Principal component and constantly re-balanced portfolio

György Ottucsák1
László Györfi

1Department of Computer Science and Information Theory
Budapest University of Technology and Economics
Budapest, Hungary

September 20, 2007

e-mail: oti@szit.bme.hu
www.szit.bme.hu/\textasciitilde{}oti
www.szit.bme.hu/\textasciitilde{}oti/portfolio
Investment in the stock market: Growth rate

The model:

- d assets

\[
S_j(n) = S_j(0) e^{nW_j(n)}
\]

- d average growth rate
- $W_j(n)$ asymptotic average growth rate

\[
W_j = \lim_{n \to \infty} \frac{1}{n} \ln S_j(n)
\]
Investment in the stock market: Growth rate

The model:

- d assets
- $S_{n}^{(j)}$ price of asset j at the end of trading period (day) n initial price $S_{0}^{(j)} = 1$,

\[S_{n}^{(j)} = e^{n W(j)} \approx e^{n W(j)} \]

Asymptotic average growth rate

\[W(j) = \lim_{n \to \infty} \frac{1}{n} \ln S_{n}^{(j)} \]
The model:

- d assets
- $S_n^{(j)}$ price of asset j at the end of trading period (day) n
- Initial price $S_0^{(j)} = 1$,
 \[S_n^{(j)} = e^{nW_n^{(j)}} \]

 $j = 1, \ldots, d$

Average growth rate

\[W_n^{(j)} = \frac{1}{n} \ln S_n^{(j)} \]
The model:

- d assets
- $S_n^{(j)}$ price of asset j at the end of trading period (day) n initial price $S_0^{(j)} = 1$,

$$S_n^{(j)} = e^{nW_n^{(j)}} \approx e^{nW^{(j)}} \quad j = 1, \ldots, d$$

average growth rate

$$W_n^{(j)} = \frac{1}{n} \ln S_n^{(j)}$$

asymptotic average growth rate

$$W^{(j)} = \lim_{n \to \infty} \frac{1}{n} \ln S_n^{(j)}$$
The aim is to achieve $\max_j W^{(j)}$.
Static portfolio selection: single period investment

The aim is to achieve $\max_j W^{(j)}$.

Static portfolio selection:

- Fix a portfolio vector $\mathbf{b} = (b^{(1)}, \ldots, b^{(d)})$.
- $S_0 b^{(j)}$ denotes the proportion of the investor’s capital invested in asset j. Assumptions:
 - no short-sales $b^{(j)} \geq 0$
 - self-financing $\sum_j b^{(j)} = 1$
The aim is to achieve \(\max_j W^{(j)} \).

Static portfolio selection:

- Fix a portfolio vector \(\mathbf{b} = (b^{(1)}, \ldots b^{(d)}) \).
- \(S_0 b^{(j)} \) denotes the proportion of the investor’s capital invested in asset \(j \).

Assumptions:
- no short-sales \(b^{(j)} \geq 0 \)
- self-financing \(\sum_j b^{(j)} = 1 \)

After \(n \) day

\[
S_n = S_0 \sum_j b^{(j)} S_n^{(j)}
\]
The aim is to achieve $\max_j W^{(j)}$.

Static portfolio selection:

- Fix a portfolio vector $\mathbf{b} = (b^{(1)}, \ldots, b^{(d)})$.
- $S_0 b^{(j)}$ denotes the proportion of the investor’s capital invested in asset j. Assumptions:
 - no short-sales $b^{(j)} \geq 0$
 - self-financing $\sum_j b^{(j)} = 1$

After n day

$$S_n = S_0 \sum_j b^{(j)} S_n^{(j)}$$

Use the following simple bound

$$S_0 \max_j b^{(j)} S_n^{(j)} \leq S_n \leq d S_0 \max_j b^{(j)} S_n^{(j)}$$
assume that $b^{(j)} > 0$

$$\frac{1}{n} \ln \max_j \left(S_0 b^{(j)} S_n^{(j)} \right) \leq \frac{1}{n} \ln S_n \leq \frac{1}{n} \ln \left(dS_0 \max_j b^{(j)} S_n^{(j)} \right)$$

Conclusion: any static portfolio achieves the maximal growth rate $\max_j W^{(j)}$.

We can do much better!
assume that $b^{(j)} > 0$

$$\frac{1}{n} \ln \max_{j} \left(S_0 b^{(j)} S_n^{(j)} \right) \leq \frac{1}{n} \ln S_n \leq \frac{1}{n} \ln \left(dS_0 \max_{j} b^{(j)} S_n^{(j)} \right)$$

$$\max_{j} \left(\frac{1}{n} \ln S_0 b^{(j)} + \frac{1}{n} \ln S_n^{(j)} \right) \leq \frac{1}{n} \ln S_n \leq \max_{j} \left(\frac{1}{n} \ln (dS_0 b^{(j)}) + \frac{1}{n} \ln S_n^{(j)} \right)$$

Conclusion: any static portfolio achieves the maximal growth rate $\max_{j} W^{(j)}$.

We can do much better!
assume that $b^{(j)} > 0$

$$\frac{1}{n} \ln \max_j \left(S_0 b^{(j)} S_n^{(j)} \right) \leq \frac{1}{n} \ln S_n \leq \frac{1}{n} \ln \left(dS_0 \max_j b^{(j)} S_n^{(j)} \right)$$

$$\max_j \left(\frac{1}{n} \ln S_0 b^{(j)} + \frac{1}{n} \ln S_n^{(j)} \right) \leq \frac{1}{n} \ln S_n \leq \max_j \left(\frac{1}{n} \ln (dS_0 b^{(j)}) + \frac{1}{n} \ln S_n^{(j)} \right)$$

$$\lim_{n \to \infty} \frac{1}{n} \ln S_n = \lim_{n \to \infty} \max_j \frac{1}{n} \ln S_n^{(j)} = \max_j W^{(j)}$$

Conclusion: any static portfolio achieves the maximal growth rate $\max_j W^{(j)}$. We can do much better!
assume that $b^{(j)} > 0$

$$\frac{1}{n} \ln \max_j \left(S_0 b^{(j)} S_n^{(j)} \right) \leq \frac{1}{n} \ln S_n \leq \frac{1}{n} \ln \left(dS_0 \max_j b^{(j)} S_n^{(j)} \right)$$

$$\max_j \left(\frac{1}{n} \ln S_0 b^{(j)} + \frac{1}{n} \ln S_n^{(j)} \right) \leq \frac{1}{n} \ln S_n \leq \max_j \left(\frac{1}{n} \ln (dS_0 b^{(j)}) + \frac{1}{n} \ln S_n^{(j)} \right)$$

$$\lim_{n \to \infty} \frac{1}{n} \ln S_n = \lim_{n \to \infty} \max_j \frac{1}{n} \ln S_n^{(j)} = \max_j \mathcal{W}^{(j)}$$

Conclusion: any static portfolio achieves the maximal growth rate $\max_j \mathcal{W}^{(j)}$. We can do much better!
Dynamic portfolio selection: multi-period investment

The model:

- Let \(\mathbf{x}_i = (x_i^{(1)}, \ldots x_i^{(d)}) \) the return vector on trading period \(i \), where

\[
x_i^{(j)} = \frac{S_i^{(j)}}{S_{i-1}^{(j)}}.
\]

is the price relatives of two consecutive days.
The model:

- Let \(\mathbf{x}_i = (x_i^{(1)}, \ldots, x_i^{(d)}) \) the return vector on trading period \(i \), where

\[
x_i^{(j)} = \frac{S_i^{(j)}}{S_{i-1}^{(j)}}.
\]

is the price relatives of two consecutive days.

\(x_i^{(j)} \) is the factor by which capital invested in stock \(j \) grows during the market period \(i \).
The model:

- Let \(x_i = (x_i^{(1)}, \ldots, x_i^{(d)}) \) the return vector on trading period \(i \), where

\[
 x_i^{(j)} = \frac{S_i^{(j)}}{S_{i-1}^{(j)}}.
\]

is the price relatives of two consecutive days.

\(x_i^{(j)} \) is the factor by which capital invested in stock \(j \) grows during the market period \(i \).

One of the simplest dynamic portfolio strategy is the Constantly Re-balanced Portfolio (CRP):

Fix a portfolio vector \(b = (b^{(1)}, \ldots, b^{(d)}) \), where \(b^{(j)} \) gives the proportion of the investor’s capital invested in stock \(j \).
Dynamic portfolio selection: multi-period investment

The model:

- Let \(\mathbf{x}_i = (x_i^{(1)}, \ldots x_i^{(d)}) \) the return vector on trading period \(i \), where

\[x_i^{(j)} = \frac{S_i^{(j)}}{S_{i-1}^{(j)}}. \]

is the price relatives of two consecutive days.

\(x_i^{(j)} \) is the factor by which capital invested in stock \(j \) grows during the market period \(i \).

One of the simplest dynamic portfolio strategy is the Constantly Re-balanced Portfolio (CRP):

Fix a portfolio vector \(\mathbf{b} = (b^{(1)}, \ldots b^{(d)}) \), where \(b^{(j)} \) gives the proportion of the investor’s capital invested in stock \(j \).

This \(\mathbf{b} \) is the portfolio vector for each trading day.
Repeatedly investment:
- for the first trading period S_0 denotes the initial capital

$$S_1 = S_0 \sum_{j=1}^{d} b^{(j)} x_1^{(j)} = S_0 \langle b, x_1 \rangle$$
Repeatedly investment:

- for the first trading period S_0 denotes the initial capital

\[S_1 = S_0 \sum_{j=1}^{d} b^{(j)} x_1^{(j)} = S_0 \langle b, x_1 \rangle \]

- for the second trading period, S_1 new initial capital

\[S_2 = S_1 \cdot \langle b, x_2 \rangle = S_0 \cdot \langle b, x_1 \rangle \cdot \langle b, x_2 \rangle . \]
Repeatedly investment:

- for the first trading period S_0 denotes the initial capital

$$S_1 = S_0 \sum_{j=1}^{d} b^{(j)} x_1^{(j)} = S_0 \langle \mathbf{b}, \mathbf{x}_1 \rangle$$

- for the second trading period, S_1 new initial capital

$$S_2 = S_1 \cdot \langle \mathbf{b}, \mathbf{x}_2 \rangle = S_0 \cdot \langle \mathbf{b}, \mathbf{x}_1 \rangle \cdot \langle \mathbf{b}, \mathbf{x}_2 \rangle.$$

- for the nth trading period:

$$S_n = S_{n-1} \langle \mathbf{b}, \mathbf{x}_n \rangle = S_0 \prod_{i=1}^{n} \langle \mathbf{b}, \mathbf{x}_i \rangle$$
Repeatedly investment:

- for the first trading period S_0 denotes the initial capital
 \[S_1 = S_0 \sum_{j=1}^{d} b^{(j)} x_1^{(j)} = S_0 \langle b, x_1 \rangle \]

- for the second trading period, S_1 new initial capital
 \[S_2 = S_1 \cdot \langle b, x_2 \rangle = S_0 \cdot \langle b, x_1 \rangle \cdot \langle b, x_2 \rangle. \]

- for the nth trading period:
 \[S_n = S_{n-1} \langle b, x_n \rangle = S_0 \prod_{i=1}^{n} \langle b, x_i \rangle = S_0 e^{nW_n(b)} \]
 with the average growth rate
 \[W_n(b) = \frac{1}{n} \sum_{i=1}^{n} \ln \langle b, x_i \rangle. \]
The CRP is the optimal portfolio for special market process, where X_1, X_2, \ldots is independent and identically distributed (i.i.d.)

Log-optimum portfolio b^*

$$E\{\ln \langle b^*, X_1 \rangle \} = \max_b E\{\ln \langle b, X_1 \rangle \}$$
The CRP is the optimal portfolio for special market process, where X_1, X_2, \ldots is independent and identically distributed (i.i.d.)

Log-optimum portfolio b^*

$$E\{\ln \langle b^*, X_1 \rangle \} = \max_b E\{\ln \langle b, X_1 \rangle \}$$

Best Constantly Re-balanced Portfolio (BCRP)
The CRP is the optimal portfolio for special market process, where X_1, X_2, \ldots is independent and identically distributed (i.i.d.)

Log-optimum portfolio b^*

$$E\{\ln \langle b^* , X_1 \rangle \} = \max_b E\{\ln \langle b , X_1 \rangle \}$$

Best Constantly Re-balanced Portfolio (BCRP)

Properties:
- needed full-knowledge on the distribution
The CRP is the optimal portfolio for special market process, where X_1, X_2, \ldots is independent and identically distributed (i.i.d.)

Log-optimum portfolio b^*

$$E\{\ln \langle b^*, X_1 \rangle \} = \max_b E\{\ln \langle b, X_1 \rangle \}$$

Best Constantly Re-balanced Portfolio (BCRP)

Properties:

- needed full-knowledge on the distribution
- in experiments: not a causal strategy. We can calculate it only in hindsight.
If $S^*_n = S_n(b^*)$ denotes the capital after trading period n achieved by a log-optimum portfolio strategy b^*, then for any portfolio strategy b with capital $S_n = S_n(b)$ and for any i.i.d. process $\{X_n\}_{-\infty}^{\infty}$,

$$\lim_{n \to \infty} \frac{1}{n} \ln S_n \leq \lim_{n \to \infty} \frac{1}{n} \ln S^*_n \quad \text{almost surely}$$
If $S_n^* = S_n(b^*)$ denotes the capital after trading period n achieved by a log-optimum portfolio strategy b^*, then for any portfolio strategy b with capital $S_n = S_n(b)$ and for any i.i.d. process $\{X_n\}_{-\infty}^{\infty}$,

$$\lim_{n \to \infty} \frac{1}{n} \ln S_n \leq \lim_{n \to \infty} \frac{1}{n} \ln S_n^* \quad \text{almost surely}$$

and

$$\lim_{n \to \infty} \frac{1}{n} \ln S_n^* = W^* \quad \text{almost surely},$$

where

$$W^* = \mathbb{E}\{\ln \langle b^*, X_1 \rangle\}$$

is the maximal growth rate of any portfolio.
log-optimal:

$$\text{arg max}_b E\{\ln \langle b, X_1 \rangle\}$$

It is a non-linear (convex) optimization problem with linear constraints. Calculation: not cheap.
Semi-log-optimal portfolio

log-optimal:

$$\arg \max_b E\{ \ln \langle b, X_1 \rangle \}$$

It is a non-linear (convex) optimization problem with linear constraints. Calculation: not cheap.

Idea: use the Taylor expansion:

$$\ln z \approx h(z) = z - 1 - \frac{1}{2}(z - 1)^2$$

Only the two biggest principal components, others are drop.
Semi-log-optimal portfolio

log-optimal:

$$\arg \max_b E\{\ln \langle b, X_1 \rangle\}$$

It is a non-linear (convex) optimization problem with linear constraints. Calculation: not cheap.

Idea: use the Taylor expansion:

$$\ln z \approx h(z) = z - 1 - \frac{1}{2}(z - 1)^2$$

Only the two biggest principal components, others are drop.

semi-log-optimal:

$$\arg \max_b E\{h(\langle b, X_1 \rangle)\}$$
Semi-log-optimal portfolio

log-optimal:

$$\arg \max_b \mathbb{E}\{\ln \langle b, X_1 \rangle\}$$

It is a non-linear (convex) optimization problem with linear constraints. Calculation: not cheap.

Idea: use the Taylor expansion:

$$\ln z \approx h(z) = z - 1 - \frac{1}{2}(z - 1)^2$$

Only the two biggest principal components, others are drop.

semi-log-optimal:

$$\arg \max_b \mathbb{E}\{h(\langle b, X_1 \rangle)\} = \arg \max_b \{\langle b, m \rangle - \langle b, Cb \rangle\}$$
Semi-log-optimal portfolio

log-optimal:

\[
\arg \max_b E\{\ln \langle b, X_1 \rangle\}
\]

It is a non-linear (convex) optimization problem with linear constraints. Calculation: not cheap.
Idea: use the Taylor expansion:

\[
\ln z \approx h(z) = z - 1 - \frac{1}{2} (z - 1)^2
\]

Only the two biggest principal components, others are drop.
semi-log-optimal:

\[
\arg \max_b E\{h(\langle b, X_1 \rangle)\} = \arg \max_b \{\langle b, m \rangle - \langle b, Cb \rangle\}
\]

Cheaper: Quadratic Programming (QP)
log-optimal:
\[
\arg\max_b E\{\ln \langle b, X_1 \rangle\}
\]

It is a non-linear (convex) optimization problem with linear constraints. Calculation: not cheap.

Idea: use the Taylor expansion:
\[
\ln z \approx h(z) = z - 1 - \frac{1}{2}(z - 1)^2
\]

Only the two biggest principal components, others are drop.

semi-log-optimal:
\[
\arg\max_b \mathbb{E}\{h(\langle b, X_1 \rangle)\} = \arg\max_b \{\langle b, m \rangle - \langle b, Cb \rangle\}
\]

Cheaper: Quadratic Programming (QP)

Connection to the Markowitz theory.
log-optimal:

$$\arg \max_b \mathbb{E}\{\ln \langle b, X_1 \rangle \}$$

It is a non-linear (convex) optimization problem with linear constraints. Calculation: not cheap.

Idea: use the Taylor expansion:

$$\ln z \approx h(z) = z - 1 - \frac{1}{2}(z - 1)^2$$

Only the two biggest principal components, others are drop.

semi-log-optimal:

$$\arg \max_b \mathbb{E}\{h(\langle b, X_1 \rangle)\} = \arg \max_b \{\langle b, m \rangle - \langle b, Cb \rangle\}$$

Cheaper: Quadratic Programming (QP)

Connection to the Markowitz theory.

We may write

$$E\{\langle b, X_1 \rangle - 1\} - \frac{1}{2} E\{(\langle b, X_1 \rangle - 1)^2\}$$
We may write

\[
E\{\langle b, X_1 \rangle - 1\} - \frac{1}{2} E\{((\langle b, X_1 \rangle - 1)^2\}
\]

\[
= 2E\{\langle b, X_1 \rangle\} - \frac{1}{2} E\{\langle b, X_1 \rangle^2\} - \frac{3}{2}
\]
We may write

\[
E\{\langle b, X_1 \rangle - 1\} - \frac{1}{2} E\{(\langle b, X_1 \rangle - 1)^2\} \\
= 2E\{\langle b, X_1 \rangle \} - \frac{1}{2} E\{\langle b, X_1 \rangle^2\} - \frac{3}{2} \\
= -\frac{1}{2} E\{(\langle b, X_1 \rangle - 2)^2\} + \frac{1}{2}
\]
We may write

\[E\{\langle b, X_1 \rangle - 1\} - \frac{1}{2} E\{(\langle b, X_1 \rangle - 1)^2\} \]

\[= 2E\{\langle b, X_1 \rangle \} - \frac{1}{2} E\{\langle b, X_1 \rangle^2\} - \frac{3}{2} \]

\[= -\frac{1}{2} E\{(\langle b, X_1 \rangle - 2)^2\} + \frac{1}{2} \]

then

\[\arg \max_b -\frac{1}{2} E\{(\langle b, X_1 \rangle - 2)^2\} + \frac{1}{2} = \]

\[\arg \min_b E\{(\langle b, X_1 \rangle - 2)^2\}, \]

that is, we are looking for the portfolio which minimize the expected squared error.
Assume that

- the assets are arbitrarily divisible,
Conditions of the model:

Assume that

- the assets are arbitrarily divisible,
- the assets are available in unbounded quantities at the current price at any given trading period,
Conditions of the model:

Assume that

- the assets are arbitrarily divisible,
- the assets are available in unbounded quantities at the current price at any given trading period,
- there are no transaction costs,

(go to Session 1 today at 17.30)
Conditions of the model:

Assume that

- the assets are arbitrarily divisible,
- the assets are available in unbounded quantities at the current price at any given trading period,
- there are no transaction costs,
 (go to Session 1 today at 17.30)
- the behavior of the market is not affected by the actions of the investor using the strategy under investigation.
At www.szit.bme.hu/~oti/portfolio there are two benchmark data sets from NYSE:

- The first data set consists of daily data of 36 stocks with length 22 years.
- The second data set contains 23 stocks and has length 44 years.

Both sets are corrected with the dividends.
At www.szit.bme.hu/~oti/portfolio there are two benchmark data sets from NYSE:

- The first data set consists of daily data of 36 stocks with length 22 years.
- The second data set contains 23 stocks and has length 44 years.

Both sets are corrected with the dividends. Our experiment is on the second data set.
Experimental results on CRP

<table>
<thead>
<tr>
<th>Stock’s name</th>
<th>AAY</th>
<th>BCRP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>log-NLP weights</td>
</tr>
<tr>
<td>COMME</td>
<td>18%</td>
<td>0.3028</td>
</tr>
<tr>
<td>HP</td>
<td>15%</td>
<td>0.0100</td>
</tr>
<tr>
<td>KINAR</td>
<td>4%</td>
<td>0.2175</td>
</tr>
<tr>
<td>MORRIS</td>
<td>20%</td>
<td>0.4696</td>
</tr>
<tr>
<td>AAY</td>
<td>24%</td>
<td>24%</td>
</tr>
<tr>
<td>running time (sec)</td>
<td>9002</td>
<td>3</td>
</tr>
</tbody>
</table>

Table: Comparison of the two algorithms for CRPs.
Experimental results on CRP

<table>
<thead>
<tr>
<th>Stock’s name</th>
<th>AAY</th>
<th>BCRP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>log-NLP weights</td>
</tr>
<tr>
<td>COMME</td>
<td>18%</td>
<td>0.3028</td>
</tr>
<tr>
<td>HP</td>
<td>15%</td>
<td>0.0100</td>
</tr>
<tr>
<td>KINAR</td>
<td>4%</td>
<td>0.2175</td>
</tr>
<tr>
<td>MORRIS</td>
<td>20%</td>
<td>0.4696</td>
</tr>
<tr>
<td>AAY</td>
<td>24%</td>
<td>24%</td>
</tr>
<tr>
<td>running time (sec)</td>
<td>9002</td>
<td>3</td>
</tr>
</tbody>
</table>

Table: Comparison of the two algorithms for CRPs.

The other 19 assets have 0 weight.
Experimental results on CRP

<table>
<thead>
<tr>
<th>Stock’s name</th>
<th>AAY</th>
<th>BCRP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>log-NLP weights</td>
</tr>
<tr>
<td>COMME</td>
<td>18%</td>
<td>0.3028</td>
</tr>
<tr>
<td>HP</td>
<td>15%</td>
<td>0.0100</td>
</tr>
<tr>
<td>KINAR</td>
<td>4%</td>
<td>0.2175</td>
</tr>
<tr>
<td>MORRIS</td>
<td>20%</td>
<td>0.4696</td>
</tr>
<tr>
<td>AAY</td>
<td>24%</td>
<td></td>
</tr>
<tr>
<td>running time (sec)</td>
<td>9002</td>
<td>3</td>
</tr>
</tbody>
</table>

Table: Comparison of the two algorithms for CRPs.

The other 19 assets have 0 weight

KINAR had the smallest AAY
BCRP is not a causal strategy. A simple causal version could be, that we use the CRP that was optimal up to \(n - 1 \) for the next \((n\text{th})\) day.

<table>
<thead>
<tr>
<th>Stock’s name</th>
<th>AAY</th>
<th>BCRP</th>
<th>CCRP</th>
<th>Static</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log-NLP w.</td>
<td>semi-log-QP w.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMME</td>
<td>18%</td>
<td>0.3028</td>
<td>0.2962</td>
<td></td>
</tr>
<tr>
<td>HP</td>
<td>15%</td>
<td>0.0100</td>
<td>0.0317</td>
<td></td>
</tr>
<tr>
<td>KINAR</td>
<td>4%</td>
<td>0.2175</td>
<td>0.2130</td>
<td></td>
</tr>
<tr>
<td>MORRIS</td>
<td>20%</td>
<td>0.4696</td>
<td>0.4590</td>
<td></td>
</tr>
<tr>
<td>AAY</td>
<td></td>
<td>24%</td>
<td>24%</td>
<td>14%</td>
</tr>
<tr>
<td>running t. (sec)</td>
<td></td>
<td>9002</td>
<td>3</td>
<td>111</td>
</tr>
</tbody>
</table>
BCRP is not a causal strategy. A simple causal version could be, that we use the CRP that was optimal up to \(n - 1 \) for the next \(n \)th day.

<table>
<thead>
<tr>
<th>Stock’s name</th>
<th>AAY</th>
<th>BCRP</th>
<th>CCRP</th>
<th>Static</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>log-NLP w.</td>
<td>semi-log-QP w.</td>
<td></td>
</tr>
<tr>
<td>COMME</td>
<td>18%</td>
<td>0.3028</td>
<td>0.2962</td>
<td></td>
</tr>
<tr>
<td>HP</td>
<td>15%</td>
<td>0.0100</td>
<td>0.0317</td>
<td></td>
</tr>
<tr>
<td>KINAR</td>
<td>4%</td>
<td>0.2175</td>
<td>0.2130</td>
<td></td>
</tr>
<tr>
<td>MORRIS</td>
<td>20%</td>
<td>0.4696</td>
<td>0.4590</td>
<td></td>
</tr>
<tr>
<td>AAY</td>
<td>24%</td>
<td>24%</td>
<td>14%</td>
<td>16%</td>
</tr>
<tr>
<td>running t. (sec)</td>
<td>9002</td>
<td>3</td>
<td>111</td>
<td>3</td>
</tr>
</tbody>
</table>

we can even do much better!!
Dynamic portfolio selection: general case

\(\mathbf{x}_i = (x_i^{(1)}, \ldots x_i^{(d)}) \) the return vector on day \(i \)
\(\mathbf{b} = \mathbf{b}_1 \) is the portfolio vector for the first day
initial capital \(S_0 \)

\[
S_1 = S_0 \cdot \langle \mathbf{b}_1, \mathbf{x}_1 \rangle
\]
Dynamic portfolio selection: general case

\[\mathbf{x}_i = (x_i^{(1)}, \ldots x_i^{(d)}) \] the return vector on day \(i \)

\(\mathbf{b} = \mathbf{b}_1 \) is the portfolio vector for the first day

initial capital \(S_0 \)

\[S_1 = S_0 \cdot \langle \mathbf{b}_1 , \mathbf{x}_1 \rangle \]

for the second day, \(S_1 \) new initial capital, the portfolio vector \(\mathbf{b}_2 = \mathbf{b}(\mathbf{x}_1) \)

\[S_2 = S_0 \cdot \langle \mathbf{b}_1 , \mathbf{x}_1 \rangle \cdot \langle \mathbf{b}(\mathbf{x}_1) , \mathbf{x}_2 \rangle . \]
Dynamic portfolio selection: general case

\(\mathbf{x}_i = (x_i^{(1)}, \ldots, x_i^{(d)}) \) the return vector on day \(i \)

\(\mathbf{b} = \mathbf{b}_1 \) is the portfolio vector for the first day

initial capital \(S_0 \)

\[
S_1 = S_0 \cdot \langle \mathbf{b}_1, \mathbf{x}_1 \rangle
\]

for the second day, \(S_1 \) new initial capital, the portfolio vector

\(\mathbf{b}_2 = \mathbf{b}(\mathbf{x}_1) \)

\[
S_2 = S_0 \cdot \langle \mathbf{b}_1, \mathbf{x}_1 \rangle \cdot \langle \mathbf{b}(\mathbf{x}_1), \mathbf{x}_2 \rangle.
\]

\(n \)th day a portfolio strategy \(\mathbf{b}_n = \mathbf{b}(\mathbf{x}_1, \ldots, \mathbf{x}_{n-1}) = \mathbf{b}(\mathbf{x}_1^{n-1}) \)

\[
S_n = S_0 \prod_{i=1}^{n} \langle \mathbf{b}(\mathbf{x}_1^{i-1}), \mathbf{x}_i \rangle =
\]
Dynamic portfolio selection: general case

\[x_i = (x_i^{(1)}, \ldots x_i^{(d)}) \] the return vector on day \(i \)

\[b = b_1 \] is the portfolio vector for the first day

initial capital \(S_0 \)

\[S_1 = S_0 \cdot \langle b_1, x_1 \rangle \]

for the second day, \(S_1 \) new initial capital, the portfolio vector

\[b_2 = b(x_1) \]

\[S_2 = S_0 \cdot \langle b_1, x_1 \rangle \cdot \langle b(x_1), x_2 \rangle . \]

\(n \)th day a portfolio strategy \(b_n = b(x_1, \ldots, x_{n-1}) = b(x_1^{n-1}) \)

\[S_n = S_0 \prod_{i=1}^{n} \langle b(x_1^{i-1}), x_i \rangle = S_0 e^{nW_n(B)} \]

with the average growth rate

\[W_n(B) = \frac{1}{n} \sum_{i=1}^{n} \ln \langle b(x_1^{i-1}), x_i \rangle . \]
\(\mathbf{X}_1, \mathbf{X}_2, \ldots \) drawn from the vector valued stationary and ergodic process
log-optimum portfolio \(\mathbf{B}^* = \{\mathbf{b}^*(\cdot)\} \)

\[
\mathbf{E}\{\ln \langle \mathbf{b}^*(\mathbf{X}_1^{n-1}) , \mathbf{X}_n \rangle | \mathbf{X}_1^{n-1} \} = \max_{\mathbf{b}(\cdot)} \mathbf{E}\{\ln \langle \mathbf{b}(\mathbf{X}_1^{n-1}) , \mathbf{X}_n \rangle | \mathbf{X}_1^{n-1} \}
\]

\(\mathbf{X}_1^{n-1} = \mathbf{X}_1, \ldots, \mathbf{X}_{n-1} \)
Algoet and Cover (1988): If $S_n^* = S_n(B^*)$ denotes the capital after day n achieved by a log-optimum portfolio strategy B^*, then for any portfolio strategy B with capital $S_n = S_n(B)$ and for any process $\{X_n\}_{-\infty}^{\infty}$,

$$\limsup_{n \to \infty} \left(\frac{1}{n} \ln S_n - \frac{1}{n} \ln S_n^* \right) \leq 0 \quad \text{almost surely}$$

for stationary ergodic process $\{X_n\}_{-\infty}^{\infty}$.
fix integers $k, \ell = 1, 2, \ldots$
elementary portfolios
choose the radius $r_{k,\ell} > 0$ such that for any fixed k,

$$\lim_{\ell \to \infty} r_{k,\ell} = 0.$$
fix integers $k, \ell = 1, 2, \ldots$

elementary portfolios

choose the radius $r_{k,\ell} > 0$ such that for any fixed k,

$$\lim_{\ell \to \infty} r_{k,\ell} = 0.$$

for $n > k + 1$, define the expert $b^{(k,\ell)}$ by

$$b^{(k,\ell)}(x_1^{n-1}) = \arg \max_{b} \sum_{\{k < i < n: \|x_{i-k}^{i-1} - x_{n-k}^{n-1}\| \leq r_{k,\ell}\}} \ln \langle b, x_i \rangle,$$

if the sum is non-void, and $b_0 = (1/d, \ldots, 1/d)$ otherwise.
Combining elementary portfolios

let \(\{q_{k,\ell}\} \) be a probability distribution on the set of all pairs \((k, \ell)\) such that for all \(k, \ell\), \(q_{k,\ell} > 0\).
let \(\{q_{k,\ell}\} \) be a probability distribution on the set of all pairs \((k, \ell)\) such that for all \(k, \ell\), \(q_{k,\ell} > 0\).

The strategy \(B \) is the combination of the elementary portfolio strategies \(B^{(k,\ell)} = \{b_{n}^{(k,\ell)}\} \) such that the investor’s capital becomes

\[
S_{n}(B) = \sum_{k,\ell} q_{k,\ell} S_{n}(B^{(k,\ell)}).
\]
Experiments on average annual yields (AAY)

Kernel based log-optimal portfolio selection with $k = 1, \ldots, 5$ and $\ell = 1, \ldots, 10$

$$r_{k,\ell}^2 = 0.0001 \cdot d \cdot k \cdot \ell,$$
Experiments on average annual yields (AAY)

Kernel based log-optimal portfolio selection with $k = 1, \ldots, 5$ and $\ell = 1, \ldots, 10$

$$r_{k,\ell}^2 = 0.0001 \cdot d \cdot k \cdot \ell,$$

AAY of kernel based semi-log-optimal portfolio is 128%
Kernel based log-optimal portfolio selection with $k = 1, \ldots, 5$ and $\ell = 1, \ldots, 10$

$$r_{k,\ell}^2 = 0.0001 \cdot d \cdot k \cdot \ell,$$

AAY of kernel based semi-log-optimal portfolio is 128% double the capital
Kernel based log-optimal portfolio selection with $k = 1, \ldots, 5$ and $\ell = 1, \ldots, 10$

$$r_{k,\ell}^2 = 0.0001 \cdot d \cdot k \cdot \ell,$$

AAY of kernel based semi-log-optimal portfolio is 128% double the capital
MORRIS had the best AAY, 20%
Experiments on average annual yields (AAY)

Kernel based log-optimal portfolio selection with
k = 1, \ldots, 5 \text{ and } \ell = 1, \ldots, 10

\[r_{k,\ell}^2 = 0.0001 \cdot d \cdot k \cdot \ell, \]

AAY of kernel based semi-log-optimal portfolio is 128% double the capital
MORRIS had the best AAY, 20%
the BCRP had average AAY 24%
The average annual yields of the individual experts.

<table>
<thead>
<tr>
<th>k \ell</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20%</td>
<td>19%</td>
<td>16%</td>
<td>16%</td>
<td>16%</td>
</tr>
<tr>
<td>2</td>
<td>118%</td>
<td>77%</td>
<td>62%</td>
<td>24%</td>
<td>58%</td>
</tr>
<tr>
<td>3</td>
<td>71%</td>
<td>41%</td>
<td>26%</td>
<td>58%</td>
<td>21%</td>
</tr>
<tr>
<td>4</td>
<td>103%</td>
<td>94%</td>
<td>63%</td>
<td>97%</td>
<td>34%</td>
</tr>
<tr>
<td>5</td>
<td>134%</td>
<td>102%</td>
<td>100%</td>
<td>102%</td>
<td>67%</td>
</tr>
<tr>
<td>6</td>
<td>140%</td>
<td>125%</td>
<td>105%</td>
<td>108%</td>
<td>87%</td>
</tr>
<tr>
<td>7</td>
<td>148%</td>
<td>123%</td>
<td>107%</td>
<td>99%</td>
<td>96%</td>
</tr>
<tr>
<td>8</td>
<td>132%</td>
<td>112%</td>
<td>102%</td>
<td>85%</td>
<td>81%</td>
</tr>
<tr>
<td>9</td>
<td>127%</td>
<td>103%</td>
<td>98%</td>
<td>74%</td>
<td>72%</td>
</tr>
<tr>
<td>10</td>
<td>123%</td>
<td>92%</td>
<td>81%</td>
<td>65%</td>
<td>69%</td>
</tr>
</tbody>
</table>