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Abstract

This paper provides a survey of discrete time, multi period, se-
quential investment strategies for financial markets. Under memory-
less assumption on the underlying process generating the asset prices
the Best Constantly Rebalanced Portfolio is studied, called log-optimal
portfolio, which achieves the maximal asymptotic average growth rate.
Semi-log optimal portfolio selection as a small computational complex-
ity alternative of the log-optimal portfolio selection is studied both
theoretically and empirically. For generalized dynamic portfolio se-
lection, when asset prices are generated by a stationary and ergodic
process, universally consistent empirical methods are shown. Empiri-
cal portfolio selection methods are proposed to handle the proportional
transaction cost. The empirical performance of the methods illustrated
for NYSE data with and without transaction costs.
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1 Introduction

This paper gives an overview on the investment strategies in financial stock
markets inspired by the results of information theory, non-parametric statis-
tics and machine learning. Investment strategies are allowed to use informa-
tion collected from the past of the market and determine, at the beginning
of a trading period, a portfolio, that is, a way to distribute their current cap-
ital among the available assets. The goal of the investor is to maximize his
wealth in the long run without knowing the underlying distribution gener-
ating the stock prices. Under this assumption the asymptotic rate of growth
has a well-defined maximum which can be achieved in full knowledge of the
underlying distribution generated by the stock prices.

Both static (buy and hold) and dynamic (daily rebalancing) portfolio
selections are considered under various assumptions on the behavior of the
market process. In case of static portfolio selection, it was shown that every
portfolio achieves the maximal growth rate. One can achieve larger growth

2



rate with daily rebalancing. Under memoryless assumption on the under-
lying process generating the asset prices, the log-optimal portfolio achieves
the maximal asymptotic average growth rate, that is the expected value of
the logarithm of the return for the best fix portfolio vector. Semi-log opti-
mal portfolio selection as a small computational complexity alternative of
the log-optimal portfolio selection is studied both theoretically and empir-
ically. For generalized dynamic portfolio selection, when asset prices are
generated by a stationary and ergodic process, universal consistent (empir-
ical) methods that achieve the maximal possible growth rate are shown.
Two extensions of the empirical portfolio selection methods are proposed to
handle the proportional transaction cost. The empirical performance of the
methods illustrated for NYSE data with and without transaction costs.

The rest of the paper is organized as follows. In Section 2 the con-
stantly rebalanced portfolio is introduced, and the properties of log-optimal
portfolio selection is analyzed in case of memoryless market. Next, a small
computational complexity alternative of the log-optimal portfolio selection,
the semi-log optimal portfolio is introduced. In Section 3 the general model
of the dynamic portfolio selection is introduced and the basic features of the
log-optimal portfolio selection in case of stationary and ergodic market are
summarized. Using the principles of nonparametric statistics and machine
learning, universal consistent, empirical investment strategies that are able
to achieve the maximal asymptotic growth rate are introduced. Experiments
on the NYSE data are given in Section 3.7. The possibility of consumption
can be included in the model (Section 4). In Section 5 the portfolio selection
with proportional transaction costs is analyzed.

1.1 Notations

Consider a market consisting of d assets. The evolution of the market in
time is represented by a sequence of price vectors s1, s2, . . . ∈ R

d
+, where

sn = (s(1)
n , . . . , s(d)

n )

such that the j-th component s
(j)
n of sn denotes the price of the j-th asset

on the n-th trading period. In order to normalize, put s
(j)
0 = 1. {sn} has

exponential trend:

s(j)
n = enW

(j)
n ≈ enW (j)

,

with average growth rate (average yield)

W (j)
n :=

1

n
ln s(j)

n
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and with asymptotic average growth rate

W (j) := lim
n→∞

1

n
ln s(j)

n .

In order to apply the usual prediction techniques for time series analysis
one has to transform the sequence price vectors {sn} into a more or less
stationary sequence of return vectors {xn} as follows:

xn = (x(1)
n , . . . , x(d)

n )

such that

x(j)
n =

s
(j)
n

s
(j)
n−1

.

Thus, the j-th component x
(j)
n of the return vector xn denotes the amount

obtained after investing a unit capital in the j-th asset on the n-th trading
period.

1.2 Static portfolio selection

The static portfolio selection is a single period investment strategy. A port-
folio vector is denoted by b = (b(1), . . . b(d)). The j-th component b(j) of b

denotes the proportion of the investor’s capital invested in asset j. We as-
sume that the portfolio vector b has nonnegative components sum up to 1,
that means that short selling is not permitted. The set of portfolio vectors
is denoted by

∆d =







b = (b(1), . . . , b(d)); b(j) ≥ 0,
d
∑

j=1

b(j) = 1







.

The aim of static portfolio selection is to achieve max1≤j≤d W (j). For
static portfolio selection, at time n = 0 we distribute the initial capital S0

according to a fix portfolio vector b, i.e., if Sn denotes the wealth at the
trading period n, then

Sn = S0

d
∑

j=1

b(j)s(j)
n .

Apply the following simple bounds

S0 max
j

b(j)s(j)
n ≤ Sn ≤ dS0 max

j
b(j)s(j)

n .
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If b(j) > 0 for all j = 1, . . . , d then these bounds imply that

W := lim
n→∞

1

n
lnSn = lim

n→∞
max

j

1

n
ln s(j)

n = max
j

W (j).

Thus, any static portfolio selection achieves the maximal growth rate maxj W (j).

2 Constantly rebalanced portfolio selection

One can achieve even higher growth rate for long run investments, if the
tuning of the porfolio is allowed dynamically after each trading period. The
dynamic portfolio selection is a multi-period investment strategy, where at
the beginning of each trading period we rearrange the wealth among the
assets. An representative example of the dynamic portfolio selection is the
constantly rebalanced portfolio (CRP), was introduced and studied by Kelly
[30], Latané [32], Breiman [7], Markowitz [35], Finkelstein and Whitley [17],
Móri [39], Móri and Székely [42] and Barron and Cover [5]. For a compre-
hensive survey see also Chapters 6 and 15 in Cover and Thomas [13], and
Chapter 15 in Luenberger [33].

Luenberger [33] summarizes the main conclusions as follows:

• ”Conclusions about multiperiod investment situations are not mere
variations of single-period conclusions – rather they offer reverse those
earlier conclusions. This makes the subject exiting, both intellectually
and in practice. Once the subtleties of multiperiod investment are
understood, the reward in terms of enhanced investment performance
can be substantial.”

• ”Fortunately the concepts and the methods of analysis for multiperiod
situation build on those of earlier chapters. Internal rate of return,
present value, the comparison principle, portfolio design, and lattice
and tree valuation all have natural extensions to general situations.
But conclusions such as volatility is ”bad” or diversification is ”good”
are no longer universal truths. The story is much more interesting.”

In case of CRP we fix a portfolio vector b ∈ ∆d, i.e., we are concerned
with a hypothetical investor who neither consumes nor deposits new cash
into his portfolio, but reinvest his portfolio each trading period. Note that
in this case the investor has to rebalance his portfolio after each trading day
to “corrigate” the daily price shifts of the invested stocks.

Let S0 denote the investor’s initial capital. Then at the beginning of the
first trading period S0b

(j) is invested into asset j, and it results in return
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S0b
(j)x

(j)
1 , therefore at the end of the first trading period the investor’s

wealth becomes

S1 = S0

d
∑

j=1

b(j)x
(j)
1 = S0 〈b , x1〉 ,

where 〈· , ·〉 denotes inner product. For the second trading period, S1 is the
new initial capital

S2 = S1 · 〈b , x2〉 = S0 · 〈b , x1〉 · 〈b , x2〉 .

By induction, for the trading period n the initial capital is Sn−1, therefore

Sn = Sn−1 〈b , xn〉 = S0

n
∏

i=1

〈b , xi〉 .

The asymptotic average growth rate of this portfolio selection is

lim
n→∞

1

n
lnSn = lim

n→∞

(

1

n
lnS0 +

1

n

n
∑

i=1

ln 〈b , xi〉
)

= lim
n→∞

1

n

n
∑

i=1

ln 〈b , xi〉 ,

therefore without loss of generality one can assume in the sequel that the
initial capital S0 = 1.

2.1 Log-optimal portfolio for memoryless market process

If the market process {Xi} is memoryless, i.e., it is a sequence of independent
and identically distributed (i.i.d.) random return vectors then we show that
the best constantly rebalanced portfolio (BCRP) is the log-optimal portfolio:

b∗ := arg max
b∈∆d

E{ln 〈b , X1〉}.

This optimality means that if S∗
n = Sn(b∗) denotes the capital after day

n achieved by a log-optimum portfolio strategy b∗, then for any portfolio
strategy b with finite E{(ln 〈b , X1〉)2} and with capital Sn = Sn(b) and for
any memoryless market process {Xn}∞−∞,

lim
n→∞

1

n
lnSn ≤ lim

n→∞
1

n
lnS∗

n almost surely
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and maximal asymptotic average growth rate is

lim
n→∞

1

n
lnS∗

n = W ∗ := E{ln 〈b∗ , X1〉} almost surely.

The proof of the optimality is a simple consequence of the strong law of
large numbers. Introduce the notation

W (b) = E{ln 〈b , X1〉}.

Then

1

n
lnSn =

1

n

n
∑

i=1

ln 〈b , Xi〉

=
1

n

n
∑

i=1

E{ln 〈b , Xi〉} +
1

n

n
∑

i=1

(ln 〈b , Xi〉 − E{ln 〈b , Xi〉})

= W (b) +
1

n

n
∑

i=1

(ln 〈b , Xi〉 − E{ln 〈b , Xi〉}) .

The strong law of large numbers implies that

1

n

n
∑

i=1

(ln 〈b , Xi〉 − E{ln 〈b , Xi〉}) → 0 almost surely,

therefore

lim
n→∞

1

n
lnSn = W (b) = E{ln 〈b , X1〉} almost surely.

Similarly,

lim
n→∞

1

n
lnS∗

n = W (b∗) = max
b

W (b) almost surely.

We have to emphasize the basic conditions of the model: assume that

(i) the assets are arbitrarily divisible, and they are available for buying or
for selling in unbounded quantities at the current price at any given
trading period,

(ii) there are no transaction costs,

(iii) the behavior of the market is not affected by the actions of the investor
using the strategy under investigation.
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Avoiding (ii), see Section 5. For memoryless or Markovian market pro-
cess, optimal strategies have been introduced if the distributions of the mar-
ket process are known. There is no asymptotically optimal, empirical algo-
rithm taking into account the transaction cost. Condition (iii) means that
the market is inefficient.

The principle of log-optimality has the important consequence that

Sn(b) is not close to E{Sn(b)}.

We prove a bit more. The optimality property proved above means that,
for any δ > 0, the event

{

−δ <
1

n
lnSn(b) − E{ln 〈b , X1〉} < δ

}

has probability close to 1 if n is large enough. On the one hand, the i.i.d.
property implies that

{

−δ <
1

n
lnSn(b) − E{ln 〈b , X1〉} < δ

}

=

{

−δ + E{ln 〈b , X1〉} <
1

n
lnSn(b) < δ + E{ln 〈b , X1〉}

}

=
{

en(−δ+E{ln〈b ,X1〉}) < Sn(b) < en(δ+E{ln〈b ,X1〉})
}

,

therefore
Sn(b) is close to enE{ln〈b ,X1〉}.

On the other hand,

E{Sn(b)} = E

{

n
∏

i=1

〈b , Xi〉
}

=
n
∏

i=1

〈b , E{Xi}〉 = en ln〈b , E{X1}〉.

By Jensen inequality,

ln 〈b , E{X1}〉 > E{ln 〈b , X1〉},

therefore
Sn(b) is much less than E{Sn(b)}.

Not knowing this fact, one can apply a naive approach

arg max
b

E{Sn(b)}.
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Because of
E{Sn(b)} = 〈b , E{X1}〉n ,

this naive approach has the equivalent form

arg max
b

E{Sn(b)} = arg max
b

〈b , E{X1}〉 ,

which is called the mean approach. It is easy to see that arg maxb 〈b , E{X1}〉
is a portfolio vector having 1 at the position, where E{X1} has the largest
component.

In his seminal paper Markowitz [34] realized that the mean approach is
inadequate, i.e., it is a dangerous portfolio. In order to avoid this difficulty
he suggested a diversification, which is called mean-variance portfolio such
that

b̃ = arg max
b:Var(〈b ,X1〉)≤λ

〈b , E{X1}〉 ,

where λ > 0 is the risk aversion parameter.
For appropriate choice of λ, the performance (average growth rate) of b̃

can be close to the performance of the optimal b∗, however, the good choice
of λ depends on the (unknown) distribution of the return vector X.

The calculation of b̃ is a nonlinear programming (NLP) problem, where
a linear function is maximized under quadratic constraints.

In order to calculate the log-optimal portfolio b∗, one has to know the
distribution of X1. If this distribution is unknown then the empirical log-
optimal portfolio can be defined by

b∗
n = arg max

b

1

n

n
∑

i=1

ln 〈b , Xi〉

with linear constraints

d
∑

j=1

b(j) = 1 and 0 ≤ b(j) ≤ 1 j = 1, . . . , d .

The behavior of the empirical portfolio b∗
n and its modifications was studied

by Móri [40], [41] and by Morvai [43], [44].
The calculation of b∗

n is a NLP problem, too. Cover [11] introduced
an algorithm for calculating b∗

n. An alternative possibility is the software
routine donlp2 of Spelluci [49]. The routine is based on sequential quadratic
programming method, which computes sequentially a local solution of NLP
by solving a quadratic programming problem and it estimates the global
maximum according to these local maximums.
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2.2 Examples for constantly rebalanced portfolio

Example 1. Consider the example of d = 2 and X = (X(1), X(2)) such that
the first component X(1) of the return vector X is an artificial stock:

X(1) =

{

2 with probability 1/2,
1/2 with probability 1/2,

(1)

and the second component X(2) is the cash:

X(2) = 1.

Obviously, the cash has zero growth rate. Using the expectation of the first
component

E{X(1)} = 1/2 · (2 + 1/2) = 5/4 > 1,

and the i.i.d. property of the market process, we get that

E{S(1)
n } = E

{

n
∏

i=1

X
(1)
i

}

= (5/4)n, (2)

therefore E{S(1)
n } grows exponentially. However, it does not imply that the

random variable S
(1)
n grows exponentially, too. Let’s calculate the growth

rate W (1):

W (1) := lim
n→∞

1

n
lnS(1)

n = lim
n→∞

1

n

n
∑

i=1

lnX
(1)
i = E{lnX(1)}

= 1/2 ln 2 + 1/2 ln(1/2) = 0,

which means that the first component has zero growth rate, too.
The following viewpoint may help explain this at first sight surprising

property. First, we write the evolution of the wealth of the stock as follows:

let S
(1)
n = 22B(m, 1

2
)−n, where B(n, 1

2) is a binomial distribution random
variable with parameters (n, 1

2) (it is easy to check if we choose n = 1
then we return back to the one-step performance of stock). Now we write
according to the Moivre-Laplace theorem (a special case of the central limit
theorem for binomial distribution):

P





2B(n, 1
2) − n

√

Var(2B(n, 1
2)) − n

≤ x



 ≃ φ(x),
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where φ(x) is cumulative distribution function of the standard normal dis-
tribution. Rearranging the left-hand side we have

P





2B(n, 1
2) − n

√

Var(2B(n, 1
2)) − n

≤ x



 = P

(

2B(n,
1

2
) − n ≤ x

√
n

)

= P

(

22B(n, 1
2
)−n ≤ 2x

√
n
)

= P

(

S(1)
n ≤ 2x

√
n
)

that is
P

(

S(1)
n ≤ 2x

√
n
)

≃ φ(x) .

Now let xε choose so that φ(xε) = 1 − ε then

P

(

S(1)
n ≤ 2xε

√
n
)

≃ 1 − ε

and for a fixed ε > 0 let n0 be so that

2x
√

n < ES(1)
n =

(

5

4

)n

for all n > n0 then we have

P

(

S(1)
n ≥ ES(1)

n

)

≤ P

(

S(1)
n ≥ 2x

√
n
)

≃ ε.

It means that most of the values of S
(1)
n are far smaller than its expected

value (see in Figure 1).
Now let’s turn back to the original problem and calculate the log-optimal

portfolio for this return vector, where both components have zero growth
rate. The portfolio vector has the form

b = (b, 1 − b).

Then

W (b) = E{ln 〈b , X〉}
= 1/2 (ln(2b + (1 − b)) + ln(b/2 + (1 − b)))

= 1/2 ln[(1 + b)(1 − b/2)].

One can check that W (b) has the maximum for b = 1/2, so the log-optimal
portfolio is

b∗ = (1/2, 1/2),
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Figure 1: The distribution of S
(1)
n in case of n = 5

and the asymptotic average growth rate is

W ∗ = E{ln 〈b∗ , X〉} = 1/2 ln(9/8) = 0.059,

which is a positive growth rate.

Example 2. Consider the example of d = 3 and X = (X(1), X(2), X(3))
such that the first and the second components of the return vector X are
artificial stocks of form (1), while the third component is the cash. One can
show that the log-optimal portfolio is

b∗ = (0.46, 0.46, 0.08),

and the maximal asymptotic average growth rate is

W ∗ = E{ln 〈b∗ , X〉} = 0.112.

Example 3. Consider the example of d > 3 and X = (X(1), X(2), . . . , X(d))
such that the first d − 1 components of the return vector X are artificial
stocks of form (1), while the last component is the cash. One can show that
the log-optimal portfolio is

b∗ = (1/(d − 1), . . . , 1/(d − 1), 0),
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which means that, for d > 3, according to the log-optimal portfolio the cash
has zero weight. Let N denote the number of components of X equal to 2,
then N is binomially distributed with parameters (d − 1, 1/2), and

ln 〈b∗ , X〉 = ln

(

2N + (d − 1 − N)/2

d − 1

)

= ln

(

3N

2(d − 1)
+

1

2

)

,

therefore

W ∗ = E{ln 〈b∗ , X〉} = E

{

ln

(

3N

2(d − 1)
+

1

2

)}

.

For d = 4, the formula implies that the maximal asymptotic average growth
rate is

W ∗ = E{ln 〈b∗ , X〉} = 0.152,

while for d → ∞,

W ∗ = E{ln 〈b∗ , X〉} → ln(5/4) = 0.223,

which means that
Sn ≈ enW ∗

= (5/4)n,

so with many such stocks
Sn ≈ E{Sn}

(cf. (2)).

Example 4. Consider the example of horse racing with d horses in a race.
Assume that horse j wins with probability pj . The payoff is denoted by oj ,
which means that investing 1$ on horse j results in oj if it wins, otherwise
0$. Then the return vector is of form

X = (0, . . . , 0, oj , 0, . . . , 0)

if horse j wins. For repeated races, it is a constantly rebalanced portfolio
problem. Let’s calculate the expected log-return:

W (b) = E{ln 〈b , X〉} =
d
∑

j=1

pj ln(b(j)oj) =
d
∑

j=1

pj ln b(j) +
d
∑

j=1

pj ln oj ,

therefore

arg max
b

E{ln 〈b , X〉} = arg max
b

d
∑

j=1

pj ln b(j).
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In order to solve the optimization problem

arg max
b

d
∑

j=1

pj ln b(j),

we introduce the Kullback-Leibler divergence of the distributions p and b:

KL(p,b) =
d
∑

j=1

pj ln
pj

b(j)
.

The basic property of the Kullback-Leibler divergence is that

KL(p,b) ≥ 0,

and is equal to zero if and only if the two distributions are equal. The proof
of this property is simple:

KL(p,b) = −
d
∑

j=1

pj ln
b(j)

pj
≥ −

d
∑

j=1

pj

(

b(j)

pj
− 1

)

= −
d
∑

j=1

b(j) +
d
∑

j=1

pj = 0.

This inequality implies that

arg max
b

d
∑

j=1

pj ln b(j) = p.

Surprisingly, the log-optimal portfolio is independent of the payoffs, and

W ∗ =
d
∑

j=1

pj ln(pjoj).

The usual choice of payoffs is

oj =
1

pj
,

and then
W ∗ = 0.

It means that, for this choice of payoffs, any gambling strategy has negative
growth rate.
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Example 5. Sequential St.Petersburg games.
Consider the simple St.Petersburg game, where the player invests 1 dollar
and a fair coin is tossed until a tail first appears, ending the game. If the
first tail appears in step k then the the payoff X is 2k and the probability
of this event is 2−k:

P{X = 2k} = 2−k.

Since E{X} = ∞, this game has delicate properties (cf. Aumann [4],
Bernoulli [6], Durand [15], Haigh [26], Martin [36], Menger [37], Rieger
and Wang [45] and Samuelson [46].) In the literature, usually the repeated
St.Petersburg game (called iterated St.Petersburg game, too) means multi-
period game such that it is a sequence of simple St.Petersburg games, where
in each round the player invest 1 dollar. Let Xn denote the payoff for the
n-th simple game. Assume that the sequence {Xn}∞n=1 is independent and
identically distributed. After n rounds the player’s wealth in the repeated
game is

S̃n =
n
∑

i=1

Xi,

then

lim
n→∞

S̃n

n log2 n
= 1

in probability, where log2 denotes the logarithm with base 2 (cf. Feller [16]).
Moreover,

lim inf
n→∞

S̃n

n log2 n
= 1

a.s. and

lim sup
n→∞

S̃n

n log2 n
= ∞

a.s. (cf. Chow and Robbins [10]). Introducing the notation for the largest
payoff

X∗
n = max

1≤i≤n
Xi

and for the sum with the largest payoff withheld

S∗
n = S̃n − X∗

n,

one has that

lim
n→∞

S∗
n

n log2 n
= 1
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a.s. (cf. Csörgő and Simons [14]). According to the previous results
S̃n ≈ n log2 n. Next we introduce a multi-period game, called sequential
St.Petersburg game, having exponential growth. The sequential St.Petersburg
game means that the player starts with initial capital S0 = 1 dollar, and
there is an independent sequence of simple St.Petersburg games, and for

each simple game the player reinvest his capital. If S
(c)
n−1 is the capital after

the (n − 1)-th simple game then the invested capital is S
(c)
n−1(1 − c), while

S
(c)
n−1c is the proportional cost of the simple game with commission factor

0 < c < 1. It means that after the n-th round the capital is

S(c)
n = S

(c)
n−1(1 − c)Xn = S0(1 − c)n

n
∏

i=1

Xi = (1 − c)n
n
∏

i=1

Xi.

Because of its multiplicative definition, S
(c)
n has exponential trend:

S(c)
n = enW

(c)
n ≈ enW (c)

,

with average growth rate

W (c)
n :=

1

n
lnS(c)

n

and with asymptotic average growth rate

W (c) := lim
n→∞

1

n
lnS(c)

n .

Let’s calculate the the asymptotic average growth rate. Because of

W (c)
n =

1

n
lnS(c)

n =
1

n

(

n ln(1 − c) +
n
∑

i=1

lnXi

)

,

the strong law of large numbers implies that

W (c) = ln(1 − c) + lim
n→∞

1

n

n
∑

i=1

lnXi = ln(1 − c) + E{lnX1}

a.s., so W (c) can be calculated via expected log-utility (cf. Kenneth [31]).
A commission factor c is called fair if

W (c) = 0,
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so the growth rate of the sequential game is 0. Let’s calculate the fair c:

ln(1 − c) = −E{lnX1} = −
∞
∑

k=1

k ln 2 · 2−k = −2 ln 2,

i.e.,
c = 3/4.

Next we study the portfolio game, where a fraction of the capital is invested
in the simple fair St.Petersburg game and the rest is kept in cash. This
is the model of the constantly rebalanced portfolio (CRP). Fix a portfolio
vector b = (b, 1 − b), with 0 ≤ b ≤ 1. Let S0 = 1 denote the player’s initial
capital. Then at the beginning of the portfolio game S0b = b is invested
into the fair game, and it results in return bX1/4, while S0(1 − b) = 1 − b
remains in cash, therefore after the first portfolio game the player’s wealth
becomes

S1 = S0(bX1/4 + (1 − b)) = b(X1/4 − 1) + 1.

For the second portfolio game, S1 is the new initial capital

S2 = S1(b(X2/4 − 1) + 1) = (b(X1/4 − 1) + 1)(b(X2/4 − 1) + 1).

By induction, for n-th portfolio game the initial capital is Sn−1, therefore

Sn = Sn−1(b(Xn/4 − 1) + 1) =
n
∏

i=1

(b(Xi/4 − 1) + 1).

The asymptotic average growth rate of this portfolio game is

W (b) := lim
n→∞

1

n
lnSn

= lim
n→∞

1

n

n
∑

i=1

ln(b(Xi/4 − 1) + 1)

→ E{ln(b(X1/4 − 1) + 1)}

a.s. The function ln is concave, therefore W (b) is concave, too, so W (0) = 0
(keep everything in cash) and W (1) = 0 (the simple game is fair) imply that
for all 0 < b < 1, W (b) > 0. Let’s calculate

max
b

W (b).
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b W (b)

0 0
0.1 0.061
0.2 0.084
0.3 0.095
0.4 0.097
0.5 0.093
0.6 0.083
0.7 0.068
0.8 0.049
0.9 0.025
1 0

Table 1: The asymptotic average growth rate of the portfolio game.

We have that

W (b) =
∞
∑

k=1

ln(b(2k/4 − 1) + 1) · 2−k

= ln(1 − b/2) · 2−1 +
∞
∑

k=3

ln(b(2k−2 − 1) + 1) · 2−k.

Table 1 shows some figures on the average growth rate of the portfolio game.
If b = 0.4 then W (b) = 0.097, so if for each game one reinvest 40% of his
capital such that the real investment is 10%, while the cost is 30%, then
the growth rate is approximately 10%, i.e., the portfolio game with two
components of 0 growth rate (fair St.Petersburg game and cash) can result
in growth rate of 10%.

2.3 Semi-log-optimal portfolio

Vajda [51] suggested an approximation of b∗ and b∗
n using

h(z) := z − 1 − 1

2
(z − 1)2,

which is the second order Taylor expansion of the function ln z at z = 1.
Then, the semi-log-optimal portfolio selection is

b̄ = arg max
b

E{h(〈b , x1〉)},
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and the empirical semi-log-optimal portfolio is

b̄n = arg max
b

1

n

n
∑

i=1

h(〈b , xi〉).

In order to compute b∗
n, one has to make an optimization over b. In each

optimization step the computational complexity is proportional to n. For
b̄n, this complexity can be reduced. We have that

1

n

n
∑

i=1

h(〈b , xi〉) =
1

n

n
∑

i=1

(〈b , xi〉 − 1) − 1

2

1

n

n
∑

i=1

(〈b , xi〉 − 1)2.

If 1 denotes the all 1 vector, then

1

n

n
∑

i=1

h(〈b , xi〉) = 〈b , m〉 − 〈b , Cb〉 ,

where

m =
1

n

n
∑

i=1

(xi − 1)

and

C =
1

2

1

n

n
∑

i=1

(xi − 1)(xi − 1)T .

If we calculate the vector m and the matrix C beforehand then in each op-
timization step the complexity does not depend on n, so the running time
for calculating b̄n is much smaller than for b∗

n. The other advantage of
the semi-log-optimal portfolio is that it can be calculated via quadratic pro-
gramming, which is doable, e.g., using the routine QuadProg++ of Di
Gaspero [18]. This program uses Goldfarb-Idnani dual method for solving
quadratic programming problems [19]. It easy to see that matrix C is posi-
tive semi-definit, however, the above mentioned dual method is only feasible
if C is positive definite. This difference has not caused any problems in
the experiments, but in case of causal empirical strategies sometimes C is
calculated from few data, and so C is not a full-rank matrix, which implies
that C is only positive semi-definite.

Finally we reveal a surprising property of the semi-log optimal portfolio.
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Let us use the definition of the function h, then we have that

E{h(〈b , x1〉)} = E{(〈b , x1〉 − 1)} − 1

2
E{(〈b , x1〉 − 1)2}

= E{〈b , x1〉} − 1 − 1

2
E{〈b , x1〉2 − 2 〈b , x1〉 − 1}

= −3

2
+ 2E{〈b , x1〉} −

1

2
E{〈b , x1〉2}

=
1

2
− 1

2
E{(〈b , x1〉 − 2)2},

therefore

b̄ = arg max
b

E{h(〈b , x1〉)} = arg min
b

E{(〈b , x1〉 − 2)2}.

Thus, b̄ can be considered as the principal component for portfolio selection
such that for b = b̄, 〈b , x1〉 approximates best the value 2 in mean square
sense.

3 Time varying portfolio selection

For a general dynamic portfolio selection, the portfolio vector may depend

on the past data. As before, xi = (x
(1)
i , . . . x

(d)
i ) denotes the return vector

on trading period i. Let b = b1 be the portfolio vector for the first trading
period. For initial capital S0, we get that

S1 = S0 · 〈b1 , x1〉 .

For the second trading period, S1 is new initial capital, the portfolio vector
is b2 = b(x1), and

S2 = S0 · 〈b1 , x1〉 · 〈b(x1) , x2〉 .

For the nth trading period, a portfolio vector is bn = b(x1, . . . ,xn−1) =
b(xn−1

1 ) and

Sn = S0

n
∏

i=1

〈

b(xi−1
1 ) , xi

〉

= S0e
nWn(B)

with the average growth rate

Wn(B) =
1

n

n
∑

i=1

ln
〈

b(xi−1
1 ) , xi

〉

.
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3.1 Log-optimal portfolio for stationary market process

The fundamental limits, determined in Móri [38], in Algoet and Cover [3],
and in Algoet [1, 2], reveal that the so-called log-optimum portfolio B∗ =
{b∗(·)} is the best possible choice. More precisely, on trading period n let
b∗(·) be such that

E
{

ln
〈

b∗(Xn−1
1 ) , Xn

〉∣

∣Xn−1
1

}

= max
b(·)

E
{

ln
〈

b(Xn−1
1 ) , Xn

〉∣

∣Xn−1
1

}

.

If S∗
n = Sn(B∗) denotes the capital achieved by a log-optimum portfolio

strategy B∗, after n trading periods, then for any other investment strategy
B with capital Sn = Sn(B) and with

sup
n

E
{

(ln
〈

bn(Xn−1
1 ) , Xn

〉

)2
}

< ∞,

and for any stationary and ergodic process {Xn}∞−∞,

lim sup
n→∞

1

n
ln

Sn

S∗
n

≤ 0 almost surely (3)

and

lim
n→∞

1

n
lnS∗

n = W ∗ almost surely,

where

W ∗ := E

{

max
b(·)

E
{

ln
〈

b(X−1
−∞) , X0

〉∣

∣X−1
−∞
}

}

is the maximal possible growth rate of any investment strategy. (Note that
for memoryless markets W ∗ = maxb E {ln 〈b , X0〉} which shows that in this
case the log-optimal portfolio is a constantly rebalanced portfolio.)

For the proof of this optimality we use the concept of martingale differ-
ences:

Definition 1 There are two sequences of random variables {Zn} and {Xn}
such that

• Zn is a function of X1, . . . , Xn,

• E{Zn | X1, . . . , Xn−1} = 0 almost surely.

Then {Zn} is called martingale difference sequence with respect to {Xn}.
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For martingale difference sequences, there is a strong law of large num-
bers: If {Zn} is a martingale difference sequence with respect to {Xn} and

∞
∑

n=1

E{Z2
n}

n2
< ∞

then

lim
n→∞

1

n

n
∑

i=1

Zi = 0 a.s.

(cf. Chow [9], see also Stout [50, Theorem 3.3.1]).
In order to be self-contained, for martingale differences, we prove a weak

law of large numbers. We show that if {Zn} is a martingale difference
sequence with respect to {Xn} then {Zn} are uncorrelated. Put i < j, then

E{ZiZj} = E{E{ZiZj | X1, . . . , Xj−1}}
= E{ZiE{Zj | X1, . . . , Xj−1}} = E{Zi · 0} = 0.

It implies that

E







(

1

n

n
∑

i=1

Zi

)2






=
1

n2

n
∑

i=1

n
∑

j=1

E{ZiZj} =
1

n2

n
∑

i=1

E{Z2
i } → 0

if, for example, E{Z2
i } is a bounded sequence.

One can construct martingale difference sequence as follows: let {Yn} be
an arbitrary sequence such that Yn is a function of X1, . . . , Xn. Put

Zn = Yn − E{Yn | X1, . . . , Xn−1}.
Then {Zn} is a martingale difference sequence:

• Zn is a function of X1, . . . , Xn,

• E{Zn | X1, . . . , Xn−1} = E{Yn−E{Yn | X1, . . . , Xn−1} | X1, . . . , Xn−1} =
0 almost surely.

Now we can prove of optimality of the log-optimal portfolio: introduce
the decomposition

1

n
lnSn =

1

n

n
∑

i=1

ln
〈

b(Xi−1
1 ) , Xi

〉

=
1

n

n
∑

i=1

E{ln
〈

b(Xi−1
1 ) , Xi

〉

| Xi−1
1 }

+
1

n

n
∑

i=1

(

ln
〈

b(Xi−1
1 ) , Xi

〉

− E{ln
〈

b(Xi−1
1 ) , Xi

〉

| Xi−1
1 }

)

.
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The last average is an average of martingale differences, so it tends to zero
a.s. Similarly,

1

n
lnS∗

n =
1

n

n
∑

i=1

E{ln
〈

b∗(Xi−1
1 ) , Xi

〉

| Xi−1
1 }

+
1

n

n
∑

i=1

(

ln
〈

b∗(Xi−1
1 ) , Xi

〉

− E{ln
〈

b∗(Xi−1
1 ) , Xi

〉

| Xi−1
1 }

)

.

Because of the definition of the log-optimal portfolio we have that

E{ln
〈

b(Xi−1
1 ) , Xi

〉

| Xi−1
1 } ≤ E{ln

〈

b∗(Xi−1
1 ) , Xi

〉

| Xi−1
1 },

and the proof is finished.

3.2 Empirical portfolio selection

The optimality relations proved above give rise to the following definition:

Definition 2 An empirical (data driven) portfolio strategy B is called uni-

versally consistent with respect to a class C of stationary and er-

godic processes {Xn}∞−∞, if for each process in the class,

lim
n→∞

1

n
lnSn(B) = W ∗ almost surely.

It is not at all obvious that such universally consistent portfolio strategy
exists. The surprising fact that there exists a strategy, universal with respect
to the class of all stationary and ergodic processes was proved by Algoet [1].

Most of the papers dealing with portfolio selections assume that the dis-
tributions of the market process are known. If the distributions are unknown
then one can apply a two stage splitting scheme.

1: In the first time period the investor collects data, and estimates the
corresponding distributions. In this period there is no any investment.

2: In the second time period the investor derives strategies from the dis-
tribution estimates and performs the investments.

In the sequel we show that there is no need to make any splitting, one
can construct sequential algorithms such that the investor can make trading
during the whole time period, i.e., the estimation and the portfolio selection
is made on the whole time period.
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Let’s recapitulate the definition of log-optimal portfolio:

E{ln
〈

b∗(Xn−1
1 ) , Xn

〉

| Xn−1
1 } = max

b(·)
E{ln

〈

b(Xn−1
1 ) , Xn

〉

| Xn−1
1 } .

For a fixed integer k > 0 large enough, we expect that

E{ln
〈

b(Xn−1
1 ) , Xn

〉

| Xn−1
1 } ≈ E{ln

〈

b(Xn−1
n−k) , Xn

〉

| Xn−1
n−k}

and

b∗(Xn−1
1 ) ≈ bk(X

n−1
n−k) = arg max

b(·)
E{ln

〈

b(Xn−1
n−k) , Xn

〉

| Xn−1
n−k}.

Because of stationarity

bk(x
k
1) = arg max

b(·)
E{ln

〈

b(Xn−1
n−k) , Xn

〉

| Xn−1
n−k = xk

1}

= arg max
b(·)

E{ln
〈

b(xk
1) , Xk+1

〉

| Xk
1 = xk

1}

= arg max
b

E{ln 〈b , Xk+1〉 | Xk
1 = xk

1},

which is the maximization of the regression function

mb(xk
1) = E{ln 〈b , Xk+1〉 | Xk

1 = xk
1}.

Thus, a possible way for asymptotically optimal empirical portfolio selection
is that, based on the past data, sequentially estimate the regression function
mb(xk

1), and choose the portfolio vector, which maximizes the regression
function estimate.

3.3 Regression function estimation

Briefly summarize the basics of nonparametric regression function estima-
tion. Concerning the details we refer to the book of Györfi, Kohler, Krzyzak
and Walk [20]. Let Y be a real valued random variable, and let X denote a
random vector. The regression function is the conditional expectation of Y
given X:

m(x) = E{Y | X = x}.
If the distribution of (X, Y ) is unknown then one has to estimate the regres-
sion function from data. The data is a sequence of i.i.d. copies of (X, Y ):

Dn = {(X1, Y1), . . . , (Xn, Yn)}.
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The regression function estimate is of form

mn(x) = mn(x, Dn).

An important class of estimates is the local averaging estimates

mn(x) =
n
∑

i=1

Wni(x; X1, . . . , Xn)Yi,

where usually the weights Wni(x; X1, . . . , Xn) are non-negative and sum up
to 1. Moreover, Wni(x; X1, . . . , Xn) is relatively large if x is close to Xi,
otherwise it is zero.

An example of such an estimate is the partitioning estimate. Here one
chooses a finite or countably infinite partition Pn = {An,1, An,2, . . . } of R

d

consisting of cells An,j ⊆ R
d and defines, for x ∈ An,j , the estimate by

averaging Yi’s with the corresponding Xi’s in An,j , i.e.,

mn(x) =

∑n
i=1 I{Xi∈An,j}Yi
∑n

i=1 I{Xi∈An,j}
for x ∈ An,j , (4)

where IA denotes the indicator function of set A, so

Wn,i(x) =
I{Xi∈An,j}

∑n
l=1 I{Xl∈An,j}

for x ∈ An,j .

Here and in the following we use the convention 0
0 = 0. In order to have

consistency, on the one hand we need that the cells An,j should be ”small”,
and on the other hand the number of non-zero terms in the denominator of
(4) should be ”large”. These requirements can be satisfied if the sequences
of partition Pn is asymptotically fine, i.e., if

diam(A) = sup
x,y∈A

‖x − y‖

denotes the diameter of a set such that || · || is the Eucledian norm, then for
each sphere S centered at the origin

lim
n→∞

max
j:An,j∩S 6=∅

diam(An,j) = 0

and

lim
n→∞

|{j : An,j ∩ S 6= ∅}|
n

= 0.
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For the partition Pn, the most important example is when the cells An,j are
cubes of volume hd

n. For cubic partition, the consistency conditions above
mean that

lim
n→∞

hn = 0 and lim
n→∞

nhd
n = ∞. (5)

The second example of a local averaging estimate is the Nadaraya–
Watson kernel estimate. Let K : R

d → R+ be a function called the kernel
function, and let h > 0 be a bandwidth. The kernel estimate is defined by

mn(x) =

∑n
i=1 K

(

x−Xi

h

)

Yi

∑n
i=1 K

(

x−Xi

h

) , (6)

so

Wn,i(x) =
K
(

x−Xi

h

)

∑n
j=1 K

(

x−Xj

h

) .

Here the estimate is a weighted average of the Yi, where the weight of Yi

(i.e., the influence of Yi on the value of the estimate at x) depends on the
distance between Xi and x. For the bandwidth h = hn, the consistency
conditions are (5). If one uses the so-called naive kernel (or window kernel)
K(x) = I{‖x‖≤1}, where I{·} denotes the indicator function of the events in
the brackets, that is, it equals 1 if the event is true and 0 otherwise. Then

mn(x) =

∑n
i=1 I{‖x−Xi‖≤h}Yi
∑n

i=1 I{‖x−Xi‖≤h}
,

i.e., one estimates m(x) by averaging Yi’s such that the distance between Xi

and x is not greater than h.
Our final example of local averaging estimates is the k-nearest neighbor

(k-NN) estimate. Here one determines the k nearest Xi’s to x in terms of
distance ‖x − Xi‖ and estimates m(x) by the average of the corresponding
Yi’s. More precisely, for x ∈ R

d, let

(X(1)(x), Y(1)(x)), . . . , (X(n)(x), Y(n)(x))

be a permutation of
(X1, Y1), . . . , (Xn, Yn)

such that
‖x − X(1)(x)‖ ≤ · · · ≤ ‖x − X(n)(x)‖.
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The k-NN estimate is defined by

mn(x) =
1

k

k
∑

i=1

Y(i)(x). (7)

Here the weight Wni(x) equals 1/k if Xi is among the k nearest neighbors
of x, and equals 0 otherwise. If k = kn → ∞ such that kn/n → 0 then the
k-nearest-neighbor regression estimate is consistent.

We use the following correspondence between the general regression es-
timation and portfolio selection:

X ∼ Xk
1,

Y ∼ ln 〈b , Xk+1〉 ,

m(x) = E{Y | X = x} ∼ mb(xk
1) = E{ln 〈b , Xk+1〉 | Xk

1 = xk
1}.

3.4 Histogram based strategy

Next we describe histogram based strategy due to Györfi and Schäfer [22]
and denote it by BH . We first define an infinite array of elementary strate-
gies (the so-called experts) B(k,ℓ) = {b(k,ℓ)(·)}, indexed by the positive in-
tegers k, ℓ = 1, 2, . . .. Each expert B(k,ℓ) is determined by a period length
k and by a partition Pℓ = {Aℓ,j}, j = 1, 2, . . . , mℓ of R

d
+ into mℓ disjoint

sets. To determine its portfolio on the nth trading period, expert B(k,ℓ)

looks at the market vectors xn−k, . . . ,xn−1 of the last k periods, discretizes
this kd-dimensional vector by means of the partition Pℓ, and determines
the portfolio vector which is optimal for those past trading periods whose
preceding k trading periods have identical discretized market vectors to the
present one. Formally, let Gℓ be the discretization function corresponding
to the partition Pℓ, that is,

Gℓ(x) = j, if x ∈ Aℓ,j .

With some abuse of notation, for any n and xn
1 ∈ R

dn, we write Gℓ(x
n
1 ) for

the sequence Gℓ(x1), . . . , Gℓ(xn). Then define the expert B(k,ℓ) = {b(k,ℓ)(·)}
by writing, for each n > k + 1,

b(k,ℓ)(xn−1
1 ) = arg max

b∈∆d

∏

i∈Jk,l,n

〈b , xi〉 , (8)

where Jk,l,n =
{

k < i < n : Gℓ(x
i−1
i−k) = Gℓ(x

n−1
n−k)

}

,
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if Jk,l,n 6= ∅, and uniform b0 = (1/d, . . . , 1/d) otherwise. That is, b
(k,ℓ)
n

discretizes the sequence xn−1
1 according to the partition Pℓ, and browses

through all past appearances of the last seen discretized string Gℓ(x
n−1
n−k) of

length k. Then it designs a fixed portfolio vector optimizing the return for
the trading periods following each occurrence of this string.

The problem left is how to choose k, ℓ. There are two extreme cases:

• small k or small ℓ implies that the corresponding regression estimate
has large bias,

• large k and large ℓ implies that usually there are few matching, which
results in large variance.

The good, data dependent choice of k and ℓ is doable borrowing current
techniques from machine learning. In machine learning setup k and ℓ are
considered as parameters of the estimates, called experts. The basic idea of
machine learning is the combination of the experts. The combination is an
aggregated estimate, where an expert has large weight if its past performance
is good (cf. Cesa-Bianchi and Lugosi [8]).

The most successful combination is the exponential weighting. Combine

the elementary portfolio strategies B(k,ℓ) = {b(k,ℓ)
n } as follows: let {qk,ℓ} be

a probability distribution on the set of all pairs (k, ℓ) such that for all k, ℓ,
qk,ℓ > 0.

For η > 0, introduce the exponential weights

wn,k,ℓ = qk,ℓe
η ln Sn−1(B(k,ℓ)).

For η = 1, it means that

wn,k,ℓ = qk,ℓe
ln Sn−1(B(k,ℓ)) = qk,ℓSn−1(B

(k,ℓ))

and
vn,k,ℓ =

wn,k,ℓ
∑

i,j wn,i,j
.

The combined portfolio b is defined by

bn(xn−1
1 ) =

∞
∑

k=1

∞
∑

ℓ=1

vn,k,ℓb
(k,ℓ)
n (xn−1

1 ).
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This combination has a simple interpretation:

Sn(BH) =

n
∏

i=1

〈

bi(x
i−1
1 ) , xi

〉

=
n
∏

i=1

∑

k,ℓ wi,k,ℓ

〈

b
(k,ℓ)
i (xi−1

1 ) , xi

〉

∑

k,ℓ wi,k,ℓ

=
n
∏

i=1

∑

k,ℓ qk,ℓSi−1(B
(k,ℓ))

〈

b
(k,ℓ)
i (xi−1

1 ) , xi

〉

∑

k,ℓ qk,ℓSi−1(B(k,ℓ))

=

n
∏

i=1

∑

k,ℓ qk,ℓSi(B
(k,ℓ))

∑

k,ℓ qk,ℓSi−1(B(k,ℓ))

=
∑

k,ℓ

qk,ℓSn(B(k,ℓ)).

The strategy BH then arises from weighting the elementary portfolio strate-

gies B(k,ℓ) = {b(k,ℓ)
n } such that the investor’s capital becomes

Sn(BH) =
∑

k,ℓ

qk,ℓSn(B(k,ℓ)). (9)

It is shown in [22] that the strategy BH is universally consistent with
respect to the class of all ergodic processes such that E{| log X(j)|} < ∞, for
all j = 1, 2, . . . , d under the following two conditions on the partitions used
in the discretization:

(a) the sequence of partitions is nested, that is, any cell of Pℓ+1 is a subset
of a cell of Pℓ, ℓ = 1, 2, . . .;

(b) if diam(A) = supx,y∈A ‖x− y‖ denotes the diameter of a set, then for

any sphere S ⊂ R
d centered at the origin,

lim
ℓ→∞

max
j:Aℓ,j∩S 6=∅

diam(Aℓ,j) = 0 .

3.5 Kernel based strategy

Györfi, Lugosi, Udina [21] introduced kernel-based portfolio selection strate-
gies. Define an infinite array of experts B(k,ℓ) = {b(k,ℓ)(·)}, where k, ℓ are
positive integers. For fixed positive integers k, ℓ, choose the radius rk,ℓ > 0
such that for any fixed k,

lim
ℓ→∞

rk,ℓ = 0.
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Then, for n > k + 1, define the expert b(k,ℓ) by

b(k,ℓ)(xn−1
1 ) = arg max

b∈∆d

∑

{k<i<n:‖xi−1
i−k

−x
n−1
n−k

‖≤rk,ℓ}
ln 〈b , xi〉 ,

if the sum is non-void, and b0 = (1/d, . . . , 1/d) otherwise. These experts
are mixed as in (9).

Györfi, Lugosi, Udina [21] proved that the portfolio scheme BK = B is
universally consistent with respect to the class of all ergodic processes such
that E{| lnX(j)|} < ∞, for j = 1, 2, . . . d.
Sketch of the proof: Because of the fundamental limit (3), we have to prove
that

lim inf
n→∞

Wn(B) = lim inf
n→∞

1

n
lnSn(B) ≥ W ∗ a.s.

We have that

Wn(B) =
1

n
lnSn(B)

=
1

n
ln





∑

k,ℓ

qk,ℓSn(B(k,ℓ))





≥ 1

n
ln

(

sup
k,ℓ

qk,ℓSn(B(k,ℓ))

)

=
1

n
sup
k,ℓ

(

ln qk,ℓ + lnSn(B(k,ℓ))
)

= sup
k,ℓ

(

Wn(B(k,ℓ)) +
ln qk,ℓ

n

)

.

Thus

lim inf
n→∞

Wn(B) ≥ lim inf
n→∞

sup
k,ℓ

(

Wn(B(k,ℓ)) +
ln qk,ℓ

n

)

≥ sup
k,ℓ

lim inf
n→∞

(

Wn(B(k,ℓ)) +
ln qk,ℓ

n

)

= sup
k,ℓ

lim inf
n→∞

Wn(B(k,ℓ))

= sup
k,ℓ

ǫk,ℓ.

Because of limℓ→∞ rk,ℓ = 0, we can show that

sup
k,ℓ

ǫk,ℓ = lim
k→∞

lim
l→∞

ǫk,ℓ = W ∗.
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3.6 Nearest neighbor based strategy

Define an infinite array of experts B(k,ℓ) = {b(k,ℓ)(·)}, where 0 < k, ℓ are
integers. Just like before, k is the window length of the near past, and for
each ℓ choose pℓ ∈ (0, 1) such that

lim
ℓ→∞

pℓ = 0. (10)

Put
ℓ̂ = ⌊pℓn⌋.

At a given time instant n, the expert searches for the ℓ̂ nearest neighbor
(NN) matches in the past. For fixed positive integers k, ℓ (n > k + ℓ̂ + 1),
introduce the set of the ℓ̂ nearest neighbor matches:

Ĵ (k,ℓ)
n = {i; k + 1 ≤ i ≤ n such that xi−1

i−k is among the ℓ̂ NNs of xn−1
n−k

in xk
1, . . . ,x

n−2
n−k−1}.

Define the expert by

b(k,ℓ)(xn−1
1 ) = arg max

b∈∆d

∏

i∈Ĵ
(k,ℓ)
n

〈b , xi〉 .

That is, b
(k,ℓ)
n is a fixed portfolio vector according to the returns following

these nearest neighbors. These experts are mixed in the same way as in (9).
We say that a tie occurs with probability zero if for any vector s = sk

1

the random variable
‖Xk

1 − s‖
has continuous distribution function.

Györfi, Udina, and Walk [23] proved the following theorem: assume (10)
and that a tie occurs with probability zero, the the portfolio scheme BNN is
universally consistent with respect to the class of all stationary and ergodic
processes such that E{| log X(j)|} < ∞, for j = 1, 2, . . . d.

3.7 Numerical results on empirical portfolio selection

This section gives some empirical results on the BCRP selection. At the web
page www.szit.bme.hu/~oti/portfolio there are two benchmark data set
from NYSE:
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• The first data set consists of daily data of 36 stocks with length 22
years (5651 trading days ending in 1985). More precisely, the data set
contains the daily price relatives, that was calculated from the nominal
values of the closing prices corrected by the dividends and the splits
for all trading day. This data set has been used for testing portfolio
selection in Cover [12], in Singer [48], in Györfi, Lugosi, Udina [21], in
Györfi, Udina, Walk [23] and in Györfi, Urbán, Vajda [24].

• The second data set contains 23 stocks and has length 44 years (11178
trading days ending in 2006) and it was generated same way as the
previous data set (it was augmented by the last 22 years).

Our experiment is on the second data set such that we left out four small
assets (SHERW, KODAK, COMME, KINAR) having small capitalization
(less than 1010 dollars).

To make the analysis feasible, some simplifying assumptions are used
that need to be taken into account. Assume

• the assets are arbitrarily divisible,

• the assets are available in unbounded quantities at the current price
at any given trading period,

• there are no transaction costs (in Section 5 we offer solutions to over-
come this problem),

• the behavior of the market is not affected by the actions of the investor
using the strategy under investigation.

For the 19 large assets, the average annual yield (AAY) of the fixed uni-
form portfolio is 14%, while the AAY of the constantly rebalanced uniform
portfolio is 15%. Table 2 summarizes the numerical results for 19 large
assets. The best asset was MORRIS with AAY 20%. The first column of
Table 2 lists the stock’s name, the second column shows the AAY. The third
and the fourth columns present the weights of the stocks (the components of
the portfolio vector) using the log-optimal and semi-log-optimal algorithms.
Surprisingly, the two portfolio vectors are almost the same: according to
next-to-the-last row the growth rates are the same: 20%.

For the calculation of the optimal portfolio we have developed a re-
cursive gradient algorithm. Introduce the projection P of a vector
b = (b(1), . . . b(d)) to ∆d:

P (b) =
b

∑d
j=1 b(j)

.
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Stock’s name AAY BCRP
log-Grad weights slog-Grad weights

AHP 13% 0 0
ALCOA 9% 0 0
AMERB 14% 0 0

COKE 14% 0 0
DOW 12% 0 0

DUPONT 9% 0 0
FORD 9% 0 0

GE 13% 0 0
GM 7% 0 0
HP 15% 0.179 0.176

IBM 10% 0 0
INGER 11% 0 0

JNJ 16% 0 0
KIMBC 13% 0 0
MERCK 15% 0 0

MMM 11% 0 0
MORRIS 20% 0.744 0.744
PANDG 13% 0 0

SCHLUM 15% 0.077 0.08
AAY 20% 20%

Table 2: Comparison of the two algorithms for CRPs.

Put

Wn(b) =
1

n

n
∑

i=1

log 〈b , xi〉 ,

and let ej be the j-th unit vector, i.e., its j-th component is 1, the other
components are 0. Choose the initial values

b0 = (1/d, . . . , 1/d)

and
V0 = Wn(b0)

and a step size δ > 0 (In our experiment we had δ = 0.1/d.)
For k = 1, 2, ..., make the following iteration:

Step 1. Calculate

Wn(P (bk−1 + δ · ej)) j = 1, . . . , d.
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Step 2. If
Vk−1 ≥ max

j
Wn(P (bk−1 + δ · ej))

then stop, and the result of the algorithm is bk−1.
Otherwise, put

Vk = max
j

Wn(P (bk−1 + δ · ej))

and
bk = P (bk−1 + δ · ej∗),

where
j∗ = arg max

j
Wn(P (bk−1 + δ · ej)).

Go to Step 1.

k 1 2 3 4 5
ℓ

1 31% 30% 24% 21% 26%

2 34% 31% 27% 25% 22%

3 35% 29% 26% 24% 23%

4 35% 30% 30% 32% 27%

5 34% 29% 33% 24% 24%

6 35% 29% 28% 24% 27%

7 33% 29% 32% 23% 23%

8 34% 33% 30% 21% 24%

9 37% 33% 28% 19% 21%

10 34% 29% 26% 20% 24%

Table 3: The average annual yields of the individual experts for the kernel
strategy.

One can combine the kernel based portfolio selection and the princi-
ple of semi-log-optimal algorithm in Section 2.3, called kernel based semi-
log-optimal portfolio (cf. Györfi, Urbán, Vajda [24]). In this section we
present some numerical results obtained by applying the kernel based semi-
log-optimal algorithm to the 19 large assets of the second NYSE data set.

The proposed empirical portfolio selection algorithms use an infinite ar-
ray of experts. In practice we take a finite array of size K × L. In our
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experiment we selected K = 5 and L = 10. Choose the uniform distribution
{qk,ℓ} = 1/(KL) over the experts in use, and the radius

r2
k,l = 0.0002 · d · k + 0.00002 · d · k · ℓ,

(k = 1, . . . , K and ℓ = 1, . . . , L).
Table 3 summarizes the average annual yield achieved by each expert at

the last period when investing one unit for the kernel-based semi-log-optimal
portfolio. Experts are indexed by k = 1 . . . 5 in columns and ℓ = 1 . . . 10 in
rows. The average annual yield of kernel based semi-log-optimal portfolio
is 31%. According to Table 2, MORRIS had the best average annual yield,
20%, while the BCRP had average annual yield 20%, so with kernel based
semi-log-optimal portfolio we have a spectacular improvement.

Another interesting feature of Table 3 is that for any fixed ℓ, the best
k is equal to 1, so as far as empirical portfolio is concerned the Markovian
modelling is appropriate.

k 1 2 3 4 5
ℓ

50 31% 33% 28% 24% 35%

100 33% 32% 25% 29% 28%

150 38% 33% 26% 32% 27%

200 38% 28% 32% 32% 24%

250 37% 31% 37% 28% 26%

300 41% 35% 35% 30% 29%

350 39% 36% 31% 34% 32%

400 39% 35% 33% 32% 35%

450 39% 34% 34% 35% 37%

500 42% 36% 33% 38% 35%

Table 4: The average annual yields of the individual experts for the nearest
neighbor strategy.

We performed some experiments using nearest neighbor strategy. Again,
we take a finite array of size K × L such that K = 5 and L = 10. Choose
the uniform distribution {qk,ℓ} = 1/(KL) over the experts in use. Table
4 summarizes the average annual yield achieved by each expert at the last
period when investing one unit for the nearest neighbor portfolio strategy.
Experts are indexed by k = 1 . . . 5 in columns and ℓ = 50, 100, . . . , 500 in
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rows, where ℓ is the number of nearest neighbors. The average annual yield
of nearest neighbor portfolio is 35%. Comparing Tables 3 and 4, one can
conclude that the nearest neighbor strategy is more robust.

4 Portfolio selection with consumption

For a real number x, let x+ be the positive part of x. Assume that at the
end of trading period n there is a consumption cn ≥ 0. For the trading
period n the initial capital is Sn−1, therefore

Sn = (Sn−1 〈bn , xn〉 − cn)+ .

If Sj > 0 for all j = 1, . . . , n then we show by induction that

Sn = S0

n
∏

i=1

〈bi , xi〉 −
n
∑

k=1

ck

n
∏

i=k+1

〈bi , xi〉 , (11)

where the empty product is 1, by definition. For n = 1, (11) holds. Assume
(11) for n − 1:

Sn−1 = S0

n−1
∏

i=1

〈bi , xi〉 −
n−1
∑

k=1

ck

n−1
∏

i=k+1

〈bi , xi〉 .

Then

Sn = Sn−1 〈bn , xn〉 − cn

=

(

S0

n−1
∏

i=1

〈bi , xi〉 −
n−1
∑

k=1

ck

n−1
∏

i=k+1

〈bi , xi〉
)

〈bn , xn〉 − cn

= S0

n
∏

i=1

〈bi , xi〉 −
n
∑

k=1

ck

n
∏

i=k+1

〈bi , xi〉 .

One has to emphasize that (11) holds for all n iff Sn > 0 for all n,
otherwise there is a ruin. In the sequel, we study the average growth rate
under no ruin and the probability of ruin.

By definition,

P{ ruin } = P

{ ∞
⋃

n=1

{Sn = 0}
}

= P

{ ∞
⋃

n=1

{

S0

n
∏

i=1

〈bi , xi〉 −
n
∑

k=1

ck

n
∏

i=k+1

〈bi , xi〉 ≤ 0

}}

,
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therefore

P{ ruin } = P

{ ∞
⋃

n=1

{

n
∏

i=1

〈bi , xi〉
(

S0 −
n
∑

k=1

ck
1

∏k
i=1 〈bi , xi〉

)

≤ 0

}}

≤ P

{ ∞
⋃

n=1

{

n
∏

i=1

〈bi , xi〉
(

S0 −
∞
∑

k=1

ck
1

∏k
i=1 〈bi , xi〉

)

≤ 0

}}

≤ P

{

S0 ≤
∞
∑

k=1

ck
1

∏k
i=1 〈bi , xi〉

}

(12)

and

P{ ruin } = P

{ ∞
⋃

n=1

{

n
∏

i=1

〈bi , xi〉
(

S0 −
n
∑

k=1

ck
1

∏k
i=1 〈bi , xi〉

)

≤ 0

}}

≥ max
n

P

{

n
∏

i=1

〈bi , xi〉
(

S0 −
n
∑

k=1

ck
1

∏k
i=1 〈bi , xi〉

)

≤ 0

}

= P

{

S0 ≤
∞
∑

k=1

ck
1

∏k
i=1 〈bi , xi〉

}

. (13)

(12) and (13) imply that

P{ ruin } = P

{

S0 ≤
∞
∑

k=1

ck
1

∏k
i=1 〈bi , xi〉

}

.

Under no ruin, on the one hand we get the upper bound on the average
growth rate

Wn =
1

n
lnSn

=
1

n
ln

(

S0

n
∏

i=1

〈bi , xi〉 −
n
∑

k=1

ck

n
∏

i=k+1

〈bi , xi〉
)

≤ 1

n
lnS0

n
∏

i=1

〈bi , xi〉

=
1

n

n
∑

i=1

ln 〈bi , xi〉 +
1

n
lnS0.
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On the other hand we have the lower bound

Wn =
1

n
lnSn

=
1

n
ln

(

S0

n
∏

i=1

〈bi , xi〉 −
n
∑

k=1

ck

n
∏

i=k+1

〈bi , xi〉
)

=
1

n
ln

n
∏

i=1

〈bi , xi〉
(

S0 −
n
∑

k=1

ck
1

∏k
i=1 〈bi , xi〉

)

≥ 1

n
ln

n
∏

i=1

〈bi , xi〉
(

S0 −
∞
∑

k=1

ck
1

∏k
i=1 〈bi , xi〉

)

=
1

n

n
∑

i=1

ln 〈bi , xi〉 +
1

n
ln

(

S0 −
∞
∑

k=1

ck
1

∏k
i=1 〈bi , xi〉

)

,

therefore under no ruin the asymptotic average growth rate with consump-
tion is the same as without consumption:

Wn =
1

n
lnSn ≈ 1

n

n
∑

i=1

ln 〈bi , xi〉 .

Consider the case of constant consumption, i.e., cn = c > 0. Then there
is no ruin if

S0 > c
∞
∑

k=1

1
∏k

i=1 〈bi , xi〉
.

Because of the definition of the average growth rate we have that

Wk =
1

k
ln

k
∏

i=1

〈bi , xi〉 ,

which implies that

∞
∑

k=1

1
∏k

i=1 〈bi , xi〉
=

∞
∑

k=1

e−kWk .

Assume that our portfolio selection is asymptotically optimal, which means
that

lim
n→∞

Wn = W ∗.
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Then ∞
∑

k=1

1
∏k

i=1 〈bi , xi〉
≈

∞
∑

k=1

e−kW ∗

=
e−W ∗

1 − e−W ∗
.

This approximation implies that the ruin probability can be small only if

S0 > c
e−W ∗

1 − e−W ∗
.

A special case of this model is when there is only one risk-free asset:

Sn = (Sn−1(1 + r) − c)+

with some r > 0. Obviously, there is no ruin if S0r > c. It is easy to verify
that this assumption can be derived from the general condition if

eW ∗

= 1 + r.

The ruin probability can be decreased if the consumptions happen in
blocks of size N trading periods. Let Sn denote the wealth at the end of
n-th block. Then

Sn =



Sn−1

nN
∏

j=(n−1)N+1

〈bj , xj〉 − Nc





+

.

Similarly to the previous calculations, we can check that under no ruin the
average growth rates with and without consumption are the same. Moreover

P{ ruin } = P

{

S0 ≤ cN
∞
∑

k=1

1
∏kN

i=1 〈bi , xi〉

}

.

This ruin probability is a monotonically decreasing function of N , and for
large N the exact condition of no ruin is the same as the approximation in
the previous section.

This model can be applied for the analysis of portfolio selection strategies
with fixed transaction cost such that cn is the transaction cost to be paid
when change the portfolio bn to bn+1. In this case the transaction cost cn

depends on the number of shares involved in the transaction.

39



Let’s calculate cn. At the end of the n-th trading period and before

paying for transaction cost the wealth at asset j is Sn−1b
(j)
n x

(j)
n , which means

that the number of shares j is

m(j)
n =

Sn−1b
(j)
n x

(j)
n

S
(j)
n

.

In the model of fixed transaction cost, we assume that m
(j)
n is integer. If

one changes the portfolio bn to bn+1 then the wealth at asset j should be

Sn−1 〈bn , xn〉 b
(j)
n+1, so the number of shares j should be

m
(j)
n+1 =

Sn−1 〈bn , xn〉 b
(j)
n+1

S
(j)
n

.

If m
(j)
n+1 < m

(j)
n then we have to sell, and the wealth what we got is

d
∑

j=1

(

m(j)
n − m

(j)
n+1

)+
S(j)

n =
d
∑

j=1

(

Sn−1b
(j)
n x(j)

n − Sn−1 〈bn , xn〉 b
(j)
n+1

)+
.

If m
(j)
n+1 > m

(j)
n then we have to buy, and the wealth what we pay is

d
∑

j=1

(

m
(j)
n+1 − m(j)

n

)+
S(j)

n =
d
∑

j=1

(

Sn−1 〈bn , xn〉 b
(j)
n+1 − Sn−1b

(j)
n x(j)

n

)+
.

Let C > 0 be the fixed transaction cost, then the transaction fee is

cn = cn(bn+1) = C
d
∑

j=1

∣

∣

∣
m(j)

n − m
(j)
n+1

∣

∣

∣
.

The portfolio selection bn+1 is self-financing if

d
∑

j=1

(

Sn−1b
(j)
n x(j)

n − Sn−1 〈bn , xn〉 b
(j)
n+1

)+

≥
d
∑

j=1

(

Sn−1 〈bn , xn〉 b
(j)
n+1 − Sn−1b

(j)
n x(j)

n

)+
+ cn.

bn+1 is an admissible portfolio if m
(j)
n+1 is integer for all j and it satisfies

the self-financing condition. The set of admissible portfolios is denoted by
∆n,d.
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Taking into account the fixed transaction cost, a kernel based portfolio
selection can be defined as follows: choose the radius rk,ℓ > 0 such that for
any fixed k,

lim
ℓ→∞

rk,ℓ = 0.

For n > k + 1, introduce the expert b(k,ℓ) by

b
(k,ℓ)
n+1 = arg max

b∈∆n,d

∑

{k<i≤n:‖xi−1
i−k

−xn
n−k+1‖≤rk,ℓ}

ln
{

(S
(k,ℓ)
n−1

〈

b(k,ℓ)
n , xn

〉

− cn(b)) 〈b , xi〉
}

,

if the sum is non-void, and b0 = (1/d, . . . , 1/d) otherwise. Combine the

elementary portfolio strategies B(k,ℓ) = {b(k,ℓ)
n } as follows: let {qk,ℓ} be

a probability distribution on the set of all pairs (k, ℓ) such that for all k, ℓ,
qk,ℓ > 0. The combined strategy B then arises from weighing the elementary

portfolio strategies {b(k,ℓ)
n } such that the investor’s capital becomes

Sn =
∑

k,ℓ

qk,ℓS
(k,ℓ)
n . (14)

5 Portfolio selection for proportional transaction

cost

The problem of growth optimal investment with proportional transaction
costs was studied by Cover and Iyengar [29] in horse race markets, also called
erodible market. Iyengar [27] investigated growth optimal investment with
several assets assuming independent and identically distributed sequence of
asset returns. The most far reaching study was Schäfer [47] who considered
the maximization of the expected growth rate with several assets when the
asset returns are Markovian. Györfi and Vajda [25] extended it to almost
sure optimality. All these papers assume the knowledge of the distributions
of the market process. In this section we have some experiments on two
empirical (data driven) portfolio selections.

Let Sn denote the wealth at the close of market day n, n = 0, 1, 2, · · · ,
where w.l.o.g. let the investor’s initial capital S0 be 1 dollar. At the begin-
ning of a new market day n + 1, the investor sets up his new portfolio, i.e.
buys/sells stocks according to the actual portfolio vector bn+1. During this
rearrangement, he has to pay transaction cost, therefore at the beginning of
a new market day n + 1 the net wealth Nn in the portfolio bn+1 is less than
Sn.
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Using the above notations the (gross) wealth Sn at the close of market
day n is

Sn = Nn−1

d
∑

j=1

b(j)
n x(j)

n = Nn−1 〈bn , xn〉 ,

where 〈· , ·〉 denotes inner product.
The rate of proportional transaction cost (commission factor) levied on

one asset is denoted by 0 < c < 1, i.e. the sale of 1 dollar worth of asset i
nets only 1 − c dollars, and similarly we take into account the purchase of
an asset such that the purchase of 1 dollar’s worth of asset i costs c dollars.
It is not hard to see that gross wealth Sn decomposes to the sum of the net
wealth and cost the following - self-financing - way

Nn = Sn −
d
∑

j=1

c
(

b(j)
n x(j)

n Nn−1 − b
(j)
n+1Nn

)+
−

d
∑

j=1

c
(

b
(j)
n+1Nn − b(j)

n x(j)
n Nn−1

)+

= Sn − c
d
∑

j=1

∣

∣

∣b(j)
n x(j)

n Nn−1 − b
(j)
n+1Nn

∣

∣

∣ ,

or equivalently

Sn = Nn + c
d
∑

j=1

∣

∣

∣b(j)
n x(j)

n Nn−1 − b
(j)
n+1Nn

∣

∣

∣ .

Dividing both sides by Sn and introducing ratio

wn =
Nn

Sn
,

0 < wn < 1, we get

1 = wn + c

d
∑

j=1

∣

∣

∣

∣

∣

b
(j)
n x

(j)
n

〈bn , xn〉
− b

(j)
n+1wn

∣

∣

∣

∣

∣

. (15)

Equation (15) is used in the sequel. Examining this cost equation, it
turns out, that for arbitrary portfolio vectors bn, bn+1, and return vector
xn there exists a unique cost factors wn ∈ [0, 1), i.e. the portfolio is self
financing. The value of cost factor wn at day n is determined by portfolio
vectors bn and bn+1 as well as by return vector xn, i.e.

wn = w(bn,bn+1,xn),
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for some function w. If we want to rearrange our portfolio substantially, then
our net wealth decreases more considerably, however, it remains positive.
Note, also, that the cost does not restricts the set of new portfolio vectors,
i.e. the optimization algorithm searches for optimal vector bn+1 within the
whole simplex ∆d. The value of the cost factor ranges between

1 − c

1 + c
≤ wn ≤ 1.

Starting with an initial wealth S0 = 1 and w0 = 1, wealth Sn at the
closing time of the n-th market day becomes

Sn = Nn−1〈bn , xn〉 = wn−1Sn−1〈bn , xn〉 =
n
∏

i=1

w(bi−1,bi,xi−1) 〈bi , xi〉 .

Introduce the notation

g(bi−1,bi,xi−1,xi) = ln(w(bi−1,bi,xi−1) 〈bi , xi〉),

then the average growth rate becomes

1

n
lnSn =

1

n

n
∑

i=1

ln(w(bi−1,bi,xi−1) 〈bi , xi〉)

=
1

n

n
∑

i=1

g(bi−1,bi,xi−1,xi).

Our aim is to maximize the average growth rate.
In the sequel xi will be random variable and is denoted by Xi. Let’s use

the decomposition
1

n
lnSn = In + Jn,

where

In =
1

n

n
∑

i=1

(g(bi−1,bi,Xi−1,Xi) − E{g(bi−1,bi,Xi−1,Xi)|Xi−1
1 })

and

Jn =
1

n

n
∑

i=1

E{g(bi−1,bi,Xi−1,Xi)|Xi−1
1 }.

In is an average of martingale differences, which, under general conditions
on the support of the distribution of X, converges to 0 almost surely. Thus,
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the asymptotic maximization of the average growth rate 1
n

lnSn is equivalent
to the maximization of Jn.

Algorithm 1. For transaction cost, one may apply the portfolio b∗
n(Xn−1)

or its empirical approximation. For example, we may apply the kernel based
log-optimal portfolio selection introduced by Györfi, Lugosi and Udina [21]
as follows: Define an infinite array of experts B(ℓ) = {b(ℓ)(·)}, where ℓ is a
positive integer. For fixed positive integer ℓ, choose the radius rℓ > 0 such
that

lim
ℓ→∞

rℓ = 0.

Then, for n > 1, define the expert b(ℓ) as follows. Put

b(ℓ)
n = arg max

b∈∆d

∑

{i<n:‖xi−1−xn−1‖≤rℓ}
ln 〈b , xi〉 , (16)

if the sum is non-void, and b0 = (1/d, . . . , 1/d) otherwise, where ‖·‖ denotes
the Euclidean norm.

These experts are aggregated (mixed) as follows: let {qℓ} be a probability
distribution over the set of all positive integers ℓ such that for all ℓ, qℓ > 0.
Consider two types of aggregations:

• Here the initial capital S0 = 1 is distributed among the expert ac-
cording to the distribution {qℓ}, and the expert makes the portfolio
selection and pays for transaction cost individually. If Sn(B(ℓ)) is the
capital accumulated by the elementary strategy B(ℓ) after n periods
when starting with an initial capital S0 = 1, then, after period n, the
investor’s wealth after period n, aggregations with the wealth:

Sn =
∑

ℓ

qℓSn(B(ℓ)). (17)

• Here Sn(B(ℓ)) is again the capital accumulated by the elementary
strategy B(ℓ) after n periods when starting with an initial capital
S0 = 1, but it is virtual figure, i.e., the experts make no trading,
its wealth is just the base of aggregation. Then, after period n, the
investor’s aggregated portfolio becomes

bn =

∑

ℓ qℓSn−1(B
(ℓ))b

(ℓ)
n

∑

ℓ qℓSn−1(B(ℓ))
. (18)
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Moreover, the investor’s capital is

Sn = Sn−1〈bn , xn〉w(bn−1,bn,xn−1),

so only the aggregated portfolio pays for the transaction cost.

From now on we consider the optimization of investment with transaction
costs. If the market process {Xi} is a stationary and first order Markov
process then, for any portfolio selection {bi}, we have that

E{g(bi−1,bi,Xi−1,Xi)|Xi−1
1 }

= E{ln(w(bi−1,bi,Xi−1) 〈bi , Xi〉)|Xi−1
1 }

= lnw(bi−1,bi,Xi−1) + E{ln 〈bi , Xi〉 |Xi−1
1 }

= lnw(bi−1,bi,Xi−1) + E{ln 〈bi , Xi〉 |bi,Xi−1}
def
= v(bi−1,bi,Xi−1),

therefore the maximization of the average growth rate 1
n

lnSn is asymptoti-
cally equivalent to the maximization of

Jn =
1

n

n
∑

i=1

v(bi−1,bi,Xi−1).

This maximization is a dynamic programming problem.

Algorithm 2. We may introduce a suboptimal solution, called naive port-
folio, by a one-step optimization as follows: put b1 = {1/d, . . . , 1/d} and
for n ≥ 1,

b(ℓ)
n = arg max

b∈∆d

∑

{i<n:‖xi−1−xn−1‖≤rℓ}
(ln 〈b , xi〉 + lnw(bn−1,b,xn−1)) , (19)

if the sum is non-void, and b0 = (1/d, . . . , 1/d) otherwise. These elementary
portfolios are mixed as in (17) or (18).

Obviously, this portfolio has no global optimality property.
Next we present some numerical results for transaction cost obtained by

applying the kernel based semi-log-optimal algorithm to the 19 large assets
of the second NYSE data set as in Section 3.7. The proposed empirical
portfolio selection algorithms use an infinite set of experts. Here we take
a finite set of size L. In the experiment we selected L = 10. Choose the
uniform distribution {qℓ} = 1/L over the experts in use, and the radius

r2
ℓ = 0.0002 · d + 0.00002 · d · ℓ, for ℓ = 1, . . . , L .
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Table 5 summarizes the average annual yield achieved by each expert
at the last period when investing one unit for the kernel-based log-optimal
portfolio. Experts are indexed by ℓ = 1 . . . 10 in rows. The second column

ℓ c = 0 Algorithm 1 Algorithm 2

1 31% -22% 18%

2 34% -22% 10%

3 35% -24% 9 %

4 35% -23% 14%

5 34% -21% 13%

6 35% -19% 13%

7 33% -20% 12%

8 34% -18% 8 %

9 37% -17% 6 %

10 34% -18% 11%

Aggregation with wealth (17) 35% -19% 13%

Aggregation with portfolio (18) 35% -15% 17%

Table 5: The average annual yields of the individual experts for kernel
strategy and of the aggregations with c = 0.0015.

ℓ c = 0 Algorithm 1 Algorithm 2

50 31% -35% -14%

100 33% -33% 3%

150 38% -29% 3%

200 38% -28% 9%

250 37% -28% 9%

300 41% -26% 7%

350 39% -26% 9%

400 39% -26% 10%

450 39% -25% 14%

500 42% -23% 14%

Aggregation with wealth (17) 39% -25% 11%

Aggregation with portfolio (18) 39% -23% 11%

Table 6: The average annual yields of the individual experts for nearest
neighbor strategy and of the aggregations with c = 0.0015.
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contains the average annual yields of experts for kernel based log-optimal
portfolio if there is no transaction cost, and in this case the results of the
two aggregations are the same: 35%. Mention that, out of the 19 assets,
MORRIS had the best average annual yield, 20%, so, for no transaction cost,
with kernel based log-optimal portfolio we have a spectacular improvement.
The third and fourth columns contain the average annual yields of experts
for kernel based log-optimal portfolio if the commission factor is c = 0.0015.
Notice that the growth rate of the Algorithm 1 is negative, and the growth
rate of the Algorithm 2 is poor, too, it is less than the growth rate of the
best asset, and the results of aggregations are different.

We have got similar results for nearest neighbor strategy (cf. Table 6).
On the one hand these 19 assets may be too risk averse to offer “good”
growth rate of the wealth. On the other hand these results have revealed
that the proper handling of the transaction cost is still an open question
and an important direction of the further research. If the market process is
first order Markov and one knows the conditional distributions then Györfi
and Vajda [25] introduced a.s. optimal strategies, however, it is unknown
how to construct their data driven versions.
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