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László Györfi, Frederic Udina, Harro Walk

Received: January 10, 2008; Accepted: September 3, 2008

Summary: In recent years optimal portfolio selection strategies for sequential investment have
been shown to exist. Although their asymptotical optimality is well established, finite sample prop-
erties do need the adjustment of parameters that depend on dimensionality and scale. In this paper
we introduce some nearest neighbor based portfolio selectors that solve these problems, and we
show that they are also log-optimal for the very general class of stationary and ergodic random pro-
cesses. The newly proposed algorithm shows very good finite-horizon performance when applied
to different markets with different dimensionality or scales without any change: we see it as a very
robust strategy.

1 Introduction
In a financial market, on the basis of the past market data, without knowledge of the
underlying statistical distribution, a portfolio selection has to be chosen for investment of
the current capital in the available assets at the beginning of the new market period. The
goal is to find a portfolio selection scheme such that the investor’s wealth grows on the
average as fast as by the optimum strategy based on the full knowledge of the underlying
distribution. Nonparametric statistical methods allow to construct asymptotically optimal
strategies for sequential investment in financial markets. The portfolio problematic is very
close to the so called aggregation strategies, which have been extensively studied in the
more classical context of regression and classification (see [5]).

Throughout the paper it is assumed that the vectors of daily price relatives (return
vectors) form a stationary and ergodic process. Then a log-optimal rate of growth exists
and is achieved with probability one by a strategy based on the knowledge of the underly-
ing distribution (Algoet and Cover [3]). Even in the more realistic case that only the past
data are available, with no knowledge of the underlying distribution, selection schemes
with log-optimal growth rate exist (Algoet [2]). Such investment schemes are called uni-
versally consistent. Györfi and Schäfer [9] constructed universally consistent schemes
using histograms from nonparametric statistics, and Györfi, Lugosi, and Udina [8] using
kernel estimates. In this paper a new universal strategy, called nearest neighbor strategy, is

AMS 2000 subject classification: Primary: 62G10; Secondary: 62G05, 62L12, 62M20, 62P05, 91B28
Key words and phrases: Sequential investment, universally consistent portfolios, nearest neighbor estimation
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proposed which not only guarantees a log-optimal growth rate of capital for all stationary
and ergodic markets, but also has a good finite-horizon performance in practice, and, as
main novelty, is very robust in the sense that no design parameter tuning is needed to
guarantee this good finite-horizon performance. The reason may be that nearest neighbor
methods can be interpreted as well tractable kernel methods with data-based local choice
of bandwidths. In [10], we present a numerical comparison of some empirical portfolio
strategies for NYSE and currency exchange data, according to which the nearest neighbor
based portfolio selection outperform the histogram and the kernel strategy. In [10] we
include also some practical considerations in order to implement in a finite computer
the algorithm discussed here, that requires use of an infinite array of experts. There are
several other practical aspects of the algorithm that require some clarification, we refer
the reader also to [10].

The rest of the paper is organized as follows. In Section 2 the mathematical model
is described. In Section 3 a nearest neighbor (NN) based nonparametric sequential in-
vestment strategy is introduced and its universal consistency is stated. The proof of this
theoretical result (Theorem 3.1) is given in Section 4.

2 Mathematical model
The following stock market model has been investigated, among others, by Algoet and
Cover [3]. Further references can be found in Györfi, Lugosi, and Udina [8]. Also the
monographs of Cover and Thomas [6], and Luenberger [11] deal with the concept of
log-optimality below.

Consider a market of d assets. The evolution of the market in time is represented by
a sequence of return vectors x1, x2, . . . with values inRd+, where the j-th component x( j)

n
of the return vector xn denotes the amount obtained after investing a unit capital in the
j-th asset on the n-th trading period. That is, the j-th component x( j)

n ≥ 0 of xn expresses
the ratio of the closing and opening prices of asset j during the n-th trading period.

The investor is allowed to diversify his capital at the beginning of each trading
period according to a portfolio vector b = (b(1), . . . , b(d)). The j-th component b( j) of b
denotes the proportion of the investor’s capital invested in asset j . Throughout the paper
we assume that the portfolio vector b has nonnegative components with

∑d
j=1 b( j) = 1.

It means that the investor neither consumes money nor deposits new money and that no
transaction costs appear. The non-negativity of the components of b means that short
selling and buying stocks on margin are not permitted. Denote by �d the simplex of all
vectors b ∈ Rd+ with nonnegative components summing up to one.

Let S0 denote the investor’s initial capital. For the first trading period, the portfolio
vector b1 is constant, usually (1/d, . . . , 1/d). Then at the end of the first trading period
the investor’s wealth becomes

S1 = S0

d∑
j=1

b( j)
1 x( j)

1 = S0 〈b1, x1〉 ,

where 〈·, ·〉 denotes inner product. For j ≤ i we abbreviate by xi
j the array of market

vectors (x j , . . . , xi). Let Sn−1 be the wealth achieved at the end of the (n − 1)-th trading
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Nonparametric nearest neighbor based empirical portfolio selection strategies 147

period. Sn−1 is the initial capital for the n-th trading period, for which the portfolio may
depend on the past return vectors: bn = bn(xn−1

1 ). Therefore we get by induction that

Sn = Sn−1

〈
bn(xn−1

1 ), xn

〉
= S0

n∏
i=1

〈
bi(xi−1

1 ), xi

〉

= S0 exp

{ n∑
i=1

log
〈
bi(xi−1

1 ), xi

〉}
.

This may be written as S0 exp {nWn(B)}, where Wn(B) denotes the average growth rate
of the investment strategy B = {bn}∞n=1:

Wn(B) = 1

n

n∑
i=1

log
〈
bi(xi−1

1 ), xi

〉
.

The goal is to maximize the wealth Sn = Sn(B) or, equivalently, maximize the average
growth rate Wn(B).

We assume that the sequence of return vectors x1, x2, . . . are realizations of a ran-
dom process X1, X2, . . . such that {Xn}∞−∞ is a stationary and ergodic process. Besides
a mild moment condition on the log-returns, no other distribution assumptions are made.
According to Algoet and Cover [3], for the so-called conditional log-optimum investment
strategy B∗ = {b∗

n}∞n=1 defined by

b∗
n(X

n−1
1 ) = arg max

b(·)
E

{
log

〈
b(Xn−1

1 ), Xn

〉∣∣∣ Xn−1
1

}

one has

lim sup
n→∞

1

n
log

Sn

S∗
n

≤ 0 almost surely,

for each competitive strategy B, where S∗
n = Sn(B∗) and Sn = Sn(B). Furthermore

lim
n→∞

1

n
log S∗

n = W∗ almost surely,

where

W∗ = E
{

max
b(·)
E

{
log

〈
b(X−1−∞), X0

〉∣∣∣ X−1−∞
}}

is the maximal possible growth rate of any investment strategy. The conditional log-
optimum investment strategy B∗ depends upon the distribution of the stationary and
ergodic process {Xn}∞n=1. Surprisingly, according to Algoet [2], there exists investment
strategy B̃ on the basis of past return data such that

lim
n→∞

1

n
log Sn(B̃) = W∗ almost surely,

i.e., having the same best asymptotic growth rate as B∗, for each stationary and ergodic
processes {Xn}∞−∞. Such investment strategies are called universally consistent with
respect to a class of all stationary and ergodic processes.



T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r. 

148 Györfi -- Udina -- Walk

The investment strategy of Györfi and Schäfer’s [9] is, as Algoet’s [2] strategy,
histogram based. At a given time instant n one looks for correspondingly discretized k-
tuples xn− j

n−k− j+1 of return vectors in the whole history of the market which are identical to

the discretized return vectors xn−1
n−k . Such time instant n − j is called matching time. Then

design a fixed portfolio vector optimizing the return for the trading periods following
each matching. For different integer k > 0 and histogram design parameter, mix these
portfolios (see (3.3) below). Györfi, Lugosi, and Udina [8] modified this strategy by use
of kernels (“moving-window”). In both papers, universal consistency of the strategies
with respect to the class of all ergodic processes such that E{| log X( j)|} < ∞, for
j = 1, 2, . . . , d, is shown.

3 Nearest neighbor based strategy
Define an infinite array of elementary strategies (the so-called experts) H(k,�) = {h(k,�)(·)},
where k, � are positive integers. Just like before, k is the window length of the near past,
and for each � choose p� ∈ (0, 1) such that

lim
�→∞ p� = 0. (3.1)

Put

�̂ = �p�n�.
At a given time instant n, the expert searches for the �̂ nearest neighbor (NN) matches in
the past. For fixed positive integers k, � (n > k + �̂ + 1) and for each vector s = s−1

−k of

dimension kd introduce the set of the �̂ nearest neighbor matches:

Ĵ
(k,�)

n,s = {i; k + 1 ≤ i ≤ n such that xi−1
i−k is among the �̂ NNs of s in xk

1, . . . , xn−1
n−k}.

Note that we are embedding the arrays of market vectors xi
j in the Euclidean space Rkd

where the usual Euclidean distance may be used to select the nearest neighbors of s.
Define the portfolio vector by

b(k,�)(xn−1
1 , s) = arg max

b∈�d

∏
i∈ Ĵ

(k,�)

n,s

〈b, xi〉 .

We define the expert h(k,�) by

h(k,�)(xn−1
1 ) = b(k,�)(xn−1

1 , xn−1
n−k), n = 1, 2, . . . (3.2)

That is, h(k,�)
n is a fixed portfolio vector according to the return vectors following these

nearest neighbors.
Now one forms a “mixture” of all experts using a positive probability distribution

{qk,�} on the set of all pairs (k, �) of positive integers (i. e. such that for all k, �, qk,� > 0).
The investment strategy BNN simply weights these experts H(k,�) according to their past
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performances and {qk,�} such that after the n-th trading period, the investor’s capital
becomes

Sn =
∑
k,�

qk,�Sn(H(k,�)), (3.3)

where Sn(H(k,�)) is the capital accumulated after n periods when using the portfolio
strategy H(k,�) with initial capital S0 = 1. This may easily be achieved by distributing the
initial capital S0 = 1 among all experts such that expert H(k,�) trades with initial capital
qk,�S0. Equivalently, one may form a final portfolio by weighting all expert’s portfolios
using

b(xn−1
1 ) =

∑
k,� qkl Sn−1(H(k,�))h(k,�)(xn−1

1 )∑
k,� qkl Sn−1(H(k,�))

.

We say that a tie occurs with probability zero if for any vector s = sk
1 the random

variable

‖Xk
1 − s‖

has continuous distribution function.

Theorem 3.1 Assume (3.1) and that a tie occurs with probability zero. The portfolio
scheme BNN defined above is universally consistent with respect to the class of all
stationary and ergodic processes such that E{| log X( j)

0 |} < ∞, for j = 1, 2, . . . , d.

Practical considerations on the use of this portfolio scheme with data from real markets
are included in [10]. There a discussion can be found on how to deal with ties that may
appear in some cases. Actually, one can guarantee that the tie condition is satisfied if an
additional dummy variable with density is included to the return vector.

4 Proofs
The proof of Theorem 3.1 uses the following three auxiliary results. The first is known as
Breiman’s generalized ergodic theorem [4].

Lemma 4.1 (Breiman [4]) Let Z = {Zi}∞−∞ be a stationary and ergodic process. For
each positive integer i, let T i denote the operator that shifts any sequence {. . . , z−1, z0,

z1, . . . } by i digits to the left. Let f1, f2, . . . be a sequence of real-valued functions
such that limn→∞ fn(Z) = f(Z) almost surely (a.s.) for some function f . Assume that
E supn | fn(Z)| < ∞. Then

lim
n→∞

1

n

n∑
i=1

fi(T
i Z) = E f(Z) (a.s.).

The next two lemmas are due to Algoet and Cover [3, Theorems 3 and 4], see also
Chapter 6.6 of [1].
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Lemma 4.2 (Algoet and Cover [3]) Let Qn∈N∪{∞} be a family of regular probability
distributions over the set Rd+ of all market vectors such that

E{| log U( j)
n |} < ∞

for any coordinate of a random market vector Un = (U(1)
n , . . . ,U(d)

n ) distributed accord-
ing to Qn. In addition, let B∗(Qn) be the set of all log-optimal portfolios with respect to
Qn, that is, the set of all portfolios b that attain maxb∈�d E{log 〈b, Un〉}. Consider an
arbitrary sequence bn ∈ B∗(Qn). If

Qn → Q∞ weakly as n → ∞
then, for Q∞-almost all u,

lim
n→∞ 〈bn, u〉 → 〈

b∗, u
〉

where the right-hand side is constant as b∗ ranges over B∗(Q∞).

Lemma 4.3 (Algoet and Cover [3]) Let X be a random market vector defined on a prob-
ability space (�,F,P) satisfying E{| log X( j)|} < ∞. If Fk is an increasing sequence of
sub-σ-fields of F with

Fk ↗ F∞ ⊆ F,

then

E

{
max

b
E

[
log 〈b, X〉 |Fk

] }
↗ E

{
max

b
E

[
log 〈b, X〉 |F∞

] }

as k → ∞ where the maximum on the left-hand side is taken over all Fk-measurable
functions b and the maximum on the right-hand side is taken over all F∞-measurable
functions b.

Proof of Theorem 3.1: The proof is based on techniques used in related prediction
problems, see Györfi and Schäfer [9], Györfi, Lugosi, and Udina [8]. We need to prove
that

lim inf
n→∞ Wn(B) = lim inf

n→∞
1

n
log Sn(B) ≥ W∗ (a.s.).

Without loss of generality we may assume S0 = 1, so that

Wn(B) = 1

n
log Sn(B)

= 1

n
log

(∑
k,�

qk,�Sn(H(k,�))

)

≥ 1

n
log

(
sup
k,�

qk,�Sn(H(k,�))

)

= 1

n
sup
k,�

(
log qk,� + log Sn(H(k,�))

)

= sup
k,�

(
Wn(H(k,�)) + log qk,�

n

)
.
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Thus

lim inf
n→∞ Wn(B) ≥ lim inf

n→∞ sup
k,�

(
Wn(H(k,�)) + log qk,�

n

)

≥ sup
k,�

lim inf
n→∞

(
Wn(H(k,�)) + log qk,�

n

)

= sup
k,�

lim inf
n→∞ Wn(H(k,�)). (4.1)

The simple argument above shows that the asymptotic rate of growth of the strategy B
is at least as large as the supremum of the rates of growth of all elementary strategies
H(k,�). Thus, to estimate lim infn→∞ Wn(B), it suffices to investigate the performance of
expert H(k,�) on the stationary and ergodic market sequence X0, X−1, X−2, . . . First let
the integers k, � and the vector s = s−1

−k ∈ Rdk+ be fixed.
Fix p� ∈ (0, 1). Put

�̃ = �p� j�.
Let Ss,r denote the closed sphere centered at s with radius r. Let the interval

Rk,�(s) = [r ′
k,�(s), r ′′

k,�(s)]
be the set of values rk,�(s) such that

P{X−1
−k ∈ Ss,rk,�(s)} = p�.

Since tie occurs with probability zero, such interval exists. Because of (3.1),

lim
�→∞ r ′′

k,�(s) = 0.

For j > k + �̃ + 1, introduce the set

J(k,�)
j,s =

{
i; − j + k + 1 ≤ i ≤ 0 such that Xi−1

i−k is among the �̃ NNs of s

in X−1
−k, . . . , X− j+k

− j+1

}
.

For all Borel sets A, let P(k,�)
j,s denote the (random) measure defined by

P
(k,�)
j,s {A} =

∑
i∈J (k,�)

j,s
I{Xi∈A}

|J(k,�)
j,s | .

We will show that for all s, with probability one,

P
(k,�)
j,s → PX0| ‖X−1

−k−s‖≤rk,�(s)
= P∗(k,�)

s (4.2)
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with arbitrary rk,�(s) ∈ Rk,�(s), as j → ∞ in terms of the weak convergence. To see this,
let f be a bounded continuous function defined on Rd+. Then we prove that

∫
f(x)P

(k,�)
j,s (dx) →

∫
f(x)P∗(k,�)

s (dx) almost surely, as j → ∞.

Notice that

Xi−1
i−k is among the �̃ NNs of s in X−1

−k, . . . , X− j+k
− j+1

if and only if

‖Xi−1
i−k − s‖ ≤

∥∥∥ (
the �̃-th NN of s in X−1

−k, . . . , X− j+k
− j+1

)
− s

∥∥∥.

Moreover ∥∥∥ (
the �̃-th NN of s in X−1

−k, . . . , X− j+k
− j+1

)
− s

∥∥∥
tends to the set Rk,�(s) ( j → ∞) a.s. by the ergodic theorem in context of empirical
measures, thus almost uniformly by Egorov’s theorem. Therefore, for arbitrary ε > 0
and δ > 0 an i0 exists such that with probability ≥ 1 − δ for −i ≥ i0 the following
implications hold:

‖Xi−1
i−k − s‖ ≤ r ′

k,�(s) − ε

and consequently

Xi−1
i−k is among the �̃ NNs of s in X−1

−k, . . . , X− j+k
− j+1,

which implies that

‖Xi−1
i−k − s‖ ≤ r ′′

k,�(s) + ε.

Introduce the sets

J̄
(k,�)

j,s =
{
i; − j + k + 1 ≤ i ≤ 0, ‖Xi−1

i−k − s‖ ≤ r ′
k,�(s) − ε

}

and

J̃
(k,�)

j,s =
{
i; − j + k + 1 ≤ i ≤ 0, ‖Xi−1

i−k − s‖ ≤ r ′′
k,�(s) + ε

}
.

Without loss of generality, assume that f ≥ 0. The ergodic theorem implies that

lim
j→∞

1
j−k

∑
i∈ J̄

(k,�)
j,s

f(Xi)

1
j−k | J̃(k,�)

j,s |
=
E
{

f(X0)I{‖X−1
−k−s‖≤r′

k,�(s)−ε}
}

P{‖X−1
−k − s‖ ≤ r ′′

k,�(s) + ε}
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a.s. and with probability ≥ 1 − δ

E
{

f(X0)I{‖X−1
−k−s‖≤r′

k,� (s)−ε}
}

P{‖X−1
−k − s‖ ≤ r ′′

k,�(s) + ε} ≤ lim inf
j→∞

1
j−k

∑
i∈J (k,�)

j,s
f(Xi)

1
j−k |J(k,�)

j,s |

≤ lim sup
j→∞

1
j−k

∑
i∈J (k,�)

j,s
f(Xi)

1
j−k |J(k,�)

j,s |

≤ lim
j→∞

1
j−k

∑
i∈ J̃

(k,�)

j,s
f(Xi)

1
j−k | J̄

(k,�)

j,s |

=
E
{

f(X0)I{‖X−1
−k−s‖≤r′′

k,�(s)+ε}
}

P{‖X−1
−k − s‖ ≤ r ′

k,�(s) − ε}
a.s. by ergodic theorem. ε → 0 yields that with probability ≥ 1 − δ

lim
j→∞

1
j−k

∑
i∈J (k,�)

j,s
f(Xi)

1
j−k |J(k,�)

j,s | =
E
{

f(X0)I{‖X−1
−k−s‖≤rk,�(s)}

}
P{‖X−1

−k − s‖ ≤ rk,�(s)}
for arbitrary rk,�(s) ∈ Rk,�(s). Thus a.s.

lim
j→∞

1
j−k

∑
i∈J (k,�)

j,s
f(Xi)

1
j−k |J(k,�)

j,s |
= E{ f(X0) | ‖X−1

−k − s‖ ≤ rk,�(s)},

and (4.2) is proved. Recall that by definition, b(k,�)(X−1
1− j , s) is a log-optimal portfolio

with respect to the probability measure P(k,�)
j,s . Let b∗

k,�(s) denote a log-optimal portfolio

with respect to the limit distribution P∗(k,�)
s . Then, using Lemma 4.2, we infer from (4.2)

that, as j tends to infinity, we have the almost sure convergence

lim
j→∞

〈
b(k,�)(X−1

1− j , s), x0

〉
= 〈

b∗
k,�(s), x0

〉

for P∗(k,�)
s -almost all x0 and hence for PX0 -almost all x0. Since s was arbitrary, we obtain

lim
j→∞

〈
b(k,�)(X−1

1− j , X−1
−k), x0

〉
=

〈
b∗

k,�(X
−1
−k), x0

〉
(a.s.). (4.3)

Next we apply Lemma 4.1 for the function

fi(x∞−∞) = log
〈
h(k,�)(x−1

1−i), x0

〉
= log

〈
b(k,�)(x−1

1−i, x−1
−k), x0

〉

defined on x∞−∞ = (. . . , x−1, x0, x1, . . . ). Note that

fi(X∞−∞) =
∣∣∣log

〈
h(k,�)(X−1

1−i), X0

〉∣∣∣ ≤
d∑

j=1

∣∣∣log X( j)
0

∣∣∣ ,
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which has finite expectation, and

fi(X∞−∞) →
〈
b∗

k,�(X
−1
−k), X0

〉

almost surely as i → ∞, by (4.3). As n → ∞, Lemma 4.1 yields

Wn(H(k,�)) = 1

n

n∑
i=1

fi(T
iX∞−∞)

= 1

n

n∑
i=1

log
〈
h(k,�)(Xi−1

1 ), Xi

〉

→ E

{
log

〈
b∗

k,�(X
−1
−k), X0

〉}
def= εk,� (a.s.).

Therefore, by (4.1) we have

lim inf
n→∞ Wn(B) ≥ sup

k,�
εk,� ≥ sup

k
lim inf

�
εk,� (a.s.)

and it suffices to show that the right-hand side is at least W∗. The rest of the proof is
similar to the end of the proof in [8], so the reader may skip it.

To this end, define, for Borel sets A, B ⊂ Rd+,

m A(z) = P{X0 ∈ A|X−1
−k = z

}
and

μk(B) = P{X−1
−k ∈ B

}
.

Then for any s ∈ support(μk), and for all A,

P
∗(k,�)
s (A) = P

{
X0 ∈ A|‖X−1

−k − s‖ ≤ rk,�(s)
}

= P
{
X0 ∈ A, ‖X−1

−k − s‖ ≤ rk,�(s)
}

P
{‖X−1

−k − s‖ ≤ rk,�(s)
}

= 1

μk(Ss,rk,�(s))

∫
Ss,rk,� (s)

m A(z)μk(dz)

→ m A(s) = P{X0 ∈ A|X−1
−k = s

}
as � → ∞ and for μk-almost all s by the Lebesgue density theorem (see [7, Lemma 24.5]),
and therefore

P
∗(k,�)

X−1
−k

(A) → P
{
X0 ∈ A|X−1

−k

}

as � → ∞ for all A.
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Thus, using Lemma 4.2 again, we have

lim inf
�

εk,� = lim
�

εk,�

= E

{
log

〈
b∗

k(X
−1
−k), X0

〉}
(where b∗

k(·) is the log-optimum portfolio with respect

to the conditional probability P{X0 ∈ A|X−1
−k})

= E

{
E

{
log

〈
b∗

k(X
−1
−k), X0

〉∣∣∣ X−1
−k

}}

= E

{
max
b(·)
E

{
log

〈
b(X−1

−k), X0

〉∣∣∣ X−1
−k

}}

def= ε∗
k .

To finish the proof we appeal to the sub-martingale convergence theorem. First note that
the sequence

Yk
def= E

{
log

〈
b∗

k(X
−1
−k), X0

〉∣∣∣ X−1
−k

}
= max

b(·)
E

{
log

〈
b(X−1

−k), X0

〉∣∣∣ X−1
−k

}

of random variables forms a sub-martingale, that is, E
{
Yk+1|X−1

−k

}
≥ Yk. To see this,

note that

E

{
Yk+1|X−1

−k

}
= E

{
E

{
log

〈
b∗

k+1(X
−1
−k−1), X0

〉∣∣∣ X−1
−k−1

}∣∣∣ X−1
−k

}

≥ E
{
E

{
log

〈
b∗

k(X
−1
−k), X0

〉∣∣∣ X−1
−k−1

}∣∣∣ X−1
−k

}

= E
{

log
〈
b∗

k(X
−1
−k), X0

〉∣∣∣ X−1
−k−1

}
= Yk.

This sequence is bounded by

max
b(·) E

{
log

〈
b(X−1−∞), X0

〉∣∣∣ X−1−∞
}

which has a finite expectation. The sub-martingale convergence theorem (see, e.g.,
Stout [12]) implies that this sub-martingale is convergent almost surely, and supk ε∗

k is
finite. In particular, by the submartingale property, ε∗

k is a bounded increasing sequence,
so that

sup
k

ε∗
k = lim

k→∞ ε∗
k .

Applying Lemma 4.3 with the σ-algebras

σ
(

X−1
−k

)
↗ σ

(
X−1−∞

)
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yields

sup
k

ε∗
k = lim

k→∞E
{

max
b(·)
E

{
log

〈
b(X−1

−k), X0

〉∣∣∣ X−1
−k

}}

= E
{

max
b(·)
E

{
log

〈
b(X−1−∞), X0

〉∣∣∣ X−1−∞
}}

= W∗

and the proof of the theorem is finished. �
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