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Abstract

In this paper necessary and sufficient conditions are presented for
heat kernel upper bounds for random walks on weighted graphs. Sev-
eral equivalent conditions are given in the form of isoperimetric in-
equalities.
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1 Introduction

Heat kernel upper bounds are subject of heavy investigations for decades.
Aronson, Moser, Varopoulos, Davies and many more contributed to the de-
velopment of the area (for the history see the bibliography of [22]). The
work of Varopoulos highlighted the connection between the heat kernel up-
per estimates and isoperimetric inequalities. The present paper follows this
approach and provides transition probability upper estimates of reversible
Markov chains in a general form under necessary and sufficient conditions.
The conditions are isoperimetric inequalities which control the spectral gap,
the capacity or the mean exit time of a finite vertex set. In addition the pa-
per present a generalization of the Davies-Gaffney inequality (c.f. [4]) which
is a tool in the proof of the off-diagonal upper estimate.
Let us consider a countable infinite connected graph T'.

Definition 1.1 A symmetric weight function fiy, = jty . > 0 is given on the
edges x ~y. This weight function induces a measure ji(x)

,u(ac) - Z M s

y~w

wA) = Y ).

yeEA

The graph is equipped with the usual (shortest path length) graph distance
d(z,y) and open metric balls are defined for x € I', R > 0 as

B(x,R) ={y e I': d(z,y) < R}
and its p—measure is denoted by V(x, R)
V (2, R) = (B (x, R)) .

The weighted graph has the volume doubling property (VD) if there is a
constant Dy > 0 such that for allz € T and R > 0

V(z,2R) < DyV(x, R). (1.1)

Definition 1.2 The edge weights define a reversible Markov chain X, € T,
i.e. a random walk on the weighted graph (I, u) with transition probabilities

 Hay
P(r,y) = )
P, (7, y) = P(X,, = y|Xo = 2).




The “heat kernel” of the random walk is
Pn\T,Y) = DPn \Y,T =——F, r,y).
(z,y) (y, ) W) (z,y)

Let P,, E, denote the probability measure and expected value with respect
to the Markov chain X,, if Xq = .

Definition 1.3 The Markov operator P of the reversible Markov chain is
naturally defined by
=Y P(x,y) )

Definition 1.4 The Laplace operator on the weighted graph (T, p) is defined
simply as

A=P-1

Definition 1.5 For A C T’ consider P4 the Markov operator P restricted to
A. This operator is the Markov operator of the killed Markov chain, which is
killed on leaving A, also corresponds to the Dirichlet boundary condition on
A. Its iterates are denoted by P{.

Definition 1.6 The Laplace operator with Dirichlet boundary conditions on
a finite set A C T" defined as

| Af(z) if z€A
Aﬂ«”_{ 0 if z¢A "

The smallest eigenvalue of —A4 is denoted in general by N\(A) and for A =
B(z, R) it is denoted by A = Az, R) = A\(B(z, R)).

Definition 1.7 On the weighted graph (I', i) the inner product is defined as

(f,9) = => f@) ().

zel
Definition 1.8 The energy or Dirichlet form & (f, f) associated to the Laplace

operator A is defined as

Ef,)=—(ALf) = Zumy — W)

z,yel’



Using this notation the smallest eigenvalue of —A“ can be defined by

£, 1)
(f, f)

)\(A):inf{ :feco(A),f;éO} (1.2)

as well.
The exit time from a set A C I is

Ty =min{k >0: X, € '\A}
and its expected value is denoted by
E.(A) =E(T4| Xy = x)

and we will use the £ = FE(z, R) = E,(x, R) = E, (B (x, R)) short notations.
In the whole sequel ¢, C' will denote unimportant constants, their values
may change from place to place.

Notation 1 For two real series ag, be, & € S we shall use the notation ag ~ be
if there is a C' > 1 such that for all £ € S

1
ECLE S bg S Cag.

The main concerns of this paper are upper estimates of the heat kernel.
Such estimates have a wast literature, (see the bibliography of [5] as a starting
point).

The diagonal upper estimate

o (z,2) < Cn™7
is equivalent with the Faber-Krahn inequality
A (A) < Cu(A) foral ACT

for some 7,0,C > 0 (c.f. [2],[8]).
The classical off-diagonal upper estimate has the form

G o { d? (w,y)}

] - =z
2

<
Pn (z,7) < o

n

for the random walk on the integer lattice Z¢ which reflects the basic fact
that
E(z,R) ~ R*.
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Coulhon and Grigor’yan [4] proved for random walks on weighted graphs
that the relative Faber-Krahn inequality

1 (A)

d
AL (A) < OR? <v(x7R)> forall AC B(z,R),z€T,R >0

is equivalent with the conjunction of the volume doubling property (VD)
and £ (2.9)

T,y

< —— — .

P (2,y) < AENG) exp[ o ]

In the last fifteen years several works were devoted to the study of sub-
diffusive behavior of fractals, which typically means that the condition (Ejp)

E(z,R) ~ R’ (1.3)

for a § > 2 is satisfied. On particular fractals it was possible to show that

the following a heat kernels upper bound:
1
RA\ 1
- (a) ] (UEj)

holds. Grigor'yan have shown in [9] that in contiuous settings under the
volume doubling condition (U Ej) is equivalent with the conjunction of (Ej)
and

pe(2,y) < ———exp
V (m, tﬁ)

s
A1 (A) < CRP (%) foral AcT,zeT,R>0,
The upper estimate (UEjg) has been shown for several particular fractals
prior to [9] (see the literature in [14] or for very recent ones in [9],[13],[11]
or [21]) and generalized to some class of graphs in [19] and [21]. In [11] an
example is given for a graph which satisfies (U Eg) and the lower counterpart
(differing only in the constants C,c). This example is an easy modification
of the Vicsek tree ( See Figure 1.).



Gy

G

Figure 1

One should put increasing weights on the edges of the increasing blocks
of the tree (See Figure 2.).

H-=1
— M-=
— u_ :QZ
— u- :Q3
- - =Q*

Figure 2

It is easy to see that on this tree the volume doubling condition and (Ej)
holds. An other construction based on the Vicsek tree is the strached Vicsek
tree which is given in [21] and it violates (E3) while it satisfies (VD) It can
be obtained by replacing the edges of the consequtive block of the tree with
paths of slowly increasing lenght.



Figure 3

This example is not covered by any earlier results but it was shown in
[21] that satisfis enough regularity properties to obtain a heat kernel upper
estimate which is local not only in the volume but in the mean exit time as
well. We shall return to this example briefly in Section 5.

The main result of the present paper gives equivalent isoperimetric in-
equalities which imply on- and off-diagonal upper estimates in a general
form. Let us give here only one, the others will be stated after the needed
definitions.

The result states among others that if there are C,d > 0 such that for all
zelR,n>0if forall AC B(z,3R),B = B(z,R),2B = B(x,2R)

1)
A1 (A) < CE (2, R) ( :(2‘2)

holds then, the (local) diagonal upper estimate (DUFE) holds: there is a
C > 0, such that forall z € I',n > 0

C

V (z,e(x,n)) (DUE)

P (2, 2) <

and the (local) upper estimate (UFE) holds: there are ¢,C' > 0,3 > 1 such
that for all x,y € I',n > 0

—C

pu () < E(x’d<””y”“] . wB

n

V(z,e(x,n))



Here e (x,n) is the inverse of F (x, R) in the second variable. The existance
follows easily from the strong Markov property (c.f. [20]). The full results
contain the corresponding reverse implications as well.

The presented results are motivated by the work of Kigami [13] and
Grigor’'yan [9]. Those provide necessary and sufficient conditions for the
case when E (x, R) ~ R’ uniformly over the space (they work in the con-
tinuous settings on measure metric spaces). Our result is adaptation to the
discrete settings but generalization of the mentioned works relaxing the con-
dition on the mean exit time. It seems that the results carry over to the
continuous setup without major changes provided the stohastic process has
some natural properties ( which among others imply that it has continuous
heat kernel, c.f. [9]).

The structure of the paper is the following. In Section 2 we lay down the
necessary definitions and give the statement of the main results. In Section
3 some potential theoretic inequalities are collected and equivalence of the
isoperimetric inequalities are given. In Section 4 the proof of the main result
is given. Finally Section 5 provides further details of the example of the
strached Vicsek tree.

2 Basic definitions and the results

We consider the weighted graph (I, 1) as it was introduced in the previous
section.

Condition 1 In many statements we assume that condition (p,) holds, that

18, there is an universal pg > 0 such that for all x,y € I';x ~y

,u:v,y
()

> Do (2.1)

Notation 2 The following standard notations will be used.

Il =D 1f (@) p ()

zel

and

£l = (f, )

Definition 2.1 We introduce

Gy, z) =) _ Py, 2)

k=0
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the local Green function, the Green function of the killed walk and the corre-
sponding Green kernel as

A _ 1 A Py
g (y’z)_,u(Z)G (y7 )

Definition 2.2 Let A denote the boundary of a set A C T : A = {z €
E\A sz ~y € A} The closure of A will be denoted by A and defined by
A=AU0A , also let A°=T\A.

For convenience we introduce a short notation for the volume of the an-
nulus B (z, R)\B (x,r) for R >r > 0:

v(x,r,R) =V (z,R) — V(x,r).
Definition 2.3 The extreme mean exit time is defined as

E(A) = max E,(A)

€A
and the E(z, R) = E(B(z, R)) simplified notation will be used.

Definition 2.4 We say that the graph satisfies condition (E) if there is a
C > 0 such that for allx € T, R >0

E(x,R) < CE(z,R).

Definition 2.5 We will say that the weighted graph (U, ) satisfies the time
comparison principle (TC) if, here is a constant C > 1 such that for all
zel and R> 0,y € B(z,R)

E(y,2R)
——— 2 <. 2.2
E(x,R) — (22)
Remark 2.1 It is clear that (TC) implies (E) .

Definition 2.6 For any two disjoint sets, A, B C I, the resistance between
them p(A, B) is defined as

p(A,B) = (inf{E (f,f): fla=1,flg =0} (2.3)
and we introduce
p(l’, S, R) = p(B(x,S),F\B(x,R))

for the resistance of the annulus about x € I', with R > S > 0.



Theorem 2.1 Assume that (I', u) satisfies (po) then, the following inequal-
ities are equivalent ( asuming that each statement separately holds for all
z,y € IR > 0,n >0,D C A C B = B(x,3R) with fired independent
5,C>0,0>1)

)
E(A) < CE (z,R) ((—g> (E)
MA)"' < CE (z, R) (% ’ (FK)
o(D, (D) < CE (a, (5gg (»)
C
pu(z, ) < V@) (DUE)

together with (VD) and (TC),

P (7,y) < V# exp (—c (E @, R))ﬁll> (UE)

(r,e(x,n)) n

together with (VD) and (T'C'), where e(x,n) is the inverse of E (z, R) in the
second variable.

Corollary 2.2 [f (I', u) satisfies (po), (VD) and (T'C) then the following
statements are equivalent.( assuming that each statement seprately holds for
alx,ye ',R>0,n>0,DCAC B= B (z,2R) with fized 6,C > 0,5 > 1)

Fa<c(55) 2
—ij E;l)) =C Z(—g;)é, (2.5)
p(D,A) M(A) 0 ,u,(D) 0-1
M&Rﬂ@—C<MDQ ;mm> / (2:6)
C
pn(z,z) < Ve @) (2.7)




Remark 2.2 Now let us relate the present results to the conditions given in
[21] . Among other equivalent conditions the (elliptic) mean value inequality
was used in [21] . It says that for all u nonnegative harmonic functions in
B (z,R)

C

V (z,R)

> uly)py). (2.9)

ye€B(z,R)

u(x) <

It was shown in [21] that under (po) +(V D)+ (T'C) the mean value inequality
is equivalent with the diagonal upper estimate (DUE). This means that the
mean value inequality is equivalent with the relative isoperimetric inequalities
(E),(FK),(p) and (2.4 —2.6) provided (VD) and (T'C') holds. In [12] a
direct proof of (MV) = (FK) is given for measure metric spaces which
works for weighted graphs as well.

3 Basic inequalities

In this section basic inequalities are collected, several of them are known,
some of them are new.

Lemma 3.1 (¢f [4] ) If (po) and (VD) hold then for all x € T''R > 0,
y € B(z,R) then
V(z, R)

ViR <€ (3.1)
furthermore there is an Ay such that for allx € T, R > 0
2V (z, R) < V(z, Ay R), (3.2)
V(z, MR) —V(x,R) ~ V(z, R) (3.3)
for any fired M > 2, and there is an o > 0 such that for ally € B (z,R),S <
R
vos <<(s) s

The inequality (3.2), sometimes called anti-doubling property. As we
already mentioned, (V' D) is equivalent with (3.1) and it is again evident
that both are equivalent with the inequality

75 <C(5) o3

where o = log, Dy and d(z,y) < R. The next Proposition is taken from [10]
(see also [21])
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Proposition 3.2 If (py) holds, then, for all x,y € T' and R > 0 and for
some C' > 1,

V(z,R) < Cu(x), (3.6)

" uly) < plx) (3.7)
and for any x € T .

{y:y~a}] < o (3.8)

Now we recall some results from [20] which connect the mean exit time,
the spectral gap, volume and resistance growth.

Theorem 3.3 (py), (VD) and (T'C) implies that
ANz, 2R) < E (2,2R) < E (z,2R) < p (2, R,2R) v (z, R,2R).  (3.9)
Theorem 3.4 For a weighted graph (T, u) if
E(z,R) <
E(y,R)
forallz € 'R >0,y € B(x,R) for a fized independent C > 0 then there
is an Ag > 1 such that for allz € T, R >0
E(x,ApR) > E (z,R). (3.11)

Remark 3.1 It is immdediate from Theorem 3.4 that (TC) implies 3.11,
which is the anti-doubling property of the mean exit time.
It is also shown in [20] that

(3.10)

E(x,R) > cR?

provided (po) and (V D) hold furthermore E (x, R) for R € N is strictly mono-
tone and consequently has inverse

e(z,n) =min{r e N: E(z,r) > n}.

It is also worth to recall that the following statements are equivalent
1. There are C,c > 0,8 > [ > 0 such that for all x € TR > S > 0,

y € B(z,R) /
() 25nee). o

2. There are C,c > 0,8 > " > 0 such that for all z € T',n > m > 0,
y € B(z,e(z,n))

(DY < LB o (1) (.13

m



Definition 3.1 The local sub-Gaussian kernel at z € T is the following.
Let k =k, (n, R) > 0 the mazimal integer for which

(- [2)

and k. (n,R) = 0 if there is no such an integer. The local sub-Gaussian
kernel is defined as

k(z,n,R)= min k,(n,R).

2€B(z,R)

Remark 3.2 From the definition of k., (n, R) and (T'C') it follows easily that

yomt
k. (n,R)+1 EC(E('ZR))

and

b a1 2 o (EER) 315

The equivalence of the isoperimetric inequalities in Theorem 2.1 is based
on the next observation.

Proposition 3.5 Letd > 0 and A C I' a finite set. The following statements
are equivalent.

E(A) <Cu(A), (3.16)
ATH(A) < Cu(A), (3.17)
p(D,A) (D) < Cu(A)° forall D C A. (3.18)

The proofs are given via a series of lemmas.

Lemma 3.6 (c¢f Lemma 4.6 [17]) For all weighted graphs and for all finite
stes, A C B CT the inequality

A(B)p(A, B )u(A) < 1, (3.19)
holds, particularly

Az, 2R)p(z, R, 2R)V (z, R) < 1. (3.20)

13



Lemma 3.7 (cf Proposition 2.2 [18]) If for a finite A C T there are C,C",§ >
0 such that
1 (D)p(D,A) < Cu(A)° forallDC A (3.21)

then, B
E(A) <C'u(A).

Lemma 3.8 (c.f Lemma 3.6 [19])For any finite set A C T
AH(A) < E(A) (3.22)

Proof of Proposition 3.5. The implication (3.16) = (3.17) follows
from Lemma 3.8, (3.17) = (3.18) from Lemma 3.6 and finally (3.18) =
(3.16) by Lemma 3.7. m

We finish this section showing the connection between the isoperimetric
inequalities in Theorem 2.1 and Corollary 2.2.

Proposition 3.9 The statements (E), (FK) and (p) are equivalent as well
as (2.4),(2.5) and (2.6).

Proof. The first statement follows from Proposition 3.5 setting C' =

C’ %. The second statement uses Proposition 3.5 and the observation

that (2.6) can be written as

p(A)°
D, A)u(D)<Cp(x,R,2R)V (z,R) ———.
p (D, A)p (D) < Cp( )V A )V(x’R)g
|
Proposition 3.10 Each statement (E),(FK) and (p) implies (VD) and
(TC).

Proof. First let us observe that if one does then all of them, since they
are equivalent by Proposition 3.9. So we can choose (E). Let A = B (z, R)
then A = B (y,2R) we have immediately (VD) and (TC). =

Proposition 3.10 means that the volume doubling property, (VD) and
time comparison principle, (T'C') can be set as precondition in Theorem 2.1
as it is done in Corollary 2.2.

Proposition 3.11 Theorem 2.1 and Corollary 2.2 mutually imply each other.

Proof. According to Proposition 3.10 we can set (VD) and (TC) as
preconditions then using Theorem 3.3 the r.h.s. of each inequality F (z, R)
can be replaced with the needed term receiving that (F) = (2.4), (FK) =
(2.5) and (p) = (2.6) . The opposite implications can be seen choosing R’ =
3R and applying (VD) ,(TC) and (3.5). This clearly gives the statement,
if any of the isoperimetric inequalities is equivalent with the diagonal upper
estimate then all of them are. m
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4 The upper estimates

In this section we shall show the following theorem, which implies Theorem
2.1 according to Proposition 3.11 and Theorem 3.3.

Theorem 4.1 If (I',u) satisfies (po),(VC) and (T'C) then the following
statements are equivalent

A1 (A) < CFE(z,R) (%)6 for all AC B(z,2R), (4.23)
pn(z,2) < W (4.24)

C e [ e E (z,d(z,y)) e
Pn (2,y) < Vieelmn) p ( (—n ) ) : (4.25)

4.1 Estimate of the Dirichlet heat kernel

Lemma 4.2 Let (I', ) be a weighted graph. Assume that for a,C > 0 fized
constants and for any non-empty finite set A C T’

AA) ™ < aCpu(A). (4.26)

The for any f(x) non-negative function on I' with finite support

R ||f||2)25
115 (1) <ce.

Proof. The proof is simple modification of [10, Lemma 5.2] (see also [9,
Lemma 2.2]). =

Now we have to make a careful detour as it was made in [4] or [10]. The
strategy is the following. We consider the weighted graph I'* with the same
vertex set as I' with new edges and weights induced by the two-step transition
operator Q = P2,

fay =1 (z) P2 (2,y).

If T'™* is decomposed into two disconnected component due to the periodicity
of P the applied argument will work irrespective which component is consid-
ered. We show that (py),(VD),(TC) and (FK) hold on I'* if they hold on
I'. We deduce the Dirichlet heat kernel estimate for ) on I'* then, we show
that it implies the same on I'. We have to do this detour to ensure

b
' (x)

Q(zx,z)=q(x,z) >a>0

15



holds for all x € I'* which will be needed in the key step to show the diagonal
upper estimate in the proof of Lemma 4.6.

Lemma 4.3 If (po),(VD),(TC),(FK) holds on T then, the same is true
on I'".

Proof. The statement is evident for (py) and (V' D). Here it is worth to
mention that p* (z) = p(z) and from (3.7) we know that p(z) ~ p(y) if
x ~ 9. Let us observe that

B(z,2R) C B (z,R) (4.27)
B*(z,R) C B(x,2R) (4.28)

and
V*(y,2R) < V (y,4R) < C*V (2, R) (4.29)

< (E* (z, R/z)) < CV* (z, R).

So, not only (VD) can be shown but the volumes of the above balls are

comparable.
The next is to show (7°C').

E*(y,2R) = Y. ZQJ”R (y, 2

z€B*(y,2R) k=0

S S
z€B(y, 4R)k 0
B(y,4R) AR
SN SR ) 4 PR (0,

z€B(y,4R) k=0
— E(y,4R) < CE (s, R/?)

= Z f: P,f(x’R/Q) (z,2)

2€B(x,R/2) k=0
B(z,R/2 xz,R/2
= Z ZP( /)$Z)+P2k(+1/)( z).
2€B(x,R/2) k=0
Now we use a trivial estimate

B(z,R B(z,R x,
PR (@, 2) = Y P (w,w) PPER) (w, 2)

wn~z

S ZPB(xR

wn~z

16



Summing up for all z and recalling (3.8) which states that for a fixed w € T',
[{w ~ z}| < -, we receive that

Z P2k(f1R/2) (,2) < Z ZP% IR/Q) (2, w)

z€B(z,R/2) z€B(z,R/2) w~z

< C Z PEER (2 w) |

wEB(x,R/2)
As a result we obtain that
F*(y,2R) < C Z ZPQka/z (z,2)

B(z,R/2) k=0
< CE*(x,R/Q—l— 1) <CE*(z,R).

This shows that (7'C') holds on I'*. We have also proved that

cE* (z,R) < E(x,R) < CE"(2,R). (4.30)
It is left to show that from
A\’
A< CE (A 131
At cpen (H0) (4.31)
it follows that
N (A < OB (o, R) (L2 6 (4.32)
=7 YAV @ R) |
holds as well. The inequality
A (A) > X (A) (4.33)
was given in [4, Lemma 4.3]. Collecting the inequalities we get the statement.
— 5
. A)
N (A < ANA) ! <CE 1_#(
(A7 < A4)  <CE@R+ )<V(93,R+1)
5
) p (A)
< CFE —_—
< oF o) (i)

Lemma 4.4 For all random walks on weighted graphs, x,y € A C ', n,m >
0

P (2.9) < \JDh (2.2) P (4,9). (4.34)
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Proof. The proof is standard, hence omitted. m
To complete the scheme of the proof we need to return from I'* to I'. This
is given in the following lemma.

Lemma 4.5 Assume that (I',u) satisfy (po) (VD) and (T'C). In addition
if (DUE) holds on (I'*, ) then, it holds (T, ).

Proof. The condition states that

C
an (@, 7) < V*(z,e* (z,n))

Then from the definition of ¢, (4.29) and (4.30) it follows that

C
V(z,e(x,2n))

Don (,T, .23) S

Finally for odd times the statement follows by a standard argument. From
the spectral decomposition of PE@R) for finite balls one has that

P (2, 2) > PR (2, 2)

and consequently

poa(wx) = lim py ™" (2,)

> lim py Y (,2) = poasa (2,),

which gives the statement using (V' D), (TC) and (3.13). m
Lemma 4.6 If (py) is true on (I', u) and (FK) :
AA) T < Cap (A) (4.35)

holds for
E(z,R) B (z, R)
ViR V(@ R)

and all A C B* (x, R) on (I'*, ) then, for all z,y € I',n >0

. a\1/o
g2 @R (y,y) < O<H> .

18



Proof. The proof is slight modification of the steps proving (a) =
(b) in Proposition 5.1 of [10] so we omitt it. This final statement can be
reformulated for y € I" as follows

am (y,y) <

e (E(Z’R))l/é'

Now we consider the following path decompositions.

Lemma 4.7 Let p, (x,y) the heat kernel of the random walk on an arbitrary
weighted graph (U, ). Let ACT,xz,y € A,;n >0 then

P (2,y) < pit (z,y) + Py (Ta < n) max py (2,9). (4.36)
0<k<n

po(ey) € o)+ P (Ta<n/2) max pi(ay) (437
n/2<k<n
+P, (T4 <n/2) max  py (z,2). (4.38)
n/2<k<n

Proof. Both inequality follows as in [9, Lemma 2.5] from the first exit
decomposition starting from x or from x and y as well. m

4.2 Proof of the upper estimates

Proof of Theorem 4.1. First we show the implication (FK) = (DUE)
on I'* assuming (po), (VD) and (T'C). We follow the main lines of [9]. Let

we choose 1 so that Ln = E (z,r) for a large L > 0. From (4.37) we have
that for B = B* (z, )

qn (7,7) < P (v,7) +2Q, (Tg < n/A) max gy (z,2). (4.39)
F4S
n/A<k<n

From (4.34) one gets that for all n/A <k <n

@ (2,2) < Vaw (2,2) g (2, 2) < max g (v,v) <y Max g/ (v,0).
ve ve

This results in (4.39) that for some z; € B
gn (2,2) < gf (v,2) +2Q, (Ts < n/A) Ciqpna) (1, 21) - (4.40)
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We continue this procedure. In the i-s step we have
oy (@i, 23) < g (24, 23) + 2Qq, (T, < nig1) Cign, (Tiy1, Tiy1),  (4.41)

where n; = |n/A'|,r; = e(x;, Ln;),B; = B (x;,1;), %41 € Bi. Let m =
[log4 n| and we stop the iteration at m. This means that 1 < | % | = n,, <
A. Now we choose A. By the definition of n; and from (7'C) it follows that

. . o A\ 7
. Ln;  E(x;r;) < E@”z”))g(}(ﬁ) ’

C Lnig E(2i,ris) B (@i, rin Tit1
1
which results with o =2 (£)? < 1/2 that
Ti+1 S or; (442)

if A> 4°C. From the choice of the constants it follows that

< 2r. (4.43)

m . 1

d(z,xp) <rT4+11+ . F10H T g a’<7’1
—0
i=0

From Lemma 4.6 the first term can be estimated as follows

r N\ 1/6
qr (zi, ;) < c ( (x,m))

Vv (a:i,ri) n;
B C TS _ CLYS V (x,2r)
Vv (x4, 15) Vv (x,2r)V (x;,1;)

CLY 2\
< —F | = )
- Vi) (0 )
where in the last step (4.43) and (V' D) have been used. Let us observe that
by definition of k = k (z;, ni41,7;)

Ni+1 . T
> FE —
k+1° veb (%k+1>

and by (T'C)

Ln; = Em,m)scE@,n)§0<k+1>ﬁE(y’k:fl>
S C(k‘*’l)ﬁilnly

which results that & > (L/C)ﬁ — 1 and

Q. (Tp < niy1) < Cexp[—ck (zi,ni41,73)] < Cexp

-
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This means that
in (TB < nz’—i—l) <

DO ™

if L is chosen to be enough large. Inserting this into (4.41) one gets

Qi (23, 2;) < .

CLYS [2\*
V (z,7) (_> + eCiqn, (Tiy1, Tit1) - (4.44)

Summing up the iteration results that

i (2,7) < (L::) 2:: ( <3> €)i (O g (). (4.45)

g

Choosing L enough large ¢ < mln{ } can be ensured. This results

2

that the sum in the first term is bounded by 1/(1—¢ (%)a) < C'. The second
term can be treated as follows.

1 1
gy O () 3T

dm (xma xm) =

From (4.42) we have that

1 B 1 V(x,2r)
Wom) V(o) mlem)
< L (2r)"
- Vi)

This means that we are ready if
(2r)*e™ < C".

Let us remark that E (z,r) > r. which implies that e (z,n) < n. From the
definition of m and E (z,7) = Ln,

(2r)% ™ < (2r)* 98 < [2F (z,7)]" n'o84a¢ = (2L)* n*to8ac <

if e < A7 L is enough large. Finally from (4.45) we receive that

16 m
0o (07) < CL 53 ) o ) (4)

C - C < C
Vz,r) V(z,e(z,Ln)) — V(x,e(x,n))’

IA
I

(4.47)



if £ < min { (%)a , C%’ A*O‘} , absorbing all the constants into C'. This means

that (DUFE) holds on I'* and by Lemma (4.5) (DUFE) holds on I' as well. It
was shown in [21] that under the assumption (po)

(VD) + (TC) + (DUE) = (UE).

The revers implication (UE) = (DUEF) is evident. The implication (DUFE) =
(FK) can be seen as it was given in [4] without any essential change, hence
the proof of Theorem 4.1 and2.1 is complete. . m

4.3 A Davies-Gaffney type upper estimate

We provide here a different proof of the upper estimate which might be
interesting on its own. The proof has two ingredients. The first one is the
generalization of the Davies-Gaffney inequality. First we need a theorem
from [19].

Theorem 4.8 If (py) and (E) hold then there are ¢,C > 0 such that for all
rel,n,R>0

P,(Ty,r <n) < Cexp|—ck(x,n,R)|. (4.48)
Proof. See Theorem 5.1 [19]. m
Notation 3 Denote

k(n,A, B) =mink (z,n,d), (4.49)

z€A
where d = d (A, B) and
k(n,A,B) = max{k(n,A,B),k(n,B,A)}. (4.50)

Theorem 4.9 If (E) holds for a reversible Markov chain then there is a
constant ¢ > 0 such that for all A, B C V, the Davies-Gaffney type inequality
(DG)

Y palwyp@)n(y) < (o (A) p(B)]? exp (—cr (n, A, B))  (DG)

r€AyeB

holds.
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Proof. Using the Chebisev inequality one gets

> Puly)p(z) (4.51)
= u@)?I [ V(@) La (2) Y Pu(a,y) 5 (y ] (4.52)
zel yeB 2 »
< (AN () La(x) ZPn(x,y)IB(y)]

Let us deal with the second term denoting r = d (A, B)

> @) La(x) | Pulxy) s (y)] (4.53)
= > u(@) La (@)Y Pu(z,y) I8y ZPm,z)IB(z)

= Y > D Pu(w,2) Ip(2) p(w) La(2) Pa(w,9) [5 (y)  (4.54)

zel' yel' zel

= N S N Pi(e ) I (2) u(2) La (x) Pu(2,9) In (y)  (4.55)

zel' yel' zel’

SZZP (z,2) Ip (2 ZP (z,y) I (y

< YN Pz a) 15 (2) p(2) 1a () (4.56)
< SR (5 A s (2) i (2) < S PATey < ) () o (2)

< max exp [—ck (z,n,7)] u(B). (4.57)

The combination of (4.51) and (4.53) gives the second term in the definition
of k and by symmetry one can obtain the first one. m

4.4 The parabolic mean value inequality

In order to show the off-diagonal upper estimate we need that the so called
parabolic mean value (PMV') inequality follows from the diagonal upper
estimate. Working under the conditions (pg), (VD) and (T'C) we will show
the following implications

(DUE) = (PMV)
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and
(PMV)+ (DG) = (UE).

In doing so we introduce (PMV).

Definition 4.1 A weighted graph satisfies the parabolic mean value inequal-
ity (PMV) if for fized constants 0 < ¢; < ¢y there is a C' > 1 such that
for arbitrary x € T' and R > 0, using the notations E = E(z,R),B =
B(z,R),n = cE, ¥ = [0,n] X B for any non-negative Dirichlet solution of
the heat equation

PPu; = uiy

on U, the inequality

coF

un(2) < o Z > iy (4.58)

t=c1E yeB(x,R)

holds.
Theorem 4.10 If (T, u) satisfies (po), (VD) and (TC) then,
(DUE) = (PMV)
Proof. For the proof see [21]. =

Remark 4.1 Let us observe that if for non-negative Dirichlet (sub-)solutions
the parabolic mean value inequality holds then it holds on non-negative (sub-
)solutions as well. This can be seen by the decomposition of anu > 0 solution
on B (z,2R) on the smaller ball B (x, R) into nonnegative combination of
non-negative Dirichlet solutions in B (x,2R). (c.f. [7]).

4.5 The local upper estimates

Proposition 4.11 Assume that (T, u) satisfies (po), (PMV') and (T'C). Let
x,y € I' then there are ¢,C > 0,0 > 1 such that for all x,y € I';n >0

(Bt ] |

C
“ VV(z,e(z,n)V (y,e(y,n))

Pn (7,y) < exp
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Proof. The proof combines the repeated use of the parabolic mean
value inequality and the the Davies-Gaffney inequality. Following the idea
of [15]. Denote R = e(z,n),S = e(y,n) and assume that d > 2 (R+ S)
which ensures that r =d — R — S > gd. From (PMV) it follows that

C2E(z,R)

pn(x,y)év(xR Z > ez y)u(z)

c1E(a: R) z€B(z,R)

and using (PMV') for pi (z,y) on gets

con con—+i

p(@9) < o ysngz Yoo Y piweE) u(w

i=c1n z€V (z,R) j=cin+i weB(y,S)
(4.2)

Now by (DG) and (3.15) and denoting A = B (z, R), B = B (y, S) we obtain

C V .CL’ R con con+i ~
P (2,y) < V\{x RV n2 Z D emennAB), (4.3)

i=c1n j=cin+i

Using (T'C') and R < 3d one can see that

E e E(z.d)\ 77
max exp C(M) Sexp—c( (z, )>
n

z€V(z,R)

and similarly

1
d/3)\ 71 E(y,d)\ 7
max exp —c (_E(w, /3>> < exp—c( (z’ ))
n

weV (y,R)

which results that

pn(7,y) < exp

~ VRV (y,9)

It is left to treat the case d (x,y) < % (R+ S). Inthis case k (n, B (z, R), B (y,5)) =
0 in (4.3). On the other hand if d (z,y) < R

E(z,d) < E(z,e(x,n))=n
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n

1
which results that 1 < C'exp {—c (E(x’d) > B_ll for a fixed C' > 0 and similarly
1

1 1
if d(z,y) < S, 1< Cexp {—c (@) Bl} < Cexp {—c (@) 61} which

gives the statement. m
The next lemma is from [21], which leads to the upper estimate.

Lemma 4.12 If (py),(VD) and (T'C) hold then for all ¢ > 0 there are
C.,C > 0 such that for alln > 0,z,y € I';d = d (z,y)

Vie(n) . o (BE@d\77
Pl < Cowee (F09) T

Theorem 4.13 Assume that (I', ) satisfies (po), (VD) ,(TC) and (DUE).

Let z,y € T then, (UE) holds:
- .
pn(,y) < exp | —c <M> ] . (44

n

V(z,e(z,n))
Proof. From Theorem 4.10 we have that
(DUE) = (PMYV).

Now we can use Proposition 4.11 which statates that from (PMV') and (T'C)
it follows that

s (1,) < ¢
SV @ e@mmV Wen)

p exp

n

(Bt

Let us use Lemma 4.12,

P S | Vi) ‘(M)]
< TG 50(@)@”—6(%)“1

and choosing € small enough we get the statement. m
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5 Example

In this section we recall from [21] an example for a graph which is not covered
by any of the previous results of on- and off-diagonal upper estimates but
satisfies the conditions of Theorem 2.1.

Let G; is the subgraph of the Vicsek tree (see Figure 1.) (cf. [11] )
which contains the root 2z, and has diameter D; = 23°. Let us denote
by z; the vertices on the infinite path with d(z9,2;) = D;. Denote G} =
(G\G;—1) U{zi_1} for i > 0, the annulus defined by G-s.

The new graph is defined by stretching the Vicsek tree as follows. Con-
sider the subgraphs GG and replace all the edges of them by a path of length
i + 1. Denote the new subgraph by A;, the new blocks by I'; = U;'-:OAi, the
new graph is I' = U2, A;. We denote by z; the cut point between A; and
Ai_1 again. For x #y,x ~ y let p,,, = 1.

One can see that neither the volume nor the mean exit time grows poly-
nomially on I', on the other hand I' is a tree and the resistance grows asymp-
totically linearly on it.

It was shown in [21] that the tree I' satisfies (po), (V D), (T'C) further-
more the mean value inequality (for all the definitions and details see [21]).
The main result there states that under these conditions the diagonal upper
estimate holds. Since I satisfies (pg) , (V D), (T'C) and (DUE) we are in the
scope of Theorem 2.1 and all the isoperimetric inequalities hold.
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