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The purpose of this paper is to introduce sequential investment strategies that guar-
antee an optimal rate of growth of the capital, under minimal assumptions on the
behavior of the market. The new strategies are analyzed both theoretically and em-
pirically. The theoretical results show that the asymptotic rate of growth matches the
optimal one that one could achieve with a full knowledge of the statistical properties
of the underlying process generating the market, under the only assumption that the
market is stationary and ergodic. The empirical results show that the performance of
the proposed investment strategies measured on past NYSE and currency exchange data
is solid, and sometimes even spectacular.
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1. INTRODUCTION

The purpose of this paper is to investigate sequential investment strategies for financial
markets. Investment strategies are allowed to use information collected from the past of
the market and determine, at the beginning of a trading period, a portfolio, that is, a way
to distribute their current capital among the available assets. The goal of the investor
is to maximize his wealth in the long run without knowing the underlying distribution
generating the stock prices. Since accurate statistical modeling of stock market behavior
has been known as a notoriously difficult problem, we take an extreme point of view and
work with minimal assumptions on the distribution of the time series. In fact, the only
assumption we use in our mathematical analysis is that the daily price relatives form a
stationary and ergodic process. Under this assumption the asymptotic rate of growth has
a well-defined maximum that can be achieved in full knowledge of the distribution of the
entire process (see Algoet and Cover 1988).
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Universal procedures achieving the same asymptotic growth rate without any previous
knowledge have been known to exist (see Algoet 1992; Györfi and Schäfer 2003). In
this paper new universal strategies are proposed that not only guarantee an optimal
asymptotic growth rate of capital for all stationary and ergodic markets, but also have
a good finite-horizon performance in practice. This is demonstrated in an experimental
study in which the performance of the proposed methods is measured in different data
sets, including past New York Stock Exchange (NYSE) data spanning a 22-year period
with 36 stocks included, and currency exchange values of eight currencies over a 15-year
period.

The experimental results demonstrate that the proposed methods are able to find, and
effectively exploit, hidden complicated dependences of asset prices on the past evolution
of the market.

To make the analysis feasible, some simplifying assumptions are used that need to be
taken into account. First of all, we assume that assets are arbitrarily divisible, and all
assets are available in unbounded quantities at the current price at any given trading
period. We also ignore transaction costs in the mathematical analysis, though some of
the experimental results are also presented with transaction costs present. Another key
assumption is that the behavior of the market is not affected by the actions of the investor
using the strategy under investigation. This assumption is realistic when the investor
handles small amounts of capital compared to the total trading volume in the market.
Under this hypothesis, testing the methods on past stock-market data is meaningful. On
the other hand, the spectacular growth of capital demonstrated by some of the proposed
methods (e.g., by a factor of more than 108 during 22 years on the NYSE) should be
interpreted with care, since such an explosive growth in real markets would inevitably be
accompanied by some reaction of the market whose effect is not taken into account either
in the theoretical results, or in the experimental figures based on past price fluctuations. In
spite of these simplifications, we feel that our numerical results provide a strong empirical
evidence for the inefficiency of the stock markets. This may partially be explained by the
fact that the dependence structures of the markets revealed by the proposed investment
strategies are quite complex and even though all information we use is publicly available,
the way this information can be exploited remains hidden from most traders.

The rest of the paper is organized as follows. In Section 2 the mathematical model is de-
scribed, and related results are surveyed briefly. In Section 3, a family of kernel-based non-
parametric sequential investment strategies is introduced and its main consistency prop-
erties are stated. Numerical results based on various data sets are described in Section 4.
The proof of the main theoretical result (Theorems 3.1 and 3.2) is given in Section 5.

2. SETUP, MATHEMATICAL MODEL

The model of stock market investigated in this paper is the one considered, among others,
by Breiman (1961), Algoet and Cover (1988), and Cover (1991). Consider a market of
d assets. A market vector x = (x(1), . . . , x(d)) ∈ Rd

+ is a vector of d nonnegative numbers
representing price relatives for a given trading period. That is, the jth component x( j) ≥ 0
of x expresses the ratio of the closing and opening prices of asset j. In other words, x( j) is
the factor by which capital invested in the jth asset grows during the trading period.

The investor is allowed to diversify his capital at the beginning of each trading period
according to a portfolio vector b = (b(1), . . . , b(d)). The jth component b( j) of b denotes the
proportion of the investor’s capital invested in asset j. Throughout the paper we assume
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that the portfolio vector b has nonnegative components, with
∑d

j=1 b( j ) = 1. The fact

that
∑d

j=1 b( j ) = 1 means that the investment strategy is self-financing and consumption
of capital is excluded. The nonnegativity of the components of b means that short selling
and buying stocks on margin are not permitted. Let S0 denote the investor’s initial capital.
Then, at the end of the trading period, the investor’s wealth becomes

S1 = S0

d∑
j=1

b( j )x( j ) = S0〈b, x〉,

where 〈·, ·〉 denotes inner product.
The evolution of the market in time is represented by a sequence of market

vectors x1, x2, . . . ∈ Rd
+, where the jth component x( j)

i of xi denotes the amount ob-
tained after investing a unit capital in the jth asset in the ith trading period. For j ≤ i we
abbreviate by xi

j the array of market vectors (xj, . . . , xi) and denote by �d the simplex
of all vectors b ∈ Rd

+ with nonnegative components summing up to one. An investment
strategy is a sequence B of functions

bi :
(
Rd

+
)i−1 → �d , i = 1, 2, . . .

so that bi(xi−1
1 ) denotes the portfolio vector chosen by the investor in the ith trading

period, upon observing the past behavior of the market. We write b(xi−1
1 ) = bi(xi−1

1 ) to
ease the notation.

Starting with an initial wealth S0, after n trading periods, the investment strategy B
achieves the wealth

Sn = S0

n∏
i=1

〈
b
(
xi−1

1

)
, xi

〉 = S0e
∑n

i=1 log〈b(xi−1
1 ),xi 〉 = S0enWn (B),

where Wn(B) denotes the average growth rate

Wn(B) = 1
n

n∑
i=1

log
〈
b
(
xi−1

1

)
, xi

〉
.

Obviously, maximization of Sn = Sn(B) and maximization of Wn(B) are equivalent.
In modeling the behavior of the evolution of the market, two main approaches have

been considered in the theory of sequential investment. One of them allows the market se-
quence x1, x2, . . . to take completely arbitrary values, and no stochastic model is imposed
on the mechanism generating the price relatives; see, for example, Cover (1991), Cover
and Ordentlich (1996), Singer (1997), Helmbold, Schapire, Singer, and Warmuth (1998),
Ordentlich and Cover (1998), Vovk and Watkins (1998), Blum and Kalai (1999), Borodin,
El-Yaniv, and Gogan (2000), Cesa-Bianchi and Lugosi (2000), Cross and Barron (2003),
and Stoltz and Lugosi (2003). In this approach the achieved wealth is compared with that
of the best in a class of reference strategies. For example, Cover (1991) considers the class
of all constantly rebalanced portfolios (CRPs) defined by strategies B for which bi(xi−1

1 )
equals a fixed portfolio vector independently of i and the past xi−1

1 . Cover showed that
there exist investment strategies B (so-called universal portfolios) that perform almost as
well as the best CRP in the sense that

Wn(B) ≥ max
C∈C

Wn(C) −
(

d − 1
2n

log n + O
(

1
n

))
for all possible market sequences xn

1, where C denotes the class of all CRPs. This result
has been extended in various ways in the above-mentioned references.



340 L. GYÖRFI, G. LUGOSI, AND F. UDINA

The advantage of this “worst-case” approach is that it avoids imposing statistical
models on the stock market and the results hold for all possible sequences xn

1. In this
sense this approach is extremely robust. However, it is difficult to control the behavior of
the best strategy in the reference class. For example, CRPs are known to be asymptotically
optimal if the market vectors x1, . . . , xn are realizations of an independent, identically
distributed sequence of random vectors (see below) but are insufficient if the market
vectors of different trading periods have a statistical dependence, which seems to be
the case in real-world markets. For this reason, larger reference classes have also been
considered (see, e.g., the side-information model of Cover and Ordentlich [1996], the
switching portfolios of Singer [1997], and also Cross and Barron [2003]) but similar
limitations still hold.

Another possibility is to assume that the market vectors are realizations of a random
process, and describe a statistical model. The advantage of this more classical view is that,
for each process, an optimal strategy may be determined (in a sense specified below), which
depends on the unknown distribution of the process, and the past market sequence may
be used to estimate the statistical features necessary to approximate the optimal strategy.
However, one has to proceed with care, since complicated dependences in time and across
stocks make statistical modeling extremely difficult.

In this paper we adopt a compromise between the worst-case and the statistical ap-
proaches. Even though we assume that the market sequence is a realization of a random
process, we do not assume any parametric structure on the distribution or on the time
dependences. Our view is completely nonparametric in that the only assumption we use
is that the market is stationary and ergodic, allowing arbitrarily complex distributions.
The main message of this paper is that there exist completely nonparametric investment
strategies that effectively find these hidden complex dependences in the past data and are
able to use this information to produce a rapid growth of the capital.

More precisely, assume that x1, x2, . . . are realizations of the random vectors X1, X2, . . .

drawn from the vector-valued stationary and ergodic process {Xn}∞−∞. (Note that by
Kolmogorov’s theorem any stationary and ergodic process {Xn}∞1 can be extended to a
bi-infinite stationary process on some probability space (�,F, P), such that ergodicity
holds for both n → ∞ and n → −∞.) The sequential investment problem, under these
conditions, has been considered by, e.g., Breiman (1961), Algoet and Cover (1988), Algoet
(1992, 1994), Walk and Yakowitz (2002), and Györfi and Schäfer (2003). The fundamental
limits, determined in Algoet (1992, 1994) and Algoet and Cover (1988), reveal that the
so-called log-optimum portfolio B∗ = {b∗(·)} is the best possible choice. More precisely, in
trading period n let b∗(·) be such that

E
{

log
〈
b∗(Xn−1

1

)
, Xn

〉 ∣∣ Xn−1
1

} = max
b(·)

E
{

log
〈
b
(
Xn−1

1

)
, Xn

〉 ∣∣ Xn−1
1

}
.

If S∗
n = Sn(B∗) denotes the capital achieved by a log-optimum portfolio strategy B∗, after

n trading periods, then for any other investment strategy B with capital Sn = Sn(B) and
for any stationary and ergodic process {Xn}∞−∞,

lim sup
n→∞

1
n

log
Sn

S∗
n

≤ 0 almost surely

and

lim
n→∞

1
n

log S∗
n = W∗ almost surely,
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where

W∗ = E
{

max
b(·)

E
{

log
〈
b
(
X−1

−∞
)
, X0

〉 ∣∣ X−1
−∞

}}
is the maximal possible growth rate of any investment strategy. (Note that for i.i.d.
markets W∗ = maxb E {log〈b, X0〉}, which shows that in this case the log-optimal portfo-
lio is a CRP; see also Breiman [1961], Kelly [1956], Latané [1959], Finkelstein and Whitley
[1981], and Barron and Cover [1988].)

Thus, (almost surely) no investment strategy can have a faster rate of growth than a
log-optimal portfolio. Of course, to determine a log-optimal portfolio, full knowledge
of the (infinite-dimensional) distribution of the process is required. Strategies achieving
the same rate of growth without knowing the distribution are called universal, in this
paper. More precisely, an investment strategy B is called universal with respect to a class
of stationary and ergodic processes {Xn}∞−∞, if for each process in the class,

lim
n→∞

1
n

log Sn(B) = W∗ almost surely.

The surprising fact that there exists a strategy universal with respect to the class of all
stationary and ergodic processes was proved by Algoet (1992). Algoet’s construction is,
however, quite complex and, despite of its theoretical importance, has little practical
value. Algoet also introduced a simpler scheme and sketched the proof of its universality,
which was completed by Györfi and Schäfer (2003).

Next we describe Györfi and Schäfer’s version of Algoet’s scheme, as the investment
strategies defined in this paper are generalizations of this method. We call this scheme a
histogram-based investment strategy and denote it by BH .

BH is constructed as follows. We first define an infinite array of elementary strategies
(the so-called experts) H(k,�) = {h(k,�)(·)} indexed by the positive integers k, � = 1, 2, . . . .
Each expert H(k,�) is determined by a period length k and by a partition P� = {A�, j }, j =
1, 2, . . . , m� of Rd

+ into m� disjoint sets. To determine its portfolio on the nth trading
period, expert H(k,�) looks at the market vectors xn−k, . . . , xn−1 of the last k periods,
discretizes this kd-dimensional vector by means of the partition P�, and determines the
portfolio vector that is optimal for those past trading periods whose preceding k trading
periods have identical discretized market vectors to the present one. Formally, let G� be
the discretization function corresponding to the partition P�, that is,

G�(x) = j , if x ∈ A�, j .

With some abuse of notation, for any n and xn
1 ∈ Rdn , we write G�(xn

1) for the sequence
G�(x1), . . . , G�(xn). Then we define the expert H(k,�) by writing, for each n > k + 1,

h(k,�)(xn−1
1

) = arg max
b∈�d

∏
{k<i<n:G�(xi−1

i−k)=G�(xn−1
n−k)}

〈b, xi 〉,(2.1)

if the product is nonvoid, and uniform b0 = (1/d, . . . , 1/d) otherwise. That is, h(k,�)
n dis-

cretizes the sequence xn−1
1 according to the partition P�, and browses through all past

appearances of the last seen discretized string G�(xn−1
n−k) of length k. Then it designs a fixed

portfolio vector optimizing the return for the trading periods following each occurrence
of this string.

The histogram-based strategy BH forms a “mixture” of all experts H(k,�), using a prob-
ability distribution {qk,�} on the set of all pairs (k, �) of positive integers such that for
all k, �, qk,� > 0. The strategy BH simply weighs the experts H(k,�) according to their past
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performances and {qk,�} such that after the nth trading period, the investor’s capital
becomes

Sn(BH) =
∑
k,�

qk,�Sn
(
H(k,�)),

where Sn(H(k,�)) is the capital accumulated after n periods when using the portfolio strat-
egy H(k,�) with initial capital S0. This may easily be achieved by distributing the initial
capital S0 among all experts such that expert H(k,�) trades with initial capital qk,�S0. It is
shown in Györfi and Schäfer (2003) that the strategy BH is universal with respect to the
class of all ergodic processes such that E{| log X ( j )|} < ∞, for all j = 1, 2, . . . , d, under
the following two conditions on the partitions used in the discretization:

(a) the sequence of partitions is nested, that is, any cell of P�+1 is a subset of a cell
of P�, � = 1, 2, . . . ;

(b) if diam(A) = supx,y∈A ‖x − y‖ denotes the diameter of a set, then for any
sphere S ⊂ Rd centered at the origin,

lim
�→∞

max
j :A�, j ∩S�=∅

diam(A�, j ) = 0.

REMARK. In the above-mentioned result, the only condition on the market process is
that E{| log X ( j )|} < ∞. However, this condition is not very restrictive for two reasons.
First, most “real” markets obviously satisfy such a condition. Second, the result may
be generalized so that it includes all ergodic market processes by using a slightly more
complicated scheme suggested by Algoet (1992). This scheme uses a three-dimensional
array h(k,�,m) of experts defined by

h(k,�,m) = (1 − λm)h(k,�) + λmb0,

where λm ∈ (0, 1) is a sequence of numbers converging to zero and b0 is the uniform
portfolio (1/d, . . . , 1/d).

3. KERNEL-BASED INVESTMENT STRATEGIES

In this section we introduce a class of kernel-based investment strategies and prove their
universality. Kernel-based rules allow a more flexible way of extracting information from
the history of the market. The family of methods introduced here is similar, in spirit, to the
histogram-based strategy described in the previous section. The main difference is that
the elementary strategies used by the strategy replace the rigid discretization of the past
few market vectors by a more flexible “moving-window” rule. By appropriate weighing
by a kernel function, a whole rich family of strategies is obtained. The main theoretical
result of this section is the universality of these strategies under general assumptions. The
numerical results shown in Section 4 indicate the practical superiority of kernel-based
methods.

To simplify notation we start with the simplest “moving-window” version, correspond-
ing to a uniform kernel function, and treat the general case briefly, later.

The kernel-based strategy BK is constructed similarly to the histogram-based portfolio
BH described in the previous section. Just like before, we start by defining an infinite array
of experts H(k,�) = {h(k,�)(·)}, where k, � are positive integers. To define H(k,�), let c > 0 be
a constant possibly depending on k and d. For fixed positive integers k, � and for each
vector s = s−1

−k of dimension kd, we define the portfolio vector, for n > k + 1,
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b(k,�)(xn−1
1 , s

) = arg max
b∈�d

∏
{k<i<n:‖xi−1

i−k−s‖≤c/�}
〈b, xi 〉,

if the product is nonvoid, and b0 = (1/d, . . . , 1/d) otherwise. If the product is nonvoid
then we may rewrite this definition as

b(k,�)(xn−1
1 , s

) = arg max
b∈�d

∑
{k<i<n:‖Xi−1

i−k−s‖≤c/�}
log〈b, xi 〉∣∣{k < i < n :

∥∥xi−1
i−k − s

∥∥ ≤ c/�
}∣∣ .

Finally, we define the expert h(k,�) by

h(k,�)(xn−1
1

) = b(k,�)(xn−1
1 , xn−1

n−k

)
, n = 1, 2, . . . .(3.1)

That is, h(k,�)
n discretizes the sequence xn−1

1 , and browses through all past approximate
appearances of the last seen vector xn−1

n−k. Then it designs a fixed portfolio vector according
to the returns in the periods following these approximate appearances.

These experts are mixed the same way as in the case of the histogram-based strategy.
That is, let {qk,�} be a probability distribution over the set of all pairs (k, �) of positive
integers such that for all k, �, qk,� > 0. The strategy BK weighs the experts H(k,�) according
to their past performances and {qk,�} by

b
(
xn−1

1

) =

∑
k,�

qkl Sn−1
(
H(k,�))h(k,�)(xn−1

1

)
∑
k,�

qkl Sn−1
(
H(k,�)) ,

where Sn(H(k,�)) is the capital accumulated by the elementary strategy H(k,�) after n periods
when starting with an initial capital S0. Thus, after period n, the investor’s capital becomes

Sn(BK ) =
∑
k,�

qk,�Sn
(
H(k,�)).

The main result of this section, whose proof is given in Section 5 below, states the uni-
versality of the scheme defined above.

THEOREM 3.1. The portfolio scheme BK is universal with respect to the class of all
ergodic processes such that E{| log X ( j )|} < ∞, for j = 1, 2, . . . , d.

REMARK. The assumption of the finiteness of the E{| log X ( j )|} may be weakened
similarly as in the case of the histogram-based strategy described in the previous section.

REMARK (Parameters). For the universality of the method, it suffices to assume that
the initial weights qk,� are strictly positive. However, in practice, for good finite-time
behavior, the role of these weights is important. For good practical performance, qk,�

as well as other parameters such as the constant c have to be fine tuned. Some possible
choices are given in Section 4.

REMARK (Transaction costs). As mentioned in the Introduction section, a main sim-
plifying (and unrealistic) assumption in our analysis is that transaction costs are ignored.
It follows from a result of Blum and Kalai (1999) that if the market process X1, X2, . . .

is a sequence of independent and identically distributed vectors, then there exists an in-
vestment strategy whose asymptotic rate of growth equals W ∗. However, it is easy to
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see that, in general, if the market is stationary but not necessarily i.i.d., then achieving
the optimal rate of growth in the presence of transaction costs is impossible. To see this,
consider the simple Markovian example in which d = 2 and, deterministically, when n is
odd, X (1)

n = 0 and X (2)
n = 1 and when n is even, X (1)

n = 1 and X (2)
n = 0. In this case clearly

W ∗ = 0, but to achieve it, the total wealth has to be moved in each period from one
asset to another, and transaction costs force a rate of growth bounded away from zero
(from below). However, in practice, simple modifications of the kernel-based strategies
may work quite well even when transaction costs are present. Some numerical examples
are offered in Section 4.

REMARK (Validity of assumptions). The theoretical results assume little more than
stationarity and ergodicity of the market. Obviously, there is no empirical test to decide
whether a market satisfies these properties or not. The practical usefulness of these as-
sumptions should be judged on the basis of the numerical results the investment strategies
lead to. In the next section we describe various such results based on past data. These re-
sults suggest that the market can be modeled effectively by a low-order stationary Markov
process. This is evidenced by the good behavior of some experts that operate on such an
assumption. We emphasize again that these numerical results ignore the effect using such
a strategy may have on the market.

REMARK (Volatility). In this paper we completely ignore the issue of volatility and
focus on almost sure convergence of the growth rate (1/n) log Sn. Controlling the volatility
of the process is obviously a relevant and nontrivial problem. Once again we refer the
reader to the numerical results of the next section that suggest that the achieved wealth,
in fact, has a low volatility. However, we do not have any theoretical guarantees.

Next we describe a class of general kernel-based investment strategies. These strategies
are based on a sequence of kernel function Kk : Rkd

+ → R+. The definition of a generalized
kernel-based strategy parallels that of BK defined above, with the only difference that
in the defining equation (3.1) of the elementary strategies H(k,�), the portfolio vector
b(k,�)(xn−1

1 , s) is defined by

b(k,�)(xn−1
1 , s

) = arg max
b∈�d

∏
k<i<n

〈b, xi 〉
w(k,�)

i∑
k< j<n w(k,�)

j ,

where the weights w (k,�)
i are defined by

w (k,�)
i = Kk

(
�
(
xi−1

i−k − s
))

and 0/0 is understood as 0.
Observe that if Kk is the uniform (or moving-window) kernel Kk(x) = I‖x‖≤c(x ∈ Rkd

+ )
then we recover the definition of the strategy BK introduced above. Typical nonuniform
kernels assign a smaller weight to those xi for which the distance of xi−1

i−k from s is larger.
Such kernels promise a better prediction of the local structure of the conditional distri-
bution. The next result extends Theorem 3.1 to a class of general kernels. The proof is
given in Section 5.

THEOREM 3.2. Assume that for each k = 1, 2, . . . the kernel Kk is such that there exists
a nonincreasing function φk defined on R+ with φk(+0) > 0 and limt→∞tdφk(t) = 0 such
that for some constants c1, c2 > 0, for all x ∈ Rkd

+ ,

c1φk(‖x‖) ≤ Kk(x) ≤ c2φk(‖x‖).
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Then the kernel-based portfolio scheme defined above is universal with respect to the class
of all ergodic processes such that E{| log X ( j )|} < ∞, for j = 1, 2, . . . , d.

4. PRACTICAL IMPLEMENTATION AND NUMERICAL RESULTS

The purpose of this section is to discuss some issues of the practical implementation of
the investment strategies BH and BK described in the previous sections and to report
numerical results of the application of the algorithms to real financial data.

Both strategies have in common that they use an infinite array of experts. In practice,
one chooses two positive integers K and L and replace the infinite array of elementary
strategies by a finite array of KL experts H(k,�), k = 1, . . . , K, � = 1, . . . , L defined by
equations (2.1) and (3.1), for both strategies. Recall that k is the length of the recent
market history matched by data in the past and � indexes the fineness of the discretization
scheme in use, usually finer as � increase. We also include, as an additional expert, with
index k = � = 0, the strategy that uses the full history to calculate the portfolio by

h(0,0)(xn−1
1

) = arg max
b∈�d

∏
0<i<n

〈b, xi 〉, n > 1.

In all cases reported below, we used the uniform distribution {qk,�} = 1/(KL + 1) over
the experts in use.

The next table gives a schematic description of the algorithm implementing the strate-
gies described in Sections 2 and 3.

Given x1, . . . , xn−1 ∈ Rd , to compute the portfolio for the nth trading period,

1. For each expert (k, �), k = 1..K, � = 1..L

1.1. Compute history(k,l): Collect the data from those training periods
in the past that followed a k-period string similar to xn−k, . . . , xn−1 and
place these periods in the history list. What “similar” means depends on
whether we use a histogram-based strategy (see below) or a kernel-based
strategy, where all past periods are weighted as described in the previous
section;

1.2. Maximize over history(k,l): Find the portfolio hk,� that maximizes
wealth for the empirical distribution of the data collected in the history
list;

2. Combine portfolios: Weighting the experts with the wealth achieved so far,
and a “prior” probability distribution q(k, �), obtain a portfolio bn to invest
in the current period n.

Then, using the newly acquired data xn,
3. Update the wealth for each expert and the current actual wealth;
4. Store xn for use in the next period, discretizing it in the histogram case.

To describe precisely the histogram-based strategy BH used in our experiments, we
need to define the cells of the partitions P� determining the experts. Since typical values
of the price relatives x( j)

n concentrate around 1, we used the following scheme. Given
� ∈ 1, . . . , L, in each dimension we use M = 2 + 2� cells. For x ∈ R, the index q of its cell
is computed as follows. Define a = 1/2(1 + 2log10�) and w = a−1/�. Then
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q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ a

1 +
⌊

log(x/a)
log w

⌋
if x ∈ (a, 1]

� + 1 +
⌊

log(ax) + � log w
log w

⌋
if x ∈ (1, 1/a]

2� + 1 if x > 1/a

Thus, the cell boundaries are 0, a, aw, . . . , aw�, 1, a−1w−�, . . . , a−1, ∞, giving a variable-
width grid that becomes finer close to 1. Then, for any x ∈ Rd, G�(x) is the vector of
integers {q( j)}j=1,...,d .

To implement the kernel-based investment strategy BK described in Section 3, one
needs to choose the kernel function K. In the experiments reported here we used the
simple “moving-window” kernel K(x) = I‖x‖≤ck where ‖ · ‖ is the euclidean norm and
tried different choices of the constants ck, all of the form ck = ckd, for different values
for c. We denote the kernel-based strategy with the moving-window kernel and constants
ck = ckd by BK (c).

To find the portfolio that solves the maximization problem in equation (2.1) or equa-
tion (3.1) we use the routines DONLP2 of Spellucci (1997).

REMARK (Computational cost). To give an idea of the computational cost of the
proposed algorithms, running the experimental study using the uniform kernel on the
full NYSE data set described below took about 12 hours on a Xeon-2.00-GHz-based
computer. This means that to compute the portfolio of 36 assets for a single period,
about 8 seconds are needed on an average. Of course, real-time implementation of these
investment strategies would require storage of discretized data and values of performance
of the experts used, but the extra computational cost of reading these stored data is
negligible.

4.1. Numerical Results

We tested the investment strategies on two different sets of financial data. One of these
is a standard set of NYSE data used by Cover (1991), Singer (1997), Helmbold, Schapire,
Singer, and Warmuth (1998), Blum and Kalai (1999), Borodin, El-Yaniv, and Gogan
(2000), and others. The other is the exchange rate data between US$ and eight other
currencies.

The NYSE data set includes daily prices of 36 assets along a 22-year period (5,651
trading days) ending in 1985. This means that d = 36. Because of this large dimensionality,
our current implementation cannot handle the histogram strategy. Table 4.1 summarizes
the wealth achieved by the kernel-based strategy for three different choices of the constant
c. In all cases, we use K = 5, L = 10. For the sake of comparison, we also indicate the
wealth achieved by the best constantly rebalanced portfolio (BCRP). (Note that this
“anticipating” portfolio does not correspond to any valid investment strategy since the
BRCP can be determined only in hindsight.) The most important feature is that after the
whole 22-year period some versions of BK multiply their initial wealth by a factor of more
than 500 million. A closer inspection of the results reveal that there is a small number
of elementary strategies responsible for this spectacular growth. This demonstrates how
BK is able to exploit effectively hidden dependences that are difficult to reveal otherwise.
It is interesting to note that in the second half of the period the growth is significantly
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TABLE 4.1
Wealth Achieved by Various Versions of the Kernel-Based Strategy BK

After period BCRP BK (2) BK (1.00) BK (0.5)

500 13.07 4.539 4.265 2.759
1,000 7.324 3.894 5.113 4.402
1,500 16.03 7.621 9.805 7.909

2,000 10.21 7.052 7.535 6.901
2,500 17.48 39.35 40.08 34.87
3,000 18.81 321.7 853.3 505.0

3,500 34.57 2,876 2.231e + 4 1.641e + 4
4,000 55.52 4.7974e + 4 8.968e + 5 5.531e + 5
4,500 106.8 2.5802e + 5 5.447e + 6 3.116e + 6

5,000 125.4 9.035e + 5 4.030e + 7 2.083e + 7
5,500 267.8 5.662e + 6 4.725e + 08 2.103e + 8
5,651 250.6 7.037e + 6 5.627e + 08 2.633e + 8

Note. In all cases one unit is invested in the first period uniformly in all 36 stocks
included in our NYSE data set. BK (c) is the kernel strategy with constant c, and BCRP
is the best constantly rebalanced portfolio.

faster than in the first. This may be due to the fact that in the initial “learning” phase not
enough data have been collected to discover the significant tendencies.

We also tested the discussed investment strategies on data obtained from Datastream (a
commercial database) about the exchange rate to US$ of several currencies. In particular,
we got daily variations, with respect to the US$, from March 25, 1988 to March 27, 2003,
a total of N = 3,914 periods, of the eight currencies listed in Table 4.2. The table also
lists the final value of one initial US$ invested in each currency and the minimum, 25th
percentile, median, 75th percentile, and maximum of each series.

TABLE 4.2
Some Descriptive Statistics About the Exchange Rate Data Used

Currency Final Min p25 Median p75 Max

Singapoore Dollar 0.8784 −0.037 −0.001 0.000 0.001 0.025
Norwegian Crown 1.1682 −0.047 −0.003 0.000 0.003 0.056
Swiss Franc 0.9928 −0.052 −0.004 0.000 0.004 0.050
ECU/Euro 1.1534 −0.033 −0.003 0.000 0.004 0.052
Israeli Shekel 3.0096 −0.109 −0.001 0.000 0.002 0.131
Indian Rupee 3.6457 −0.062 0.000 0.000 0.000 0.095
Canadian Dollar 1.1778 −0.019 −0.002 0.000 0.002 0.014
British Pound 1.1759 −0.041 −0.003 0.000 0.003 0.044

Note. Second column lists wealth in US$ achieved by investing 1 US$ in the first
period in the corresponding currency. The rest of the columns show the minimum,
25th percentile, median, 75th percentile, and maximum of each series along the full
range of periods (1 ≤ n ≤ 3,914).
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TABLE 4.3
Wealth Achieved by Various Investment Strategies for the Currency Exchange Data

After period BCRP BH BK (0.3) BK (0.1) BK (0.05)

500 1.298 1.090 1.143 1.323 1.233
1,000 1.979 1.469 2.143 2.282 1.804
1,500 2.387 3.591 8.137 8.499 5.528
2,000 2.673 6.567 11.49 13.53 8.537

2,500 2.774 10.92 15.62 22.75 14.16
3,000 3.328 18.01 21.90 38.69 23.91
3,500 3.605 36.09 40.94 85.49 51.33
3,914 3.635 48.95 61.71 143.6 84.39

Note. In all cases 1 US$ is invested in the first period uniformly in all eight currencies
described in Table 4.2. BCRP is the constant rebalanced portfolio, BH is the histogram-
based strategy, and BK (c) is the kernel-based strategy.

The achieved wealths of the histogram- and kernel-based strategies are listed in
Table 4.3. The numbers show the wealth achieved, in US$, after initially investing
1 US$ uniformly divided among all the currencies included in the data set (i.e., d = 8)
and then running the strategies along the full period range. In the histogram case we use
K = 3, L = 6, while for the kernel-based strategy we use the setting previously described.
The growth of wealth for BK (0.1) during the whole period is shown in Figure 4.1. Even
though the results here are not as spectacular as in the case of the NYSE data, after an
initial learning period of about 1,000 days, the kernel-based portfolio clearly outperforms
the best currency, the BCRP, and the histogram-based strategy.

To relieve the computational burden, we tested a variant of the discussed strategies,
which works as follows. The strategy distributes the initial wealth evenly among all

(d
2

)
pairs of assets. Then for each pair, the histogram (or kernel) based strategy is used in-
dependently. The first row of Table 4.4 lists the wealth achieved by this strategy, using
all

(8
2

) = 28 pairs of currencies of the exchange rate data by the different methods. The
second row reports a version in which instead of pairs, all

(8
3

) = 56 triples of currencies
are used. The third row corresponds to investing one unit divided among all

(36
2

) = 630
possible pairs of stocks in the NYSE data set. We see that, even though no theoretical
guarantee can be given for the universality of these variants, the numerical performance
of these simplified methods does not deteriorate significantly (it even improves in the case
of the NYSE data).

In Table 4.5 we compare the wealth achieved by the strategies discussed here to other
methods found in the literature. We report the wealth achieved by different strategies for
the pairs of NYSE stocks used by Cover (1991) (to test his universal portfolio) and by
Singer (1997) (for his “switching portfolios”). As a reference, we also list the wealth of
some other strategies computable only with hindsight. BH and BK clearly outperform
both Cover’s universal portfolio and Singer’s switching portfolios. It is also interesting
to note that the presence of the stock Kin Ark makes the wealth of these strategies
explode. This is interesting, since the overall growth of Kin Ark in the reported period
is quite modest. The reason is that somehow the variations of the price relatives of this
asset turn out to be well predictable by at least one expert and that suffices to produce
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KP(0.1) on all 8 currencies
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Brit. P.

FIGURE 4.1. Wealth achieved along N = 3,900 daily periods by investing 1 US$ in sev-
eral currencies, and by using the kernel-based strategy computed with d = 8 currencies,
like in Column 5 of Table 4.3. Horizontal axis is time period number, vertical is the
wealth achieved, in logarithmic scale.

this explosive growth. Indeed, the presence of this single stock is largely responsible for
the wealth reported in Table 4.1. On removing this single stock from the portfolio, the
achieved wealth of BK (1.0) reduces to a much more modest value of 753.76 (which still
corresponds to an annual rate of increase of about 135%).

Finally, we briefly present some results on the performance of these strategies in the
presence of transaction costs. It is not straightforward to adapt our methods in an op-
timal way when transactions costs have to be paid. More precisely, assume that a fixed
percentage commission r ∈ (0, 1) has to be paid at each transaction. The results reported
here are very likely improvable and correspond to the simplistic method in which each

TABLE 4.4
Wealth Achieved by Investing One Unit Divided Among All the
Possible Pairs or Triples for the Exchange Rate (EXCHR) and

NYSE data

BH BK (0.01) BK (0.05) BK (0.5)

All EXCHR pairs 19.24 17.53 16.61 2.035
All EXCHR triples 31.54 36.45 32.94 2.606
All NYSE pairs — — 4.31e + 8 1.285e + 10
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TABLE 4.5
Wealth Achieved by Different Strategies by Investing in the Pairs of NYSE Stocks

Used in Cover (1991)

Stocks Best exp. [k, �]

Iroquois Best asset 8.92 BH 2.3e + 10 1.395e + 11 [1,1]
Kin Ark BCRP 73.70 BK 2.109e + 04 1.087e + 06 [1,1]

Oracle 6.85e + 53 4.038e + 10 9.014e + 11 [2,2]
Cover UP 39.97 2.187e + 10 9.014e + 11 [2,1]

Singer SAP 143.7 7.401e + 10 9.014e + 11 [2,5]

Com. Met. Best asset 52.02 BH 162.5 327.8 [2,1]
Mei. Corp BCRP 103.0 BK 96.9 433.3 [1,2]

Oracle 2.12e + 35 775.1 4749. [2,5]
Cover UP 74.08 373.8 4613 [4,1]

Singer SAP 107.7 682.3 4613 [4,5]

Com. Met. Best asset 52.02 BH 1.331e + 10 8.544e + 10 [1,1]
Kin Ark BCRP 144.0 BK 1.52e + 07 7.847e + 08 [1,1]

Oracle 1.84e + 49 1.111e + 11 1.411e + 12 [3,3]
Cover UP 80.54 5.395e + 10 1.411e + 12 [3,]1

Singer SAP 206.7 2.551e + 11 2.065e + 12 [2,8]

IBM Best asset 13.36 BH 63.87 112.2 [1,5]
Coca-Cola BCRP 15.02 BK 18.92 86.1 [1,1]

Oracle 1.08e + 15 47.6 194.6 [1,6]
Cover UP 14.24 46.46 194.6 [1,6]

Singer SAP 15.05 18.11 60.56 [3,10]

Note. In the second column we show the wealth achieved by the best stock of the two
involved, by the best constantly rebalanced portfolio (BCRP), by an oracle (defined as
the best possible strategy that invests all the capital in the best stock each day), and
the results reported in the literature for Cover’s universal portfolio (UP) and Singer’s
switching adaptive portfolio (SAP). The third column lists our results for the histogram
(BH) and kernel (BK ) portfolios. In all cases we take K = 5, L = 10, and c = 0.01, 0.05,
0.1, 0.5 for BK . The last column lists the wealth and the index of the best expert among
the KL + 1 competing experts.

expert is weighed by the wealth achieved in presence of transaction costs, and use the
resulting portfolio. Namely, let Sr

n(H(k,�)) be the wealth achieved by expert (k, �) after
period n. (This may be computed using an optimal rebalancing strategy; see Blum and
Kalai [1999].) Then, the portfolio is calculated by

b
(
xn−1

1

) =

∑
k,�

qkl Sr
n−1

(
H(k,�))h(k,�)(xn−1

1

)
∑
k,�

qkl Sr
n−1

(
H(k,�)) ,

and the wealth achieved by the strategy B becomes

Sr
n(B) = S0

n∏
i=1

〈bi , xi 〉αr (bi−1, bi )
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FIGURE 4.2. Wealth achieved by investing one unit uniformly in the 36 NYSE stocks
and using the kernel strategy (with constant 1.0) for several values of the transaction
costs r = 0, 0.001, 0.002, . . . , 0.012.

where αr(b, b′) denotes the wealth loss ratio due to the transaction cost c when rebalancing
the portfolio b to b′.

We applied this simple approach to the NYSE data for several values of the transaction
cost r. It is shown in Figure 4.2 that the wealth reduction is important but still gives a
good result for reasonable values of the cost r.

5. PROOFS

The proof of Theorem 3.1 uses the following three auxiliary results. The first is known as
Breiman’s generalized ergodic theorem (Breiman 1957, 1960); see also Algoet (1994).

LEMMA 5.1 (Breiman 1957). Let Z = {Zi}∞−∞ be a stationary and ergodic pro-
cess. For each positive integer i, let T i denote the operator that shifts any sequence
{. . . , z−1, z0, z1, . . .} by i digits to the left. Let f1, f2, . . . be a sequence of real-valued
functions such that limn→∞ fn(Z ) = f (Z ) almost surely for some function f. Assume
that E supn | fn(Z )| < ∞. Then

lim
n→∞

1
n

n∑
i=1

fi (Ti Z ) = E f (Z ) almost surely.

The next two lemmas are due to Algoet and Cover (1988, Theorems 3 and 4).
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LEMMA 5.2 (Algoet and Cover 1988). Let Qn∈N ∪{∞} be a family of regular probability
distributions over the set Rd

+ of all market vectors such that E{| log U( j )
n |} < ∞ for any

coordinate of a random market vector Un = (U (1)
n , . . . , U (d)

n ) distributed according to Qn.
In addition, let B∗(Qn) be the set of all log-optimal portfolios with respect to Qn, that is,
the set of all portfolios b that attain maxb∈�d E{log〈b, Un〉}. Consider an arbitrary sequence
bn ∈ B∗(Qn). If

Qn → Q∞ weakly as n → ∞

then, for Q∞-almost all u,

lim
n→∞〈bn, u〉 → 〈b∗, u〉

where the right-hand side is constant as b∗ ranges over B∗(Q∞).

LEMMA 5.3 (Algoet and Cover 1988). Let X be a random market vector defined on a
probability space (�,F, P) satisfying E{| log X ( j )|} < ∞. If Fk is an increasing sequence
of sub-σ -fields of F with

Fk ↗ F∞ ⊆ F,

then

E
{

max
b

E [log〈b, X〉|Fk]
}

↗ E
{

max
b

E [log〈b, X〉|F∞]
}

as k →∞ where the maximum on the left-hand side is taken over all Fk-measurable functions
b and the maximum on the right-hand side is taken over all F∞-measurable functions b.

Proof of Theorem 3.1. The proof is based on techniques used in related prediction
problems, see Györfi, Lugosi, and Morvai (1999), Györfi and Lugosi (2001), and Györfi
and Schäfer (2003). We need to prove that

lim inf
n→∞ Wn(B) = lim inf

n→∞
1
n

log Sn(B) ≥ W∗ almost surely.

Without loss of generality we may assume S0 = 1, so that

Wn(B) = 1
n

log Sn(B)

= 1
n

log

(∑
k,�

qk,�Sn
(
H(k,�)))

≥ 1
n

log
(

sup
k,�

qk,�Sn
(
H(k,�)))

= 1
n

sup
k,�

(
log qk,� + log Sn

(
H(k,�)))

= sup
k,�

(
Wn

(
H(k,�)) + log qk,�

n

)
.
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Thus

lim inf
n→∞ Wn(B) ≥ lim inf

n→∞ sup
k,�

(
Wn

(
H(k,�)) + log qk,�

n

)
≥ sup

k,�

lim inf
n→∞

(
Wn

(
H(k,�)) + log qk,�

n

)
= sup

k,�

lim inf
n→∞ Wn

(
H(k,�)).

(5.1)

The simple argument above shows that the asymptotic rate of growth of the strategy B
is at least as large as the supremum of the rates of growth of all elementary strategies
H(k,�). Thus, to estimate lim infn→∞Wn(B), it suffices to investigate the performance of
expert H(k,�) on the stationary and ergodic market sequence X0, X−1, X−2, . . . . First let
the integers k, � and the vector s = s−1

−k ∈ Rdk
+ be fixed. Let P(k,�)

j ,s denote the (random)

measure concentrated on {Xi : 1 − j + k ≤ i ≤ 0, ‖Xi−1
i−k − s‖ ≤ c/�} defined by

P(k,�)
j ,s (A) =

∑
i :1− j+k≤i≤0,‖Xi−1

i−k−s‖≤c/�

IA(Xi )∣∣{i : 1 − j + k ≤ i ≤ 0,
∥∥Xi−1

i−k − s
∥∥ ≤ c/�

}∣∣ , A ⊂ Rd
+

where IA denotes the indicator function of the set A. If the above set of Xi’s is empty,
then let P(k,�)

j ,s = δ(1,...,1) be the probability measure concentrated on the vector (1, . . . , 1).

In other words, P(k,�)
j ,s (A) is the relative frequency of the the vectors among X1−j+k, . . . , X0

that fall in the set A.
Observe that for all s, with probability one,

P(k,�)
j ,s →

{
PX0|‖X−1

−k−s‖≤c/� if P
(∥∥X−1

−k − s
∥∥ ≤ c/�

)
> 0,

δ(1,...,1) if P
(∥∥X−1

−k − s
∥∥ ≤ c/�

) = 0
(5.2)

weakly as j → ∞ where PX0|‖X−1
−k−s‖ ≤c/� denotes the distribution of the vector X0 condi-

tioned on the event ‖X−1
−k − s‖ ≤ c/�. To see this, let f be a bounded continuous function

defined on Rd
+. Then the ergodic theorem implies that

∫
f (x)P(k,�)

j ,s (dx) =

1
|1 − j + k|

∑
i :1− j+k≤i≤0,‖Xi−1

i−k−s‖≤c/�

f (Xi )

1
|1 − j + k|

∣∣{i : 1 − j + k ≤ i ≤ 0,
∥∥Xi−1

i−k − s
∥∥ ≤ c/�

}∣∣
→

E
{

f (X0)I{‖X−1
−k−s‖≤c/�}

}
P
{∥∥X−1

−k − s
∥∥ ≤ c/�

}
= E

{
f (X0)

∣∣∥∥X−1
−k − s

∥∥ ≤ c/�
}

=
∫

f (x)PX0|‖X−1
−k−s‖≤c/�(dx) almost surely, as j → ∞

if P(‖X−1
−k − s‖ ≤ c/�) > 0. On the other hand, if P(‖X−1

−k − s‖ ≤ c/�) = 0, then with

probability one P(k,�)
j ,s is concentrated on (1, . . . , 1) for all j, and∫

f (x)P(k,�)
j ,s (dx) = f (1, . . . , 1).

Denote the limit distribution of P(k,�)
j ,s by P∗(k,�)

s .
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Recall that by definition, b(k,�)(X−1
1−j, s) is a log-optimal portfolio with respect to the

probability measure P(k,�)
j ,s . Let b∗

k,�(s) denote a log-optimal portfolio with respect to the

limit distribution P∗(k,�)
s . Then, using Lemma 5.2, we infer from equation (5.2) that, as j

tends to infinity, we have the almost sure convergence

lim
j→∞

〈
b(k,�)(X−1

1− j , s
)
, x0

〉 = 〈
b∗

k,�(s), x0
〉

for P∗(k,�)
s -almost all x0 and hence for PX0 -almost all x0. Since s was arbitrary, we obtain

lim
j→∞

〈
b(k,�)(X−1

1− j , X−1
−k

)
, x0

〉 = 〈
b∗

k,�

(
X−1

−k

)
, x0

〉
almost surely.(5.3)

Next we apply Lemma 5.1 for the function

fi
(
x∞

−∞
) = log

〈
h(k,�)(x−1

1−i

)
, x0

〉 = log
〈
b(k,�)(x−1

1−i , x−1
−k

)
, x0

〉
defined on x∞

−∞ = (. . . , x−1, x0, x1, . . .). Note that

fi
(
X∞

−∞
) = ∣∣ log

〈
h(k,�)(X−1

1−i

)
, X0

〉∣∣ ≤
d∑

j=1

∣∣ log X ( j )
0

∣∣,
which has finite expectation, and

fi
(
X∞

−∞
) → 〈

b∗
k,�

(
X−1

−k

)
, X0

〉
almost surely as i → ∞

by equation (5.3). As n → ∞, Lemma 5.1 yields

Wn
(
H(k,�)

) = 1
n

n∑
i=1

fi
(
T i X∞

−∞
)

= 1
n

n∑
i=1

log
〈
h(k,�)(Xi−1

1

)
, Xi

〉
→ E

{
log

〈
b∗

k,�

(
X−1

−k

)
, X0

〉}
def= εk,� almost surely.

Therefore, by equation (5.1) we have

lim inf
n→∞ Wn(B) ≥ sup

k,�

εk,� ≥ sup
k

lim inf
�

εk,� almost surely,

and it suffices to show that the right-hand side is at least W ∗.
To this end, define, for Borel sets A, B ⊂ Rd

+,

mA(z) = P
{
X0 ∈ A

∣∣ X−1
−k = z

}
and

μk(B) = P
{
X−1

−k ∈ B
}
.

Then, for any s ∈ support(μk), and for all A,

P∗(k,�)
s (A) = P

{
X0 ∈ A

∣∣ ∥∥X−1
−k − s

∥∥ ≤ c/�
}

= P
{
X0 ∈ A,

∥∥X−1
−k − s

∥∥ ≤ c/�
}

P
{∥∥X−1

−k − s
∥∥ ≤ c/�

}
= 1

μk(Ss,c/�)

∫
Ss,c/�

mA(z)μk(dz)

→ mA(s) = P
{
X0 ∈ A

∣∣ X−1
−k = s

}
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as � → ∞ and for μk-almost all s by the Lebesgue density theorem (see Györfi et al. 2002,
Lemma 24.5), and therefore

P∗(k,�)
X−1

−k
(A) → P

{
X0 ∈ A

∣∣ X−1
−k

}
as � → ∞ for all A. Thus, using Lemma 5.2 again, we have

lim inf
�

εk,� = lim
�

εk,�

= E
{

log
〈
b∗

k

(
X−1

−k

)
, X0

〉}(
where b∗

k(·) is the log-optimum portfolio with respect

to the conditional probability P
{

X0 ∈ A
∣∣ X−1

−k

})
= E

{
E

{
log

〈
b∗

k

(
X−1

−k

)
, X0

〉 ∣∣ X−1
−k

}}
= E

{
max

b(·)
E

{
log

〈
b
(
X−1

−k

)
, X0

〉 ∣∣ X−1
−k

}}
def= ε∗

k .

To finish the proof, we appeal to the submartingale convergence theorem. First note that
the sequence

Yk
def= E

{
log

〈
b∗

k

(
X−1

−k

)
, X0

〉 ∣∣ X−1
−k

} = max
b(·)

E
{

log
〈
b
(
X−1

−k

)
, X0

〉 ∣∣ X−1
−k

}
of random variables forms a submartingale, that is, E{Yk+1 | X−1

−k} ≥ Yk. To see this, note
that

E
{
Yk+1|X−1

−k

} = E
{
E

{
log

〈
b∗

k+1

(
X−1

−k−1

)
, X0

〉 ∣∣ X−1
−k−1

} ∣∣ X−1
−k

}
≥ E

{
E

{
log

〈
b∗

k

(
X−1

−k

)
, X0

〉 ∣∣ X−1
−k−1

} ∣∣ X−1
−k

}
= E

{
log

〈
b∗

k

(
X−1

−k

)
, X0

〉 ∣∣ X−1
−k−1

}
= Yk.

This sequence is bounded by

max
b(·)

E
{

log
〈
b
(
X−1

−∞
)
, X0

〉 ∣∣ X−1
−∞

}
,

which has a finite expectation. The submartingale convergence theorem (see, e.g., Stout
1974) implies that this submartingale is convergent almost surely, and supk ε∗

k is finite. In
particular, by the submartingale property, ε∗

k is a bounded increasing sequence, so that

sup
k

ε∗
k = lim

k→∞
ε∗

k .

Applying Lemma 5.3 with the σ -algebras

σ
(
X−1

−k

) ↗ σ
(
X−1

−∞
)

yields

sup
k

ε∗
k = lim

k→∞
E

{
max

b(·)
E

{
log

〈
b
(
X−1

−k

)
, X0

〉 ∣∣ X−1
−k

}}
= E

{
max

b(·)
E

{
log

〈
b
(
X−1

−∞
)
, X0

〉 ∣∣ X−1
−∞

}}
= W∗,

and the proof of the theorem is finished. �
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Sketch of Proof of Theorem 3.2. The proof parallels that of Theorem 3.1, so we indicate
only the differences.

The definition of the random measure P(k,�)
j ,s is now changed to

P(k,�)
j ,s (A) =

∑
i :1− j+k≤i≤0

w (k,�)
i IA(Xi )∑

i :1− j+k≤i≤0

w (k,�)
i

, A ⊂ Rd
+

whose weak limit distribution, as j → ∞, becomes

P∗(k,�)
s (A) = E

{
IX0∈AKk

(
�
(
X−1

−k − s
))}

E
{

Kk
(
�
(
X−1

−k − s
))}

=

∫
mA(z)Kk (�(z − s)) μk(dz)∫

Kk (�(z − s)) μk(dz)
,

which converges, as � → ∞, to mA(s) for μk-almost all s by another version of Lebesgue
density theorem; see Lemma 24.8 in Györfi et al. (2002). The rest of the proof is identical
to that of Theorem 3.1. �
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