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Abstract: We introduce a sequential investment strategy, called semi-log-optimal
strategy. This strategy is related to the log-optimal portfolio approach, where
instead of logarithmic objective function its Taylor series approximation is used.
The asymptotic rate of growth is analyzed under the only assumption that the
market is stationary and ergodic. The performance of the strategy is compared
to the optimal asymptotic rate of growth provided by the log-optimal strategy.
Bound on the deviation of the performances is shown. The advantage of our semi-
log-optimal portfolio approach is that it performs very close to the log-optimal
strategy, meanwhile it allows a simpler and more ”standardized” computation of
the corresponding portfolio vector.
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1 Introduction

The purpose of this paper is to investigate sequential investment strategies for finan-
cial markets. Investment strategies are allowed to use information collected from
the past of the market and determine, at the beginning of a trading period, a port-
folio, that is, a way to distribute their current capital among the available assets.
The goal of the investor is to maximize his wealth on the long run without knowing
the underlying distribution generating the stock prices. The only assumption we
use in our mathematical analysis is that the daily price relatives form a stationary
and ergodic process. Under this assumption the asymptotic rate of growth has a
well-defined maximum which can be achieved in full knowledge of the distribution
of the entire process, see Algoet and Cover [3]. In this paper new strategy, called
semi-log-optimal strategy, is proposed which guarantees an almost optimal asymp-
totic growth rate of capital for all stationary and ergodic markets, and uses only
the conditional first and second moments of the market vectors, therefore it has
small computational complexity.

To make the analysis feasible, some simplifying assumptions are used that need
to be taken into account. First of all, we assume that assets are arbitrarily divisible
and all assets are available in unbounded quantities at the current price at any
given trading period. We also ignore transaction costs in the mathematical analysis.
Another key assumption is that the behavior of the market is not affected by the
actions of the investor using the strategy under investigation. This assumption is
realistic when the investor handles small amounts of capital compared to the total
trading volume on the market. Under this hypothesis, testing the methods on past
stock-market data is meaningful.
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The rest of the paper is organized as follows. In Section 2 the mathematical
model is described, and related results are surveyed briefly. In Section 3 the new
semi-log-optimal sequential investment strategies is introduced and the performance
of the strategy is compared to the optimal asymptotic rate of growth provided by
the log-optimal strategy. Bounds on the deviation of the performance is shown.

2 Setup, the log-optimal strategy

The model of stock market investigated in this paper is the one considered, among
others, by Breiman [5], Algoet and Cover [3]. Consider a market of d assets. A
market vector x = (x(1), . . . x(d)) ∈ Rd

+ is a vector of d nonnegative numbers rep-
resenting price relatives for a given trading period. That is, the j-th component
x(j) ≥ 0 of x expresses the ratio of the closing and opening prices of asset j. In
other words, x(j) is the factor by which capital invested in the j-th asset grows
during the trading period.

The investor is allowed to diversify his capital at the beginning of each trading
period according to a portfolio vector b = (b(1), . . . b(d)). The j-th component b(j)

of b denotes the proportion of the investor’s capital invested in asset j. Throughout
the paper we assume that the portfolio vector b has nonnegative components with
∑d

j=1 b(j) = 1. The fact that
∑d

j=1 b(j) = 1 means that the investment strategy is
self financing and consumption of capital is excluded. The non-negativity of the
components of b means that short selling and buying stocks on margin are not
permitted. Let S0 denote the investor’s initial capital. Then at the end of the
trading period the investor’s wealth becomes

S1 = S0

d
∑

j=1

b(j)x(j) = S0 < b,x >,

where < ·, · > denotes inner product.

The evolution of the market in time is represented by a sequence of market

vectors x1,x2, . . . ∈ Rd
+, where the j-th component x

(j)
i of xi denotes the amount

obtained after investing a unit capital in the j-th asset on the i-th trading period.
For j ≤ i we abbreviate by x

i
j the array of market vectors (xj , . . . ,xi) and denote

by ∆d the simplex of all vectors b ∈ Rd
+ with nonnegative components summing

up to one. An investment strategy is a sequence B of functions

bi :
(

Rd
+

)i−1
→ ∆d , i = 1, 2, . . .

so that bi(x
i−1
1 ) denotes the portfolio vector chosen by the investor on the i-

th trading period, upon observing the past behavior of the market. We write
b(xi−1

1 ) = bi(x
i−1
1 ) to ease the notation.
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Starting with an initial wealth S0, after n trading periods, the investment strat-
egy B achieves the wealth

Sn = S0

n
∏

i=1

< b(xi−1
1 ),xi >= S0e

P

n

i=1
log<b(xi−1

1
),xi> = S0e

nWn(B).

where Wn(B) denotes the average growth rate

Wn(B) =
1

n

n
∑

i=1

log < b(xi−1
1 ),xi > .

In this paper we assume that the market vectors are realizations of a random
process, and describe a statistical model. Our view is completely nonparametric
in that the only assumption we use is that the market is stationary and ergodic,
allowing arbitrarily complex distributions. More precisely, assume that x1,x2, . . .
are realizations of the random vectors X1,X2, . . . drawn from the vector-valued
stationary and ergodic process {Xn}

∞

−∞
. The sequential investment problem, under

these conditions, have been considered by, e.g., Breiman [5], Algoet and Cover [3],
Algoet [1, 2], Györfi and Schäfer [8], Györfi, Lugosi, Udina [7]. The fundamental
limits, determined in [3], [1, 2], reveal that the so-called log-optimum portfolio

B
∗ = {b∗(·)} is the best possible choice. More precisely, on trading period n let

b
∗(·) be such that

b
∗(Xn−1

1 ) = arg max
b(·)

E
{

log < b(Xn−1
1 ),Xn >

∣

∣X
n−1
1

}

.

If S∗

n = Sn(B∗) denotes the capital achieved by a log-optimum portfolio strategy
B

∗, after n trading periods, then for any other investment strategy B with capital
Sn = Sn(B) and for any stationary and ergodic process {Xn}

∞

−∞
,

lim sup
n→∞

1

n
log

Sn

S∗

n

≤ 0 almost surely

and

lim
n→∞

1

n
log S∗

n = W ∗ almost surely,

where

W ∗ = E
{

log < b
∗(X−1

−∞
),X0 >

}

is the maximal possible growth rate of any investment strategy.
Thus, (almost surely) no investment strategy can have a faster rate of growth

than a log-optimal portfolio. Of course, to determine a log-optimal portfolio,
full knowledge of the (infinite-dimensional) distribution of the process is required.
Strategies achieving the same rate of growth without knowing the distribution are
called universally consistent, i.e., an investment strategy B is called universally
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consistent with respect to a class of stationary and ergodic processes {Xn}
∞

−∞
, if

for each process in the class,

lim
n→∞

1

n
log Sn(B) = W ∗ almost surely.

The surprising fact that there exists a strategy, universally consistent with respect
to the class of all stationary and ergodic processes with E| log X(j)| < ∞ for all
j = 1, . . . , d, was first proved by Algoet [1] and by Györfi and Schäfer [8].

3 The semi-log-optimal strategy

Put

h(x) = (x − 1) −
1

2
(x − 1)2,

which is the second order Taylor expansion of the function log x at x = 1. On the
n-th trading period the semi-log-optimal portfolio selection is defined by

b̄(Xn−1
1 ) = arg max

b(·)
E

{

h
(

< b(Xn−1
1 ),Xn >

)
∣

∣X
n−1
1

}

.

and S̄n = Sn(B̄).

Theorem 3.1. For any stationary and ergodic process {Xn}
∞

−∞
, for which 1−a ≤

Xj
n ≤ 1 + c, 0.4 > a > 0, c > 0 we get

W ∗ ≥ lim inf
n

1

n
log S̄n ≥ W ∗ −

5

6
E[max

i
E(|X

(i)
0 − 1|3|X−1

−∞
)].

with probability 1.

The practical importance of Theorem 3.1 can be grasped by the following con-
sideration. On financial markets, where assets are traded on daily base, especially
on stock markets, limits are set up for the maximal daily percentage change in
traded assets. If this maximum is reached, e.g. the price drops sharply within a
day, then the trading of the actual asset is suspended for the rest of the day. For
instance, if we assume a very practical limit of 10%, then our result says, that our
semi-log-optimal strategy performs within 5/6 · 0.13 ≃ 0.083% to the one of the
log-optimal strategy.

In the proof of the theorem we apply the following lemma:

Lemma 3.2. For any stationary and ergodic process {Xn}
∞

−∞
, for which 1 − a ≤

X
(j)
n ≤ 1 + c, 1 > a > 0, c > 0 we get

lim
n→∞

1

n

n
∑

i=1

max
j

E
(

|X
(j)
i − 1|3|Xi−1

1

)

= E

[

max
j

E
(

|X
(j)
0 − 1|3|X−1

−∞

)

]

with probability 1.
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Proof. Introduce notation

wn = max
j

E
(

|X
(j)
0 − 1|3|X−1

−n+1

)

where n = 1, 2 . . . . Put

g(Xn) = (|X(1)
n − 1|3, ..., |X(d)

n − 1|3).

Note that
max
b(.)

E[< b(X−1
−n+1), g(X0) > |X−1

−n+1] = wn (1)

First we show that {wn} is a sub-martingale. Random variable wn is measurable
with respect to X

−1
−n+1. We have to prove, that E[wn+1|X

−1
−n+1] ≥ wn. If a portfolio

is X
−1
−n+1-measurable, then it is also X

−1
−n-measurable, therefore we get

w̄n = E[w̄n|X
−1
−n+1]

= E[max
b(.)

E[< b(X−1
−n+1), g(X0) > |X−1

−n+1]|X
−1
−n+1]

≤ E[max
b(.)

E[< b(X−1
−n), g(X0) > |X−1

−n]|X−1
−n+1]

= E[w̄n+1|X
−1
−n+1],

where in the last equation we applied formula (1). Thus wn is a submartingale and
E|wn|+ ≤ max{a3, c3}, then we can apply convergence theorem of submartingales
and we conclude that there exists a random variable w∞ such that

lim
n→∞

wn = w∞.

with probability 1.
We apply Breimann’s ergodic theorem [4]: Let Z = {Zi}

∞

−∞
be a stationary

and ergodic process. For each positive integer i, let T i denote the operator that
shifts any sequence {. . . , z−1, z0, z1, . . .} by i digits to the left. Let f1, f2, . . . be a
sequence of real-valued functions such that limn→∞ fn(Z) = f(Z) almost surely for
some function f . Assume that E supn |fn(Z)| < ∞. Then

lim
n→∞

1

n

n
∑

i=1

fi(T
iZ) = Ef(Z) almost surely.

Introduce the notation fi(X) = wi(X),

fi(T
i
X) = wi(T

i
X) = max

j
E

(

|X
(j)
i − 1|3|Xi−1

1

)

Furthermore criteria E supi |fi(X)| < ∞ is fulfilled because the returns are bounded.
Thus by the Breiman ergodic theorem

lim
n→∞

1

n

n
∑

i=1

max
j

E
(

|X
(j)
i − 1|3|Xi−1

1

)

= E

[

max
j

E
(

|X
(j)
0 − 1|3|X−1

−∞

)

]
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with probability 1.

Proof of Theorem 3.1. For the second order Taylor expansion of the function
log z at z = 1 we get the following bounds

log z ≥ h(z) −
1

2
|z − 1|3

and

log z ≤ h(z) +
1

3
|z − 1|3,

where 0.6 < z. In addition, by taking into account the definition of semi optimal
portfolio b̄(Xn−1

1 ) we get,

E(log < b̄(Xn−1
1 ),Xn > |Xn−1

1 ) +
1

2
E(| < b̄(Xn−1

1 ),Xn > −1|3|Xn−1
1 )

≥ E(h(< b̄(Xn−1
1 ),Xn >)|Xn−1

1 )

≥ E(h(< b
∗

n,Xn >)|Xn−1
1 )

≥ E(log < b
∗(Xn−1

1
),Xn >|Xn−1

1
) −

1

3
E(| < b

∗(Xn−1

1
),Xn > −1|3|Xn−1

1
).

(2)

We derive simple bounds for formulae E(| < b̄(Xn−1
1 ),Xn > −1|3|Xn−1

1 ) and
E(| < b

∗(Xn−1
1 ),Xn > −1|3|Xn−1

1 ). Considering the portfolio vector as a discrete
probability distribution and taking into account that function |z−1|3 is convex, we
can apply the Jensen’s inequality

| < b̄(Xn−1
1 ),Xn > −1|3 = |

d
∑

i=1

b̄(i)(Xn−1
1 )(X(i)

n − 1)|3

≤

d
∑

i=1

b̄(i)(Xn−1
1 )|X(i)

n − 1|3.

Taking the conditional expectation at both sides of the last inequality and then by
straightforward manipulations we get

E(| < b̄(Xn−1
1 ),Xn > −1|3|Xn−1

1 ) ≤
d

∑

i=1

b̄(i)(Xn−1
1 )E(|X(i)

n − 1|3|Xn−1
1 )

≤ max
i

E(|X(i)
n − 1|3|Xn−1

1 ). (3)

Similarly

E(| < b
∗(Xn−1

1 ),Xn > −1|3|Xn−1
1 ) ≤ max

i
E(|X(i)

n − 1|3|Xn−1
1 ) (4)
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holds for the log-optimal portfolio strategy. According to inequalities (2), (3) and
(4) we get

E(log < b̄(Xn−1
1 ),Xn > |Xn−1

1 )

≥ E(log < b
∗(Xn−1

1 ),Xn > |Xn−1
1 ) −

5

6
max

i
E(|X(i)

n − 1|3|Xn−1
1 ). (5)

Consider the following decomposition

1

n
log S̄n = Ūn + V̄n,

where

Ūn =
1

n

n
∑

i=1

[log < b̄(Xi−1
1 ),Xi > −E[log < b̄(Xi−1

1 ),Xi > |Xi−1
1 ]]

and

V̄n =
1

n

n
∑

i=1

E[log < b̄(Xi−1
1 ),Xi > |Xi−1

1 ].

It can be shown that Ūn → 0 a.s., since it is an average of bounded martingale
differences. So

lim inf
n→∞

V̄n = lim inf
n→∞

1

n
log S̄n. (6)

Similarly, consider the following decomposition

1

n
log S∗

n = U∗

n + V ∗

n ,

where

U∗

n =
1

n

n
∑

i=1

[log < b
∗(Xi−1

1 ),Xi > −E[log < b
∗(Xi−1

1 ),Xi > |Xi−1
1 ]]

and

V ∗

n =
1

n

n
∑

i=1

E[log < b
∗(Xi−1

1 ),Xi > |Xi−1
1 ].

Again, it can be shown that U∗

n → 0 a.s. So

lim
n→∞

V ∗

n = lim
n→∞

1

n
log S∗

n. (7)

Taking the arithmetic average on both sides of inequality (5) over trading periods
1, . . . , n, then taking the limes inferior of both sides as n goes to infinity and apply-
ing equalities (6), (7) as well as Lemma 3.2, we arrive to the following inequality

lim inf
n

1

n
log S̄n ≥ lim

n→∞

1

n
log S∗

n − lim
n→∞

5

6n

n
∑

i=1

max
j

E
(

|X
(j)
i − 1|3|Xi−1

1

)

= W ∗ −
5

6
E

[

max
j

E
(

|X
(j)
0 − 1|3|X−1

−∞

)

]

(8)
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4 Algorithm for finding the semi-log-optimal port-

folio

The advantage of our semi-log-optimal portfolio approach is that it performs very
close to the log-optimal strategy, meanwhile it allows a simpler and more ”standard-
ized” computation of the corresponding portfolio vector, as its is detailed below.
When we calculate the semi-log-optimal portfolio, then instead of searching for the
maximum of logarithmic objective function

E
{

log (< b,Xn >)|Xn−1
1

}

we look for the maximum of its quadratic approximation

E
{

h (< b,Xn >)|Xn−1
1

}

. (9)

over simplex b ∈ ∆d. One important advantage of using a quadratic objective
function is that it leads to a known class of mathematical programming problems.
The next lemma gives the quadratic objective function (9) in more explicit form.

Lemma 4.1. Finding the semi-log-optimal portfolio on the n-th trading period is

equivalent to finding the solution of the following quadratic programming task

maximize g(b,Xn−1
1 ) in variable b

subject to
d
∑

i=1

bi = 1,b ≥ 0,

where the objective function is the following

g(b,Xn−1
1 ) = 2 < b,m(Xn−1

1 ) > −
1

2
< b,K(Xn−1

1 )b >,

where m(Xn−1
1 ) = E(Xn|X

n−1
1 ) and K(Xn−1

1 ) = {Ki,j}, Ki,j = E(X
(i)
n X

(j)
n |Xn−1

1 ).

Proof By straightforward calculation we get

E
[

h(< b,Xn >)|Xn−1
1

]

= E
[

2 < b,Xn > − 1
2 < b,Xn >2 −3/2|Xn−1

1

]

= 2 < b, E(Xn|X
n−1
1 ) > − 1

2 < b,K(Xn−1
1 )b > −3/2.

Because K is positive semi-definite, the objective function is convex, furthermore
the constraints are linear functions. It is known from optimization theory that for
point b to be an optimum point it is necessary and sufficient that b is a Karush-
Kuhn-Tucker (KKT) point. The most common method of solving a quadratic
programming task is an interior point method, such as LOQO [10].
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