,r)

C

V (y, e (y, n))

√
V (y, e (y, n))

V (v, e (v, n))
,

Let us obsrerve that d (v, y) ≤ 3r + 2 ≤ 5r if r ≥ 1 and apply Lemma 3.15
to proceed with

max
n≤2k≤2n

v∼w∈∂B(x,r)

p2k (v, y) Px (Tx,r < n)

≤ C

V (y, e (y, n))
Cε exp

[
εC

(
E (y, 5r)

n

) 1
(β−1)

− c

(
E (x, r)

n

) 1
(β−1)

]
,
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choosing ε small enough and applying (TC) we have the inequality

max
n≤k≤2n

v∈∂B(x,r)

pk (v, y) exp

[
−c

(
E (x, d (x, y))

n

) 1
(β−1)

]

≤ C

V (y, e (y, n))
exp

[
−c

(
E (x, d (x, y))

n

) 1
(β−1)

]
.

By symmetry one gets

p2n (x, y) ≤ C

(
1

V (x, e (x, n))
+

1

V (y, e (y, n))

)
exp

[
−c

(
E (x, d (x, y))

n

) 1
(β−1)

]

=
C

V (x, e (x, n))

(
1 +

V (x, e (x, n))

V (y, e (y, n))

)
exp

[
−c

(
E (x, d (x, y))

n

) 1
(β−1)

]
.

Now we use Lemma 3.15 again obtain

V (x, e (x, n))

V (y, e (y, n))
≤ Cε exp εC

(
E (x, 2r)

n

) 1
(β−1)

and ε can be chosen to satisfy εC < c
2

to receive

(
1 + exp

[(
εC − c

2

) (
E (x, d (x, y))

n

) 1
(β−1)

])
≤ 2

p2n (x, y) ≤ 2C

V (x, e (x, n))
exp

[
− c

2

(
E (x, d (x, y))

n

) 1
(β−1)

]
,

which is the needed estimate for even n. For odd number of steps the results
follows using for x 6= y the trivial inequality (3.17) and d (x, y) ' d (x, z) if
z 6= x, y ∼ z. In particular if the maximum in (3.17) attained at x = z then
the statement follows from (DUE) and (p0) .

Remark 3.4 From Lemma 3.13 it follows that (DUE) implies

pn (x, y) ≤ C exp (−ck (y, n, r))

V (x, e (x, n))
+

C exp (−ck (x, n, r))

V (y, e (y, n))
(3.21)

where r = 1
2
d (x, y) , which is sharper then the above upper estimate. Let

us note that our deduction shows that (3.21) is equivalent with the upper
estimate.
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Proof or Theorem 3.1. Let us assume that the conditions (p0) ,
(V D), (TC) hold. From Theorem 3.10 and 3.11 it follows that (2.16) =⇒
(3.14) =⇒ (DUE) , which covers the implication 6. =⇒ 1. From Lemma 3.12
we know that (MV )⇐⇒ (2.14) and (MV ) =⇒ (2.16) i.e. 4. ⇐⇒ 5. =⇒ 6. In
Theorem 3.14 we have shown that (DUE) =⇒ (UE) , which means 1 =⇒ 2
while the reverse implication is trivial. The parabolic mean value inequality,
(2.13) implies (MV ), i.e. 3 =⇒ 4. It is left to show that 2 =⇒ 3. i.e.
(UE) =⇒ (2.13). We shall show a little bit more. Let us consider a Dirichlet
solution ui (w) ≥ 0 on B (x,R) with initial data u0 ∈ c0 (B (x,R)). Denote
E = E (x,R) . Consider vi (z) = µ (z) ui (z), 0 < c1 < c2 < c3 < c4 and
n ∈ [c3E, c4E] , j ∈ [c1E, c2E]. By definition

un (w) =
∑
y∈Γ

PB
n−j (w, y) uj (y)

and

vn (w) =
∑

y∈B(x,R)

PB
n−j (y, w) vj (y) ≤ µ (w) max

y∈B
pB

n−j (y, w)
∑

y∈B(x,R)

vj (y) ,

from which one has by pB ≤ p and (UE) that

un (w) ≤ max
y∈B

pB
n−j (w, y)

∑

y∈B(x,R)

uj (y) µ (y) ≤ C

V (w, e (w, n− j))

∑

y∈B(x,R)

uj (y) µ (y) .

Using the doubling properties of e and V it follows that V (w, e (w, n− j)) '
V (x,R) and

un (w) ≤ C

V (x,R)

∑

y∈B(x,R)

uj (y) µ (y) . (3.22)

Finally summing (3.22) for j ∈ [c1E, c2E] we obtain

un (w) ≤ C

E (x,R) V (x,R)

c2E∑
j=c1E

∑

y∈B(x,R)

uj (y) µ (y) .

This means that this inequality holds for all (n,w) ∈ [c3E, c4E]×B (x,R) =
Ψ, e.g. using the properties of V and E again, for all y ∈ V (x,R)

max
Ψ

u ≤ C

E (y, 2R) V (y, 2R)

c2E∑
j=c1E

∑

y∈B(x,R)

uj (y) µ (y) . (3.23)

also satisfied. It is clear that (3.23) implies (1.14) and (2.13) as well which
finishes the proof.

25



4 Semi-local theory

This section is split into two parts. In the first part the reformulation and
extension of the upper estimates are developed. In this part typically we
work under the assumptions of (V D) , (TD) and (E) . In the second part, in
Section 4.4, we discuss the two-sided estimate. There the main assumptions
are (V D),(E) and the elliptic Harnack inequality (to be defined there).

4.1 The upper estimate

Let us start with the definition of the F -parabolic mean value inequality.

Definition 4.1 We shall say that the F−parabolic mean value inequality
holds if for the function F (R) = infx∈Γ E (x,R) , c2 > c1 > 0 constants there
is a C > 1 such that for all R > 0, x ∈ Γ for all non-negative Dirichlet
solutions un of the discrete heat equation

PB(x,R)un = un+1

on [0, c2E (x,R)]×B (x,R)

un(x) ≤ C

V (x, 2R)E (x, 2R)

c2F∑
i=c1F

∑

z∈B(x,R)

ui(z)µ(z) (4.1)

satisfied, where F = F (R),n = c2F (R).

Remark 4.1 Let us observe that in this definition the volume doubling prop-
erty and time comparison principle are ”built in”, as in the skewed parabolic
mean value inequality. The condition E ' F follows from 4.1 as well.

In this section we prove the following theorems.

Theorem 4.1 For any weighted graph (Γ, µ) if (p0) , (V D), (TD) and (E)
hold then the following statements are equivalent

1. for a proper function F , the F -based diagonal upper estimate hold, that
is, there is a C > 0 such that for all x ∈ Γ, n > 0

Pn(x, x) ≤ Cµ(x)

V (x, f(n))
, (4.2)
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2. the estimate, (UEF ) holds for a proper F : there are C, c > 0 such that
for all x, y ∈ Γ, n > 0

Pn(x, y) ≤ Cµ(y)

V (x, f(n))
exp−ck(n, d(x, y)), (4.3)

3. the parabolic mean value inequality, (2.13) holds,

4. the mean value inequality, (MV ) holds,

5. (2.14) holds,

6. (2.15) holds,

7. (2.16) holds.

For the notion of (very-) proper F see Definition 4.3, and the existence of
the inverse of F in the next section. Similarly to Theorem 1.2 the following
is true.

Theorem 4.2 If (Γ, µ) satisfies (p0) then the following conditions are equiv-
alent.

1. the F−parabolic mean value inequality, (4.1) holds for a proper F,

2. (V D) , (TD) , (E) and (MV ) holds

3. (V D) , (TD) , (E) and (4.2) holds,

4. (V D) , (TD) , (E) and (UEF ) holds,

4.2 The properties of the scale function

Let us recall that (TD) + (E) =⇒ (TC) and consequently we can deduce
several properties of the space-time scale function easily. First of all the
Einstein relations holds under the standing assumptions of this section.

Corollary 4.3 If (Γ, µ) satisfies (p0) , (V D) , (TD) and (E) then the Ein-
stein relation

E(x, 2R) ' ρ(x,R, 2R)v(x,R, 2R)

holds.
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The statement follows from Theorem 3.3 since (TD) + (E) =⇒ (TC) .
From the time doubling property it follows that the function

F (R) = inf
x∈Γ

E (x,R) (4.4)

also has doubling property:

F (2R) ≤ DEF (R), (4.5)

in particular it is also clear that

F (R)

F (S)
≤ CF

(
R

S

)β

, (4.6)

holds, where β = log2 DE.

Corollary 4.4 If (E) holds and F (R) = infx∈Γ E (x,R), then F (R) is
strictly increasing in R ∈ N and has an inverse.

Proof. The statement follows from (3.5), simply choose x for which

F (R + 1) ≥ E (x,R + 1)− 1

2

≥ E (x,R) + 1− 1

2
> F (R) .

Corollary 4.5 If (E) holds and F (R) = infx∈Γ E (x,R) , then for all L,R, S ∈
N, and R > S > 0

F (R + S) ≥ F (R) + F (S) (4.7)

and
F (LR) ≥ LF (R). (4.8)

Proof. Both statements are immediate from Lemma 3.4 using the same
argument as in Corollary 4.4.

Definition 4.2 We shall say that F has the anti doubling property if there
is a AF , BF > 1 such that

F (AF R) ≥ BF F (R). (4.9)

and the strong anti-doubling property if BF > AF .
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Remark 4.2 Equivalently the anti-doubling property for F means that there
are c, β

′
> 0 such that for R > S > 0

F (R)

F (S)
≥ c

(
R

S

)β′

(4.10)

and the strong anti-doubling property is equivalent with (4.10) for a β′ > 1.

Proposition 4.6 If (Γ, µ) satisfies (p0) and (E) , then for the function de-
fined in (4.4) the anti-doubling property (4.9) holds.

Proof. Since (E) =⇒ (2.9) by Proposition 3.6 we have

E(x,AR) ≥ 2E(x,R).

and it is clear that for any ε > 0,R > 0 there is an x for which

F (AR) ≥ E (x,AR)− ε ≥ 2E (x, R)− ε

≥ 2F (R)− ε

which yields the statement since ε is arbitrarily small.

Corollary 4.7 If (p0),(V D), (TD) and (E) holds then

E(x,R) ≥ cR2

and
F (R) ≥ cR2. (4.11)

Proof. The statement follows from Remark 3.3.

Definition 4.3 A function F : N → R will be called proper if it is strictly
monotone and satisfies (4.5) , (4.7) , (4.9) and (4.11), and very proper if in
addition it satisfies (4.9) with a BF > AF .

The above observations can be summarized as follows.

Corollary 4.8 If (Γ, µ) satisfies (p0) , (V D) , (TD) and (E) then F is proper.

The following lemma provides estimates of the sub-Gaussian kernel func-
tion.

Lemma 4.9 If (E) and (TD) hold, then for k = k(n, R)

k + 1 ≥ c

(
F (R)

n

) 1
β−1

, k + 1 ≥ c′
(

R

f(n)

) β
β−1

and k ≤ C

(
Rβ

n

) 1
β−1

(4.12)

Proof. The statement follows from (TD) easily.
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4.3 The diagonal upper estimate

For the proof of Theorem 4.1 and 1.2 our entry point is Theorem 3.1.

Corollary 4.10 Assume that (Γ, µ) satisfies (p0), (V D) , (TD) and (E) , then
for the function F defined in (4.4)

(MV ) ⇔ (4.2) ⇔ (UEF )

and
(2.13) ⇔ (MV ) ⇔ (2.16) ⇔ (2.14)

holds as well.

Proof. The statement is immediate from Theorem 3.1 since (TD) +
(E) =⇒ (TC)

The next step is to insert (2.15) into the set of the equivalent conditions.
Before we start the proof we give the next statement which is immediate

consequence of Proposition 3.2.

Proposition 4.11 For any weighted graph (Γ, µ) if we assume (E) then

P2n(x, x) ≥ cµ(x)

V (x, f(2n))
, (4.13)

furthermore
P(Tx,R < n) ≤ C exp [−ck(n,R)] , (4.14)

where k is the maximal integer 1 ≤ k ≤ R ≤ n satisfying (1.17) and F is
defined again by (4.4) .

The next step is to show (2.15) ⇐⇒ (UEF ). This is done via (MV ).

Theorem 4.12 Let us assume that (Γ, µ) satisfies (p0) , (V D) , (TD) and
(E) then the following statements are equivalent

1. For a fixed B = B (x,R) , y ∈ B, d = d (x, y) the upper bound for the
Green kernel (2.15) holds:

gB (y, x) ≤ C

F (R)∑

i=F (d)

1

V (x, f (i))
,
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2. for all u ≥ 0 on B (x, R) harmonic function in B (x.R) , the mean value
inequality (MV ) holds

u (x) ≤ C

V (x,R)

∑

z∈B(x,R)

u (z) µ (z) ,

3. the upper estimate (UEF ) holds

pn (x, y) ≤ C

V (x, f (n))
exp [−ck (n, d)] .

Proof. The combination of Corollary 4.10 and Theorem 3.14 verifies
(MV ) ⇔ (UEF ). The implication (UEF ) =⇒ (2.15) can be shown as follows.
Let us assume (p0),(V D),(TD),(E) and (UEF ). We can start from the
definition of the local Green kernel for B = B (x,R),d := d (x, y) > 0, d < R
and denote n = F (d) < m = E (x,R)

gB (y, x) =
n−1∑
i=1

pB
i (y, x) +

m−1∑
i=n

pB
i (y, x) +

∞∑
i=m

pB
i (y, x) =: S1 + S2 + S3

S3 =
∞∑

j=0

∑
z∈B

1

µ (x)
PB

j (y, z) PB
m (z, x) ≤

∞∑
j=0

∑
z∈B

PB
j (y, z) max

z∈B
pB

m (z, x)

≤ Ey (x,R) max
z∈B

C√
V (z, f(m))V (x, f(m))

and using (V D) , (TC) and d (x, y) , d (x, z) < R < f (m) we conclude to

∞∑
i=m

pB
i (y, x) ≤ C

E (x,R)

V (x,R)
.

The first term can be estimates as follows using (UEF ) :

S1 ≤
n∑

i=1

C

V (y, f (i))
exp (−ck (i, d)) ,
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using Lemma 4.9 it can be bounded, denoting a = logAE
(d)

≤ C
E (x, d)

V (x, d)

n−1∑
i=1

V (x, d)

V (y, f (i))

1

E (x, d)
exp

(
−c

(
E (x, d)

i

) 1
β−1

)

≤ C
E (x,R)

V (x,R)

a∑
j=1

DV


 d

f
(
F

(
d

Aj
F

))



α

2−j+1F (d)

E (x, d)
exp

(
−c

(
2j

) 1
β−1

)

≤ C
E (x, d)

V (x, d)

a∑
j=1

(
Aα

F

2

)j

exp
(
−c

(
2j

) 1
β−1

)

and it is clear that the sum is bounded by a constant independent of d and
n which results that

S1 =
n−1∑
i=1

pB
i (y, x) ≤ C

E (x, d)

V (x, d)
.

The estimate of the middle term is straightforward from (UEF ) ;

S2 =
m−1∑
i=n

pB
i (y, x) ≤

m∑
i=n

C

V (x, f (i))
.

Finally a trivial estimate shows that

S3 ≤ C
E (x,R)

V (x,R)
≤ C

F (R)

V (x, f(F (R)))
≤ C

F (R)∑

i=F (d)

1

V (x, f (i))
, (4.15)

S1 ≤ C
E (x, d)

V (x, d)
≤ C

F (d)

V (x, f(C ′F (d)))
≤

C′F (d)∑

i=F (d)

1

V (x, f (i))
(4.16)

which results

gB (y, w) = S1 + S2 + S3 ≤ C

C′F (R)∑

i=F (d)

1

V (x, f (i))
. (4.17)

The next step is to show (2.15) =⇒ (2.16)

gB (y, x) ≤ C

C′F (R)∑

i=F (d)

1

V (x, f (i))
≤ C

C ′F (R)− F (d)

V (x, f (F (d)))
≤ C

E (x,R)

V (x, d)
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where in the last step the doubling property of V and F was used. We have
seen in Corollary 4.10 that (2.16) implies (4.2) and it implies (UEF ), hence
we have shown that (2.15) =⇒ (UEF ).

Proof of Theorem 4.1. The result follows from Corollary 4.10 and
Theorem 3.14 and 4.12.

Proof of Theorem 4.2. The proof is evident from Theorem 4.1 and
Remark 4.1.

4.4 The two-sided estimate

In this section we prove Theorem 1.3. First we collect several consequences
of the elliptic Harnack inequality which enable us to apply Theorem 4.1,
particularly to deduce (UEF ) .

As we indicated the parabolic and elliptic Harnack inequalities play im-
portant role in the study of two-sided bound of the heat kernel. Here we
give their formal definitions.

Definition 4.4 The weighted graph (Γ, µ) satisfies the (F−parabolic or sim-
ply) parabolic Harnack inequality if the following condition holds. For a given
profile C = {c1, c2, c3, c4, η}, 0 < c1 < c2 < c3 < c4, 0 < η < 1, set of con-
stants, there is a CH(C) > 0 constant such that for any solution u ≥ 0 of the
heat equation

Pun = un+1

on U = [k, k + F (c4R)]×B(x,R) for k, R ∈ N the following is true. On the
smaller cylinders defined by

U− = [k+F (c1R), k+F (c2R)]×B(x, ηR) and U+ = [k+F (c3R), k+F (c4R)]×B(x, ηR)

and taking (n−, x−) ∈ U−, (n+, x+) ∈ U+, d(x−, x+) ≤ n+−n− the inequality

u(n−, x−) ≤ CH ũ(n+, x+)

holds, where ũn = un +un+1 short notation was used. Let us remark that CH

depends on the constants (including ci, η, DV , DE, AV ) involved.

It is standard knowledge that if the (classical) parabolic Harnack inequal-
ity holds for a given profile then it is true for arbitrary profile. We have
shown in [16] Subsection 7.1 that the same holds in the general case if F is
proper.
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Definition 4.5 The weighted graph (Γ, µ) satisfies the elliptic Harnack in-
equality (H) if there is a C > 0 such that for all x ∈ Γ and R > 0 and for
all u ≥ 0 harmonic functions on B(x, 2R) the following inequality holds

max
B(x,R)

u ≤ C min
B(x,R)

u. (4.18)

The elliptic Harnack inequality is a direct consequence of the F -parabolic
one as it is true for the classical case.

The main result of this section is the following, which implies Theorem
1.3.

Theorem 4.13 If a weighted graph (Γ, µ) satisfies (p0) then the following
statements are equivalent.

1. the F-parabolic Harnack inequality hold for a very proper F ,

2. (UEF ) and (LEF ) hold for a very proper F

3. (V D), (2.7) and (H) hold,

4. (V D), (E) and (H) hold.

4.4.1 The Einstein relation

The following five observations are taken from [17]

Proposition 4.14 If (p0) , (V D) and (H) holds then the resistance has the
doubling properties: there are C,C ′ > 1 such that

ρ(x,R, 4R)

ρ(x,R, 2R)
≤ C (4.19)

and
ρ(x,R, 4R)

ρ(x, 2R, 4R)
≤ C ′. (4.20)

For the proof see [17]. The next corollary is trivial consequence of Propo-
sition 4.14.

Corollary 4.15 If (p0) , (V D) and (H) holds then there is a constant C > 1
such that

ρ(x, 2R, 4R)v(x, 2R, 4R)

ρ(x, R, 2R)v(x,R, 2R)
≤ C. (4.21)
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Theorem 4.16 If for (Γ, µ) conditions (p0) , (V D), (H) and (E) hold then

E(x, 2R) ' ρ(x,R, 2R)v(x,R, 2R).

Theorem 4.17 If for the weighted graph (Γ, µ) the conditions (p0) , (V D), (H)
and (2.7) , which is

ρv(x,R, 2R)v(x,R, 2R) ' ρv(y,R, 2R)v(y, R, 2R).

hold then
E(x, 2R) ' ρ(x,R, 2R)v(x,R, 2R).

Proposition 4.18 If (Γ, µ) satisfies (p0) , (V D) , (H) and (E) ( or (2.7) )
then the the function F

F (R) = inf
x∈Γ

ρ(x,R, 2R)v(x,R, 2R)

is proper furthermore the strong ant-doubling property holds. The latter
means that there are BF > AF > 1 such that

F (AF R) ≥ BF F (R) (4.22)

for all R > 0. In short, under the conditions F is very proper.

Proof. From Corollary 4.8 we know that F is proper and (4.22) is shown
in [17] under the conditions.

Proof of Theorem 4.13. The implication 4. =⇒ 3. is given in
Theorem 4.16 and 3. =⇒ 4 in Theorem 4.17, 3. =⇒ 2. needs the implication

(p0) + (V D) + (TD) + (H) + (E) =⇒ (4.2) , (UEF )

which follows from Theorem 4.1 since (H) =⇒ (MV ) . The proof of the
lower estimate works as in [16]. The return route 2. =⇒ 1. =⇒ 3. also
has been shown in [16, Theorem 2.22]. The only minor modification is that
the condition of annulus resistance doubling ( (2.6) there ) follows from the
doubling property of F and ρv by Corollary 4.15.

5 Example

In this section we describe in details of the example of the stretched Vicsek
tree mentioned in the introduction. We show that it satisfies the conditions
of Theorem 1.1 and 3.1.

Let Gi is the subgraph of the Vicsek tree (see Figure 6) (c.f. [8] )
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G1

G2

G3

Figure 6 The blocks of the Vicsek tree

which contains the root z0 and has diameter Di = 23i. Let us denote by zi the
vertices on the infinite path, d (z0, zi) = Di. Denote G′

i = Gi\Gi−1 ∪ {zi−1}
for i > 0, the annulus defined by G-s.

The new graph is defined by stretching the Vicsek tree as follows. Con-
sider the subgraphs G′

i and replace all the edges of them by a path of length
i + 1. Denote the new subgraph by Ai, the new blocks by Γi = ∪i

j=0Ai, then
the new graphs is Γ = ∪∞j=0Aj. We denote by zi the cut point between Ai

and Ai−1 again. For x 6= y, x ∼ y let µx,y = 1.
One can see that neither the volume nor the mean exit time grows poly-

nomially on Γ and both are not uniform on it. On the other hand Γ is a tree
and the resistance grows asymptotically linearly on it. We show that (V D)
and (TC) holds on Γ furthermore the elliptic Harnack inequality holds.

Let us recognize some straightforward relations first

d (z0, zn) = d (z0, zn−1) + 2n3n < n3n+1 (5.23)

< (n + 2) 3n+1, (5.24)

µ (Γn) = C

(
4 +

n∑
i=1

2 (i + 1) 4i

)
' n4n ' µ (An) ,

ρ ({x} , B (x,R)c) ' ρ (x,R, 2R) ' R,

E (x,R) ≤ CRV (x, R) .

Lemma 5.1 The tree Γ satisfies (V D).
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Proof. Denote Li = d (z0, zi) , di = 1
2
(Li − Li−1) and recognize that

Ln−1 ' Ln ' dn. Let us consider a ball B (x, 2R) and an N > 0 such that
x ∈ AN and k:

dk−1 ≤ R < dk.

First we assume that the ball is large relative to the position of the centre,
which means that it captures basically the large scale property of the graphs.

Case 1. k ≥ N .
For convenience we introduce a notation. Denote Ωn one of the blocks

of Ak of diameter dk. There is a block Ωk−2 which contains x. It is clear
that Ωk−2 ⊂ B (x,R) and

V (x,R) ≥ µ (Ωk−2) ' µ (Γk+1) .

On the other hand R < Lk which results that B (x, 2R) ⊂ Γk+1 and from
µ (Γk+1) ' µ (Ωk−2) (V D) follows.

Case 1. k < N .
Now we have to separate sub-cases. Again let us fix that x ∈ ΩN .

Denote d = d (x, zN−1). If x is not in the central block of AN then, the
B (x,R) ⊂ AN ∪AN+1 and since these parts of the graph contain only paths
of length of N+1 or N+2 volume doubling follows from the fact that it holds
for the original Vicsek tree. The same applies if x is in the central block but
B (x, 2R) ⊂ AN . Finally if B (x, 2R) ∩ ΓN−1 6= ∅ then R ≥ 2dN−1 > dN−1

which means by the definition of k that k = N − 1, B (x,R) ⊃ ΩN−1 and on
the other hand B (x, 2R) ⊂ ΓN+1 which again gives (V D).

The elliptic Harnack inequality follows as in [8] from the fact that the
Green functions are nearly radial. The linear resistance growth implies that

ρ ({x} , Bc (x, 2R)) ' ρ (x, R, 2R) ' R.

Let us also recall that from (V D) , (H) and the linear resistance growth it
follows that

cRV (x, 2R) (5.25)

≤ cρ (x,R, 2R) V (x, 2R)

≤ E (x, 2R) (5.26)

≤ ρ ({x} , Bc (x, 2R)) V (x, 2R) ≤ CRV (x, 2R) .

The conditions (TC) follows from (V D) and (5.25).
Let us remark that the mean value inequality is implied by the Harnack

inequality and consequently the conditions of Theorem 1.1 and 3.1 are satis-
fied.
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6 List of the main conditions

shortcut equation name
(p0) (1.9) controlled weights condition
(V D) (1.1) volume doubling property
(TC) (1.5) time comparison principle
(TD) (1.6) time doubling property
(MV ) (1.10) mean value inequality
(DUE) (3.2) diagonal upper estimate
(UE) (1.12) upper estimate
(E) (1.15) uniform mean exit time
(H) (4.18) elliptic Harnack inequality

(UEF ) (1.18) upper estimate wrsp to F
(LEF ) (1.19) lower estimate wrsp to F
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