
c© The Author 2005. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oupjournals.org

doi:10.1093/comjnl/bxh000

Adaptive Routing Using Expert

Advice

András György1, György Ottucsák2

1Informatics Laboratory, Computer and Automation Research Institute

of the Hungarian Academy of Sciences,

Lágymányosi u. 11, Budapest, Hungary, H-1111
2Department of Computer Science and Information Theory,

Budapest University of Technology and Economics,

Magyar tudósok körútja 2, Budapest, Hungary, H-1117

Email: {gya, oti}@szit.bme.hu

Machine learning algorithms for combining expert advice in sequential decision

problems are considered. The goal of these algorithms is to perform, for any

behavior of the system, asymptotically as well as the best expert. We provide a

survey of these algorithms and show how they can be used for adaptive routing

in different packet switched networks.

Keywords: adaptive routing, combining expert advice, packet switched networks, quality of

service, sequential decision problems, shortest path problem

1. INTRODUCTION

Adaptive routing algorithms are of great importance
in the maintenance of packet switched communication
networks. A sufficiently flexible algorithm can yield
increased quality of service, such as reduced packet
loss ratio or delay, even in case of link failures
or substantially changed traffic scenarios. These
algorithms require constant monitoring of network
state, and the measured information is combined to
update the routing tables. Such combinations can be
done in a number of ways, from very simple heuristics to
more complicated methods, such as neural networks or
reinforcement learning, or sequential decision methods.
In this paper we survey the latter.

In sequential decision (prediction) problems in
general, a decision maker has to perform a sequence
of actions. After each action, the decision maker
suffers some loss, depending on the response of the
environment. Its goal is to minimize its cumulative loss
over a sufficiently long period of time. Adaptive routing
can naturally be cast as a sequential decision problem,
as for each packet the routing algorithm has to choose
a path from source to destination on which the packet
is to be sent. The loss corresponding to the decision is
the value of the service parameter we wish to minimize,
such as the delay on the path or whether the packet is
lost due to insufficient buffer size.

In this paper we consider sequential decision prob-
lems in the adversarial setting where no probabilistic
assumption is made on how the loss of the decision

maker is generated, and the goal is to perform well rel-
ative to a set of experts for all possible behavior of the
environment. More precisely, the aim of the decision
maker is to achieve asymptotically the same average
loss as the best expert. To solve this problem, the deci-
sion maker has access to the decisions of the experts
before making his own, and hence can combine them.
However, it is impossible to know in advance the per-
formance of the experts. Yet, the experts’ advice can
be combined such that the average loss of the combined
algorithm is asymptotically not larger than that of the
best expert over a sufficiently long period of time.

The first theoretical results concerning sequential
prediction are due to Blackwell [1] and Hannan [2], but
they were rediscovered by the learning community only
in the 1990’s, see, for example, Vovk [3], Littlestone
and Warmuth [4] and Cesa-Bianchi et al. [5]. These
results show that it is possible to construct algorithms
for sequential (online) prediction that predict almost
as well as the best expert. The main idea of these
algorithms is the same: after observing the past
performance of the experts, in each step the decision of
a randomly chosen expert is followed such that experts
with superior past performance are chosen with higher
probability.

In the routing problem, the decisions of the experts
can be defined as paths from source to destination,
and in the simplest case, one can define one expert
for each path. In that case, competing with the best
expert results in algorithms that have at least the same
asymptotic performance as the best fixed path. Stronger

The Computer Journal Vol. 00 No. 0, 2005

2 György and Ottucsák

results can be obtained by defining more flexible (“more
clever”) experts, for example by allowing the decisions
of the experts to change in time. In this way we can
compete with the performance of time-varying paths.

In this paper we give an overview of expert algorithms
and describe their applications in adaptive routing.
For simplicity, we will concentrate on minimizing the
average end-to-end delay between two dedicated nodes
of the network, but the results can be extended to any
other quality of service parameters in a straightforward
way. More precisely, we will consider the application
of the expert algorithms to find online the minimum
weight path between two dedicated nodes of a weighted
directed graph. This problem is equivalent to the
problem of optimal routing if, at each time instant,
the weights of the edges of the graph are matched to
the service parameters of the corresponding links to be
minimized.

2. SEQUENTIAL DECISION PROBLEMS

The sequential (often referred also as online) decision
problem considered in this paper is described as follows.
Suppose a decision maker has to make a sequence of
actions. At each time instant t = 1, 2, . . . , n, an action
at ∈ A is made, where A denotes the action space
and n is the number of rounds the algorithm is run
for. Then, based on the state of the environment
yt ∈ Y, where Y is some state space, the decision
maker suffers some loss ℓ(at, yt) with some bounded loss
function ℓ : A × Y → [0, 1]. The action at time t may
depend on all previous actions a1, . . . , at−1, and on all
the information available to the decision maker about
the past behavior of the environment. This information,
for example, may consist of the past environment states
y1, . . . , yt−1; however, the decision maker may not be
able to observe the state of the environment. The goal
of the decision maker is to minimize the average loss of
the algorithm on the long run, that is, to minimize

lim sup
n→∞

1

n

n∑

t=1

ℓ(at, yt).

Since no probabilistic assumption is made on how the
sequence {yt} is generated, it is not possible to minimize

the cumulative loss L̂n =
∑n

t=1 ℓ(at, yt) simultaneously
for all y1, . . . , yn. Therefore, the performance of the
decision maker is evaluated relative to a set of experts,
and its goal is to perform asymptotically as well as the
best expert. Formally, given N experts, at each time
instant t, for every i = 1, . . . , N , expert i chooses its
action fi,t ∈ A and suffers loss ℓ(fi,t, yt). The decision
maker is allowed to make its own decision at using the
experts’ advice f1,t, . . . , fN,t, however, without knowing
the experts’ loss in advance. When the action space is
finite, without loss of generality we may assume that
the decision maker always follows the advice of one of
the experts, that is, at = fIt,t for some It (this can

Sequential decision problem using expert
advice
Parameters: number N of experts, state space
Y, action space A, loss function ℓ : A × Y →
[0, 1], n number of rounds.

At time instants t = 1, . . . , n,

(1) each expert forms its action fi,t ∈ A,
i = 1, . . . , N ;

(2) the decision maker observes the actions of
the experts and chooses an expert
It ∈ {1, . . . , N};

(3) the state of the environment yt ∈ Y may or
may not be revealed;

(4) the decision maker incurs loss ℓ(fIt,t, yt)
and each expert incurs loss ℓ(fi,t, yt).

FIGURE 1. Sequential decision problem using expert
advice.

always be achieved by introducing some extra experts).
Therefore, we can assume that the decision of the
decision maker is to choose an expert It and follow its
decision fIt,t. Formally, the sequential decision problem
is given in Figure 1.

Throughout the paper, unless otherwise stated
explicitly, we assume that the experts are constants
(static); that is, fi,t does not depend on t. Then each
expert can be considered as an action. For convenience
we use the notations ℓi,t instead of ℓ(fi,t, yt) and ℓIt,t

instead of ℓ(fIt,t, yt). Then the cumulative loss of the
decision maker up to time n is

L̂n =

n∑

t=1

ℓIt,t,

and the cumulative loss of expert i is

Li,n =
n∑

t=1

ℓi,t.

The goal of the learning algorithm is to combine
the experts decisions such that the normalized regret,
defined as

1

n

(
L̂n − min

i=1,...,N
Li,n

)
,

the difference between the average loss of the algorithm
and that of the best expert, be universally small for all
possible sequences of {yt}. It can be shown that under
general conditions on the loss function and on the finite
action space, excluding such simple situations when,
for example, the loss of the experts are the same, no
deterministic algorithm can perform well for all possible
sequence {yt}. This is because for each deterministic
algorithm one can construct a “bad” sequence on which

The Computer Journal Vol. 00 No. 0, 2005

Adaptive Routing Using Expert Advice 3

the algorithm performs poorly, but the best expert does
not. Therefore, in the following we consider randomized
algorithms. That is, for each t, It is a random variable,
as well as the cumulative loss L̂n. In this case the goal of
the algorithm is to perform well with high probability.
That is, to ensure

lim sup
n→∞

1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤ 0

with probability 1 for every sequence {yt}. Such an
algorithm is called Hannan consistent. [6]

As an example to show that deterministic algorithms
does not work in general, consider the following
example. Assume that we have two actions
(experts), with loss sequences {1/2, 0, 1, 0, 1, 0, . . .} and
{0, 1, 0, 1, 0, 1, . . .} and the decision maker’s strategy is
to always use the decision that has been best so far.
This is the so called follow the leader strategy. Then
except for the first time instant, the first action is chosen
at time t if t is odd, and the second action is chosen if t
is even, resulting in choosing the worse action for each
t. Then the average loss of the algorithm converges
to 1, while the loss of both actions are asymptotically
1/2; thus the performance of the algorithm is far from
optimal.

However, if the action space is convex (in this case
obviously an infinite action space is required), then
instead of choosing an action at = i (or It = i)
according to a distribution {pi,t}, we can combine the

decisions as at =
∑N

i=1 pi,tfi,t. If the loss function ℓ(·, ·)
is convex in its first argument, then such deterministic
algorithms can be applied, see, e.g., Cesa-Bianchi and
Lugosi [6]. In routing, for example, this method
corresponds to time sharing different paths from source
to destination instead of randomly choosing one path.

The performance of any expert algorithm obviously
depends on how much information is available to
the decision maker about the experts’ and its own
performance. As we will show in Section 4, if all
the information is available about the losses of the
past actions, which is called the full information case,
then there exist algorithms such that the normalized

regret 1
n

(
L̂n − mini=1,...,N Li,n

)
is of order

√
lnN/n,

see, e.g., [3],[4],[5],[7],[8]. However, in certain types of
problems it is not possible to obtain full information
on the past performance of the experts. For example,
in many situations the decision maker has only
information on the loss of the chosen action, and no
information is available about the loss it would have
suffered had it made a different decision. This is called
the multi-armed bandit problem. Another example is
when it is expensive to obtain the losses of the experts,
and therefore the decision maker has the option to query
this information. In typical cases this corresponds to
the response of the environment, also called as outcome
or label, from which it is possible to compute the loss
of each expert. This type of problem is called label

efficient prediction. In all of these problems, including
the full information case, when the loss of each expert
is revealed after the action of the decision maker, there
exist algorithms whose average loss is n steps exceeds
the average loss of the best of N experts by a negligible
term converging to zero as n increases. In the full
information case the normalized regret converges to zero
as O(

√
lnN/n), in the multi-armed bandit problem as

O(
√

N lnN/n) [9], and in the label efficient prediction

problem with m queries in n rounds as O(
√

lnN/m)
[10]. A recent combination of the multi-armed bandit
and label efficient prediction problem, where the loss
of the chosen action can be queried m times in n
rounds can also be solved with normalized loss of order√

N lnN/m [11]. For a good survey on this topic, the
reader is referred to, e.g., the recent book of Cesa-
Bianchi and Lugosi [6].

Concerning complexity, for a general class of experts
the algorithms typically require O(nN) computations,
while the memory requirement is O(N) (one weight has
to be updated for each expert at each time instant).
While this complexity may be prohibitive for large
classes of experts, in many situations, such as the
shortest path problem in graphs, the special structure
of the experts allows to implement the algorithms with
significantly lower complexity, see, e.g., [12],[13],[14],
[15],[16],[17],[18],[8],[19],[20].

In this paper we will mainly consider algorithms that
are optimized for a fixed time horizon n. That is,
the fine tuned parameters of the algorithms depend
on n. Such algorithms can be modified easily using
standard techniques to perform near optimally for
an infinite time horizon [5]: One method is the so
called doubling trick, where the time is partitioned
into intervals of exponentially increasing length, and
a fixed horizon version of the algorithm is run on each
interval. However, in practice it is not desirable to reset
all accumulated information about the past from time
to time, so a better suited technique is to dynamically
change the parameters of the algorithms in time.

3. THE ROUTING MODEL AND THE
ONLINE SHORTEST PATH PROBLEM

Finding the best route between two dedicated nodes of
a network can be considered as the problem of finding
the minimum weight path in a weighted directed graph
G = (V, E), representing the network. Each node
of the graph corresponds to a node of the network,
and the (directed) edges of the graph represent the
corresponding links. The weight ℓe,t of each edge e ∈ E
concerns the service parameter of the corresponding link
at time t, in our case, for simplicity, the delay on the
link. Suppose we want to send packets from node u ∈ V
to node v ∈ V. Let P denote the set of all directed paths
from u to v, and assume that P is not empty (that is,
there is a route from u to v). At any time instant t,
a packet is sent from u to v over a (randomly) chosen

The Computer Journal Vol. 00 No. 0, 2005

4 György and Ottucsák

path It ∈ P. The transmission delay is given by

ℓIt,t =
∑

e∈It

ℓe,t

where e ∈ It denotes that edge e ∈ E belongs to path It,
where we assume that for each e and t, ℓe,t ∈ [0, 1/K]
where K denotes the length of the longest path (in
the number of hops) from u to v. Similarly, the loss
a packet would suffer on any path i ∈ P is given by
ℓi,t =

∑
e∈i ℓe,t. Of course, the delay the packet will

suffer on any path is not known in advance, and the
routing algorithm has to make decisions based on the
available information about the past. If performance
is compared to static routing, then the goal is to have
average delay close to that of the best path matched to
the entire sequence of the delays {ℓe,t : e ∈ E}{t=1,...,n}.
That is,

1

n

(
n∑

t=1

ℓIt,t − min
i∈P

n∑

t=1

ℓi,t

)

has to be as small as possible.
Alternatively, one may want to compete with

dynamic routing strategies. More precisely, for a fixed
time horizon n, one may want to perform as well as
the best time-varying path that is allowed to change
the path several times. If s denotes the maximum
number of path changes, then such a time-varying
routing method is given formally by integers t0 = 0 <
t1 < t2, · · · < ts+1 = n, and s + 1 paths i0, . . . , is ∈ P,
such that for time instants t ∈ (tk, tk+1], k = 0, . . . , s,
path ik is used. Let Ps denote the set of all time-varying
paths with s switches. The delay of such an adaptive
strategy is given by

s∑

k=0

tk∑

t=tk+1

ℓik,t =

s∑

k=0

tk∑

t=tk+1

∑

e∈ik

ℓe,t.

(In general, this type of problems is referred as tracking

the best expert.) Clearly, both scenarios fall under the
framework for sequential decision problems using expert
advice: in the static case the experts can be chosen as
the paths, and in the dynamic case the experts are the
time-varying paths defined above.

Note that the number of experts N = |P| is typically
very large even in the static case (usually exponential
in the number of edges), and it is extremely large
in the time-varying case even for small graphs as the
number of experts |Ps| is exponential in s. Therefore,
direct application of general expert algorithms may
be computationally prohibitive, and special algorithms
utilizing the graph structure have to be used.

It also has to be analyzed how much information
is available to make the routing decision. The
delay of the chosen path (or the round-trip delay)
is usually available at the source nodes in networks
where acknowledgment is sent from the recipient. This
scenario can be considered as the shortest path problem

in the multi-armed bandit setting: information is
available on the chosen action, that is, on the chosen
path. Full information on the network state can be
used at each node if the measured network parameters
are broadcasted by each node. However, broadcast at
each time instant is obviously not desirable, and it
may be a good decision to broadcast only a limited
number of times. This scenario can be considered
as the label efficient case. A third type of scenario
to be investigated is when the delay of the chosen
path is available only on request. This method can
be considered as a combination of the multi-armed

bandit and the label efficient setting, and it is very well
suited to the recent cognitive packet network (CPN)
framework introduced by Gelenbe et al. [21, 22].
In CPN capabilities for routing and flow control are
concentrated in packets, and special, so called smart
packets, not transporting any data, are used to explore
the network (only the chosen path). On the other
hand, data packets do not collect information about
their paths. Thus, sending a smart packet concerns to
query the label of the chosen action.

4. ALGORITHMS

In this section we provide an overview of the most
well-known algorithms in different scenarios, and show
their specific applications to the shortest path problem.
Mostly two types of algorithms are used: The, so called,
“follow the perturbed leader”-type algorithms employ
the principle (with some additional randomization) that
the so far best expert should perform well in the
future, too, while weighted average algorithms choose
experts randomly such that the ones with better past
performance are chosen with higher probability. In
the full information case both types of algorithms
are given, but in the multi-armed bandit and label
efficient settings, we consider only weighted average
type algorithms, as for these algorithms better regret
bounds are available.

4.1. Full information

In the full information case the decision maker can
observe the performance of each expert at each time
instant, and hence can utilize all such information
in its decision. First we consider the follow the
perturbed leader algorithm, then the exponentially
weighted average decision method.

4.1.1. Follow the perturbed leader

It was mentioned in Section 2 that the strategy of
following the leader (that is, the best expert so far) is
not optimal. However, a simple modification suffices to
achieve a significantly improved performance, proved
by Hannan [2]. The idea is to add small random
perturbations to the cumulative losses and then follow

The Computer Journal Vol. 00 No. 0, 2005

Adaptive Routing Using Expert Advice 5

Algorithm 1. Follow the perturbed
leader (Hannan [2])
Initialization : Fix R > 0, and set Li,0 = 0

for i = 1, . . . , N .

At time instants t = 1, 2, . . .

(1) Select the random N -vector Zt with
components Zi,t, i = 1, . . . , N , uniformly
from [0, R];

(2) Select an expert

It = arg min
i=1,...,N

(Li,t−1 + Zi,t)

(ties are broken in favor of the smallest
index);

(3) Update the loss of each expert i

Li,t = Li,t−1 + ℓi,t.

FIGURE 2. The follow the perturbed leader algorithm in
the full information case.

the “perturbed leader” with best “perturbed” past
performance.

The following theorem gives an upper bound on the
normalized regret of the follow the perturbed leader
algorithm given in Figure 2.

Theorem 4.1 (Hannan [2]). Assume n,N ≥ 1,
0 < δ < 1, and let R =

√
nN . Then, for any sequence

y1, . . . , yn, the normalized regret of Algorithm 1 can be

bounded with probability at least 1 − δ as

1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤ 2

√
N

n
+

√
ln(N/δ)

2n
.

The follow the perturbed leader algorithm can be
implemented efficiently for the problem of finding the
shortest path in a weighted directed graph, which is
a special case of the more general geometric expert
framework considered by Kalai and Vempala [8]. In
their algorithm, one weight is kept for each edge
of the graph, showing the cumulative loss of that
edge. The perturbed best path is chosen by finding
the path with the minimum perturbed weight, where
at each time instant, the perturbed weight of each
edge e is obtained as the sum of the edge weight
plus a random perturbation Ze,t similar to the above.
Choosing the optimal path can be done efficiently
using the well-known Dijkstra algorithm. This
algorithm can be implemented in O(n|E| ln |E|) time,
and has O(

√
|V||E|/n) expected normalized regret. The

performance of the algorithm can be improved slightly
if the perturbation is not uniform but it is drawn
from a Laplacian distribution. However, in this case

Algorithm 2. Exponentially weighted
average decision (Littlestone and War-
muth [4])

Initialization : Fix η > 0, and set wi,0 = 1 and
pi,1 = 1/N for i = 1, . . . , N .
At time instants t = 1, 2, . . .

(1) Select an expert It ∈ {1, . . . , N} according
to the probability distribution
pt = (p1,t, . . . , pN,t);

(2) Update the weights wi,t = wi,t−1e
−ηℓi,t ;

(3) Calculate the updated probability distribu-
tion

pi,t+1 =
wi,t∑N

j=1 wj,t

, i = 1, . . . , N.

FIGURE 3. Exponentially weighted average decision
algorithm in the full information case.

the resulting perturbed weights may become negative,
which can result in cycles with negative weights in which
case the loss can be made an arbitrarily large negative
number.

4.1.2. Exponential weighting

In the “weighted average decision”-type algorithms at
time instant t an expert i is chosen with probability
that increases with the past performance of the expert.
That is, P {It = i} is proportional to r(Li,t−1), where r
is a nonincreasing function. The most popular choice of
r is r(x) = e−ηx, leading to the exponentially weighted
average decision algorithm, given in Figure 3.

As the next theorem shows, in this case the
normalized regret of the decision maker is bounded by
O(
√

lnN/n).

Theorem 4.2 (Littlestone and Warmuth [4]).
Let n,N ≥ 1 and 0 < δ < 1. Then, with the choice of

η =
√

8 ln N/n, the normalized regret of Algorithm 2

can be bounded for any sequence y1, . . . , yn as

1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤
√

lnN

2n
+

√
ln(1/δ)

2n

with probability at least 1 − δ.

Remark 1. Algorithm 2 has the disadvantage that
the regret bound of Theorem 4.2 does not hold
uniformly over sequences of any length n, since the
parameter η depends on n. To fix this problem the
simplest idea is the doubling trick which appears in
Cesa-Bianchi et al. [5]. The idea is to partition the
time into periods of exponentially increasing length. In

The Computer Journal Vol. 00 No. 0, 2005

6 György and Ottucsák

each period, the algorithm chooses the optimal η for the
length of the interval and when the periods end, reset
the whole fixed-horizon algorithm, and the new value of
η is selected optimally for the next period. This method
give an

√
2/(

√
2− 1) multiplicative factor to the upper

bound of the theorem. Another method is that at each
time instant t the algorithm chooses an η = ηt which
depends on t. It was proved by Auer et al. [23] that
setting ηt =

√
8 ln N/t results in a regret bound that

is only twice as much as the original (time dependent)
bound.

The above described algorithm can be specialized
for graphs with smaller computational complexity
[13],[17],[18],[19]. The main idea is to select the edges
of the path one by one according to the conditional
distributions generated by the exponentially weighted
average decision algorithm.

Next, following [19] and [20], we show how to
implement the algorithm to compete with paths of a
fixed length K. Then it is explained how this algorithm
can be extended to compete with all paths, and what
simplifications can be made for acyclic graphs.

For any node w ∈ V, let Pk
w denote the set of paths

of length k from w to v. Let Gt−1(w, k) denote the
sum of the exponential cumulative losses in the interval
[1, t−1] of all paths in Pk

w. That is, if Pk
w is empty then

we define Gt−1(w, k) = 0, otherwise

Gt−1(w, k) =
∑

i∈Pk
w

e−η
P

e∈i
Le,t−1 ,

where Le,t−1 =
∑t−1

s=1 ℓe,s. It can be shown [19] that
if It is chosen by the exponentially weighted average
decision method of Algorithm 2, and wIt,k denotes the
kth node of the path It (with wIt,0 = u and wIt,K = v),
then

P {wIt,k = wk|wIt,0 = w0, . . . , wIt,k−1 = wk−1}

= e−ηL(wk−1,wk),t−1
Gt−1(wk,K − k)

Gt−1(wk−1,K − k + 1)

where (wk−1, wk) denotes the edge connecting wk−1

and wk, and Gt−1(wk−1,K − k + 1) > 0; if there is
no such edge or Gt−1(wk−1,K − k + 1) = 0, then
the corresponding conditional probability is formally
defined to be 0. The algorithm can be implemented
efficiently, as the function Gt(·, k) can be computed
recursively for k = 2, . . . ,K as

Gt−1(w, k) =
∑

bw:(w, bw)∈E

Gt−1(ŵ, k−1)e−ηL(w, bw),t−1 (1)

with

Gt−1(w, 1) =

{
e−ηL(w, bw),t−1 if (w, ŵ) ∈ E ;

0 otherwise.

It is easy to see that computing the function Gt(·, ·) can
be done in O(K|E|) time, hence the whole algorithm can

be implemented in O(nK|E|) time. Competing with the
best path of any length can be done by choosing K = k
randomly with probabilities proportional to Gt−1(u, k)
from {1, . . . , |V|}, and then choosing randomly It from
paths of length K as above. The computational
complexity of this algorithm is O(n|V||E|), that is
typically significantly less than the O(nN) complexity
of the original method of Algorithm 2 [20]. For acyclic
graphs, there is no need for the second variable of Gt,
and a similar algorithm can be performed in O(n|E|)
time, see [13],[17],[18].

4.1.3. Tracking the best expert

So far we considered situations where the goal of the
decision maker was to perform as well as the best static
expert. However, the performance of static experts
is usually rather limited compared to time-varying
experts. In this subsection we consider the problem of
designing an algorithm that performs as well as the best
time-varying expert that can switch the applied experts
several times. This problem is usually referred in the
literature as the problem of tracking the best expert,
and was described briefly in the context of adaptive
routing in Section 3. Formally, a time-varying expert
that is allowed to change the applied static expert s
times during a period of length n is given by integers
t0 = 0 < t1 < · · · < ts < ts+1 = n, experts i0, . . . , is ∈
{1, . . . , N} such that at time instants t ∈ (tk, tk+1], the
time-varying expert follows the static expert ik. (That
is, time is divided into s + 1 intervals in an arbitrary
way, and the time-varying expert behaves as a static
expert in each of its intervals.)

To perform asymptotically as well as the best
time-varying expert with s switches, one could apply
either the exponentially weighted average decision
method or the follow the perturbed leader method.
However, the number of such time-varying experts is∑s

k=0

(
n−1

k

)
N(N − 1)k, which results in prohibitively

large complexity for both algorithms; especially, since
for any meaningful class, s should also tend to infinity
as n increases.

However, Herbster and Warmuth [15] provided an
“exponentially weighted average”-type algorithm for
this problem that requires the maintenance of one
weight for each static expert only, with only slightly
increased performance bound. The algorithm given in
Figure 4 is a slightly modified version (in step (3)) of
the original fixed share algorithm of [15] that appeared
in [20].

The performance of Algorithm 3 is bounded by the
following theorem.

Theorem 4.3 (Herbster and Warmuth [15] and
Vovk [24]). Let n,N > 1, s ≥ 1, and 0 < δ < 1.
Then, with the choice of

α =
s

n − 1
and η =

√
8 ln

(
Ns+1

αs(1 − α)n−s−1

)
/n,

The Computer Journal Vol. 00 No. 0, 2005

Adaptive Routing Using Expert Advice 7

Algorithm 3. Tracking the best expert
(Herbster and Warmuth [15])

Initialization : Fix η > 0 and 0 < α < 1, and
let wi,0 = 1 and pi,1 = 1/N for i = 1, . . . , N .
At time instants t = 1, 2, . . .

(1) Draw It randomly according to the
distribution P {It = i} = pi,t;

(2) After observing yt, for all i = 1, . . . , N , let

ŵi,t = wi,t−1e
−ηℓIt,t ;

(3) For i = 1, . . . , N , set

wi,t =
αWt

N
+ (1 − α)ŵi,t

where Wt =
∑N

i=1 ŵi,t;
(4) Calculate the updated probability distribu-

tion
pi,t+1 =

wi,t∑N
j=1 wj,t

.

FIGURE 4. Exponential weighting for tracking the best
expert.

the normalized regret of Algorithm 3 can be bounded,

with probability at least 1 − δ, as

1

n

(
L̂n − min

1≤t1<...<ts<n

s∑

k=0

min
i=1,...,N

tk+1∑

t=tk+1

ℓi,t

)

≤

√
(s + 1) ln N + s ln n−1

s + s

2n
+

√
ln(1/δ)

2n

for any sequence y1, . . . , yn.

Note that if the number of static experts grows
with n as N = O(nγ) for some γ > 0, then the

bound in the theorem becomes O
(√

(s/n) ln n
)

=

O
(√

(s/n) ln N
)
, which is the same (up to a constant

factor) as if we competed with the best static expert on
a segment of average length.

For other variants of tracking algorithms for general
experts, see also [15] and Bousquet and Warmuth
[16]. The algorithm in the latter is optimized to
the case where each time-varying expert uses only a
small set of static experts. Specializing Algorithm 3
to the shortest path problem is much harder than
the other “exponential weighting”-type algorithms in
this paper because of the mixing step (3). To our
knowledge the only such result is [20] providing a
tricky implementation of Algorithm 3 with complexity
O(n2|V||E|), which is still a factor n larger than

desirable. This implementation becomes useful if the
number N of static experts grows with n fast enough
so that N/(|V||E|) > n; for example, if the size of the
graph (that is, V and E) grows polynomially in n, and,
as usual, N (the number of paths) grows exponentially
with |E|.

4.2. Partial information

In this section we overview expert algorithms for
situations where the whole information on its own
performance and on the past performance of the
experts is not available to the decision maker. The
algorithms presented here follow the idea of estimating
the performance of the experts based on the available
information, and then run the exponentially weighted
average decision algorithm using the estimated losses.
In general, the normalized regret of the algorithms

can be bounded by O
(√

N lnN/(nI)
)

where I is

the average number of experts whose performance are
revealed to the decision maker at each time instant.
We provide algorithms for the label efficient decision
and multi-armed bandit problems, as well as for a
combination of the preceding two.

4.2.1. Label efficient decisions

In the label efficient decision problem, after choosing
its action at time t, the decision maker has the
option to query the “label” yt of the environment.
The decision maker is allowed to make on the
average m queries in n time instants. To make
the algorithm universal, the query times have to be
randomized. Therefore, to query a label, the decision
maker uses an independent, identically distributed
sequence S1, S2, . . . , Sn of Bernoulli random variables
with P {St = 1} = ǫ and asks label yt if St = 1. If yt is
known, the decision maker can calculate the losses ℓi,t

for all i = 1, . . . , N . If ǫ = m/n, then the number of the
revealed labels during n rounds is approximately m for
large n, and the proportion of labels queried converges
to ǫ with probability 1 as n increases.

In order to apply the exponentially weighted average
decision method in this case, the losses have to be
modified. In Algorithm 4 shown in Figure 5, estimated
losses are used instead of the observed losses:

ℓ̃i,t =

{
ℓi,t

ǫ , if St = 1,

0, otherwise.

Note that ℓ̃i,t is an unbiased estimate of the true loss

ℓi,t, as E

[
ℓ̃i,t

∣∣St−1
1 , It−1

1

]
= ℓi,t.

The following O(n
√

ln(4N/δ)/m) upper bound on
the normalized regret of Algorithm 4 is due to Cesa-
Bianchi et al. [10]:

Theorem 4.4 (Cesa-Bianchi et al. [10]). Assume

n,N ≥ 1 and 0 < δ < 1. If Algorithm 4 is run with

The Computer Journal Vol. 00 No. 0, 2005

8 György and Ottucsák

Algorithm 4. Exponential weighting
for label efficient decisions (Cesa-Bianchi
et al. [10])

Initialization : Fix η > 0 and 0 < ǫ ≤ 1, and
set wi,0 = 1 and pi,1 = 1/N for i = 1, . . . , N .
At time instants t = 1, 2, . . .

(1) Select an action It ∈ {1, . . . , N} accord-
ing to the probability distribution
pt = (p1,t, . . . , pN,t);

(2) Draw a Bernoulli random variable St such
that P {St = 1} = ǫ;

(3) if St = 1 then obtain ℓi,t for all i and

compute the estimated loss (ℓ̃i,t)

ℓ̃i,t =

{
ℓi,t

ǫ , if St = 1,

0, otherwise;

(4) Update the weights wi,t = wi,t−1e
−ηeℓi,t ;

(5) Calculate the updated probability distribu-
tion

pi,t+1 =
wi,t∑N

j=1 wj,t

i = 1, . . . , N.

FIGURE 5. Exponentially weighted average decision
algorithm in the label efficient setting.

parameters

ǫ = max

{
0,

m −
√

2m ln(4/δ)

n

}
and η =

√
2ǫ ln N

n
,

then the normalized regret of the decision maker can be

bounded with probability at least 1 − δ as

1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤ 2

√
lnN

m
+ 6

√
ln(4N/δ)

m
,

where m is the average number of the revealed labels.

4.2.2. The multi-armed bandit problem

In the multi-armed bandit problem, the decision maker
learns its own loss ℓIt,t after choosing an action (expert)
It, but not the value ℓi,t of the other losses for i 6= It.
Thus, the decision maker does not have access to the
losses it would have suffered if it had chosen a different
action. This means that the decision maker observes
only a piece of information at each time instant. The
lack of information implies a natural strategy: namely,
first the decision maker has to explore the losses of
the experts (exploration phase) and then it may keep

choosing the action with smallest estimated loss for the
remaining time (the exploitation phase).

In the classical formulation of multi-armed bandit
problems (see, e.g., Robbins [25]), it is assumed that, for
each action, the losses are randomly and independently
drawn with respect to a fixed but unknown distribution.
This version is called the stochastic multi-armed bandit

problem (for a recent efficient solution, see Auer et

al. [26]). Here we consider a non-stochastic (or
worst-case) version of this problem where the sequence
y1, . . . , yn, describing the state of the environment, is
generated by a non-stochastic opponent (non-stochastic
or adversarial multi-armed bandit problem) [9].

There are three modifications relative to the full
information case. First, the modified method uses gains

instead of losses, defined as

gi,t = 1 − ℓi,t.

Moreover, in contrast with the label efficient case, we
use biased estimates of the gains defined as

g′i,t =

{
gi,t+β

pi,t
, if It = i,

β
pi,t

, otherwise

where the role of parameter β is to control the bias
(for β = 0 we obtain unbiased estimates of the true
gains, since then E

[
g′i,t
∣∣It−1

1

]
= gi,t). Finally, a new

parameter 0 < γ < 1 is introduced that is used in the
exploration phase: for It+1 action i is chosen according
to the probability

pi,t+1 = (1 − γ)
wi,t∑N

j=1 wj,t

+
γ

N
, i = 1, . . . , N.

The role of γ is to ensure that pi,t+1 ≥ γ/N
for all i = 1, . . . , N . That is, instead of the
pure probability distribution generated by exponential
weighting, the decision maker uses a mixture of
the exponentially weighted average distribution and
the uniform distribution, where the latter allows
the decision maker to constantly explore all possible
actions. The resulting algorithm is given in Figure 6.
The algorithm, as well as the following bound on its
performance is due to Auer et al. [9].

Theorem 4.5 (Auer et al. [9]). For any 0 < δ < 1
and for any n ≥ 4N ln (N/δ), if Algorithm 5 is run for

the multi-armed bandit problem with parameters

β =

√
ln(N/δ)

nN
, γ = βN, and η =

γ

2N
,

then, with probability at least 1 − δ,

1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤ 5
√

N ln(N/δ)/n.

Note that the bound of the theorem, unlike to the
full information and the label efficient cases, grows

The Computer Journal Vol. 00 No. 0, 2005

Adaptive Routing Using Expert Advice 9

Algorithm 5. Exponential weighting in
the multi-armed bandit setting (Auer et

al. [9])

Initialization : Fix η > 0, 0 < β < 1 and
0 < γ < 1, and set wi,0 = 1 and pi,1 = 1/N for
i = 1, . . . , N .
At time instants t = 1, 2, . . .

(1) Select an action It ∈ {1, . . . , N} according
to the probability distribution
pt = (p1,t, . . . , pN,t);

(2) Calculate the estimated gains

g′i,t =

{
gi,t+β

pi,t
, if It = i,

β
pi,t

, otherwise;

(3) Update the weights wi,t = wi,t−1e
ηg′

i,t ;
(4) Calculate the updated probability distribu-

tion

pi,t+1 = (1−γ)
wi,t∑N

j=1 wj,t

+
γ

N
, i = 1, . . . , N.

FIGURE 6. Exponentially weighted average decision
algorithm for the multi-armed bandit problem.

with
√

N lnN instead of
√

lnN . Hence, the bound
is not really useful for graphs of even moderate size.
To solve this problem and to reduce computational
complexity the algorithm has recently been specialized
to the online shortest path problem for weighted acyclic
graphs [27]. The method of [27] is similar in spirit to
the full information case; that is, the estimated gains
are calculated and stored for the edges instead of the
paths. The resulting upper bound is also improved:
the normalized regret is at most O(

√
K2|E| ln(N/δ)/n),

where K is the maximum path length from u to v. That
is, the very large

√
N factor is replaced with the much

smaller factor K
√
|E|. This is achievable because when

the decision maker learns the loss of each edge of a path,
then at the same time it learns information on the losses
of other paths having common edges with the chosen
path.

We note here that “follow the perturbed leader”-
type algorithms can also be applied to solve the
online shortest path problem in the multi-armed bandit
setting. Indeed, Awerbuch and Kleinberg [28] and
McMahan and Blum [29] provided such algorithms.
However, the obtained bounds do not decrease to zero
at a desired O(1/

√
n) rate.

4.2.3. A combination of the label efficient decision and

the multi-armed bandit problems

In this subsection we introduce a recent combination of
the label efficient and the multi-armed bandit problems
[11]. This combination was motivated by the routing
problem in cognitive packet networks described in
Section 3. In this combined problem, the decision maker
learns its own loss only if it chooses to query it (which
is allowed only for a limited number of times), and it
cannot obtain information on the performance of any
other action.

This problem is solved with a combination of the
algorithms for the label efficient decision problem and
for the multi-armed bandit problem. In the combined
method, shown in Figure 7, at each time instant t,
the algorithm queries the result of its action with
probability ǫ (just as in the label efficient case), and
similarly to the multi-armed bandit case, it computes
biased estimates g′i,t of the true gains gi,t as

g′i,t =

gi,t+β
pi,tǫ

, if It = i and St = 1;
β

pi,tǫ
, if It 6= i and St = 1;

0 otherwise.

Again, g′i,t is an unbiased estimate of gi,t for β = 0,

since then E
[
g′i,t|St−1

1 , It−1
1

]
= gi,t.

The performance of Algorithm 6 is analyzed in the
next theorem of [11], which is, in fact, a joint extension
of Theorem 4.4 and Theorem 4.5.

Theorem 4.6 (Ottucsák and György [11]).
Assume that 0 < δ < 1, 0 < ǫ ≤ 1, and n ≥
4N ln (2N/δ)/ǫ. Then for parameters β =

√
ln(2N/δ)

nNǫ ,

γ = βN , and η = γǫ
2N , the normalized regret of

Algorithm 6 can be bounded with probability at least 1−δ
as

1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤ 12

√
N ln(2N/δ)

nǫ
+

ln (2/δ)

nǫ
.

Algorithm 6 can also be modified to suit to the
online shortest path problem, with lower computational
complexity and improved performance bound: similarly
to the multi-armed bandit setting, in the regret bound
of the new algorithm the constant N is replaced with
K2|E| [30].

5. CONCLUSION

In this paper we gave an overview of a special class
of machine learning algorithms for sequential decision
problems. These algorithms provide efficient methods
to combine expert advice in an optimal way in the
sense that the algorithms have asymptotically the same
performance as the best expert. The proposed methods
are universal as they do not require any statistical
description of the system, and work for any behavior
of the system.

The Computer Journal Vol. 00 No. 0, 2005

10 György and Ottucsák

Algorithm 6. Exponential weighting
for the label efficient multi-armed bandit
problem (Ottucsák and György [11])

Initialization : Fix η > 0, 0 < β < 1,
0 < γ < 1 and 0 < ǫ ≤ 1, and set wi,0 = 1
and pi,1 = 1/N for i = 1, . . . , N .
At time instants t = 1, 2, . . .

(1) Select an action It ∈ {1, . . . , N} according
to the probability distribution
pt = (p1,t, . . . , pN,t).

(2) Draw a Bernoulli random variable St such
that P {St = 1} = ǫ.

(3) If St = 1 then obtain gIt,t and compute the
estimated gains

g′i,t =

gi,t+β
pi,tǫ

, if It = i, St = 1,

β
pi,tǫ

, if It 6= i, St = 1,

0 otherwise.

(4) Update the weights wi,t = wi,t−1e
ηg′

i,t .
(5) Calculate the updated probability distribu-

tion

pi,t+1 = (1−γ)
wi,t∑N

j=1 wj,t

+
γ

N
, i = 1, . . . , N.

FIGURE 7. Combination of the label efficient and
the multi-armed bandit exponentially weighted average
forecaster.

We showed how these sequential decision algorithms
can be applied in adaptive routing for packet switched
networks to ensure increased quality of service.
Different scenarios were investigated on how much
information is available to the routing algorithm. In
practice, applicability of these algorithms depend on
how much prior (statistical) information is available
about the traffic over the network. Expert algorithms
are the most useful when the goal is to design routing
algorithms that perform well even for rare, unexpected
behaviors of the network.

ACKNOWLEDGMENT

The authors would like to thank László Györfi for useful
discussions. This work was supported in part by the
János Bolyai Research Scholarship of the Hungarian
Academy of Sciences, and by the Mobile Innovation
Center of Hungary.

REFERENCES

[1] Blackwell, D. (1956) An analog of the minimax theorem
for vector payoffs. Pacific Journal of Mathematics, 6,
1–8.

[2] Hannan, J. (1957) Approximation to bayes risk in
repeated plays. In Dresher, M., Tucker, A., and Wolfe,
P. (eds.), Contributions to the Theory of Games, pp.
97–139. Princeton University Press.

[3] Vovk, V. (1990) Aggregating strategies. Proceedings

of the Third Annual Workshop on Computational

Learning Theory, Rochester, NY, Aug., pp. 372–383.
Morgan Kaufmann.

[4] Littlestone, N. and Warmuth, M. K. (1994) The
weighted majority algorithm. Information and

Computation, 108, 212–261.

[5] Cesa-Bianchi, N., Freund, Y., Helmbold, D. P.,
Haussler, D., Schapire, R., and Warmuth, M. K. (1997)
How to use expert advice. Journal of the ACM, 44,
427–485.

[6] Cesa-Bianchi, N. and Lugosi, G. (2006) Prediction,

Learning, and Games. Cambridge University Press, to
appear, Cambridge.

[7] Vovk, V. (1998) A game of prediction with expert
advice. Journal of Computer and System Sciences, 56,
153–173.

[8] Kalai, A. and Vempala, S. (2003) Efficient algorithms
for the online decision problem. In Schölkopf, B. and
Warmuth, M. (eds.), Proceedings of the 16th Annual

Conference on Learning Theory and the 7th Kernel

Workshop, COLT-Kernel 2003, New York, USA, Aug.,
pp. 26–40. Springer.

[9] Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire,
R. E. (1995) Gambling in a rigged casino: the adversial
multi-armed bandit problem. Proceedings of the

36th Annual Symposium on Foundations of Computer

Science, FOCS 1995, Washington, DC, USA, Oct., pp.
322–331. IEEE Computer Society Press, Los Alamitos,
CA.

[10] Cesa-Bianchi, N., Lugosi, G., and Stoltz, G. (2005)
Minimizing regret with label efficient prediction. IEEE

Trans. Inform. Theory, IT-51, 2152–2162.

[11] Ottucsák, Gy. and György, A. (2005). A combination of
the label efficient and the multi-armed bandit problems
in adversarial setting. Preprint.

[12] Schapire, R. E. and Helmbold, D. P. (1997) Predicting
nearly as well as the best pruning of a decision tree.
Machine Learning, 27, 51–68.

[13] Mohri, M. (1998) General algebraic frameworks and
algorithms for shortest distance problems. Technical
Report 981219-10TM. AT&T Labs Research.

[14] Auer, P. and Warmuth, M. K. (1998) Tracking the best
disjunction. Machine Learning, 32, 127–150.

[15] Herbster, M. and Warmuth, M. K. (1998) Tracking the
best expert. Machine Learning, 32, 151–178.

[16] Bousquet, O. and Warmuth, M. K. (2002) Tracking a
small set of experts by mixing past posteriors. Journal

of Machine Learning Research, 3, 363–396.

[17] Takimoto, E. and Warmuth, M. K. (2002) Path
kernels and multiplicative updates. In Kivinen, J. and
Sloan, R. H. (eds.), Proceedings of the 15th Annual

Conference on Computational Learning Theory, COLT

The Computer Journal Vol. 00 No. 0, 2005

Adaptive Routing Using Expert Advice 11

2002, Berlin–Heidelberg, Jul. LNAI 2375, pp. 74–89.
Springer-Verlag.

[18] Takimoto, E. and Warmuth, M. K. (2003) Path
kernels and multiplicative updates. Journal of Machine

Learning Research, 4, 773–818.

[19] György, A., Linder, T., and Lugosi, G. (2004)
Efficient algorithms and minimax bounds for zero-delay
lossy source coding. IEEE Transactions on Signal

Processing, 52, 2337–2347.

[20] György, A., Linder, T., and Lugosi, G. (2005) Tracking
the best of many experts. Proceedings of the 18th

Annual Conference on Learning Theory, COLT 2005,
Bertinoro, Italy, Jun., pp. 204–216. Springer.

[21] Gelenbe, E., Gellman, M., Lent, R., Liu, P., and
Su, P. (2004) Autonomous smart routing for network
QoS. Proceedings of First International Conference on

Autonomic Computing, New York, May, pp. 232–239.
IEEE Computer Society.

[22] Gelenbe, E., Lent, R., and Xhu, Z. (2001) Measurement
and performance of a cognitive packet network. Journal

of Computer Networks, 37, 691–701.

[23] Auer, P., Cesa-Bianchi, N., and Gentile, C. (2002)
Adaptive and self-confident on-line learning algorithms.
Journal of Computer and System Sciences, 64, 48–75.
A preliminary version has appeared in Proc. 13th Ann.

Conf. Computational Learning Theory.

[24] Vovk, V. (1999) Derandomizing stochastic prediction
strategies. Machine Learning, 35, 247–282.

[25] Robbins, H. (1952) Some aspects of the sequential
design of experiments. Bullettin of the American

Mathematical Society, 55, 527–535.

[26] Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002)
Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47, 235–256.

[27] György, A., Linder, T., and Lugosi, G. The shortest
path problem in the bandit setting. In preparation.

[28] Awerbuch, B. and Kleinberg, R. D. (2004) Adaptive
routing with end-to-end feedback: distributed learning
and geometric approaches. Proceedings of the 36th

Annual ACM Symposium on the Theory of Computing,

STOC 2004, Chicago, IL, USA, Jun., pp. 45–53. ACM
Press.

[29] McMahan, H. B. and Blum, A. (2004) Online geometric
optimization in the bandit setting against an adaptive
adversary. Proceedings of the 17th Annual Conference

on Learning Theory, COLT 2004, Banff, Canada, Jul.,
pp. 109–123. Springer.

[30] Ottucsák, Gy. (2005). Online shortest path problem for
a combination of the label efficient and the multi-armed
bandit settings. Preprint.

The Computer Journal Vol. 00 No. 0, 2005

