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In this note we study the empirical pricing American options. The pric-
ing American option is an optimal stopping problem, which can be de-
rived from a backward recursion such that in each step of the recursion
one needs conditional expectations. For empirical pricing, [Longstaff
and Schwartz (2001)] suggested to replace the conditional expectations
by regression function estimates. We survey the current literature and
the main techniques of nonparametric regression estimates, and derive
new empirical pricing algorithms.

6.1. Introduction: the valuation of option price

6.1.1. Notations

One of the most important problems in option pricing theory is the val-

uation and optimal exercise of derivatives with American-style exercise

features. Such derivatives are, for example, the equity, commodity, for-

eign exchange, insurance, energy, municipal, mortgage, credit, convertible,

swap, emerging markets, etc. Despite recent progresses, the valuation and

optimal exercise of American options remains one of the most challenging

problems in derivatives finance. In many financial contracts it is allowed

to exercise the contract early before expiry. For example, many exchange

traded options are of American type and allow the holder any exercise date

before expiry, mortgages have often embedded prepayment options such

that the mortgage can be amortized or repayed, or life insurance contracts

allow often for early surrender. In this paper we consider data driven pric-

ing of options with early exercise features.
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Let Xt be the asset price at time t, K the strike price, r the discount

rate. For American put option, the payoff function ft with discount factor

e−rt is

ft(Xt) = e−rt (K −Xt)
+

.

For maturity time T , let T= {1, . . . , T} be the time frame for American

options. Let Ft denote the σ-algebra generated by X0 = 1, X1, . . . , Xt then

an integer valued random variable τ is called stopping time if {τ = t} ∈ Ft,

for all t = 1, . . . , T . If T̃(0, . . . , T ) stands for the set of stopping times

taking values in (0, . . . , T ) then the task of pricing the American option is

to determine

V0 = sup
τ∈T̃(0,...,T )

E {fτ (Xτ )} . (6.1)

The main principles of pricing American put option described below can

be extended to more general payoffs, for example, the payoffs may depend

on many assets’ prices (cf. [Tsitsiklis and Roy (2001)]).

Let τ∗ be the optimum stopping time, i.e.,

E {fτ∗ (Xτ∗)} = sup
τ∈T̃(0,...,T )

E {fτ (Xτ )}

6.1.2. Optimal stopping

An alternative formulation of τ∗ can be derived as follows. Introduce the

notation

qt(x) = sup
τ∈T̃{t+1,...,T}

E {fτ (Xτ ) | Xt = x} (6.2)

continuation value, where T̃ {t+ 1, . . . , T} refers to the possible stopping

times taking values in {t+ 1, . . . , T}.

Theorem 6.1 (cf. Chow et. al, 1971, Shiryayev, 1978, Kohler, 2010).

Put

τ q = min {1 ≤ s ≤ T : qs (Xs) ≤ fs (Xs)} .

If the assets prices {Xt} form a Markov process then

τ∗ = τ q.

The intuition behind the optimal stopping rule τ q is that at any exercise

time, the holder of an American option optimally compares the payoff from
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immediate exercise with the expected payoff from continuation, and then

exercises if the immediate payoff is higher. Thus, the optimal exercise

strategy is fundamentally determined by the conditional expectation of the

payoff from continuing to keep the option alive. The key insight underlying

the current approaches is that this conditional expectation can be estimated

from data.

As a byproduct of the proof of Theorem 6.1, one may check the the

following:

Theorem 6.2 (cf. Tsitsiklis and Roy, 1999, Kohler, 2010). We get

that

qT (x) = 0,

while at any t < T

qt(x) = E {max {ft+1 (Xt+1) , qt+1 (Xt+1)} | Xt = x} (6.3)

which means that there is a backward recursive scheme.

(6.3) implies that

qt(x) = E {max {ft+1 (Xt+1) , qt+1 (Xt+1)} | Xt = x}
= E

{
max

{
e−r(t+1) (K −Xt+1)

+
, qt+1 (Xt+1)

}
| Xt = x

}

= E

{
max

{
e−r(t+1)

(
K − Xt+1

Xt
Xt

)+

, qt+1

(
Xt+1

Xt
Xt

)}
| Xt = x

}

= E

{
max

{
e−r(t+1)

(
K − Xt+1

Xt
x

)+

, qt+1

(
Xt+1

Xt
x

)}
| Xt = x

}
.

(6.4)

6.1.3. Martingale approach: the primal-dual problem

As we defined in the Introduction, the initial problem is to find the optimal

stopping time which provides the price of American option:

V0 = sup
τ∈T̃(0,...,T )

E {fτ (Xτ )} ,

where the sup is taken over the stopping times τ . The dual problem is

formulated by [Rogers (2002)], [Haugh and Kogan (2004)] to obtain an

alternative valuation method. Let
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U0 = inf
M∈M

E

{
max

t∈{0,1....T}
(ft (Xt)−Mt)

}
(6.5)

whereM is the set of martingales with M0 = 0 and with the same filtration

σ (Xt, . . . , X1). The dual method is based on the next theorem.

Theorem 6.3. (cf. Rogers, 2002, Haugh and Kogan, 2004,

Glasserman, 2004, Kohler, 2010) If Xt is a Markov process then

U0 = V0

This result is based on the important observation that one can obtain

a martingale from the pay-off function and continuation value in a natural

way.

Theorem 6.4. (cf. Glasserman, 2004, Tsitsiklis and Roy, 1999,

Kohler, 2010) The optimal martingale is of form

M∗
t =

t∑

s=1

(max {fs (Xs) , qs (Xs)} − qs−1 (Xs−1))

and indeed M∗
t is a martingale.

The valuation task now is converted into an estimate of the martingale

M∗
t .

6.1.4. Lower and upper bounds of qt(x)

In pricing American option, the continuation values qt(x) play an impor-

tant role. For empirical pricing, one has to estimate them, which is possible

using the backward recursion (6.3). However, using this recursion the es-

timation errors are accumulated, therefore there is a need to control the

error propagation.

We introduce a lower bound of qt(x):

q
(l)
t (x) = max

s∈{t+1,...,T}
E {fs(Xs)|Xt = x} .

Since any constant τ = s is a stopping time, we have that

q
(l)
t (x) ≤ qt(x).

We shall show that q
(l)
t (x) can be estimated easier than that of qt(x)

and the estimate has a fast rate of convergence, so if q
(l)
t,n(x) and qt,n(x) are
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the estimates of q
(l)
t (x) and qt(x), resp., then

q̂t,n(x) := max{qt,n(x), q(l)t,n(x)}

is an (hopefully) improved estimate of qt(x).

Next we introduce an upper bound. For τ ∈ T̃ {t+ 1, . . . , T}, we have

that

fτ (Xτ ) ≤ max
s∈{t+1,...,T}

fs(Xs),

therefore

qt(x) = sup
τ∈T̃{t+1,...,T}

E {fτ (Xτ ) | Xt = x} ≤ E

{
max

s∈{t+1,...,T}
fs(Xs) | Xt = x

}
.

Introduce the notation

q
(u)
t (x) := E

{
max

s∈{t+1,...,T}
fs(Xs) | Xt = x

}
,

then we get an upper bound

qt(x) ≤ q
(u)
t (x).

Again, q
(u)
t (x) can be estimated easier than that of qt(x) and the estimate

has a fast rate of convergence, so if q
(u)
t,n (x) and qt,n(x) are the estimates of

q
(u)
t (x) and qt(x), resp., then

q̂t,n(x) := min{qt,n(x), q(u)t,n (x)}

is an improved estimate of qt(x).

The combination of the lower an upper bounds reads as follows:

max
s∈{t+1,...,T}

E {fs(Xs)|Xt = x} ≤ qt(x) ≤ E

{
max

s∈{t+1,...,T}
fs(Xs) | Xt = x

}
,

while the improved estimate has the form

q̂t,n(x) =





q
(u)
t,n (x) if q

(u)
t,n (x) < qt,n(x),

qt,n(x) if q
(u)
t,n (x) ≥ qt,n(x) ≥ q

(l)
t,n(x),

q
(l)
t,n(x) if qt,n(x) < q

(l)
t,n(x).
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6.1.5. Sampling

In a real life problem we have a single historical data sequence X1, . . . , XN .

Definition 6.1. The process {Xt} is called of memoryless multiplicative

increments, if X1/X0, X2/X1, . . . are independent random variables.

Definition 6.2. The process {Xt} is called of stationary multiplicative

increments, if the sequence X1/X0 = X1, X2/X1, . . . is strictly stationary.

As mentioned earlier, the continuation value qt(x) plays an important

role in the optimum pricing, which is the supremum of conditional expecta-

tions. Conditional expectations can be considered as regression functions,

and in the empirical pricing the regression function is replaced by its es-

timate. For regression function estimation, we are given independent and

identically distributed (i.i.d) copies of X1, . . . , XT , i.e., one generates i.i.d.

sample path prices:

Xi,1, . . . , Xi,T , (6.6)

i = 1, ...n.

Based on the historical data sequence X1, . . . , XN , one can construct

samples for (6.6) as follows:

(i) For the Monte Carlo sampling, one assumes that the data generating

process is completely known, i.e., that there is perfect parametric model

and all parameters of this process are already estimated from histori-

cal data X1, . . . , XN (cf. Longstaff, Schwartz [Longstaff and Schwartz

(2001)]). Thus, one can artificially generate independent sample paths

(6.6). The weakness of this approach is that usually the size N of the

historical data is not large enough in order to have a good model and

reliable parameter estimates.

(ii) For disjoint sampling, N = nT and2i = 1, . . . , n = N/T . However, we

haven’t the required i.i.d. property unless the processX1, . . . , XnT have

memoryless and stationary multiplicative increments, which means that

X1/X0, X2/X1, . . . , XnT /XnT−1 are i.i.d.

(iii) For sliding sampling,

Xi,t :=
Xi+t

Xi
, (6.7)

i = 1, . . . , n = N−T . In this way we get a large sample, however, there

is no i.i.d. property.
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(iv) For bootstrap sampling, we generate i.i.d. random variables T1, . . . , Tn

uniformly distributed on 1, . . . , N − T and

Xi,t :=
XTi+t

XTi

, (6.8)

i = 1, . . . , n.

6.1.6. Empirical pricing and optimal exercising of American

option

If the continuation values qt(x), t = 1, . . . T were known, then the optimal

stopping time τi for path Xi,1, . . . , Xi,T can be calculated:

τi = min {1 ≤ s ≤ T : qs (Xi,s) ≤ fs (Xi,s)} .

Then the price V0 can be estimated by the average

1

n

n∑

i=1

fτi (Xτi) . (6.9)

The continuation values qt(x), t = 1, . . . T are unknown, there-

fore one has to generate some estimates qt,n(x), t = 1, . . . T . [Kohler

et al. (2008)] suggested a splitting approach as follows. Split the

sample {Xi,1, . . . , Xi,T }ni=1 into two samples: {Xi,1, . . . , Xi,T }mi=1 and

{Xi,1, . . . , Xi,T }ni=m+1. We estimate qt(x) by qt,m(x), (t = 1, . . . T ) from

{Xi,1, . . . , Xi,T }mi=1, and construct some approximations of the optimal

stopping time τi for path Xi,1, . . . , Xi,T

τi,m = min {1 ≤ s ≤ T : qs,m (Xi,s) ≤ fs (Xi,s)} ,

and then the price V0 can be estimated by the average

1

n−m

n∑

i=m+1

fτi,m
(
Xτi,m

)
.

For empirical exercising at the time frame [N + 1, N + T ], we are given

the past data X1, . . . , XN based on which generate some estimates qt,N (x),

t = 1, . . . T . Then the empirical exercising of American option can

be defined by the stopping time

τN = min {1 ≤ s ≤ T : qs,N (XN+s/XN ) ≤ fs (XN+s/XN )} .
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If the continuation values qt(x), t = 1, . . . T were known, then the op-

timal martingale M∗
i,t for path Xi,1, . . . , Xi,T can be calculated:

M∗
i,t =

t∑

s=1

(max {fs (Xi,s) , qs (Xi,s)} − qs−1 (Xi,s−1)) .

Then the price V0 can be estimated by the average

1

n

n∑

i=1

max
t∈{0,1....T}

(
ft (Xi,t)−M∗

i,t

)
. (6.10)

The continuation values qt(x), t = 1, . . . T are unknown, then using

the splitting approach described above generate some estimates qt,m(x),

t = 1, . . . T are available and the approximations of the optimal martingale

M∗
i,t for path Xi,1, . . . , Xi,T :

M∗
i,t,m =

t∑

s=1

(max {fs (Xi,s) , qs,m (Xi,s)} − qs−1,m (Xi,s−1)) .

Then the price V0 can be estimated by the average

V0,n =
1

n−m

n∑

i=m+1

max
t∈{0,1....T}

(
ft (Xi,t)−M∗

i,t,m

)
.

For option pricing, a nonparametric estimation scheme was firstly pro-

posed by [Carrier (1996)], while [Tsitsiklis and Roy (1999)] and [Longstaff

and Schwartz (2001)] estimated the continuation value.

6.2. Special case: pricing for process with memoryless and

stationary multiplicative increments

In this section we assume that the assets prices {Xt} have memoryless

and stationary multiplicative increments. This properties imply that, for

s > t, Xs

Xt
and Xt are independent, and

Xs

Xt
and Xs−t

X0

= Xs−t have the same

distribution.



January 26, 2011 12:53 World Scientific Review Volume - 9in x 6in MLFFE

Empirical Pricing American Put Options 239

6.2.1. Estimating qt

For t < T , the recursion (6.4) implies that

qt(x) = E {max {ft+1 (Xt+1) , qt+1 (Xt+1)} | Xt = x}

= E

{
max

{
e−r(t+1)

(
K − Xt+1

Xt
x

)+

, qt+1

(
Xt+1

Xt
x

)}
| Xt = x

}

= E

{
max

{
e−r(t+1)

(
K − Xt+1

Xt
x

)+

, qt+1

(
Xt+1

Xt
x

)}}

= E

{
max

{
e−r(t+1) (K −X1x)

+
, qt+1 (X1x)

}}
, (6.11)

where in the last two steps we assumed independent and stationary mul-

tiplicative increments. By a backward induction we get that, for fixed t,

qt(x) is a monotonically decreasing and convex function of x.

If we are given data X1, . . . , XN , i = 1, . . . , N then, for any fixed t, let

qt+1,N (x) be an estimate of qt+1(x). Thus, introduce the estimate of qt(x)

in a backward recursive way as follows:

qt,N (x) =
1

N

N∑

i=1

max
{
e−r(t+1) (K − xXi/Xi−1)

+
, qt+1,N (xXi/Xi−1)

}
.

(6.12)

From (6.12) we can derive a numerical procedure such that consider a

grid

G := {j · h},

j = 1, 2, . . . , where the step size of the grid h > 0, for example h = 0.01.

In each step of (6.12) we make the recursion for x ∈ G, and then linearly

interpolate for x /∈ G.

The weakness of this estimate can be that maybe the estimation errors

are cumulated, therefore we consider the estimates of the lower and upper

bounds, too.
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6.2.2. Estimating the lower and upper bounds of qt(x)

For memoryless process, the lower bound of qt(x) has a simple form:

q
(l)
t (x) = max

s∈{t+1,...,T}
E {fs(Xs)|Xt = x}

= max
s∈{t+1,...,T}

e−rs
E

{(
K − Xs

Xt
Xt

)+

| Xt = x

}

= max
s∈{t+1,...,T}

e−rs
E

{(
K − Xs

Xt
x

)+

| Xt = x

}

= max
s∈{t+1,...,T}

e−rs
E

{(
K − Xs

Xt
x

)+
}

= max
s∈{t+1,...,T}

e−rs
E

{
(K −Xs−tx)

+
}
,

where in the last two steps we assumed memoryless and stationary multi-

plicative increments.

Thus

q
(l)
t (x) = sup

s∈{t+1,...,T}
e−rs

E

{
(K −Xs−tx)

+
}
.

If we are given data Xi,1, . . . , Xi,T , i = 1, ...n then the estimate of q
(l)
t (x)

would be

q
(l)
t,n(x) = max

s∈{t+1,...,T}
e−rs 1

n

n∑

i=1

(K −Xi,s−tx)
+
.
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Concerning the upper bound, the previous arguments imply that

q
(u)
t (x) = E

{
max

s∈{t+1,...,T}
fs(Xs) | Xt = x

}

= E

{
max

s∈{t+1,...,T}
e−rs(K −Xs)

+ | Xt = x

}

= E

{
max

s∈{t+1,...,T}
e−rs

(
K − Xs

Xt
Xt

)+

| Xt = x

}

= E

{
max

s∈{t+1,...,T}
e−rs

(
K − Xs

Xt
x

)+

| Xt = x

}

= E

{
max

s∈{t+1,...,T}
e−rs

(
K − Xs

Xt
x

)+
}

= E

{
max

s∈{t+1,...,T}
e−rs (K −Xs−tx)

+

}
.

If we are given data Xi,1, . . . , Xi,T , i = 1, ...n, then the estimate of

q
(u)
t (x) would be

q
(u)
t,n (x) =

1

n

n∑

i=1

max
s∈{t+1,...,T}

e−rs (K −Xi,s−tx)
+
.

The combination of the lower an upper bounds reads as follows:

max
s∈{t+1,...,T}

E

{
e−rs (K −Xs−tx)

+
}
≤ qt(x) ≤ E

{
max

s∈{t+1,...,T}
e−rs (K −Xs−tx)

+

}
.

Again, using the estimates of the lower and upper bound, we suggest a

truncation of the estimates of the continuation value:

q̂t,N (x) =





q
(u)
t,n (x) if q

(u)
t,n (x) < qt,N (x),

qt,N (x) if q
(u)
t,n (x) ≥ qt,N (x) ≥ q

(l)
t,n(x),

q
(l)
t,n(x) if qt,N (x) < q

(l)
t,n(x).

6.2.3. The growth rate of an asset and the Black-Scholes

model

In this section we still assume that the assets prices {Xt} have memoryless

and stationary multiplicative increments, and in discrete time show that the

Black-Scholes formula results in a good approximation of the lower bound

q
(l)
t (x). Consider an asset, the evolution of which characterized by its price
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Xt at trading period (let’s say trading day) t. In order to normalize, put

X0 = 1. Xt has exponential trend:

Xt = etWt ≈ etW ,

with average growth rate (average daily yield)

Wt :=
1

t
lnXt

and with asymptotic average growth rate

W := lim
t→∞

1

t
lnXt.

Introduce the returns Zt as follows:

Zt =
Xt

Xt−1
.

Thus, the return Zt denotes the amount obtained after investing a unit cap-

ital in the asset on the t-th trading period. Because {Xt} is of independent
and stationary multiplicative increments, the sequence {Zt} is i.i.d. Then

the strong law of large numbers (cf. [Stout (1974)]) implies that

Wt =
1

t
lnXt

=
1

t
ln

t∏

i=1

Xi

Xi−1

=
1

n
ln

n∏

i=1

Zi

=
1

n

n∑

i=1

lnZi

→ E{lnZ1} = E{lnX1}

almost surely (a.s.), therefore

W = E{lnX1}.

The problem is how to calculate E{lnX1}. It is not an easy task, one

should know the distribution of X1. For the approximate calculation of log-

optimal portfolio, [Vajda (2006)] suggested to use the second order Taylor

expansion of the function ln z at z = 1:

h(z) := z − 1− 1

2
(z − 1)2.
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Table 6.1. The average empirical daily yield, variance,
growth rate and estimated growth rate for the 19 stocks
from [Gelencsér and Ottucsák (2006)].

stock ra σ W W̃

ahp 0.000602 0.0160 0.000473 0.000474
alcoa 0.000516 0.0185 0.000343 0.000343

amerb 0.000616 0.0145 0.000511 0.000510
coke 0.000645 0.0152 0.000528 0.000528
dow 0.000576 0.0167 0.000436 0.000436

dupont 0.000442 0.0153 0.000325 0.000324
ford 0.000526 0.0184 0.000356 0.000356

ge 0.000591 0.0151 0.000476 0.000476
gm 0.000408 0.0171 0.000261 0.000261
hp 0.000807 0.0227 0.000548 0.000548

ibm 0.000495 0.0161 0.000365 0.000365
inger 0.000571 0.0177 0.000413 0.000413

jnj 0.000712 0.0153 0.000593 0.000593
kimbc 0.000599 0.0154 0.000479 0.000480
merck 0.000669 0.0156 0.000546 0.000546
mmm 0.000513 0.0144 0.000408 0.000408

morris 0.000874 0.0169 0.000729 0.000730
pandg 0.000579 0.0140 0.000478 0.000479

schlum 0.000741 0.0191 0.000557 0.000557

For daily returns, this is a very good approximation, so it is a natural idea

to introduce the semi-log approximation of the asymptotic growth rate:

W̃ = E{h(X1)}.
W̃ has the advantage that it can be calculated just knowing the first and

second moments of X1. Put

E{X1} = 1 + ra

and

Var(X1) = σ2,

then

W̃ = E{h(X1)} = E{X1 − 1− 1

2
(X1 − 1)2} = ra −

σ2 + r2a
2

≈ ra −
σ2

2
.

Table 6.1 summarizes the growth rate of some big stocks on New York

Stock Exchange (NYSE). The used database contains daily relative closing

prices of several stocks and it is normalized by divident and splits for all

trading days. For more information about the database see the homepage
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[Gelencsér and Ottucsák (2006)]. One can see that W̃ is really a good

approximation of W .

If the expiration time T is much larger than 1 day then for lnXT we

cannot apply the semi-log approximation, we should approximate the dis-

tribution of lnXT .

As for the binomial model or for the Cox-Ross-Rubinstein model or for

the construction of geometric Brownian motion (cf. [Luenberger (1998)]),

in addition, we assumed that {Zt} are i.i.d. Then

Var

(
t∑

i=1

lnZi

)

≈ Var

(
t∑

i=1

h(Zi)

)

= tVar (h(Z1))

= tVar

(
X1 − 1− 1

2
(X1 − 1)2

)

= t

(
E{(X1 − 1)2} − E{(X1 − 1)3}+ 1

4
E{(X1 − 1)4} − (ra −

1

2
(σ2 + r2a))

2

)

≈ tσ2.

Thus, by the central limit theorem we get that lnXt is approximately Gaus-

sian distributed with mean t(ra− (σ2 + r2a)/2) ≈ t(ra− σ2/2) and variance

tσ2:

lnXt
D≈ N

(
t(ra − σ2/2), tσ2

)
,

so we derived the discrete time version of the Black-Scholes model.

We have that

lnXt
D≈ N

(
tv0, tσ

2
)

where

v0 = ra − σ2/2.

Let Z
D
= N (0, 1) then

E

{
(K − xXt)

+
}
= E

{(
K − xelnXt

)+}

=

∫ ∞

−∞

(
K − xetv0+

√
tσz

)+ 1√
2πσ

e−
z2

2σ2 dz.
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We have

K − xetv0+
√
tσz > 0

if and only if

log
K

x
> tv0 +

√
tσz,

equivalently

z0 :=
log K

x − tv0√
tσ

> z.

Thus

E

{
(K − xXt)

+
}
=

∫ z0

−∞

(
K − xetv0+

√
tσz

)+ 1√
2πσ

e−
z2

2σ2 dz

= KΦ(z0)−
xetv0

√
2π

∫ z0

−∞
e
√
tσz−z2

0
/2dz

= KΦ(z0)−
xet(v0+σ2/2)

√
2π

∫ z0

−∞
e
(z−

√
tσ)2

2 dz

= KΦ(z0)− xet(v0+σ2/2)Φ
(
z0 −

√
tσ

)
.

Consequently

e−rt
E

{
(K − xXt)

+
}

= e−rt

(
KΦ

(
log K

x − tv0√
tσ

)
− xet(v0+σ2/2)Φ

(
log K

x − tv0√
tσ

−
√
tσ

))
,

therefore we get that

q
(l)
t (x)

= sup
s∈{t+1,...,T}

e−rs
E

{
(K −Xs−tx)

+
}

= e−rt

· sup
s∈{1,...,T−t}

e−rs

(
KΦ

(
log K

x − sv0√
sσ

)
− xes(v0+σ2/2)Φ

(
log K

x − sv0 − sσ2

√
sσ

))
.

6.3. Nonparametric regression estimation

In order to introduce efficient estimates of qt(x), for general Markov process,

we briefly summarize the basics of nonparametric regression estimation. In

regression analysis one considers a random vector (X,Y ), where X and
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Y are R-valued, and one is interested how the value of the so-called re-

sponse variable Y depends on the value of the observation X. This means

that one wants to find a function f : R → R, such that f(X) is a “good

approximation of Y ,” that is, f(X) should be close to Y in some sense,

which is equivalent to making |f(X) − Y | “small.” Since X and Y are

random, |f(X)−Y | is random as well, therefore it is not clear what “small

|f(X) − Y |” means. We can resolve this problem by introducing the so-

called mean squared error of f ,

E|f(X)− Y |2,

and requiring it to be as small as possible. So we are interested in a function

m : R→ R such that

E|m(X)− Y |2 = min
f :R→R

E|f(X)− Y |2.

According to Chapter 5 of this volume, such a function can be obtained

explicitly by the regression function:

m(x) = E{Y |X = x}.

In applications the distribution of (X,Y ) (and hence also the regression

function) is usually unknown. Therefore it is impossible to predict Y using

m(X). But it is often possible to observe data according to the distribution

of (X,Y ) and to estimate the regression function from these data.

To be more precise, denote by (X,Y ), (X1, Y1), (X2, Y2), . . . i.i.d. ran-

dom variables with EY 2 <∞. Let Dn be the set of data defined by

Dn = {(X1, Y1), . . . , (Xn, Yn)} .

In the regression function estimation problem one wants to use the data Dn

in order to construct an estimate mn : R→ R of the regression function m.

Here mn(x) = mn(x,Dn) is a measurable function of x and the data. For

simplicity, we will suppress Dn in the notation and write mn(x) instead of

mn(x,Dn).

In this section we describe the basic principles of nonparametric regres-

sion estimation: local averaging, or least squares estimation). (Concerning

the details see Chapter 5 of this volume and [Györfi et al. (2002)].)

The local averaging estimates of m(x) can be written as

mn(x) =

n∑

i=1

Wn,i(x) · Yi,
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where the weights Wn,i(x) = Wn,i(x,X1, . . . , Xn) ∈ R depend on

X1, . . . , Xn. Usually the weights are nonnegative and Wn,i(x) is “small” if

Xi is “far” from x.

An example of such an estimate is the partitioning estimate. Here one

chooses a finite or countably infinite partition Pn = {An,1, An,2, . . . } of

R consisting of cells An,j ⊆ R and defines, for x ∈ An,j , the estimate by

averaging Yi’s with the corresponding Xi’s in An,j , i.e.,

mn(x) =

∑n
i=1 I{Xi∈An,j}Yi∑n
i=1 I{Xi∈An,j}

for x ∈ An,j ,

where IA denotes the indicator function of set A. Here and in the following

we use the convention 0
0 = 0. For the partition Pn, the most important

example is when the cells An,j are intervals of length hn. For interval

partition, the consistency conditions mean that

lim
n→∞

hn = 0 and lim
n→∞

nhn =∞. (6.13)

The second example of a local averaging estimate is the Nadaraya–

Watson kernel estimate. Let K : R → R+ be a function called the kernel

function, and let h > 0 be a bandwidth. The kernel estimate is defined by

mn(x) =

∑n
i=1 K

(
x−Xi

h

)
Yi∑n

i=1 K
(
x−Xi

h

) .

Here the estimate is a weighted average of the Yi, where the weight of Yi

(i.e., the influence of Yi on the value of the estimate at x) depends on the

distance between Xi and x. For the bandwidth h = hn, the consistency

conditions are (6.13). If one uses the so-called naive kernel (or window

kernel) K(x) = I{‖x‖≤1}, then

mn(x) =

∑n
i=1 I{‖x−Xi‖≤h}Yi∑n
i=1 I{‖x−Xi‖≤h}

,

i.e., one estimates m(x) by averaging Yi’s such that the distance between

Xi and x is not greater than h.

Our final example of local averaging estimates is the k-nearest neighbor

(k-NN) estimate. Here one determines the k nearest Xi’s to x in terms of

distance ‖x−Xi‖ and estimates m(x) by the average of the corresponding

Yi’s. More precisely, for x ∈ R, let

(X(1)(x), Y(1)(x)), . . . , (X(n)(x), Y(n)(x))

be a permutation of

(X1, Y1), . . . , (Xn, Yn)
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such that

|x−X(1)(x)| ≤ · · · ≤ |x−X(n)(x)|.

The k-NN estimate is defined by

mn(x) =
1

k

k∑

i=1

Y(i)(x).

If k = kn →∞ such that kn/n→ 0 then the k-nearest-neighbor regression

estimate is consistent.

Least squares estimates are defined by minimizing the empirical L2 risk

1

n

n∑

i=1

|f(Xi)− Yi|2

over a general set of functions Fn. Observe that it doesn’t make sense to

minimize the empirical L2 risk over all functions f , because this may lead

to a function which interpolates the data and hence is not a reasonable

estimate. Thus one has to restrict the set of functions over which one

minimizes the empirical L2 risk. Examples of possible choices of the set

Fn are sets of piecewise polynomials with respect to a partition Pn, or

sets of smooth piecewise polynomials (splines). The use of spline spaces

ensures that the estimate is a smooth function. An important member of

least squares estimates is the generalized linear estimates. Let {φj}∞j=1 be

real-valued functions defined on R and let Fn be defined by

Fn =



f ; f =

ℓn∑

j=1

cjφj



 .

Then the generalized linear estimate is defined by

mn(·) = argmin
f∈Fn

{
1

n

n∑

i=1

(f(Xi)− Yi)
2

}

= argmin
c1,...,cℓn





1

n

n∑

i=1




ℓn∑

j=1

cjφj(Xi)− Yi




2




.

If the set




ℓ∑

j=1

cjφj ; (c1, . . . , cℓ), ℓ = 1, 2, . . .
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is dense in the set of continuous functions, ℓn →∞ and ℓn/n→ 0 then the

generalized linear regression estimate defined above is consistent. For least

squares estimates, other example can be the neural networks or radial basis

functions or orthogonal series estimates or splines.

6.4. General case: pricing for process with stationary mul-

tiplicative increments

6.4.1. The backward recursive estimation scheme

Using the recursion (6.3), if the function qt+1 (x) were known, then qt(x)

would be a regression function, which can be estimated from data

Dt = {(Xi,t, Yi,t)}ni=1 ,

with

Yi,t = max {ft+1(Xi,t+1), qt+1(Xi,t+1)} .

However, the function qt+1(x) is unknown. Once we have an estimate qt+1,n

of qt+1 we can get an estimate of the next qt by generating samples Dt with

Y
(n)
i,t = max {ft+1 (Xi,t+1) , qt+1,n (Xi,t+1)} .

6.4.2. The Longstaff-Schwartz (LS) method

In this section we briefly survey on recent papers which generalized or

improved the Markov chain Monte Carlo and/or LS method.

First we recall the original method developed by [Longstaff and Schwartz

(2001)] then we elaborate on some refinements and variations. All these

methods have the following basic characteristics. They assume that the

price process of the underlying asset very well described by a theoretical

model, by the Black-Scholes (BS) model or a Markov chain model. In

both cases it is also assumed that we have from historical data a perfect

estimate of the model parameters hence Monte Carlo (MC) generation of

arbitrary large number of sample paths of the price process provide arbi-

trarily good approximation of the real situation, i.e., one applies a Monte

Carlo sampling.

[Longstaff and Schwartz (2001)] suggested a quadratic regression as fol-

lows. Given that qt is expressed by a conditional expectation (6.2), we

can seek for a regression function which determine the value of qt. Let us
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consider a function space e.g. L2 and an orthonormal basis, the weighted

Laguerre polynomials

L0 (x) = exp(−x/2)
L1 (x) = (1− x)L0 (x)

L2 (x) =
(
1− 2x+ x2/2

)
L0 (x)

Ln (x) =
ex

n!

dn

dxn

(
xne−x

)
.

we determine the coefficients: in case of k = 2, a1, a2, a3 :

(a0,t, a1,t, a2,t) = argmin
(a0,a1,a2)

n∑

i=1

(a0L0 (Xi,t) + a1L1 (Xi,t) + a2L2 (Xi,t)− Yi,t)
2

and obtain the estimate of qt

qt,n (x) =
2∑

i=0

ai,tLi(x).

Other choices might be, Hermite, Legendre, Chebysev, Gegenbauer, Jacoby,

trigonometric or even power functions do the job.

[Egloff (2005)] suggested to replace the parametric regression in the LS

method by nonparametric estimates. For example, in the possession of the

generated variables one can get the least square estimate of qt by

qt,n = argmin
f∈F

{
1

n

n∑

i=1

(f (Xi,t)− Yi,t)
2

}
,

where F is a function space.

[Kohler (2008)] studied the possible refinement, improvement of the LS

method in several papers. One significant extension is the computational

adaptation of the original LS method to options based on d underlying

assets, which lifts up the problem. This amounts to analyze d-dimensional

time-series such that [Kohler (2008)] suggested a penalized spline estimate

over a Sobolev space.

[Kohler et al. (2010)] investigated a least squares method for empirical

pricing compound American option if the corresponding space of functions

F is defined by neural networks (NN).

[Egloff et al. (2007)] reduced the error propagation with the rule such

that the non-in the money paths are sorted out, and for (Xi,s, Yi,s) generate

new path working on t, ...T (not the already used for t + 1...T ) reducing

error propagation. They studied an empirical error minimization estimate

for a function space of polynomial splines.
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6.4.3. A new estimator

Let’s introduce a partitioning like estimate, i.e., for the grid G and for

x ∈ G put

qt,n(x) =

∑n
i=1 max {ft+1(Xi,t+1), qt+1,n(Xi,t+1)} I{|Xi,t−x|≤h/2}∑n

i=1 I{|Xi,t−x|≤h/2}
, (6.14)

where I denotes the indicator, and 0/0 = 0 by definition. Obviously, this

estimate should be slightly modified if the denominator of the estimate is

not large enough. Then linearly interpolate for x /∈ G.

We have that

max
s∈{t+1,...,T}

E {fs(Xs) | Xt = x} ≤ qt(x) ≤ E

{
max

s∈{t+1,...,T}
fs(Xs) | Xt = x

}
,

where both the lower and the upper bounds are true regression function.

For x ∈ G, the lower bound can be estimated by

q
(l)
t,n(x) = max

s∈{t+1,...,T}

∑n
i=1 fs(Xi,s)I{|Xi,t−x|≤h/2}∑n

i=1 I{|Xi,t−x|≤h/2}
,

while an estimate of the upper bound can be

q
(u)
t,n (x) =

∑n
i=1 maxs∈{t+1,...,T} fs(Xi,s)I{|Xi,t−x|≤h/2}∑n

i=1 I{|Xi,t−x|≤h/2}
.

Again, a truncation is proposed:

q̂t,n(x) =





q
(u)
t,n (x) if q

(u)
t,n (x) < qt,n(x),

qt,n(x) if q
(u)
t,n (x) ≥ qt,n(x) ≥ q

(l)
t,n(x),

q
(l)
t,n(x) if qt,n(x) < q

(l)
t,n(x).
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