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Chapter 1

Introduction

From the viewpoint of information theory the multiple-access channel is
a black-box operating in discrete time with a fixed number of inputs and
one output. There are also extended models, with multiple outputs, the so
called interference channels, but we do not deal with them now (c.f. Shannon
(1961) and Ahlswede (1971)). We consider that one user “sits” at each input,
so instead of inputs we usually refer to users. Let us denote the number of
users with t. The input and output alphabets of the channel are denoted by
I and O, respectively.

In the information theory one deals only with the case of memoryless
channel, so to fully describe the channel, it is enough to give the channel
transition probabilities p(y|x1x2 . . . xT ):

P
(
Y = y

∣∣X1 = x1, X2 = x2, . . . , XT = xT
)

= p(y|x1x2 . . . xT )

∀(x1, x2, . . . , xT ) ∈ IT ,∀y ∈ O.

Here X1, X2, . . . , XT denote the T inputs of the channel, while Y denotes the
output.

Each user of the channel has a so called component code. A component
code is a set of fixed codewords, one for each possible message of the user.
We assume, that all these codewords of all users have a common length n.
So the component code of the ith user can be written as

Ci =
{
x

(i)
1 ,x

(i)
2 , . . . ,x

(i)
|Ci|

}
⊆ In.

The code itself is the set of the component codes defined above:

C = {C1, C2, . . . , CT}.

9
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yM
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xT
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Figure 1.1: The Multiple Access Channel

The message user i wants to send is denoted by the random variable
Ki ∈ {1, 2, . . . , |Ci|}. To send this message, the user transmits x

(i)
Ki

through
the channel. We will use a further restriction, that the codewords sent by the
users are bit and block synchronized. This means, that at a given instant,
all users are sending the same component of their codewords. Say, when user
i is sending the mth component of his codeword ([x

(i)
Ki

]m), then user j is also

sending the mth component ([x
(j)
Kj

]m). So we can treat the channel output as
a vector of length n.

Since the channel is memoryless, we can write a simple formula for the
distribution of the vectorial channel output, conditionally on that user i sends
its kth

i codeword:

P
(
Y = y

∣∣∣K1 = k1, K2 = k2, . . . , KT = kT

)

= P
(
Y = y

∣∣∣X1 = x
(1)
k1
,X2 = x

(2)
k2
, . . . ,XT = x

(T )
kT

)

=
n∏

m=1

P
(
Y = [y]m

∣∣∣X1 = [x
(1)
k1

]m, X2 = [x
(2)
k2

]m, . . . XT = [x
(T )
kT

]m

)
.

To define the error probability of a given code C, we must have a
decoding function for each user:

di : O
n → {1, 2, . . . , |Ci|} ∀i ∈ [T ].

(Here [T ] denotes {1, 2, . . . , T}.) The aim of the decoding function di is to
recover the message Ki of the ith user from the channel output vector (Y).
The error probability (Pe) of a given code is defined as the probability of
making a mistake for at least one user, considering the optimal decoding
functions:

Pe(C) = inf
d1,d2,...,dT

P ({∃i ∈ [T ] : di(Y) 6= Ki}) .
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Here we consider, that the random variables K1, K2, . . . , KT are independent
and uniformly distributed over the set of possible messages ({1, 2, . . . , |Ci|}):

P (Ki = k) =
1

|Ci|
∀i ∈ [T ],∀k ∈ {1, 2, . . . , |Ci|}.

The code rate of a given code for user i is defined as

ri(C) =
log |Ci|
n

,

while the rate vector of a given code is formed by arranging these quantities
into a vector:

r(C) = (r1, r2, . . . , rT ).

The rate region of a channel is the set of rate vectors that can be reached
by arbitrarily small error:

R =
{
r : ∀ε > 0: ∃C : Pe(C) ≤ ε and ∀i ∈ [T ] : ri(C) ≥ ri

}
.

Ahlswede (1971) and van der Meulen (1971) have determined the rate region
for the case t = 2. Liao (1972) has formulated the rate region for the general
t user case.

In contrast to the multi-user information theory, in the models of multiple
access communications the users are partially active, which is formulated such
that in a given time instant at most M out of the T can be active. Moreover,
usually the models allow the asynchronous access. For the current practical
solutions in mobil communications the active users initiate a login procedure
during which get codes for the actual session. Here we are interested in the
problems, where the users have codes forever, therefore three tasks should
be solved:

• detection (identification) of active users,

• synchronization of their code words, and

• decoding the messages.

There is an important special case of this general problem, where the users
have no messages at all, their activity is the only ”information” to transmit.
It is called signature coding, which means just to solve the identification
and synchronization.

In this note we consider just deterministic multiple access channels:
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• OR channel,

• collision channel,

• slow frequency hopping,

• collision channel with ternary feedback,

• ADDER channel,

• collision channel with multiplicity feedback,

• Euclidean channel.



Chapter 2

OR channel: synchronous
access

2.1 Channel model

Cohen, Heller and Viterbi (1971) introduced the model of the noiseless de-
terministic OR channel for multiple access communication. If there are T
users in the system such that the inputs xi (1 ≤ i ≤ T ) and the output y are
binary, then the output is 0 iff all inputs are 0, so the output is the Boolean
sum of the inputs (cf. Figure 2.1):

y =
T∨

i=1

xi.

A possible example of communication scheme where this simple model is
suitable is the on/off keying (OOK) modulation, where the bit 1 corresponds

O
R

y =
T∨
i=1

xi

x1

x2

xT

...

Figure 2.1: Multiple access OR channel
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14 Chapter 2. OR channel: synchronous access

to a waveform and the bit 0 corresponds to the waveform constant 0. The
receiver consists of an envelope detector followed by a threshold detector, so
the demodulation is just a decision whether all users sent the 0 waveform.

We are investigating the identification (and in Chapter 3 also the syn-
chronization) problem which is called signature coding via a multiple access
OR channel. There are T users in the communication system, and each of
them has only one own code word. Becoming active a user sends his code
word into the channel, and otherwise does nothing, formally sends the all-
zero code word into the channel. The decoder, from the Boolean sum of the
code words of the active users, should reconstruct the set of active users.

For permanent activity of the users this channel is trivial, with time
sharing the maximum utility 1 can be achieved. For partial activity, however,
the problem is hard and is far from being solved. It is usually assumed that
at most M users communicate on the channel simultaneously, where M is a
fixed number. The signature coding problem is to find a code of minimum
length n(T,M) such that if at most M active out of T total users send their
code words, then from the output vector of the OR channel the set of active
users can be identified.

Kautz and Singleton (1964) introduced the concept of UD and ZFD codes.

Definition 2.1 (UD code). A code which has T code words of length n is
Uniquely Decipherable of order M (UD(T,M, n)), if every Boolean sum of
up to M different code words is distinct from every other sum of M or fewer
code words.

Formally, let C = {x1,x2, . . . ,xT} be a code. The UD(T,M, n) property
means that for any subsets A,B ⊂ {1, 2, . . . , T}, |A| ≤ M, |B| ≤ M,A 6= B
we have ∨

i∈A
xi 6=

∨

i∈B
xi.

Example: Retrieval files. Assume a library of documents (files) such
that each document has attributes, called descriptors. The information re-
trieval can be done according to a descriptor such that we have to decide
whether a given document has this descriptor. This inquiry can be orga-
nized by a head of the document which is a list of descriptors. If the total
number of descriptors is T and a given document may have at most M
descriptors then this head can be encoded into a binary vector of length

n = log
M∑
m=0

(
T
m

)
'M log T .

If a document and its descriptors are changing from time to time then the
head is changing, too, therefore for generating the head we have an alternative
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way by UD codes. Let xi be a binary vector assigned to descriptor i, and
if i1 < · · · < im are the descriptors then generate the head by the Boolean
sum:

y =
∨

j∈{i1,...,im}
xj.

Thus for UD(T,M, n) code, from the head we can identify the descriptors
(cf. Kautz and Singleton (1964), Chien and Frazer (1966)).

Given two binary sequence x and y of the same length n, the superposition
sum of these sequences is a binary sequence z of length n

z = x ∨ y,

where

zi =

{
0 if xi = yi = 0,
1 otherwise

(i = 1, 2, . . . , n).
We say that z = (z1, . . . , zn) covers y = (y1, . . . , yn)

z ≥ y

if zi ≥ yi (i = 1, 2, . . . , n).
In the previous example the coding of the head was easy and fast. Maybe

want an easy decoding, too. Notice that for j ∈ {i1, i2, . . . , im}

y ≥ xj.

This remark leads to a special case of UD code:

Definition 2.2 (ZFD code). We call a code which has T code words of
length n Zero False Drop of order M (ZFD(T,M, n)), if every Boolean sum
of up to M different code words logically includes no code word other than
those used to form the sum.

It means that if for a k
y ≥ xk

then
xk = xij

for some ij. In the example of information retrieval it means that for a
document with head y and for the descriptor k if

y ≥ xk
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then the document has the descriptor k. This is really a fast decoding rule.
The ZFD property is defined by a decoding rule, therefore a ZFD(T,M, n)

is a UD(T,M, n). The question is that what is the loss with respect to UD
if we need ZFD.

Theorem 2.1 (Kautz and Singleton (1964)). A UD(T,M, n) is ZFD(T,M−
1, n) and a ZFD(T,M, n) is UD(T,M, n).

Proof.

1. Assume that C is UD(T,M, n). If C were not ZFD(T,M − 1, n) then
there would be xM /∈ {x1, . . . ,xM−1} such that

xM ≤ x1 ∨ x2 ∨ · · · ∨ xM−1,

i.e.
x1 ∨ x2 ∨ · · · ∨ xM−1 ∨ xM = x1 ∨ x2 ∨ · · · ∨ xM−1,

which contradicts that C is UD(T,M, n).

2. Suppose that C is ZFD(T,M, n) but not UD(T,M, n), then there exist
sets of code words {x1,x2, . . . ,xK} 6= {y1,y2, . . . ,yL}, K, L ≤M such
that

x1 ∨ x2 ∨ · · · ∨ xK = y1 ∨ y2 ∨ · · · ∨ yL.

Since the two sets are not equal there exists a code word xi which is
not in {y1,y2, . . . ,yL}. However,

xi ≤ y1 ∨ y2 ∨ · · · ∨ yL

is a contradiction.

Corollary 2.1. The relationship between ZFD(T,M, n) and UD(T,M, n)
codes is as follows.

ZFD(T,M, n) ⊆ UD(T,M, n) ⊆ ZFD(T,M − 1, n) ⊆ · · ·

Put C1 = {x1, . . . ,xT} and let Ck, k = 2, 3, . . . be the set of all superpo-
sition sum of exactly k vectors of C1. Thus, the set Ck contains

(
T
k

)
vectors,

which are not necessarily all different.
In considering the sequence of sets C1, C2, . . . , Ck, . . . we are interested in

the value of k at which duplicate vectors first appear, either within the same
set Ck, or between Ck and some earlier set.

Lemma 2.1 (Kautz and Singleton (1964)). If the sets C1, C2, . . . , CM+1

are disjoint then Ck contains exactly
(
T
k

)
different vectors (k = 1, 2, . . . ,M).
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Proof. Suppose that two of the
(
T
k

)
vectors in Ck were equal:

x1 ∨ x2 ∨ · · · ∨ xk = y1 ∨ y2 ∨ · · · ∨ yk

where xi,yi ∈ C1, i = 1, 2, . . . , k. Then

yj ∨ x1 ∨ x2 ∨ · · · ∨ xk = x1 ∨ x2 ∨ · · · ∨ xk

for every j = 1, 2, . . . , k. But Ck+1 and Ck are disjoint, therefore each of the
code words y1,y2, . . . ,yk must belong to the set of code words {x1, . . . ,xk},
so there are no duplicates in Ck.

Lemma 2.2 (Kautz and Singleton (1964)). A code C1 is ZFD(T,M, n)
iff the sets C1, C2, . . . , CM+1 are disjoint.

Proof. We use an indirect way of proof in both direction of the statement.

1. Suppose that C1 is not ZFD, so there is a y /∈ {x1, . . . ,xk}, k ≤M such
that y ≤ x1 ∨ x2 ∨ · · · ∨ xk, i.e.

y ∨ x1 ∨ x2 ∨ · · · ∨ xk = x1 ∨ x2 ∨ · · · ∨ xk

then Ck+1 and Ck would not be disjoint.

2. Suppose that C1, C2, . . . , CM+1 are not disjoint, so there are Cj and Ck
for some 1 ≤ j < k ≤M + 1 having common element

x1 ∨ x2 ∨ · · · ∨ xj = y1 ∨ y2 ∨ · · · ∨ yk.

Because of j < k there is a yi /∈ {x1, . . . ,xj}, and

yi ∨ x1 ∨ x2 ∨ · · · ∨ xj = x1 ∨ x2 ∨ · · · ∨ xj,

therefore C1 is not ZFD.

Lemma 2.3 (Kautz and Singleton (1964)). A code C1 is UD(T,M, n)
iff the sets C1, C2, . . . , CM are disjoint and CM contains

(
T
M

)
different vectors.

Proof.

1. Suppose that the sets C1, C2, . . . , CM are disjoint and CM contains
(
T
M

)

different vectors. Then because of Lemma 2.1 each set Ck for 1 ≤ k ≤
M contains

(
T
k

)
different vectors, therefore no two superposition sum

vectors of at most M code words can be equal without contradicting
either the condition that C1, C2, . . . , CM be disjoint, or that Ck contains(
T
k

)
different elements for 1 ≤ k ≤M .
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2. Suppose that the code C1 is UD(T,M, n). Then any two superposition
sum of at most M code vectors are different, therefore C1, C2, . . . , CM
are disjoint and CM contains

(
T
M

)
different elements.

Lemma 2.4 (Kautz and Singleton (1964)). Let the T × n matrix A
consist of the code vectors of C1. The code C1 is ZFD(T,M, n) iff every
subset of M +1 rows of A contains an (M +1)-columned identity submatrix.

Proof. The condition that C1 be ZFD(T,M, n) is equivalent to the require-
ment that in each subset of M + 1 rows of A, no one row may be covered by
the superposition sum of the other M . This will be the case iff each row of
this (M+1)-rowed submatrix has a 1 in some column in which all other rows
have a 0. Conversely, if every subset of (M + 1) rows contains an identity
submatrix of order (M + 1), then no one of these rows may be covered by
the sum of the other M . Hence, C1 is ZFD(T,M, n).

Example: Signature coding for multiple access OR channel. Con-
sider a T user multiple access OR channel. Each user has an n length binary
vector (code word), and if a user is active then it sends its code word. From
the output of the OR channel, i.e., from the superposition sum of the active
code words one has to identify the set of active users. If at most M users can
be active then it is a UD(T,M, n) problem. If, moreover, we want to have
an easy decoding by covering then it is a ZFD(T,M, n) problem.

Example: Monitoring. Let us assume a public transportation company
which has a lot of buses. Each bus broadcasts its code word periodically.
There is a receiver in a heavy-traffic junction. If there is only one bus in
the range of the receiver, the problem is easy. If there are many buses, then
suppose, that the modulation is OOK (on/off keying). Since in case of many
simultaneous transmission the signal in the receiver can be modelled by the
output of an OR channel, the received signal is the Boolean sum of those
identifiers which buses are in the range of the receiver.

Example: Alarming. Let us chain as many as T fire-alarm stations to
one wire. Should an alarm station become active, it sends its own code word.
If the number of simultaneous outbreaks of fire is not more than M , then
the active stations can be identified from the signal on the wire. Existent
alarming systems usually apply a 1 bit output which only tells there is fire
somewhere in the system. Advantage of using a multiple access channel is
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to be able to know which rooms or locations are catching fire at the moment
and where the fire spreads.

Example: Login. Consider a communications system which has lots of
low-duty mobile users, but just a limited number of channels. Becoming
active, a user may send his code word over a radio channel to a central control
unit, and from the output of the channel the central control unit may detect
the set of active users and assign dedicated channels to them. Nowadays,
mobile telecommunications systems use random access with feedback, so that
users can log in to the system. This procedure can be replaced by signature
coding for multiple access channel, where the advantage is that there is no
need to process the acknowledgements.

Example: Collection of measurment data. We would like to collect,
for example, electric energy consumption data of customers in a power line
network. The power line can be used as a multiple access OR channel (cf.
Dostert (2001)). The measuring instrument of a user sends its unique code
word to this common channel if a user has consumed a unit (e.g., 1 kWh) of
electric energy.

Example: Sending packets without error correction. Consider the
collision channel without feedback (time hopping) with the restriction that
there is no error correction over the packets, a user just repeats its packet
several times, and needs at least one successful transmission. The sending
is according to protocol sequences, user i has an n-length binary vector xi
which is its protocol sequence. Assume that user i is active, i.e., has a packet
to send. Then it has at least one successful transmission, if xi is not covered
by the superposition sum of the protocol sequences of the other active users,
which means that the protocol sequence set should be ZFD(T,M − 1, n),
where M is the number of active users.

Example: Non-adaptive hypergeometric group testing. The prob-
lem of group testing firstly appeared in administering syphilis tests to millions
of people being inducted into the U.S. military services during World War
II. The test for syphilis was a blood test called the Wasserman test. Dorf-
man (1943) suggested pooling the blood samples from a number of persons
and applying the Wasserman test to a sample from the resultant pool. The
Wasserman test had sufficient sensitivity that the test would yield a negative
result if and only if none of the individual samples in the pooled sample were
diseased. Dorfman’s paper was the beginning of a research area which has
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become known as group testing. Assume T individuals which contain at most
M defectives. In a test step one can ask whether a subset of T contains some
defectives. The task is to identify the positive individuals using the minimum
number of needed tests (in the worst case). A test plan is a sequence of tests
such that, at its completion, the outcomes of these tests uniquely determine
the states of all individuals. In the classical (adaptive) group testing there
is a feedback, when selecting a set A in a step we know the results of the
previous steps. One can see that the number of steps required is less than
M log T , and for binomial model of the defectives (when each individual is
defective with the same probability) there are efficient strategies (cf. Hwang
(1972), Wolf (1985), Sterrett (1957), Sobel and Groll (1959)). In the prob-
lem of non-adaptive group testing (cf. Hwang and T. Sós (1987), Du and
Hwang (1993), Knill et al. (1998)) we don’t assume feedback, choose a priori
a sequence of test sets (A1, A2, . . . , An). The trivial solution corresponds to
the time sharing, when Ai = {i}, i = 1, . . . , T , so n = T .

The testing can be formulated in another way: the ith individual has the
binary code word (test sequence) ~xi and

Aj = {i : xi,j = 1}.

If the individuals i1, i2, . . . , im are positive, then the result of the test is

~y =
∨

i∈{i1,...,im}
~xi,

where yj = 1 iff {i1, i2, . . . , im} ∩ Aj 6= ∅, and from ~y we should identify
i1, . . . , im.

As we show in the sequel, the number of steps needed is at least c M2

logM
log T

for some constant c.

Let U be an n-element set (called underlying set). We denote by
(
U
k

)
the

set of the k-element subsets of U (0 ≤ k ≤ n), while 2U denotes the power

set of U (2U =
n⋃
k=0

(
U
k

)
). A family F of subsets of U is a subset of the power

set (F ⊆ 2U).

Definition 2.3 (Cover-free family, cf. Füredi (1996), Erdős et al.
(1985)). A family of sets F is called M-cover-free if

F0 6⊆ F1 ∪ · · · ∪ FM

holds for all distinct F0, F1, . . . , FM ∈ F .
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We are looking for the maximum cardinality T of an M -cover-free family
F ⊆ 2U , where |U | = n. This problem is analogous to the determination of
minimal length of ZFD codes. Matching of parameters is the following. Put
U = {1, 2, . . . , n}, and a set F ∈ F corresponds to a binary code word xF
the i-th coordinate of which is 1 iff i ∈ F . Cardinality T of the family plays
the role of number of potential users, M -cover-free property corresponds to
the ZFD property of order M , and the size n of underlying set U corresponds
to the code length.

2.2 Lower bounds

In the following we give bounds on the minimal code length n(T,M).
Possibly the simplest lower bound can be computed using the fact that

each sum of at most M code words must be distinct, so cannot exceed the
number of n-digit binary numbers.

Sphere packing bound:

M∑

k=0

(
T

k

)
≤ 2n.

Using that
M∑
k=0

(
T
k

)
∼ TM , we get

n(T,M) ≥M log T.

In the sequel we summarize the bounds (1 ¿M ¿ T )

c1
M2

logM
log T ≤ n(T,M) ≤ c2M

2 log T.

The unpublished result of Bassalygo gives the first bound which uses the
following lemmata. Let t(w) denote the number of code words with weight
w.

Lemma 2.5 (Kautz and Singleton (1964), Dyachkov and Rykov
(1982)). If any code word of a ZFD(T,M, n) code has weight no greater
than M , it must have a 1 in some position where no other code word has a
1, thus

M∑

w=1

t(w) ≤ n.
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Proof. Suppose that there exists a code word of a ZFD(T,M, n) code which
has weight no greater than M , but it has 1’s just in positions where some
of the other code words have 1, too. This code word is then covered by the
sum of M other code words, so the code can not be ZFD(T,M, n).

Lemma 2.6 (Bassalygo, cf. Dyachkov and Rykov (1982), A (1986)).
If C is a ZFD(T,M, n) code and it has a code word of weight w then

w ≤ n− n(T − 1,M − 1).

Proof. Consider C as a T×n binary matrix. Choose a code word with weight
w. In the code matrix, delete all columns where this fixed code word has 1’s,
and also delete the row corresponding to this code word. The resulting matrix
of size (T−1)×(n−w) can be easily verified to be a ZFD(T−1,M−1, n−w)
code.

Theorem 2.2 (Bassalygo bound, cf. Dyachkov and Rykov (1982;
1983), A (1986)).

n(M,T ) ≥ min

{
(M + 1)(M + 2)

2
, T

}

Proof. Let C be a ZFD(T,M) code of length n and let wmax be the maximum
weight.

1. If wmax ≤M then by Lemma 2.5 we get

T =
wmax∑

w=1

t(w) ≤ n

2. If wmax ≥M + 1 then by Lemma 2.6 we get

n ≥ n(T − 1,M − 1) +M + 1

Combining these two inequalities results in

n(T,M) ≥ min {n(T − 1,M − 1) +M + 1, T} .
We use induction. The statement holds for M = T = 1. Assume that the
statement holds for sizes up to T − 1 then

n(M,T ) ≥ min {n(T − 1,M − 1) +M + 1, T}

≥ min

{
min

{
M(M + 1)

2
, T − 1

}
+M + 1, T

}

= min

{
(M + 1)(M + 2)

2
, T

}
.
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The main consequence of the theorem is that for any
√

2T < M < T ,
n(T,M) = T , so in this range of M no ZFD(T,M) code is better than the
time-sharing.

Lemma 2.7 (Dyachkov and Rykov (1982)). In a ZFD(T,M, n) code
number of code words which have weight w ≥M + 1 is bounded

t(w) ≤M 2

(
n

dw/Me
)

(bw/McM
bw/Mc

) . (2.1)

Proof. Consider the ZFD(T,M, n) code as a family of sets F := F1, F2, . . . , FT
on the underlying set {1, 2, . . . , n}. We shall show that the number t(w) of
subsets of the family F which contain w elements, satisfies inequality (2.1).

Choose an arbitrary subset F ∈ F which contains w elements. Let us
assume that w can be divided by M , and we set k = w

M
. We call subsets

{Ai}Mi=1, Ai ⊂ F a partition of F into M parts, if Ai ∩ Aj = ∅, |Ai| = k

and F =
M⋃
i=1

Ai. The number of all partitions is equal to w!
M !(k!)M . Partitions

{Ai}Mi=1 and {A′
j}Mj=1 are different from one another iff there exists at least

one pair of numbers (i, j) for which Ai 6= A′
j. Partitions {Ai}Mi=1 and {A′

j}Mj=1

are called non-intersecting if Ai 6= A′
j for any 1 ≤ i, j ≤ M . We would like

to determine the number of all non-intersecting partitions R(w,M, k). Let
us fix an arbitrary partition {Ai}Mi=1. The number of partitions {A′

j} that

involve the set Ai, 1 ≤ i ≤M is equal to (w−k)!
(M−1)!(k!)M−1 . Therefore the number

of partitions that intersect with {Ai}Mi=1, does not exceed M (w−k)!
(M−1)!(k!)M−1 , so

R(w,M, k) ·M (w − k)!

(M − 1)!(k!)M−1
≥ w!

M !(k!)M
,

and for the number of non-intersecting partitions we get

R(w,M, k) ≥
(
w
k

)

M2
. (2.2)

From the M -cover-free property of F follows that each partition {Ai}Mi=1

contains at least one term Ai, |Ai| = k that belongs only to F and does not
belong to any other Fi, 1 ≤ i ≤ T . Therefore F contains at least R(w,M, k)
subsets of volume k which do not belong to the remaining terms of family
F1, F2, . . . , FT . Consequently,

t(w)R(w,M, k) ≤
(
n

k

)
. (2.3)
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From inequalities (2.2) and (2.3) we get

t(w) ≤M 2

(
n
k

)
(
w
k

) .

Now assume that w cannot be divided by M , i.e., w = kM + r, where
k = bw/Mc, 1 ≤ r ≤ M − 1. Let us fix an arbitrary subset A ⊂ F in
which the number of elements |A| = r, and we consider partitions of F in the

following form: F = A ∪
M⋃
i=1

Ai, where an {Ai}Mi=1 is one of the R(kM,M, k)

non-intersecting partitions of set F \ A. It follows from the M -cover-free
property of F that in any partition of F there exists a term Ai (1 ≤ i ≤M)
and element ω ∈ A, such that the set A′

i = Ai + ω (|A′
i| = k + 1 = dw/Me)

belongs only to F and does not belong to any other Fi, 1 ≤ i ≤ T . Then,
we have an inequality similar to (2.3)

t(w)R(kM,M, k) ≤
(

n

k + 1

)
, k + 1 = dw/Me

which means together with (2.2) that expression (2.1) is valid.

From Lemma 2.5, 2.6 and 2.7 follows the next theorem.

Theorem 2.3 (Dyachkov and Rykov (1982; 1983)). The length n of
any ZFD(T,M, n) code for 2 ≤M < T satisfies the inequality

T ≤ n+M 2

n−n(T−1,M−1)∑

w=M+1

(
n

dw/Me
)

(bw/McM
bw/Mc

) (2.4)

Theorem 2.3 implies a lower bound on the minimal code length.

Theorem 2.4 (Dyachkov and Rykov (1982; 1983)). If T → ∞ and M
is constant then

n(M,T ) ≥ K(M) log T (1 + o(1)),

where the sequence K(M) is defined recurrently. K(1) := 1 and if M ≥ 2
then K(M) can be bounded by

K(M) ≥ M2

2 log e(M+1)
2

(M ≥ 2).

If M → ∞ then

K(M) =
M2

2 logM
(1 + o(1)) (M → ∞).
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Proof. Let us take inequality (2.4) of Theorem 2.3 as starting point and apply
Theorem B.1.

T ≤ n+M 2

n−n(T−1,M−1)∑

w=M+1

2nh(
w

Mn)√ n

2π w
M (n− w

M )

2wh(
1
M )√ w

8 w
M (w− w

M )

= n+M 2

n−n(T−1,M−1)∑

w=M+1

2nh(
w

Mn)−wh( 1
M )

√
4
(
1 − 1

M

)

π
(
1 − w

Mn

)

≤ n+M 2n 2nh(
w

Mn)−wh( 1
M )

√
4
(
1 − 1

M

)

π
(
1 − w

Mn

)
∣∣∣∣∣
w=wmax

Taking the logarithm of both sides we get the following asymptotic lower
bound for the code length

1

h
(
w
Mn

)
− w

n
h
(

1
M

)∣∣
w=wmax

log T . n. (2.5)

We are looking for the lower bound of the code length in the following form

K(M) log T ≤ n(T,M) = n,

so from (2.5) we know

1

h
(
w
Mn

)
− w

n
h
(

1
M

)∣∣
w=wmax

≤ K(M) (2.6)

From Lemma 2.6 follows that

wmax

n
=

wmax

n(T,M)

=
n(T,M) − n(T − 1,M − 1)

n(T,M)

' 1 − n(T,M − 1)

n(T,M)

= 1 − K(M − 1)

K(M)
(2.7)

Substitution (2.7) to inequality (2.6) results

1

h
((

1 − K(M−1)
K(M)

)
1
M

)
−
(
1 − K(M−1)

K(M)

)
h
(

1
M

) ≤ K(M) (2.8)
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Now our task is to determine an explicit formula for the recurrently given
K(M). We have K(1) = 1. We show that

K(M) ' 1

2

M2

log(M + 1)
(2.9)

is an asymptotic solution of inequality (2.8). The left side of (2.8) can be
written in view of (2.9)

1

h
((

1 − K(M−1)
K(M)

)
1
M

)
−
(
1 − K(M−1)

K(M)

)
h
(

1
M

)

' 1

h
((

1 − (M−1)2

M2

)
1
M

)
−
(
1 − (M−1)2

M2

)
h
(

1
M

)

=
1

h
(

2M−1
M3

)
− 2M−1

M2 h
(

1
M

)

=
1

h
(

2
M2

)
− 2

M
h
(

1
M

) (2.10)

Let us analyze the factors of denominator asymptotically.

h

(
2

M2

)
= − 2

M2
log

2

M2
−
(

1 − 2

M2

)
log

(
1 − 2

M2

)

' − 2

M2
log

2

M2
−
(

1 − 2

M2

)
2

M2

= − 2

M2
log 2 +

4

M2
logM −

(
1 − 2

M2

)
2

M2

and

− 2

M
h

(
1

M

)
=

2

M2
log

1

M
+

2

M

(
1 − 1

M

)
log

(
1 − 1

M

)

' − 2

M2
logM − 2

M2

(
1 − 1

M

)

therefore

h

(
2

M2

)
− 2

M
h

(
1

M

)

' − 2

M2
log 2 +

2

M2
logM − 2

M2

(
1 − 2

M2
+ 1 − 1

M

)

=
2

M2
log

M

2
+

2

M2

(
1

M
+

2

M2
− 2

)
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Applying this asymptotic approximation in (2.10) we get

1

h
(

2
M2

)
− 2

M
h
(

1
M

) ' M2

2

1

log M
2

+ 1
M

+ 2
M2 − 2

' 1

2

M2

logM

Similar lower bounds have been proved using the set theoretical approach.

Lemma 2.8 (Füredi (1996)). If F is an M-cover-free family over an n-
element underlying set U , then

|F| ≤M +

(
n

d(n−M)/
(
M+1

2

)
e

)
. (2.11)

Proof. Let us fix an integer w which 0 < w ≤ n
2
. Define Fw ⊂ F as the

family of members having an own w-subset, i.e.,

Fw := {F ∈ F : ∃A ∈
(
F
w

)
, A 6⊆ F ′,∀F ′ ∈ F , F ′ 6= F}.

Let
F0 := {F ∈ F : |F | < w}.

We show that

|F0 ∪ Fw| ≤
(
n

w

)
(2.12)

and for w :=
⌈
(n−M)/

(
M+1

2

)⌉

|F \ (F0 ∪ Fw)| ≤M (2.13)

which implies the lemma:

|F| = |F \ (F0 ∪ Fw)| + |F0 ∪ Fw|

≤ M +

(
n

w

)

= M +

(
n

d(n−M)/
(
M+1

2

)
e

)
.

Let A be the family of the own w-subsets,

A := {A ∈
(
U
w

)
: ∃F ∈ F , A ⊆ F,A 6⊆ F ′,∀F ′ ∈ F , F ′ 6= F}

and let B be the family of w-sets containing a member of F0, i.e.,

B := {B ∈
(
U
w

)
,∃F ∈ F0, F ⊂ B}.
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In order to prove inequality (2.12) we need to show following inequalities.

|F0| ≤ |B|
and

|Fw| ≤ |A|.
For the first inequality observe that as F is an M -cover-free family, it has 1-
cover-free (antichain) property too. F0 ⊆ F , that is why the same is true for
F0. Suppose a maximal length chain of U (C1 ⊂ C2 ⊂ · · · ⊂ Cn, Ci ⊆ U, |Ci| =
i). The 1-cover-free property of F0 implies that at most one element of a
maximal length chain can be a member of F0, and then the w-element set
of this chain (Cw) is a member of B (because B contains all the w-sets which
contains an element of F0). The second inequality follows from the definition
of own subsets, namely own subsets are different for every member of Fw.

It is also true that A and B are disjoint. As an indirect way, suppose that
there is a w-element set F ∗ which is the member of both families. F ∗ ∈ A
implies that there is F ∈ F such that F ∗ ⊆ F and for all F ′ ∈ F , F ′ 6= F
we have F ∗ 6⊆ F ′. F ∗ ∈ B implies that there is F0 ∈ F0 such that F0 ⊂ F ∗.
Combining these relations F0 ⊂ F ∗ ⊆ F follows, which is a contradiction to
the M -cover-free (even to antichain) property.

From the previous considerations the following inequality can be derived:

|F0 ∪ Fw| = |F0| + |Fw| ≤ |B| + |A| ≤
(
n

w

)
,

so (2.12) is proved.
Let F ′ := F \ (F0 ∪Fw). The members of F ′ are at least w-element sets

having no own w-subset, then F ′ ∈ F ′, F1, F2, . . . , Fi ∈ F (Fj 6= F ′, 1 ≤ j ≤
i) imply ∣∣∣∣∣F

′ \
i⋃

j=1

Fj

∣∣∣∣∣ > w(M − i). (2.14)

In order to see this, suppose that F ′ \
i⋃

j=1

Fj =
M⋃

j=i+1

Aj, where |Aj| = w (sets

{Aj}Mj=i+1 are not necessarily disjoint). As F ′ ∈ F ′, for every Aj ⊆ F ′ there
exists Fj ∈ F : Fj 6= F ′, Aj ⊆ Fj, so

F ′ \
i⋃

j=1

Fj =
M⋃

j=i+1

Aj ⊆
M⋃

j=i+1

Fj,

and from this F ′ ⊆
M⋃
i=1

Fi follows which is a contradiction to the M -cover-free

property.
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So that to prove (2.13), again, use an indirect way of proof. Assume that
|F ′| > M . For F ′

1, F
′
2, . . . , F

′
M+1 ∈ F ′ inequality (2.14) implies that

∣∣∣∣∣

M+1⋃

i=1

F ′
i

∣∣∣∣∣

= |F ′
1| + |F ′

2 \ F ′
1| + |F ′

3 \ (F ′
2 ∪ F ′

1)| + · · · + |F ′
M+1 \ (F ′

M ∪ · · · ∪ F ′
1)|

≥M + 1 + w

(
M + 1

2

)
.

The right hand side of this inequality exceeds n for w :=
⌈
(n−M)/

(
M+1

2

)⌉
,

which is a contradiction, implying (2.13).

Theorem 2.5 (Füredi (1996)). For 1 ¿M ¿ T

n(M,T ) ≥ 1

4

M2

logM
(1 + o(1)) log T

1st Proof. We get the upper bound from inequality (2.11) using
(
n
k

)
≤
(

en
k

)k
:

T = |F| ≤ M +

(
n

d(n−M)/
(
M+1

2

)
e

)

≤ M +

(
en⌈

(n−M)/
(
M+1

2

)⌉
)d(n−M)/(M+1

2 )e

≤ M +

(
eM(M + 1)

2

)2n/M2

Taking the logarithm of both side we get asymptotically in M :

log T ≤ 4
n

M2
logM,

which corresponds to the statement of theorem.

2nd Proof. We get the upper bound from inequalit (2.11) and Theorem B.1.

T = |F| ≤ M +

(
n

d(n−M)/
(
M+1

2

)
e

)

≤ M + 2
nh

 &

n−M

(M+1
2 )

’

1
n

!

≤ M + 2
nh

 

1

(M+1
2 )

!

≤ M + 2nh(
2

M2 ). (2.15)
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For binary entropy we get the following upper bound,

h

(
2

M2

)
≤ 2

M2
log

M2

2
+

(
1 − 2

M2

)
log

(
M2

M2 − 2

)

≤ 4
logM

M2
− 4

M2
+

1

M2
log

(
1 +

2

M2 − 2

)M2−2

≤ 4
logM

M2
− 4

M2
+

2 log e

M2
. (2.16)

From inequalities (2.15) and (2.16) we get upper bound for T asymptotically
in M ,

log T ≤ 4
logM

M2
n

Lemma 2.9 (Erdős et al. (1985)). If Fw ⊂
(
U
w

)
is a maximal M-cover-free

family over an n-element underlying set U , then

|Fw| ≤
(
n
k

)
(
w−1
k−1

) ,

where we set k := dw/Me.

For the proof of Lemma 2.9 we need three lemmata which follow.
Let us define the family N (F ) of non-own-subsets of F of size k, i.e.,

N (F ) := {A ∈
(
F
k

)
: ∃F ′ ∈ Fw, F

′ 6= F,A ⊂ F ′}

Lemma 2.10 (Erdős et al. (1985)). If Fw is an M-cover-free family,
F ∈ Fw and A1, A2, . . . , AM ∈ N (F ) then

∣∣∣∣∣

M⋃

i=1

Ai

∣∣∣∣∣ < w.

Proof. From the definition of N (F ) follows that for each Ai ∈ N (F ) there
exists an Fi ∈ Fw, Fi 6= F for which Ai ⊂ Fi, so

A1 ∪ A2 ∪ · · · ∪ AM ⊆ F1 ∪ F2 ∪ · · · ∪ FM .

As each Ai ⊂ F ,

A1 ∪ A2 ∪ · · · ∪ AM ⊆ F,
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too. If equality were true in the previous statement, F would be covered
by the union of F1, . . . , FM which is a contradiction. For this reason the
following inequality has to be satisfied,

∣∣∣∣∣

M⋃

i=1

Ai

∣∣∣∣∣ < |F | = w.

Lemma 2.11 (Frankl (1976)). Let F be a finite set having w elements. Let

N (F ) ⊂
(
F
k

)
be such that for A1, . . . , AM ∈ N (F ) we have that

M⋃
j=1

Aj 6= F .

If k ≥ w
M

, then

|N (F )| ≤
(
w − 1

k

)
.

Proof. Let x1, x2, . . . , xw, x1 be a cyclic ordering of the elements of F . We
shall estimate the number of sets in N (F ) consisting of k consecutive ele-
ments relative to this ordering. If there exists at least one such set, then
we may suppose that xw is the last element of either. (Last element means
that its neighbor to the right is not contained in the set.) To all set in
N (F ) consisting of consecutive elements relative to this ordering we asso-
ciate the index of its last element but to the set ending with xw we associate
all integers from interval [w,Mk]. If there are i sets consisting of consec-
utive elements relative to the ordering, then we have associated with them
Mk − w + 1 + (i − 1) = Mk − w + i indices from the interval [1,Mk]. Let
us divide the elements of this interval into residue classes modulo k. Each
class contains M elements. If we could pick out M sets from N (F ) con-
sisting of consecutive elements relative to the cyclic ordering such that the
integers associated with them completely cover one of the classes, then the
union of these sets were F , because for every xj the smallest element in the
class greater than j (in the cyclic sense) would be associated with a set of k
consecutive elements which cover xj. This would be a contradiction to the

property that
M⋃
j=1

Aj 6= F for A1, . . . , AM ∈ N (F ). Hence, there exists an

element in each of the classes to which we have not associated any of the
sets. As we have associated with different sets different indices, we get:

Mk − w + i ≤Mk − k

what is equivalent,
i ≤ w − k.



32 Chapter 2. OR channel: synchronous access

There are (w − 1)! possible cyclic ordering and each has at most w − k sets
consisting of consecutive elements relative to the cyclic ordering, and we
count (w − k)! k! times each set of N (F ). Then we get the following upper
bound to the cardinality of N (F ):

|N (F )| ≤ (w − 1)! (w − k)

(w − k)! k!
=

(
w − 1

w − k − 1

)
=

(
w − 1

k

)

Lemma 2.12 (Erdős et al. (1985)). If Fw is an M-cover-free family,
F ∈ Fw and k = dw/Me then

|N (F )| ≤
(
w − 1

k

)

Proof. In view of Lemma 2.10 N (F ) ⊂
(
F
k

)
satisfies that

M⋃
j=1

Aj 6= F for

A1, . . . , AM ∈ N (F ), and |F | = w ≤Mk. Thus by Lemma 2.11

|N (F )| ≤
(
w − 1

k

)
.

Proof of Lemma 2.9. Each F ∈ Fw has
(
w
k

)
k-subsets, and Lemma 2.12 im-

plies that there are at most
(
w−1
k

)
non-own subsets from this. That is why

each F ∈ Fw has at least
(
w

k

)
−
(
w − 1

k

)
=

w!

k! (w − k)!
− (w − 1)!

k! (w − k − 1)!

=
(w − 1)! (w − (w − k))

k! (w − k)!

=
(w − 1)!

(k − 1)! (w − k)!

=

(
w − 1

k − 1

)

own subsets. There are
(
n
k

)
possible k-elements subsets, consequently,

|Fw|
(
w − 1

k − 1

)
≤
(
n

k

)

holds, yielding the desired upper bound.
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Lemma 2.13 (Ruszinkó (1994)). If F := {F1, F2, . . . , FT} is an M-cover-
free family, Fi ∈ F is an arbitrary element and Ai ⊆ Fi is an arbitrary subset
of Fi, then we can construct a new family F ′ := {Fj \ Ai}j 6=ij=1,...,T for which

1. F ′ is (M − 1)-cover-free,

2. |F ′| = T − 1.

Proof.

1. As an indirect way of proof, suppose that

Fj0 \ Ai ⊆ (Fj1 \ Ai) ∪ (Fj2 \ Ai) ∪ · · · ∪ (FjM−1
\ Ai)

for some {j0, j1, . . . , jM−1} ⊆ {1, . . . , i− 1, i+ 1, . . . T}. Then

Fj0 ⊆ Fj1 ∪ Fj2 ∪ · · · ∪ FjM−1
∪ Fi,

which is a contradiction (F is M -cover-free).

2. From the M -cover-free property of F it follows that F is 1-cover-free,
too. That is why Fj 6⊆ Fi for any i 6= j, so we left out only Fi from
F during the construction of F ′. Members of F ′ are distinct. As an
indirect way, suppose that Fk \ Ai = Fl \ Ai for some k 6= l. Then
Fk ⊆ Fl ∪ Fi which is a contradiction (F is 2-cover-free, as M ≥ 2).

Theorem 2.6 (Ruszinkó (1994)). For 1 ¿M ¿ T

n(M,T ) ≥ 1

8

M2

logM
(1 + o(1)) log T

Proof. During the proof we suppose that M 2 divides n and n
M

is even. If it
is not true, then the same proof works, but we have to be more careful with
the integer parts.

Let F be an M -cover-free family. We use the set compression algorithm
of Lemma 2.13.

1. F0 := F

2. If every element of F i is of size ≤ 2n
M

, then stop. If F i = {F i
1, F

i
2, . . . , F

i
T−i}

contains a set F i
j0

of size > 2n
M

, then F i+1 := {F i
j \ F i

j0
}j 6=j0j=1,...,T−i.
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In each step of this algorithm we throw out more than 2n
M

elements. Since
the members of F have not more than n elements (the underlying set is of
size n), the algorithm will stop in at most n

2n/M
= M

2
steps. Suppose that

during this algorithm we threw out p elements from the underlying set in q
steps. Let T (n,M,w) denote the maximum cardinality of an M -cover-free
family which subsets have w elements (out of n). We know from Lemma 2.9
that

T (n,M,w) ≤

(
n

dw/Me

)

(
w − 1

dw/Me − 1

) 'M

(
n

w/M

)

(
w

w/M

)

Using this bound and Lemma 2.13 it follows that

T = |F| ≤ T

(
n− p,M − q,≤ 2n

M

)
+ q

≤ T

(
n,
M

2
,≤ 2n

M

)
+
M

2

≤
2n/M∑

w=1

T

(
n,
M

2
, w

)
+
M

2

≤
2n/M∑

w=1

M
2

(
n
2w
M

)

(
w
2w
M

) +
M

2

≤
2n/M∑

w=1

M

2

(
n
2w
M

)

≤ n

(
n
4n
M2

)

Taking the logarithm of both side and applying Theorem B.1 we get asymp-
totically

log T ≤ o(n) + nh

(
4

M2

)

= o(n) + n
(

4
M2 log M2

4
+
(
1 − 4

M2

)
log
(

M2

M2−4

))

= o(n) + n
(
8 logM

M2 − 8
M2 + 1

M2 log
(
1 + 4

M2−4

)M2−4
)

≤ o(n) + n
(
8 logM

M2 − 8
M2 + 4 log e

M2

)
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≤ o(n) + 8
logM

M2
n

which implies that

n(M,T ) ≥ 1

8

M2

logM
(1 + o(1)) log T

2.3 Upper bounds

A and Zeisel (1988) gave upper bound of the minimal code length. They used
random code with alphabet 1, 2, . . . , L, and a mapping from this alphabet to
binary one-weight vectors similarly to the Kautz–Singleton construction:

1 7→ 0 . . . 001
2 7→ 0 . . . 010

...
L 7→ 1 . . . 000

where each pattern has length L.

Theorem 2.7 (A and Zeisel (1988)). If T → ∞ and M is fixed

n(T,M) ≤ K(M)M 2(1 + o(1)) log T

where
K(M) ≤ 1.5112.

If, in addition, M → ∞, too:

lim sup
M→∞

K(M) =
1

ln 2
≈ 1.4427.

Proof. Assume a random code with alphabet 1, 2, . . . , L (L ≥M) and length
n
L

whose characters are independent and uniformly distributed. This code
is mapped to a binary code C with length n by the previously described
transformation.

P{C is not ZFD} ≤
(
T

M

)
(T −M)

(
1 −

(
1 − 1

L

)M) n
L

≤ exp

(
(M + 1) lnT +

n

L
ln

(
1 −

(
1 − 1

L

)M))
(2.17)
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If this probability is less than one then there exists a ZFD code of order M ,
so the argument of the exponential function shall be below zero:

(M + 1) lnT +
n

L
ln

(
1 −

(
1 − 1

L

)M)
< 0.

Expressing n from this inequality we get:

n(T,M) ≤ (M + 1)L log T

− log
(
1 −

(
1 − 1

L

)M) < nrandom coding.

Asymptotically we get the following upper bound:

n(T,M) ≤ K(M)M 2(1 + o(1)) log T

where

K(M) = min
M≤L

ln 2
1

−M+1
L

ln
(
1 −

(
1 − 1

L

)M)

Let us choose L =
⌊
M+1
ln 2

⌋
and use the inequality

(
1 − 1

L

)M ≥ exp
(
−M+1

L

)
if

M ≤ L, we get

K(M) ≤ ln 2

−α ln(1 − e−α)
≤ ln 2

ln e
e−1

≈ 1.5112

where α = M+1

bM+1
ln 2 c .

If M → ∞, then α→ ln 2, so

lim sup
M→∞

K(M) =
ln 2

− ln 2 ln(1 − e− ln 2)
=

1

ln 2
≈ 1.4427,

and the proof is complete.

We can get another upper bound on the code length, if we consider a
random code such that the 1’s in a code word are binomially distributed
(instead of the constant weight case of Theorem 2.7).

Theorem 2.8 (Dyachkov and Rykov (1983)). If 1 ¿ M ¿ T and
T → ∞

n(T,M) ≤ e ln 2M(M + 1) log T ≈ 1.884M 2(1 + o(1)) log T
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Proof. Consider a binary random code C with length n. In a code word a bit
is 1 with probability p and 0 with probability 1 − p, so the number of 1’s in
a code word has binomial distribution.

P{C is not ZFD}

=
n∑

k=0

P{all 1’s covered | #1’s = k}P{#1’s = k}

≤
n∑

k=0

(
T

M

)
(T −M)

(
1 − (1 − p)M

)k
(
n

k

)
pk(1 − p)n−k

=

(
T

M

)
(T −M)

N∑

k=0

(
n

k

)(
p
(
1 − (1 − p)M

))k
(1 − p)n−k

=

(
T

M

)
(T −M)

(
p
(
1 − (1 − p)M

)
+ 1 − p

)n

=

(
T

M

)
(T −M)

(
1 − p(1 − p)M

)n

This expression takes its minimum value in p = 1
M+1

, and here

P{C is not ZFD} ≤
(
T

M

)
(T −M)

(
1 − 1

M + 1

(
1 − 1

M + 1

)M)n

≤
(
T

M

)
(T −M)

(
1 − e−1

M + 1

)n

≈
(
T

M

)
(T −M)e−

n
M+1

e−1

≤ TMe−
n

M+1
e−1

= eM ln 2 log T− n
M+1

e−1

< 1

Taking the logarithm of both side, we get

M ln 2 log T <
n

M + 1
e−1

and from this

n(T,M) ≤ e ln 2M(M + 1) log T < nrandom coding
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Definition 2.4 (Packing, cf. Erdős et al. (1985)). A family of sets
P ⊂

(
U
w

)
is called a (k, w, n)-packing if

|P ∩ P ′| < k

holds for every pair P, P ′ ∈ P.

Lemma 2.14 (Erdős et al. (1985)). If Fw ⊂
(
U
w

)
is a maximal M-cover-

free family over an n-element underlying set U , then

(
n
k

)
(
w
k

)2 ≤ |Fw|,

where we set k := dw/Me.

Proof. In (1985) Rödl have shown that there exists a (k, w, n)-packing for
fixed k and w, whenever n → ∞. If we set w = M(k − 1) + 1 then a
(k,M(k − 1) + 1, n)-packing P is M -cover-free, because |P ∩ P ′| ≤ k − 1
holds for all P, P ′ ∈ P , so the union of M sets can cover at most M(k − 1)
elements of the w = M(k − 1) + 1 elements of a distinct set.

If Fw is a maximal (k, w, n)-packing then for every G ∈
(
U
w

)
there is an

F ∈ Fw such that |G ∩ F | ≥ k holds (otherwise Fw ∪ G would also be a
(k, w, n)-packing, that is why Fw would not be maximal). Hence we have

(
n

w

)
≤
∑

F∈Fw

∣∣∣∣
{
G ∈

(
U

w

)
: |G ∩ F | ≥ k

}∣∣∣∣ ≤ |Fw|
(
w

k

)(
n− k

w − k

)
. (2.18)

Left-hand side inequality of (2.18) follows from the previous property that
for every G ∈

(
U
w

)
there is at least one F ∈ Fw such that |G ∩ F | ≥ k holds.

We get right-hand side inequality of (2.18) if we consider the following.
For an arbitrary F ∈ Fw there are at most

(
w
k

)(
n−k
w−k
)

sets G ∈
(
U
w

)
with

property |G∩F | ≥ k, because we can choose k elements from the w elements
of F and w − k from the other n− k elements of U .

Using

(
n

w

)(
w

k

)
=

n!w!

w! (n− w)! k! (w − k)!

=
n! (n− k)!

k! (n− k)! (w − k)! (n− k − (w − k))!

=

(
n

k

)(
n− k

w − k

)
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this yields the lower bound of |Fw|,
(
n

w

)
≤ |Fw|

(
w

k

)(
n− k

w − k

)

(
n

w

)(
w

k

)
≤ |Fw|

(
w

k

)2(
n− k

w − k

)

(
n

k

)(
n− k

w − k

)
≤ |Fw|

(
w

k

)2(
n− k

w − k

)

(
n

k

)

(
w

k

)2 ≤ |Fw|

Theorem 2.9 (Erdős et al. (1985)). If 1 ¿M ¿ T then

n(M,T ) ≤ 5.122M 2 (1 + o(1)) log T.

Proof. The upper bound is obtained from inequality of Lemma 2.14 with
setting w := α n

M
. We are looking for the optimal value of constant α. Let

us observe that maximum cardinality of an M -cover-free family is at least
the maximum cardinality of a w-uniform M -cover-free family (|Fw| ≤ |F|).
Using Theorem B.1 we can write the following.

|F| ≥

(
n

α n
M2

)

(
α n
M

α n
M2

)2

' 2nh(
α

M2 )
(
2α

n
M
h( 1

M )
)2

= 2n(h(
α

M2 )−2 α
M
h( 1

M ))

Let us simplify the exponent asymptotically in M ,

h
(
α
M2

)
− 2 α

M
h
(

1
M

)

= − α
M2 log α

M2 −
(
1 − α

M2

)
log
(
1 − α

M2

)

+ 2 α
M2 log 1

M
+ 2 α

M

(
1 − 1

M

)
log
(
1 − 1

M

)
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= α
M2 log M2

αM2 + 1
M2 log

(
1 + α

M2−α
)M2−α − 2 α

M2 log
(
1 + 1

M−1

)M−1

' α
M2 log 1

α
+
(
α
M2 − 2 α

M2

)
log e

= α
M2 log 1

α
− α

M2 log e.

Let us calculate minimum value of this expression by differentiating in α:

1
M2 log 1

α
+ α

M2 α
(
− 1
α2

)
log e − 1

M2 log e = 1
M2 log 1

α
− 2

M2 log e = 0

Solution of equation is α = e−2 ≈ 0.135, from this we get

n(M,T ) ≤ M2

α

log
1
α

− α log e
log T

∣∣∣∣∣∣
α=e−2

= 5.122M 2 log T

2.4 Code constructions

Kautz and Singleton (1964) presented a construction of constant weight codes
which can be used as ZFD codes.

We call maximum overlap or cross-correlation of a code the maximum
number of positions in which two arbitrary code words both can have 1’s.

Lemma 2.15 (Kautz and Singleton (1964)). Let wmin be the minimum
weight of code words in C. If maximum overlap (cross-correlation) between
code words is c then C is a ZFD code whose order is at least M0 given by the
following inequality:

M ≥
⌊
wmin − 1

c

⌋
= M0.

If every c-tuple appears in two or more code words of C then the order of the
code is exactly M0 (and no greater).

Proof. C is a ZFD code of order M0, because weight of all code word is at
least wmin ≥ M0c + 1, so no code word can be covered by the superposition
sum of any M0 other codewords since it overlaps each of these other code
words in no more then c positions.

If every c-tuple appears in two or more code words then for any code
word whose weight is at most (M0 + 1)c there can be found M0 + 1 other
code words whose sum covers it. Thus, C can not be ZFD code of order
M0 + 1.
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Theorem 2.10 (Kautz and Singleton (1964), cf. Erdős et al. (1985)).
Let CQ be a code over GF(Q) (Q is prime power) with parameters (nQ, k) and
code distance dQ. Replace each Q-ary symbol by Q-length one-weight binary
patterns. E.g., the mapping is the following:

0 7→ 0 . . . 001
1 7→ 0 . . . 010

...
Q− 1 7→ 1 . . . 000

where each pattern has length Q. The resulting code has

T = Qk

code words and length

n = QnQ.

The maximum order of the concatenated superimposed code C is

M ≥
⌊
nQ − 1

nQ − dQ

⌋
.

Proof. Obviously, T = |C| = |CQ| = Qk, n = QnQ. The minimum Hamming
distance of binary code is twice the Q-ary distance: d = 2dQ, and each code
word has weight w = nQ. For binary code the maximum overlap is

c = w − d

2
= nQ − dQ.

Let us consider some special cases of Kautz–Singleton code construction.

Reed–Solomon code. (cf. A et al. (1992), Erdős et al. (1985), Zinoviev
(1983)) Let CQ be a Reed–Solomon code with maximal length nQ = Q − 1.
Resulting code C has

T = Qk

code words, each has weight w = nQ = Q−1. Since Reed–Solomon code has
MDS property, dQ = nQ − k + 1, and from this

c = nQ − (nQ − k + 1) = k − 1.
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In an MDS code any k symbol may be taken as message symbols, thus each
c = k − 1-tuple is repeated exactly Q times in the binary code. So, Lemma
2.15 shows that the order of the ZFD code is exactly

M =

⌊
w − 1

c

⌋
=

⌊
Q− 2

k − 1

⌋
.

By using k = log T
logQ

we get

log T

logQ
≤ Q− 2

M
+ 1. (2.19)

If T and M are given and we would like to construct a Kautz–Singleton code
with minimal code length n = QnQ = Q(Q − 1) then we have to find the
minimal (prime power) Q satisfying this inequality.

Berlekamp–Justesen code. (cf. Berlekamp and Justesen (1974), Rocha
(1984), A et al. (1992)) Berlekamp and Justesen have given constructions of
MDS codes over GF (Q) of length nQ = Q + 1. Using such a code we can
reach better code parameters than using of Reed–Solomon code. Resulting
code C has

T = |CQ| = Qk.

code words, each has weight w = nQ = Q + 1, length n = QnQ = Q(Q + 1)
and c = k − 1. For the order of code C we get

M =

⌊
w − 1

c

⌋
=

⌊
Q

k − 1

⌋
,

and inequality (2.19) is altered to

log T

logQ
≤ Q

M
+ 1.

BCH code. (cf. Györfi and Vajda (1993)) Let CQ be a BCH code with
maximal length nQ = Qr − 1 for some r ≥ 2, then resulting code C has

T = |CQ| = Q(k−1)r+1

code words, each has weight w = nQ = Qr − 1 and length

n = QnQ = Q(Qr − 1).
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We can give lower bound for the minimum distance of CQ (cf. Blahut (1984)),

dQ ≥ Qr − 1 − (k − 1)Qr−1.

We can give lower bound for the order of C,

M ≥M0 =
nQ − 1

nQ − dQ

≥ (Qr − 1) − 1

(Qr − 1) − (Qr − 1 − (k − 1)Qr−1)

=
Qr − 2

(k − 1)Qr−1

' Q

k − 1
,

so this is approximately the same as in the case of Reed–Solomon code.
Advantage of using BCH code is that we get a huge number T for potential
users, even for small r. True enough code length n is also larger than in the
Reed-Solomon case.

Reader can find a detailed survey on code constructions in Dyachkov et
al. (2000). A promising code construction method may be the one based on
algebraic geometry codes (cf. Ericson and Zinoviev (1987), Lint and Springer
(1987)).

2.5 Performance evaluation of the Kautz–Singleton

code

One of the most popular construction of ZFD codes is the Kautz–Singleton
construction (cf. Kautz and Singleton (1964), Zinoviev (1983), Erdős et al.
(1985), Győri (2003)) which is based on a Reed–Solomon code.

Let us take a Reed–Solomon code of maximum length over GF(q) with
parameters (N = q− 1, K), so the number of code words, i.e., the number of
users is

T = qK .

This code can be mapped to a binary code by concatenating it with the
identity matrix, so each element of GF(q) is replaced by a binary pattern of
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length q and weight 1:
0 7→ 0 . . . 001,
α0 7→ 0 . . . 010,
α1 7→ 0 . . . 100,

...
αq−2 7→ 1 . . . 000,

where α is a primitive element in GF(q). In this case the binary code has
weight w = N = q− 1, length n = qN = q(q− 1) and ZFD property of order
M0 if:

M0 =

⌊
N − 1

N − dmin

⌋
=

⌊
N − 1

K − 1

⌋
=

⌊
q − 2

log T
log q

− 1

⌋
(2.20)

(cf. Kautz and Singleton (1964)) which implies that

log T

log q
≤ q − 2

M0

+ 1.

So, if T and M0 are given, then q can be calculated, which determines the
code length n, too. (Remember, that q must be a prime power.)

We would like to use such codes if more than M0 users may communicate
simultaneously. In this section the error probability will be investigated in
this case for synchronous access.

If more than M0 users are communicating in one time block, then it can
happen that the Boolean sum of the code words of some (> M0) users covers
the code word of another user. Our task is to calculate the probability of
this event, which is called error probability.

Select a user, and call it tagged user. Let U1, U2, . . . , Um be the identifiers
of the interfering users (if m users are active) which are independent random
variables. They are uniformly distributed on the set of potentially interfering
users (all users except the tagged user). For the sake of simplicity we use the
model sampling with replacement. Since for practical cases T À M , it can
be shown that the distributions for sampling with and without replacement
are close to each other (cf. Györfi, Jordán and Vajda (2000)). Let S(Ui) be
the set of positions where user Ui covers the 1’s of the tagged user. Define
Vm as the size of the set of the covered positions of the tagged user, so

Vm =

∣∣∣∣∣

m⋃

i=1

S(Ui)

∣∣∣∣∣ .

Let us denote the detection error probability by Pe(m) if exactly m users are
active in the channel. Detection error occurs if all 1’s of the tagged user are
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covered by the others. The Kautz–Singleton construction results a constant
weight binary code with weight w = q − 1, therefore

Pe(m) = P{Vm = w} = P{Vm = q − 1}.

|S(Ui)| for all i = 1, . . . ,m are independent, identically distributed random
variables, and their distribution can be calculated. Introduce the notation

P{|S(Ui)| = `} = p`, 0 ≤ ` ≤ K − 1

where
K−1∑

`=0

p` = 1.

We note that the code word of an arbitrary user can cover the code word of
the tagged user in at most K − 1 positions, so |S(Ui)| ≤ K − 1. (This is
because of the MDS property of the Reed–Solomon code. As the minimum
distance is dmin = N −K + 1, the number of identical coordinates between
two code words is at most N − dmin = K − 1.)

{Vm} forms a homogeneous Markov chain on the state space {0, 1, . . . , q−
1}, so its distribution can be calculated in a recursive way (cf. Györfi, Jordán
and Vajda (2000)). For m = 1 we have the initial distribution of the chain:

P{V1 = `} = P{|S(U1)| = `} = p` (0 ≤ ` ≤ K − 1).

{Vm} is monotonically increasing, because if we add another user to the active
set, they all together can cover at least the same number of positions than
in the previous step. The growth can be between 0 and K − 1.

The transition probability matrix of the Markov chain can be calculated
in the following way. Growth i can happen if the new user covers the code
word of tagged user in i+k positions (of course i+k ≤ K−1) from which i are
out of the previously non-covered ones and k have been previously covered.
If the number of previously covered positions is j, we need k positions out
of this j, and i positions out of the other w − j. A new user can cover the
code word of the tagged user in i+ k positions with probability pi+k. So, the
transition probability matrix contains the following values (m ≥ 2):

P{Vm = j + i | Vm−1 = j} =

min{K−1−i,j}∑

k=0

pi+k

(
w−j
i

)(
j
k

)
(
w
i+k

)

for 0 ≤ j, j + i ≤ w, 0 ≤ i ≤ K − 1.
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Remark. Since the Reed–Solomon code is linear, the difference between
the q-ary code word of the tagged user and the q-ary code word of an arbi-
trary user runs through all q-ary code words except the all 0 one, and the
number of covered positions corresponds to the number of zero positions in
the difference. If the ith position of a code word is 0, then αi is a root of
its message polynomial u(x). It is easy to prove that among the message
polynomials there are the same number having 0’s at positions i1, i2, . . . , im
and i′1, i

′
2, . . . , i

′
m (0 ≤ m ≤ K − 1), thus the code words having 0’s at a

given m-tuples are uniformly distributed on the code words having 0’s at
exactly m coordinates. If a code word has 0’s at positions i1, i2, . . . , im, then
its message polynomial is in the form of

u(x) = (x− αi1)k1(x− αi2)k2 · · · (x− αim)kmf(x)

where 1 ≤ kj for all 1 ≤ j ≤ m, f(x) is an irreducible polynomial over GF(q),
and k1 + k2 + · · · + km + deg{f(x)} ≤ K − 1. If we assign to this code word
the code word having message polynomial

u(x) = (x− αi
′
1)k1(x− αi

′
2)k2 · · · (x− αi

′
m)kmf(x)

for the same kj’s and f(x), then this is a bijection between code words having
0’s at positions i1, i2, . . . , im and i′1, i

′
2, . . . , i

′
m.

We can calculate the detection error probability for different number of
active usersm recursively as the probability of the last position of the Markov
chain:

Pe(m) = P{Vm = w}, (2.21)

and for this we only need the distribution of |S(Ui)|.

Lemma 2.16 (Győri (2004)). The distribution of |S(Ui)| is the following:

p` = P{|S(Ui)| = `} =

(
q−1
`

)
(q − 1)

K−`−1∑
k=0

(−1)k
(
q−`−2
k

)
qK−`−k−1

qK − 1

for all 0 ≤ ` ≤ K − 1.

Proof. The number of covered positions of the tagged user caused by another
user is the number of positions in the binary code words where both have 1’s.
As the Kautz–Singleton construction maps a Reed–Solomon code to binary
code by concatenation with the identity matrix, this number is equal to the
number of identical coordinates in the q-ary Reed–Solomon code words. This
is called the Hamming correlation between the two code words. Our goal is
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to calculate the distribution of the number of identical coordinates while
code word of the other user runs through all possible code words except the
tagged user’s one. Since the Reed–Solomon code is linear, this distribution
is identical to the distribution of the number of zero coordinates of the code
words except the all 0 one.

Weight distribution function of MDS codes Aw gives the number of code
words having weight w (cf. Blahut (1984)). A0 = 1 and

Aw =

(
N

w

)
(q − 1)

w−dmin∑

k=0

(−1)k
(
w − 1

k

)
qw−dmin−k

for all dmin ≤ w ≤ N , otherwise it is 0. The number of zero coordinates
trivially equals to N − w. We get probabilities p` if AN−` is divided by the
number of all possible code words except the all 0 one

p` =
AN−`
qK − 1

.

In Kautz–Singleton construction we have the minimum distance dmin = N −
K + 1 and code length N = q − 1, so p` can be calculated in the following
way:

p` =

(
q−1
`

)
(q − 1)

K−`−1∑
k=0

(−1)k
(
q−`−2
k

)
qK−`−k−1

qK − 1

Györfi, Jordán and Vajda (2000) conjectured that the distribution of Vm
is approximately Gaussian, so

Pe(m) ≈ Φ

(
−w − E{Vm}

σ {Vm}

)
.

For calculating the detection error probability the mean value and the vari-
ance of Vm is needed. Györfi, Jordán and Vajda (2000) derived such a result,
but they considered only the case when K ≤ 3. This result can be extended
to our case when K can be greater than 3.

Lemma 2.17 (Győri (2004)). The mean value and the variance of Markov
chain {Vm} are

E{Vm} = w

(
1 −

(
1 − c

w

)m)



48 Chapter 2. OR channel: synchronous access

and

σ
2 {Vm} = E{Vm}−E{Vm}2+w(w−1)

(
1 − 2

(
1 − c

w

)m
+

(
K−1∑
`=0

p`
(w−2

` )
(w

`)

)m)
,

(2.22)
where

c = E{|S(U1)|} =
K−1∑

`=1

`p`. (2.23)

Proof. As

Vm =

∣∣∣∣∣

m⋃

i=1

S(Ui)

∣∣∣∣∣ =
w∑

j=1

I{
j∈

m
S

i=1
S(Ui)

},

and random variables S(Ui) are independent, identically distributed, we get

E{Vm} =
w∑

j=1

P

{
j ∈

m⋃
i=1

S(Ui)

}

=
w∑

j=1

(1 − (1 − P{j ∈ S(U1)})m) .

One can write

P{j ∈ S(U1)} =
K−1∑

`=1

P{j ∈ S(U1) | |S(U1)| = `}P{|S(U1)| = `}

=
K−1∑

`=1

(
w−1
`−1

)
(
w
`

) p`

=
K−1∑

`=1

`p`
w

=
c

w
,

where

c = E{|S(U1)|} =
K−1∑

`=1

`p`,

so

E{Vm} = w

(
1 −

(
1 − c

w

)m)
.
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For the second moment the following is true:

E{V 2
m} = E

{(
w∑
j=1

I{
j∈

m
S

i=1
S(Ui)

}
)2
}

= E{Vm} +
∑

j 6=k
P

{
j ∈

m⋃
i=1

S(Ui), k ∈
m⋃
i=1

S(Ui)

}

= E{Vm} +
∑

j 6=k

(
1 − P

{
j /∈

m⋃
i=1

S(Ui)

}
− P

{
k /∈

m⋃
i=1

S(Ui)

}

+ P

{{
j /∈

m⋃
i=1

S(Ui)
}
∩
{
k /∈

m⋃
i=1

S(Ui)
}})

= E{Vm} + w(w − 1) ·
(

1 − 2
(
1 − c

w

)m
+

(K−1∑

`=0

p`
(w−2

` )
(w

`)

)m)
,

from which it follows that

σ
2 {Vm} = E{Vm}−E{Vm}2+w(w−1)

(
1 − 2

(
1 − c

w

)m
+

(
K−1∑
`=0

p`
(w−2

` )
(w

`)

)m)
.

Next, we give some upper bounds on detection error probability which
can be easily calculated numerically. For the first one we apply Hoeffding’s
inequality:

Lemma 2.18 (Győri (2004)). If w
m

≥ E{|S(U1)|}, then the detection error
probability can be upper bounded as

Pe(m) ≤ exp

(
−2m

“

w
m
−E{|S(U1)|}

”2

(K−1)2

)
.

Proof.

Pe(m) = P{Vm = w}

= P

{∣∣∣∣
m⋃
i=1

S(Ui)

∣∣∣∣ = w

}

≤ P

{
m∑
i=1

|S(Ui)| ≥ w

}

= P

{
1
m

m∑
i=1

(|S(Ui)| − E{|S(Ui)|}) ≥ w
m
− E{|S(U1)|}

}
.
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Let us apply Hoeffding’s inequality (Lemma B.3) to this probability with
a = 0, b = K − 1. If ε := w

m
− E{|S(U1)|} > 0 the following bound stands:

Pe(m) ≤ exp

(
−2m

“

w
m
−E{|S(U1)|}

”2

(K−1)2

)
,

otherwise we use trivial bound

Pe(m) ≤ 1,

where E{|S(U1)|} can be calculated by (2.23).

The next bound follows from Bernstein’s inequality:

Lemma 2.19 (Győri (2004)). If w
m

≥ E{|S(U1)|}, then the detection error
probability can be upper bounded as

Pe(m) ≤ exp

(
− m

“

w
m
−E{|S(U1)|}

”2

2σ2{|S(U1)|}+2
“

w
m
−E{|S(U1)|}

”

(K−1)/3

)
.

Proof. Similarly to the first part of the proof of Lemma 2.18, and then by
applying Bernstein’s inequality (Lemma B.2) an alternative upper bound
can be calculated. If ε := w

m
− E{|S(U1)|} > 0, the error probability can be

bounded

Pe(m) ≤ P

{
1
m

m∑
i=1

(|S(Ui)| − E{|S(Ui)|}) ≥ w
m
− E{|S(U1)|}

}

≤ exp

(
− m

“

w
m
−E{|S(U1)|}

”2

2σ2{|S(U1)|}+2
“

w
m
−E{|S(U1)|}

”

(K−1)/3

)

otherwise we use trivial bound

Pe(m) ≤ 1,

where σ
2 {|S(U1)|} can be calculated as

σ
2 {|S(U1)|} =

K−1∑

`=1

`2p` − c2.
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Table 2.1: Detection error probabilities for at most Mmax active users

T M0 Mmax q K n Pe Markov
105 1 1 7 6 42 0
105 2 4 11 5 110 7.952 · 10−6

105 2 6 13 5 156 8.295 · 10−6

105 7 20 23 4 506 7.686 · 10−6

105 25 85 53 3 2756 8.247 · 10−6

104 1 1 7 5 42 0
104 3 4 11 4 110 3.410 · 10−6

104 10 21 23 3 506 7.249 · 10−6

Let us suppose that the maximum number of simultaneously active users
Mmax is given. Kautz–Singleton construction guarantees error free detection
if at most M0 users are active (cf. eq. (2.20)). We have detection error if the
number of active users m is between M0 and Mmax. Because of the detection
error probability is a monotonically increasing function of the number of
active users, it can be upper bounded by applying the Markov modell (cf.
eq. (2.21)) for the worst case situation (when Mmax users are active):

Pe ≤ Pe(Mmax).

There are some code parameters for Pe ≤ 10−5 in Table 2.1. M0 denotes
the maximum number of active users for error-free detection. If we allow for
at most Mmax users to communicate simultaneously (instead of at most M0)
the detection error Pe can be seen in the last column of the table. We can
conclude that it is possible to allow the maximum number of active users
to be much bigger than the theoretical error-free limit while keeping the
detection error probability small.

Figures 2.2 and 2.3 illustrate how many users can communicate simulta-
neously as the function of the detection error probability Pe for given T = 105

and n.
Let us suppose that a user is active with probability p independently

from the others. The number of active users is the sum of T i.i.d. indica-
tor random variables, so it is binomially distributed with parameters (T, p).
Kautz–Singleton construction guarantees error free detection if the number
of active users is not greater than M0. The detection error probability can
be calculated in the following way:

P ∗
e (T,M0, p) =

T∑

m=M0+1

(
T

m

)
pm(1 − p)T−mPe(m).
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Figure 2.2: Maximum number of simultaneously active users for given detec-
tion error probability Pe, code length n and T = 105
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Figure 2.3: Maximum number of simultaneously active users for given detec-
tion error probability Pe in logarithmic scale, code length n and T = 105

Consider that the number of potential users is T = 105, Table 2.2 contains
detection error probabilities for different activities p. There are two rows for
each activity p. The first row corresponds to the conventional design resulting
the smallest code length n when detection error probability is calculated such
that Pe(m) is upper bounded simply by 1. The second row corresponds to the
design resulting the smallest code length n when detection error probability is
calculated such that Pe(m) is derived exactly from the Markov chain model.
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Table 2.2: Detection error probabilities for T = 105

p M0 q K n P ∗
e Markov P ∗

e Φ P ∗
e Hoef P ∗

e Bern
10−7 2 11 5 110 7.38 · 10−14 3.91 · 10−15 1.83 · 10−8 1.89 · 10−8

10−7 1 7 6 42 1.69 · 10−8 1.25 · 10−9 2.39 · 10−5 1.71 · 10−5

10−6 3 13 5 156 4.67 · 10−13 6.88 · 10−14 4.56 · 10−7 3.59 · 10−7

10−6 1 7 6 42 1.92 · 10−6 2.25 · 10−7 2.28 · 10−3 1.63 · 10−3

10−5 7 23 4 506 1.01 · 10−17 6.12 · 10−17 4.61 · 10−8 9.79 · 10−8

10−5 1 9 6 72 1.79 · 10−5 6.83 · 10−6 8.12 · 10−2 6.18 · 10−2

10−4 26 53 3 2756 7.60 · 10−28 1.68 · 10−22 2.28 · 10−10 7.87 · 10−9

10−4 5 19 4 342 9.65 · 10−6 2.46 · 10−5 2.76 · 10−1 2.04 · 10−1

10−3 26 53 3 2756 6.20 · 10−6 7.63 · 10−5 2.61 · 10−1 2.61 · 10−1

Table 2.3: Detection error probabilities for T = 104

p M0 q K n P ∗
e Markov P ∗

e Φ P ∗
e Hoef P ∗

e Bern
10−6 3 11 4 110 1.44 · 10−15 6.85 · 10−16 4.36 · 10−11 5.07 · 10−11

10−6 1 7 5 42 1.38 · 10−8 1.23 · 10−9 1.58 · 10−5 1.38 · 10−5

10−5 3 11 4 110 1.58 · 10−11 8.13 · 10−12 4.17 · 10−7 4.78 · 10−7

10−5 1 7 5 42 1.62 · 10−6 2.22 · 10−7 1.53 · 10−3 1.32 · 10−3

10−4 10 23 3 506 4.66 · 10−20 1.69 · 10−17 3.20 · 10−11 2.40 · 10−10

10−4 1 9 5 72 1.64 · 10−5 6.80 · 10−6 4.61 · 10−2 4.66 · 10−2

10−3 5 19 4 342 9.62 · 10−6 2.46 · 10−5 2.76 · 10−1 2.04 · 10−1

In both cases we would like to guarantee that detection error probability is
below 10−5. Table 2.3 contains detection error probabilities for T = 104.

Györfi, Jordán and Vajda (2000) found that for the collision channel the
Gaussian approximation of decoding error probability is always greater than
the exact value of Pe. In our case this is not true, however, it is a good
approximation. In the column “Pe Φ” of Tables 2.2 and 2.3 it can be seen
that for some parameters Gaussian approximation can be smaller than the
exact value of the detection error probability.
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2.6 Case study for UD(2)

2.7 Random activity



Chapter 3

OR channel: asynchronous
access

3.1 Fast frequency hopping

In this section fast frequency hopping (FFH) communications system is con-
sidered where the bandwidth is partitioned into L frequency subbands, and
time is divided into intervals called slots. There is a longer unit called frame
or block which consists of n slots.

A frequency hopping sequence (a two dimensional time–frequency binary
code word) of length n is assigned to each user that specifies the sequence
of frequency subbands in which the user is permitted to transmit a sine
waveform during a time slot. If in a particular time slot at least one user
sends a sine waveform in a frequency subband, then the receiver can detect
it. Therefore the channel output is formally a binary L×n matrix which has
a 1 at position (i, j), if there is at least one active user in subband i in the
jth time slot. This channel can be interpreted as a set of L parallel multiple
access OR channels without feedback, noise and delay. Therefore the OR
channel is a special case of FFH, when L = 1. But it is true vice versa. FFH
is the same as the communication on a multiple access OR channel with
constant weight code words. In the case of the OR channel the code words
are simple binary vectors (they are mapped from the L-ary code words by
concatenating with the identity matrix), that is why they are L times longer
than the length of hopping sequences in our case (cf. Fig. 3.1).

If the users are always active and there is a common synchronization
between the users, then the problem is trivial, with a time–frequency sharing
the utilization 1 can be achieved such that each user has an own time–
frequency slot, so T = Ln, where n is the block length.

55
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For synchronous communication Einarsson (1980) introduced the follow-
ing code. Let L be a prime power, and α be a primitive element of GF(L).
If

G =




1 1 1 · · · 1
1 α α2 · · · αN−1

...
...

...
. . .

...
1 αK−1 α2(K−1) · · · α(N−1)(K−1)


 (3.1)

denotes the generator matrix of a Reed–Solomon code with parameters (N,K)
(see (A.6)), then for K = 2 Einarsson (1980) defined the code words as

c = (m, a)G,

where a ∈ GF(L) is the address (identifier) of the user, and m ∈ GF(L) is his
message. As mentioned previously, the code word c can be represented by a
binary matrix. There are L addresses in the system, so the total number of
users is T = L, and the maximum number of active users M can be T .

If there is no synchronization, then Einarsson and Vajda (1987) intro-
duced a code for K = 3

c = (m, 1, a)G.

In this construction T = L, too, but M = L
2
.

For taking advantage of CDMA, we would like to allow much more users
T in the system than the number of subbands L, but it should be guaranteed
that only a small fraction M ¿ T of them can be active simultaneously (in
a frame), then it could be decided which users are active (identification) and
where begin their hopping sequences (synchronization). This is called the
problem of signature coding. We are looking for a code (hopping sequences)
of minimum length n(T,M,L) achieving the previous requirements.

1

L
...

1 2 n· · ·

0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0
1 · · · L · · · 2L · · · nL

m

Figure 3.1: Mapping a time–frequency code word (FFH) to a binary code
word (OR channel)
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As the minimum code length for asynchronous access is at least the min-
imum code length for synchronous access, for giving a lower bound on the
minimum code length it is enough to study here the synchronous case.

From Lemma 2.9 it follows that

T ≤M

(
Ln
n/M

)
(

n
n/M

) (3.2)

which gives a lower bound on the minimum code length. We denote by &
and . lower and upper bounds, respectively, which hold asymptotically in
case of some given conditions.

Theorem 3.1. If M,L are fixed and T → ∞, then

nasyn(T,M,L) ≥ nsyn(T,M,L) &
1

Lh
(

1
LM

)
− h

(
1
M

) log T,

where h(·) is the binary entropy function:

h(x) = −x log x− (1 − x) log(1 − x).

Proof. Let us apply Theorem B.1 on (3.2), then we get

T ≤ 2Lnh(
1

LM )−nh( 1
M )

from which the statement follows.

Next a random coding argument will be applied to give an upper bound
on the minimum code length n. By Theorem 2.7 the minimum code length
n can be upper bounded in the frame synchronous case.

Theorem 3.2. For frame synchronous access, if M,L are fixed and T → ∞,
then

nsyn(T,M,L) .
M + 1

− log
(
1 −

(
1 − 1

L

)M) log T.

In Theorem 3.3 we prove that, asymptotically, this upper bound is true
for the asynchronous case, too.

Theorem 3.3. For frame asynchronous access, if M,L are fixed and T → ∞,
then

nasyn(T,M) .
M + 1

− log
(
1 −

(
1 − 1

L

)M) log T.
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Figure 3.2: Components of the hopping sequences of the tagged user and
other active users

For the proof of this theorem, we need some lemmata and considerations.
Each user has a unique hopping sequence (code word, binary matrix) whose
components are independently chosen of each other (and of the other users),
and they are uniformly distributed on the frequency subbands 1, . . . , L.

We say that the channel output (the superposition of some code words)
covers the hopping sequence of a user if the output matrix has 1’s at all of
the positions where the user’s code word has 1’s.

The detection is done by the following algorithm. A sliding window is
used which length equals to the code length n. If, starting at a position,
the binary matrix of the channel output covers the code word of a user,
then it is declared as active (identification) beginning at this position (syn-
chronization). Obviously, two different types of errors can happen: false
identification, and false synchronization.

Remark. During the design of the code it is supposed that the decoding
algorithm does not have a memory (stateless). We have synchronization
error only when a code word is covered by the beginning of its shifted version
and some other code words. During the application of this code we use a
decoding algorithm with memory (stateful). If a user is declared as active
beginning at a given position, then he will be active in the next n time slots,
so the algorithm need not to check its coverage in the next n time slots.
Consequently, it does not cause synchronization problem if a code word is
covered by the end of its shifted version and some other code words.

In the sequel it is supposed that exactly M users are active simultaneously
(in each frame), which gives us an upper bound on the false identification
and synchronization error probabilities compared to the original case, when
at most M users are active.

Identification error occurs if (at most) M code words cover an other code
word.

Lemma 3.1. For frame asynchronous access

P{false identification} ≤ e
(M+1) lnT+M lnn+n ln

„

1−
“

1− 1
L

”M
«

(3.3)
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Proof. Let us fixM arbitrarily shifted hopping sequences and choose an (M+
1)th (tagged) hopping sequence distinctly from the others. The probability
that in a given time slot some of the other M users utilize the same subband
as the tagged user (i.e., the code word of the tagged user is covered in a given

time slot) is 1−
(
1 − 1

L

)M
. The probability that the code word of the tagged

user is covered by the other users (in all the n time slots) is
(
1 −

(
1 − 1

L

)M)n
,

then the probability that there exists a user such that its code word is covered
by another M users is at most

P{false identification} ≤
(
T

M

)
(T −M)nM

(
1 −

(
1 − 1

L

)M)n

≤ TM+1nM
(
1 −

(
1 − 1

L

)M)n

= e
(M+1) lnT+M lnn+n ln

„

1−
“

1− 1
L

”M
«

,

where the factor nM is needed because of the shift of the other hopping
sequences.

The tagged user may also among the M active users (with some shift).
We have synchronization error if the hopping sequence of the tagged user is
covered by its shifted version and the hopping sequences of the other M − 1
users.

Depending on the number of time slots d with which the hopping sequence
of the tagged user is shifted, disjoint classes of time slots D1, . . . , Dd can be
distinguished, where

Dj =
{
j + `d : ` = 0, 1, . . . , k − 1 and k =

⌊
n−j
d

⌋
+ 1
}

(j = 1, . . . , d). Each time slot belongs to exactly one class. All classes have
k =

⌊
n
d

⌋
or
⌈
n
d

⌉
elements, and |D1| + · · · + |Dd| = n.

The probability f(Dj) that in an arbitrary class of time slots Dj the code
word of the tagged user is covered, can be derived in a recursive way, starting
at the last slot. It is supposed that Dj contains k = |Dj| time slots. (We
note that the probability f(Dj) depends only on the size of Dj and not on
the actual elements of it.) For the sake of simplicity we use 1, 2, . . . , k as
slot indices instead of j, j + d, . . . , j + (k − 1)d. c` denotes the location of
the 1 for the code word of the tagged user at slot ` (` = 1, . . . , k), and let
U` = (U`(1), . . . , U`(L)) be a binary vector of length L which has 1’s in that
positions where the corresponding frequency band has at least one active of
the other users (at time slot `). As the shifted code word of the tagged user
is still not active at the first slot of the class Dj, there should be considered
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M users instead of M − 1 in the calculation of U1. (Remember, that exactly
M active users were supposed in each time slot.) Thus, for all ` = 1, . . . , k

P{c` = φ} =
1

L
,

and

P{U`(φ) = 0} =

{
(1 − 1

L
)M−1, if ` = 2, . . . , k,

(1 − 1
L
)M , if ` = 1

P{U`(φ) = 1} = 1 − P{U`(φ) = 0},

where φ = 1, . . . , L, and the components of vector U` are independent of
each other (cf. Fig. 3.2).

Lemma 3.2. If V,W and Z are independent random variables, and f(·), g(·)
are arbitrary functions, then

E{f(V,W )g(V, Z) | V } = E{f(V,W ) | V }E{g(V, Z) | V }.

Proof.

E{f(V,W )g(V, Z) | V } = E{E{f(V,W )g(V, Z) | V,W} | V }
= E{f(V,W )E{g(V, Z) | V,W} | V }
= E{f(V,W )E{g(V, Z) | V } | V }
= E{g(V, Z) | V }E{f(V,W ) | V }.

Lemma 3.3. For frame asynchronous access

P{code word of the tagged user is covered} =
(
1 −

(
1 − 1

L

)M)n
.

Proof. Let us introduce the sequence of events

A` := {time slot ` is covered}

=

{
{c`−1 = c`} ∪ {{c`−1 6= c`} ∩ {U`(c`) = 1}} , if ` = 2, . . . , k,

{U1(c1) = 1}, if ` = 1.

Thus

f(Dj) := P{all positions in Dj are covered} = P

{
k⋂
`=1

A`

}
.
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We denote by aφi (i = 1, . . . , k, φ = 1, . . . , L) the conditional probabilities
that the code word of the tagged user is covered up to the ith position (in
class Dj) given that the code word of the tagged user has φ at the ith position
(ci = φ).

aφi := P

{
i⋂

`=1

A` | ci = φ

}
.

Therefore

f(Dj) = P

{
k⋂
`=1

A`

}

=
L∑

φ=1

P

{
k⋂
`=1

A` | ck = φ

}
P{ck = φ}

=
1

L

L∑

φ=1

aφk .

Let us apply Lemma 3.2 with V = {ci−1, ci},W = {c1, . . . , ci−2,U1, . . . ,Ui−1},
Z = {Ui}, and f(V,W ) = I(i−1

T

`=1
A`

), g(V, Z) = I{Ai}. (Note, that P{B} =

E
{
I{B}

}
for an arbitrary event B.)

P

{
i−1⋂
`=1

A` ∩ Ai | ci, ci−1

}
= E



I

(

i−1
T

`=1

A`

)I{Ai} | ci, ci−1





= E{f(V,W )g(V, Z) | V }
= E{f(V,W ) | V }E{g(V, Z) | V }

= E



I

(

i−1
T

`=1
A`

) | ci, ci−1



E

{
I{Ai} | ci, ci−1

}

= P

{
i−1⋂
`=1

A` | ci, ci−1

}
P{Ai | ci, ci−1}

By using this result we have for the conditional probabilities (i ≥ 2)

aφi = P

{
i⋂

`=1

A` | ci = φ

}

= P

{
i−1⋂
`=1

A` ∩ Ai | ci = φ

}
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=
L∑

ψ=1

P

{
i−1⋂
`=1

A` ∩ Ai | ci = φ, ci−1 = ψ

}
P{ci−1 = ψ}

=
L∑

ψ=1

P

{
i−1⋂
`=1

A` | ci = φ, ci−1 = ψ

}

· P{Ai | ci = φ, ci−1 = ψ}P{ci−1 = ψ}

=
1

L
P

{
i−1⋂
`=1

A` | ci−1 = φ

}
P{Ai | ci = φ, ci−1 = φ}

+
1

L

L∑

ψ=1
ψ 6=φ

P

{
i−1⋂
`=1

A` | ci−1 = ψ

}
P{Ai | ci = φ, ci−1 = ψ}

=
1

L
P

{
i−1⋂
`=1

A` | ci−1 = φ

}
· 1

+
1

L

L∑

ψ=1
ψ 6=φ

P

{
i−1⋂
`=1

A` | ci−1 = ψ

}(
1 −

(
1 − 1

L

)M−1
)

=
1

L
aφi−1 +

1

L

(
1 − (1 − 1

L
)M−1

) L∑

ψ=1
ψ 6=φ

aψi−1.

The first slot of the class Dj is different from the others, because the
shifted code word of the tagged user is not active here.

aφ1 := P{A1 | c1 = φ}
= P{{U1(c1) = 1} | c1 = φ}
= P{U1(φ) = 1}
= 1 −

(
1 − 1

L

)M
.

Introduce the L× L matrix

A =




1 1 −
(
1 − 1

L

)M−1 · · · 1 −
(
1 − 1

L

)M−1

1 −
(
1 − 1

L

)M−1
1 · · · 1 −

(
1 − 1

L

)M−1

...
...

. . .
...

1 −
(
1 − 1

L

)M−1
1 −

(
1 − 1

L

)M−1 · · · 1



,
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then

f(Dj) =
(

1
L
, 1

L
, . . . , 1

L

) (
a1
k, a2

k, . . . , aLk
)T

=
(

1
L
, 1

L
, . . . , 1

L

)
1
L
A
(
a1
k−1, a2

k−1, . . . , aLk−1

)T

...

=
(

1
L
, 1

L
, . . . , 1

L

)
1

Lk−1A
k−1
(
a1

1, a2
1, . . . , aL1

)T

= 1
Lk−1

(
1
L
, 1

L
, . . . , 1

L

)
Ak−1




1 −
(
1 − 1

L

)M

1 −
(
1 − 1

L

)M

...

1 −
(
1 − 1

L

)M



.

For calculating the power of matrix A firstly its diagonal form is needed. It
has L eigenvalues

λ1 = L
(
1 −

(
1 − 1

L

)M)
,

λ2 = · · · = λL =
(
1 − 1

L

)M−1
,

and the corresponding eigenvectors are

v1 =
(
1, 1, · · · 1

)T
,

v2 =
(
1, −1, 0, · · · 0

)T
,

v3 =
(
1, 0, −1, · · · 0

)T
,

...

vL =
(
1, 0, 0, · · · −1

)T
.

Thus, the decomposition of matrix A is

A = VΛV−1,

where

V =




1 1 1 · · · 1

1 −1 0 · · · 0

1 0 −1 · · · 0
...

...
...

. . .
...

1 0 0 · · · −1



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Λ =




λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λ2




V−1 =




1
L

1
L

· · · 1
L

1
L

1
L
− 1 · · · 1

L

...
...

. . .
...

1
L

1
L

· · · 1
L
− 1



,

the (k − 1)th power of A is

Ak−1 = VΛk−1V−1,

where

Λk−1 =




λk−1
1 0 · · · 0

0 λk−1
2 · · · 0

...
...

. . .
...

0 0 · · · λk−1
2



,

and the probability f(Dj) is

f(Dj) =
1

Lk−1

(
1 −

(
1 − 1

L

)M)
λk−1

1

=
1

Lk−1

(
1 −

(
1 − 1

L

)M)
Lk−1

(
1 −

(
1 − 1

L

)M)k−1

=
(
1 −

(
1 − 1

L

)M)k
,

where, remember, k = |Dj|.
As the components of the code words are chosen independently of each

other, and classes Dj’s are disjoint, we have

P{code word of the tagged user is covered}

= P

{
d⋂
j=1

{all positions in Dj are covered}
}

=
d∏

j=1

P{all positions in Dj are covered}
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=
d∏

j=1

f(Dj)

=
d∏

j=1

(
1 −

(
1 − 1

L

)M)|Dj |

=
(
1 −

(
1 − 1

L

)M)
d
P

j=1
|Dj |

=
(
1 −

(
1 − 1

L

)M)n
,

which is the same as the detection error probability for the synchronous
case.

Lemma 3.4. For frame asynchronous access

P{false synchronization} ≤ e
M lnT+M lnn+n ln

„

1−
“

1− 1
L

”M
«

. (3.4)

Proof. Let us select M−1 arbitrarily shifted hopping sequences, and another
(tagged) hopping sequence which is also active, but with some shift. By
Lemma 3.3 the probability that the code word of the tagged user is covered

by the others can be upper bounded by
(
1 −

(
1 − 1

L

)M)n
, so

P{false synchronization} ≤
(

T

M − 1

)
(T −M + 1)nM

(
1 −

(
1 − 1

L

)M)n

≤ TMnM
(
1 −

(
1 − 1

L

)M)n

= e
M lnT+M lnn+n ln

„

1−
“

1− 1
L

”M
«

,

where the factor nM is needed because of the shifts of the hopping sequences.

Proof of Theorem 3.3. If a randomly chosen code C which has T hopping
sequences of length n satisfy the requirements of identification and synchro-
nization, then C can be applied for T users in communication by the fast
frequency hopping scheme. Obviously,

P{C is bad} ≤ P{false identification} + P{false synchronization}

and we need
P{C is bad} < 1,
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since then there is a good code. This gives an upper bound on minimum
length of hopping sequences n. Thus, we need the following probabilities to
tend to 0

P{false identification} → 0, (3.5)

P{false synchronization} → 0. (3.6)

If we choose the code length n to

n = (1 + δ)
M + 1

− log
(
1 −

(
1 − 1

L

)M) log T

for an arbitrary constant δ > 0, the exponents in (3.3) and (3.4) become

−(M + 1) log T

(
δ
(
1 − γ

M+1

)
ln 2 −

(
1 − 1

M+1

) ln

(
(1 + δ) M+1

− log
“

1−(1− 1
L)

M
” log T

)

log T

)
,

where constant γ = 1 and 2, respectively. Both exponents tend to −∞ when
T → ∞, that is why we have (3.5) and (3.6).

As the reasoning above is true for all arbitrarily small δ > 0, the following
asymptotic upper bound on the minimum code length n has been shown. If
T → ∞, then

nasyn(T,M,L) .
M + 1

− log
(
1 −

(
1 − 1

L

)M) log T.

3.2 Non-binary cyclically permutable codes

Similarly to the Kautz-Singleton code for OR channel, for fast frequency
hopping, any L-ary code can be considered. However, for asynchronous access
the codewords should be cyclically different. Gilbert (1963) has defined a
cyclically permutable code to be a block code of block length n such that
each codeword has n distinct cyclic shifts and such that no codeword can be
obtained by cyclic shifting, one or more times, of another codeword.

More formally, let C be a block code then the cyclic minimum distance
dcyc of C is defined as

dcyc = min

{
min

c∈C,0<τ<n
d(c, Sτc), min

c 6=c′∈C,0≤τ<n
d(c, Sτc′)

}
,
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therefore C is cyclically permutable if

dcyc > 0.

Unfortunately, a linear code C is not cyclically permutable, since it con-
tains the all 0 codeword, thus its cyclic distance is 0.

Constructing a cyclically permutable code, an obvious idea is to start
with a linear cyclic code C. The codewords c and c′ are said to be in the
same equivalence class if Sτc = c′ for some 0 < τ < N . Let C ′ be a subcode
of C such that the codewords of C ′ lie in distinct cyclic equivalence classes
and each of these classes contains n codewords (Gilbert (1963), Maracle,
Wolverton (1974), Neumann (1964)). If dmin is the minimum distance of C,
and dcyc is the cyclic distance of C ′ then

dcyc ≥ dmin.

There are two problems with this construction:
(i) it is fairly laborous, it is not easily implementable,
(ii) it is hard to know a lower bound on |C ′|.

We now show a general way for constructing cyclically permutable codes,
which is a nonlinear subcode of a linear cyclic code.

Let C be a linear cyclic code with minimum distance dmin. Assume an
orthogonal decomposition

C = C ′ + C ′⊥

such that both C ′ and C ′⊥ are cyclic, and C ′⊥ contains a codeword c∗ which
has n distinct cyclic shifts. Put

C∗ = C ′ + c∗.

Theorem 3.4. The code C∗ is cyclically permutable with cyclic distance at
least dmin and

|C∗| = |C ′|.

Proof. Consider two codewords from C∗:

c = c1 + c∗

and
c′ = c2 + c∗

(c1, c2 ∈ C ′), where either 0 < τ < n or c1 6= c2. Then

d(c, Sτc′) = w(c − Sτc′) = w(c1 − Sτc2 + c∗ − Sτc∗).
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If 0 < τ < n then c∗−Sτc∗ 6= 0 and is from C ′⊥, and because of c1−Sτc2 ∈ C ′

c1 − Sτc2 + c∗ − Sτc∗ 6= 0,

and therefore
w(c1 − Sτc2 + c∗ − Sτc∗) ≥ dmin.

If τ = 0 and c1 6= c2 then

c1 − Sτc2 + c∗ − Sτc∗ = c1 − c2 6= 0,

and again
w(c1 − Sτc2 + c∗ − Sτc∗) ≥ dmin.

For two code words c1 and c2, denote by

c(c1, c2)

the correlation of c1 and c2, i.e. it is the number of positions, where both c1

and c2 have 1, then the cyclic maximum correlation ccyc of C is defined as

ccyc = max

{
max

c∈C,0<τ<n
c(c, Sτc), max

c 6=c′∈C,0≤τ<n
c(c, Sτc′)

}
.

Because of
c(c1, c2) = n− d(c1, c2)

we have that
ccyc = n− dcyc.

Similarly to the synchronous access, if

Mccyc < n

then the code can serve M active users for asynchronous access, too.

3.3 A subcode of a Reed-Solomon code for

fast frequency hopping

As an application of Theorem 3.4, assume that L = q is a prime power, and
let C be a Reed-Solomon code over GF (q) with parameters (n = q − 1, K).
Introduce the subcode

C∗ = {c = (x0, 1, x2, . . . , xK−1)G}.
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Using the notations of Theorem 3.4, we can get C∗ if

C ′ = {c = (x0, 0, x2, . . . , xK−1)G}

and
C ′⊥ = {c = (0, x1, 0, . . . , 0)G}

and
c∗ = (0, 1, 0, . . . , 0)G = (1, α, α2, . . . , αn−1),

where G has been defined by (3.1). Then for the user population size we
have

T = qK−1,

moreover, Theorem 3.4 implies that

ccyc = n− dcyc ≤ n− (n−K + 1) = K − 1.

In fact, using the argument of ?????? one can prove that

ccyc = K − 1.

This code with K = 3 is due to Vajda and Einarsson (1987), its modi-
fications are investigated in A, Györfi, Massey (1992), Györfi, Vajda (1993)
and Vajda (1995).

3.4 A subcode of a BCH code for fast fre-

quency hopping

In a similar way we can construct a subcode of BCH code for fast frequency
hopping with asynchronous access. Apply the notations of Section A.8. For
a prime p put q = p, and let C be a BCH code over GF (p) of length

n = pr − 1

defined by the parity check polynomial

h(x) = l.c.m.{M0(x),M1(x),M2(x), . . . ,MK−1},

where 3 ≤ K < p− 1 and if α is a primitive element of GF(pr), then Mi(x)
denotes the minimal polynomial of αi over GF (p). Because of 3 ≤ K < p−1

h(x) = M0(x)
K−1∏

j=1

Mj(x).
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Consider two other BCH codes with the same length. The code C ′ has the
parity check polynomial

h0(x) = M0(x)
K−1∏

j=2

Mj(x),

while the code C ′⊥ has the parity check polynomial

h1(x) = M1(x).

Zierler (1959) proved that
C = C ′ + C ′⊥.

α is a primitive element of GF (pr) and h1(x) = M1(x) is the minimal poly-
nomial of α, therefore M1(x) is a primitive polynomial, so C ′⊥ contains an
m-sequence c∗, which implies that the cyclic shifts of c∗ are all different (cf.
Theorem 7.44 in Lidl, Niederreiter (1986)). Define C∗ by

C∗ = C ′ + c∗.

It is easy to see that the population size is

T = |C∗| = p(K−2)r+1.

Theorem 3.4 and (A.13) imply that

dcyc ≥ dmin ≥ pr − 1 − (K − 1)pr−1,

therefore
ccyc = n− dcyc ≤ (K − 1)pr−1.

This code is introduced in Györfi, Vajda (1993).

3.5 Asynchronous OR channel

Although the OR channel is a special case of FFH when the number of
frequency subbands is one (L = 1), it is impossible the simply adapt the
results of Section 3.1 to the OR channel. The problem is that the random
code construction applied there does not work for L = 1. An other adaptation
attempt would be the mapping of the code words of FFH to binary code words
by concatenating them with the identity matrix. Unfortunately, in the case
of asynchronous OR channel the time shift can be any multiple of a time
slot and not just any multiple of L times the time slot (as in the case of
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FFH). Therefore we can not construct independent classes of time slots. So,
another random code construction should be used.

If frame asynchronous access is assumed, the coding method have to
ensure not just the identification but the synchronization, too. In Theorem
2.8 it was given an upper bound on minimum code length nsyn(T,M) in the
case of synchronous access.

nsyn(T,M) . e ln 2 (M + 1)2 log T.

In this section we give upper bound on nasyn(T,M), and show that the bounds
for synchronous and asynchronous access are asymptotically equal.

Theorem 3.5. For frame asynchronous access, if M is fixed and T → ∞

nasyn(T,M) . e ln 2 (M + 1)2 log T

The detection is done by the following algorithm. A sliding window is used
which length equals to the code length n. If, starting at a position, the binary
vector of the channel output covers the code word of a user, then it is de-
clared as active (identification) beginning at this position (synchronization).
Obviously, two different types of errors can happen: false identification, and
false synchronization.

Remark. During the design of the code it is supposed that the decoding
algorithm does not have a memory (stateless). We have synchronization
error only when a code word is covered by the beginning of its shifted version
and some other code words. During the application of this code we use a
decoding algorithm with memory (stateful). If a user is declared as active
beginning at a given position, then he will be active in the next n time slots,
so the algorithm need not to check its coverage in the next n time slots.
Consequently, it does not cause synchronization problem if a code word is
covered by the end of its shifted version and some other code words.

In the sequel it is supposed that exactly M users are active simultaneously
(in each time slot), which gives us an upper bound on the covering probabil-
ities compared to the original case, when at most M users are active.

Identification error occurs if the Boolean sum of the code words of the
active users covers the code word of an other user.

Lemma 3.5. For frame asynchronous access, if p = 1
M+1

P{false identification} ≤ e(M+1) lnT+M lnn− n
M+1

e−1

.
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Figure 3.3: Bits of the tagged user and other active users

Proof. As the bits of the code words of the users are chosen independently of
each other, the identification error probability can be similarly calculated as
in Theorem 2.8. Let us select M arbitrarily shifted code words, and another
(tagged) code word. The probability that in a given position the tagged code
word has an uncovered 1 is p(1 − p)M . Therefore

P{false identification} ≤
(
T

M

)
(T −M)nM

(
1 − p(1 − p)M

)n
,

where the factor nM is needed because of the shift of the code words. Let
p := 1

M+1
, then

P{false identification} ≤
(
T

M

)
(T −M)nM

(
1 − 1

M+1

(
1 − 1

M+1

)M)n

≤ TM+1nM
(
1 − e−1

M+1

)n

≤ TM+1nMe−
n

M+1
e−1

= e(M+1) ln 2 log T+M lnn− n
M+1

e−1

, (3.7)

where we applied that
(
1 − 1

M+1

)M ≥ e−1, and 1 + x ≤ ex for all x ∈ R.

Synchronization error occurs if a code word is covered by the shifted
version of itself and some other active users. Depending on the number of
bits d with which the code word of the tagged user is shifted, disjoint classes
of positions D1, . . . , Dd can be distinguished, where

Dj = {j + `d : ` = 0, 1, . . . , k − 1 and k =
⌊
n−j
d

⌋
+ 1}

(j = 1, . . . , d). Each position belongs to exactly one class. All classes have
k =

⌊
n
d

⌋
or
⌈
n
d

⌉
elements, and |D1| + · · · + |Dd| = n.

The probability f(Dj) that in an arbitrary class of positionsDj the tagged
user has no uncovered 1’s, can be derived in a recursive way, starting at the
last position. It is supposed that Dj contains k = |Dj| positions. (We note
that the probability f(Dj) depends only on the size of Dj and not on the
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actual elements of it.) For the sake of simplicity we use 1, 2, . . . , k as position
indices instead of j, j + d, . . . , j + (k − 1)d. c` denotes the component of the
code word of the tagged user at position ` (` = 1, . . . , k), and let U` be 0 if
and only if all the other users have 0 at this position (else it is 1). As the
shifted code word of the tagged user is still not active at the first position
of the class Dj, there should be considered M users instead of M − 1 in the
calculation of U1. (Remember, that exactly M active users were supposed in
each position.) That is why for all ` = 1, . . . , k

P{c` = 0} = 1 − p, P{c` = 1} = p,

and

P{U` = 0} =

{
(1 − p)M−1, if ` = 2, . . . , k,

(1 − p)M , if ` = 1

P{U` = 1} = 1 − P{U` = 0}

(cf. Fig. 3.3).

Lemma 3.6. For frame asynchronous access, if p = 1
M+1

P{code word of the tagged user is covered} ≤
(
1 − p(1 − p)M

)n
.

Proof. Let us introduce the sequence of events

A` := {position ` is covered}

=

{
{c`−1 = 1} ∪ {{c`−1 = 0} ∩ {c` = 1, U` = 0}c} , if ` = 2, . . . , k,

{c1 = 1, U1 = 0}c, if ` = 1,

where { }c denotes the complement of an event. Thus

f(Dj) := P{all 1’s in class Dj are covered} = P

{
k⋂
`=1

A`

}
.

We denote by aφi (i = 1, . . . , k, φ = 0, 1) the conditional probabilities
that there is no uncovered 1 up to the ith position given that the tagged user
has a 0 (φ = 0) or 1 (φ = 1) at the ith position (ci = 0 or 1), respectively.

aφi := P

{
i⋂

`=1

A` | ci = φ

}
.
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Hence

f(Dj) = P

{
k⋂
`=1

A`

}

= P

{
k⋂
`=1

A` | ck = 1

}
P{ck = 1} + P

{
k⋂
`=1

A` | ck = 0

}
P{ck = 0}

= pa1
k + (1 − p)a0

k.

Let us apply Lemma 3.2 with V = {ci−1, ci},W = {c1, . . . , ci−2, U1, . . . , Ui−1},
Z = {Ui}, and f(V,W ) = I(i−1

T

`=1
A`

), g(V, Z) = I{Ai}. (Note, that P{B} =

E
{
I{B}

}
for an arbitrary event B.)

P

{
i−1⋂
`=1

A` ∩ Ai | ci, ci−1

}
= E



I

(

i−1
T

`=1
A`

)I{Ai} | ci, ci−1





= E{f(V,W )g(V, Z) | V }
= E{f(V,W ) | V }E{g(V, Z) | V }

= E



I

(

i−1
T

`=1
A`

) | ci, ci−1



E

{
I{Ai} | ci, ci−1

}

= P

{
i−1⋂
`=1

A` | ci, ci−1

}
P{Ai | ci, ci−1}

By using this result we have for the conditional probabilities (i ≥ 2)

aφi = P

{
i⋂

`=1

A` | ci = φ

}

= P

{
i−1⋂
`=1

A` ∩ Ai | ci = φ

}

=
1∑

ψ=0

P

{
i−1⋂
`=1

A` ∩ Ai | ci = φ, ci−1 = ψ

}
P{ci−1 = ψ}

=
1∑

ψ=0

P

{
i−1⋂
`=1

A` | ci = φ, ci−1 = ψ

}
P{Ai | ci = φ, ci−1 = ψ}P{ci−1 = ψ}

=
1∑

ψ=0

aψi−1P{Ai | ci = φ, ci−1 = ψ}P{ci−1 = ψ},
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thus

a1
i = pa1

i−1 + (1 − p)
(
1 − (1 − p)M−1

)
a0
i−1,

a0
i = pa1

i−1 + (1 − p)a0
i−1.

The first position of the class Dj is different from the others, because the
shifted code word of the tagged user is not active here.

aφ1 := P{A1 | c1 = φ}
= P{{c1 = 1, U1 = 0}c | c1 = φ}
= 1 − P{c1 = 1, U1 = 0 | c1 = φ},

so

a1
1 = 1 − (1 − p)M ,

a0
1 = 1.

Introduce the notation

A =

(
p (1 − p)(1 − (1 − p)M−1)
p 1 − p

)
,

then

f(Dj) =
(
p, 1 − p

)(a1
k

a0
k

)

=
(
p, 1 − p

)
A

(
a1
k−1

a0
k−1

)

...

=
(
p, 1 − p

)
Ak−1

(
a1

1

a0
1

)

=
(
p, 1 − p

)
Ak−1

(
1 − (1 − p)M

1

)
.

For calculating the power of matrix A firstly its diagonal form is needed. It
has two eigenvalues

λ1 =
1

2
+

1

2

√
1 − 4p(1 − p)M ,

λ2 =
1

2
− 1

2

√
1 − 4p(1 − p)M ,
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and the corresponding eigenvectors are

v1 =
(
λ1−1+p

p
, 1

)T
, v2 =

(
λ2−1+p

p
, 1

)T
.

Thus, the decomposition of matrix A is

A =

(
λ1−1+p

p
λ2−1+p

p

1 1

)(
λ1 0

0 λ2

)(
p

λ1−λ2
−λ2−1+p

λ1−λ2

− p
λ1−λ2

λ1−1+p
λ1−λ2

)
,

the (k − 1)th power of A is

Ak−1 =

(
λ1−1+p

p
λ2−1+p

p

1 1

)(
λk−1

1 0

0 λk−1
2

)(
p

λ1−λ2
−λ2−1+p

λ1−λ2

− p
λ1−λ2

λ1−1+p
λ1−λ2

)
,

and the probability f(Dj) is

f(Dj) =
(
1 +

√
1 − 4q

)k−2

2−(k−2)

( 1
2
− 2q + q2

√
1 − 4q

+
1

2
− q

)

−
(
1 −

√
1 − 4q

)k−2

2−(k−2)

( 1
2
− 2q + q2

√
1 − 4q

− 1

2
+ q

)
,

where q = p(1 − p)M . Notice, that 0 ≤ q ≤ 4
27

≈ 0.148 for all M ≥ 2 and
p = 1

M+1
. By considering that for such a q

( 1
2
− 2q + q2

√
1 − 4q

− 1

2
+ q

)
≥ 0,

and ( 1
2
− 2q + q2

√
1 − 4q

+
1

2
− q

)
≤ (1 − q)2,

f(Dj) can be upper bounded

f(Dj) ≤
(
1 +

√
1 − 4q

)k−2

2−(k−2)(1 − q)2

=

(
1

2
+

√
1

4
− q

)k−2

(1 − q)2

≤ (1 − q)k−2 (1 − q)2

= (1 − q)k

=
(
1 − p(1 − p)M

)k
. (3.8)
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If M = 1 and p = 1
M+1

, then

f(Dj) =
(

1
2
, 1

2

)
(

1
2

0

1
2

1
2

)k−1(1
2

1

)

=
(

1
2
, 1

2

)
(

1
2k−1 0

k−1
2k−1

1
2k−1

)(
1
2

1

)

=
k + 2

2k+1

≤
(

3

4

)k
,

where 1 − p(1 − p)M = 3
4

for M = 1, so inequality (3.8) is true for M = 1,
too.

As the components of the code words are chosen independently of each
other, and classes Dj’s are disjoint, we have

P{code word of the tagged user is covered}

= P

{
d⋂
j=1

{all 1’s in class Dj are covered}
}

=
d∏

j=1

P{all 1’s in class Dj are covered}

=
d∏

j=1

f(Dj)

≤
d∏

j=1

(
1 − p(1 − p)M

)|Dj |

=
(
1 − p(1 − p)M

) d
P

j=1
|Dj |

=
(
1 − p(1 − p)M

)n
,

which is the same as the covering probability for the synchronous case.

Lemma 3.7. For frame asynchronous access, if p = 1
M+1

P{false synchronization} ≤ eM lnT+M lnn− n
M+1

e−1

.
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Proof. Let us selectM−1 arbitrarily shifted code words, and another (tagged)
code word which is also active, but with some shift. By Lemma 3.6 the prob-
ability that in a class of positions Dj all the 1’s of the tagged code word
are covered can be upper bounded by

(
1 − p(1 − p)M

)n
. As the classes are

independent of each other, from (3.8) it follows that

P{false synchronization} ≤
(

T

M − 1

)
(T −M + 1)nM

(
1 − p(1 − p)M

)n
,

where the factor nM−1 is needed because of the shift of the code words. Let
p := 1

M+1
, then

P{false identification} ≤
(

T

M − 1

)
(T −M + 1)nM

(
1 − 1

M+1

(
1 − 1

M+1

)M)n

≤ TMnM
(
1 − e−1

M+1

)n

≤ TMnMe−
n

M+1
e−1

= eM lnT+M lnn− n
M+1

e−1

. (3.9)

Proof of Theorem 3.5. If a randomly chosen code C which has T code words
of length n satisfy the requirements of identification and synchronization,
then C can be applied for T users in communication via a multiple-access
OR channel. Obviously,

P{C is bad} ≤ P{false identification} + P{false synchronization}
and we need

P{C is bad} < 1,

since then there is a good code. This gives an upper bound on minimum
code length n. Thus, we need the following probabilities to tend to 0

P{false identification} → 0, (3.10)

P{false synchronization} → 0. (3.11)

If we choose p = 1
M+1

, and the code length n to

n = (1 + δ)e ln 2 (M + 1)2 log T

for an arbitrary constant δ > 0, the exponents in (3.10) and (3.11) become

−(M+1) log T

(
δ
(
1 − γ

M+1

)
ln 2−

(
1 − 1

M+1

) ln ((1 + δ)e ln 2(M + 1)2 log T )

log T

)
,
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where constant γ = 1 and 2, respectively. Both exponents tend to −∞ when
T → ∞, that is why we have (3.10) and (3.11).

As the reasoning above is true for all arbitrarily small δ > 0, the following
asymptotic upper bound on the minimum code length n has been shown

nasyn(T,M) . e ln 2 (M + 1)2 log T.

3.6 Binary cyclically permutable codes

In order to construct binary cyclically permutable codes, firstly we study the
cyclic concatenations of two cyclically permutable codes. Assume two cycli-
cally permutable codes Cout and Cinn, and their cyclic concatenation results
in a cyclically permutable code. The idea of cyclic concatenation dates back
to Burton and Weldon (1965). They showed that the cyclic concatenation of
two cyclic codes is cyclic.

The operator cyclic ordering can be formulated as follows: let A be an
m× n array

A =



a0,0 . . . a0,n−1
...

. . .
...

am−1,0 . . . am−1,n−1




and assume that
gcd(m,n) = 1.

The cyclic ordering of the array A is a map of A into an N -tuple

b = (b0, b1, . . . , bN−1)

such that
N = nm

and
bi = aimodm,imodn.

We show that because of gcd(m,n) = 1 this mapping is one-to-one. If there
were 0 ≤ i < i′ ≤ N − 1 such that

imodm = i′ modm

and
imodn = i′ modn,
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then
m|i′ − i

and
n|i′ − i,

therefore because of gcd(m,n) = 1

mn|i′ − i,

which is impossible since 0 < i′ − i < N = nm.
Let R denote the operator that shifts the columns of an m × n array

cyclically one position rightwards, and let D denote the operator that shifts
the rows cyclically one position downards.

Lemma 3.8. (A, Györfi, Massey (1992)) If b is the cyclic ordering of A
then

RD(A) = DR(A)

and S(b) is the cyclic ordering of RD(A).

Proof.

S(b)i = bi−1 modmn

= a(i−1 modmn) modm,(i−1 modmn) modn

= ai−1 modm,i−1 modn,

which is the (i, i)-th element of RD(A).
For the cyclic concatenation let Cout be the outer code with length n,

alphabet Fout and cyclic distance dout, and let Cinn be the inner code with
length m, alphabet Finn and cyclic distance dinn. Assume that

|Fout| ≤ |Cinn|,
so the concatenation of the two codes is possible. Choose an arbitrary sub-
code C of Cinn with

|Fout| = |C|.
Let

f : Fout → C
be an arbitrary one-to-one mapping.

The cyclic concatenation of Cout and Cinn consists of three steps:
i) Choose c ∈ Cout, (c = (c0, c1, . . . , cn−1)).
ii) Write f(c0), f(c1), . . . , f(cn−1) into an array A as columns:

A = [f(c0)
T , f(c1)

T , . . . , f(cn−1)
T ].

iii) Generate the cyclic ordering b of A.



3.6. Binary cyclically permutable codes 81

We say that b corresponds to c. The set of these b vectors is denoted by
C∗, and called the cyclic concatenation of Cout and Cinn.

If Cinn is binary then C∗ is binary, too.

Theorem 3.6. The code C∗ is cyclically permutable with cyclic distance at
least doutdinn, with length nm and

|C∗| = |Cout|.

Proof. Let b,b′ ∈ C∗ be arbitrary with the correspondences

c → A → b

and
c′ → A′ → b′

(c, c′ ∈ Cout). Introduce the notations

τ1 = τ modn

and
τ2 = τ modm.

Then by Lemma 3.8

d(b, Sτb′)

= d(A, (DR)τA′)

= d(A, DτRτA′)

= d(A, Dτ2Rτ1A′)

= d([f(c0)
T , . . . , f(cn−1)

T ], [Sτ2f((Sτ1c′)0)
T , . . . , Sτ2f((Sτ1c′)n−1)

T ]).

Case a): Either 0 < τ1 or c 6= c′.
Select the positions i for which ci 6= (Sτ1c′)i. The number of these positions
is at least dout. Then we lower bound

d([f(c0)
T , . . . , f(cn−1)

T ], [Sτ2f((Sτ1c′)0)
T , . . . , Sτ2f((Sτ1c′)n−1)

T ])

by the Hamming distance of columns corresponding to these positions. Then
because of ci 6= (Sτ1c′)i

d(f(ci)
T , Sτ2f((Sτ1c′)i)

T ) ≥ dinn,

therefore

d([f(c0)
T , . . . , f(cn−1)

T ], [Sτ2f((Sτ1c′)0)
T , . . . , Sτ2f((Sτ1c′)n−1)

T ])

≥ doutdinn.
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Case b): τ1 = 0 and c = c′.
Then because of τ > 0 therefore we have τ2 > 0 and

d([f(c0)
T , . . . , f(cn−1)

T ], [Sτ2f((Sτ1c′)0)
T , . . . , Sτ2f((Sτ1c′)n−1)

T ])

= d([f(c0)
T , . . . , f(cn−1)

T ], [Sτ2f(c0)
T , . . . , Sτ2f(cn−1)

T ])

≥ ndinn

≥ doutdinn.

For another construction, let C be a linear cyclic code with minimum
distance dmin, with length n and with alphabet Fout. Assume an orthogonal
decomposition

C = C ′ + C ′⊥

such that both C ′ and C ′⊥ are cyclic, and C ′⊥ contains a codeword c∗ which
has N distinct cyclic shifts and contains the all 1 codeword 1. Put

Cout = C ′ + c∗.

Then bacause of Theorem 3.4 Cout is cyclically permutable with cyclic dis-
tance

dcyc ≥ dmin

and
|Cout| = |C ′|.

Assume, moreover, a cyclically permutable code C̃ with cyclic distance dinn,
lengthm, alphabet Finn. Let Cinn be the set of all cyclic shifts of all codewords
in C̃. Assume that

|Fout| ≤ |Cinn|
and let f(a) be a one-to-one mapping of |Fout| to a subcode of Cinn with the
property

Sf(a) = f(a+ 1). (3.12)

Let C∗ be the cyclic concatenation of Cout and Cinn. Again, if Cinn is binary
then C∗ is binary, too.

Theorem 3.7. The code C∗ is cyclically permutable with cyclic distance at
least doutdinn, with length nm and

|C∗| = |Cout|.
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Proof. The proof is similar to the proof of Theorem 3.6. Let b,b′ ∈ C∗ be
arbitrary with the correspondences

c → A → b

and

c′ → A′ → b′

(c, c′ ∈ Cout). Introduce the notations

τ1 = τ modn

and

τ2 = τ modm.

Then by Lemma 3.8

d(b, Sτb′)

= d(A, Dτ2Rτ1A′)

= d([f(c0)
T , . . . , f(cn−1)

T ], [Sτ2f((Sτ1c′)0)
T , . . . , Sτ2f((Sτ1c′)n−1)

T ])

= d([f(c0)
T , . . . , f(cn−1)

T ], [f((Sτ1c′ + τ21)0)
T , . . . , f((Sτ1c′ + τ21)n−1)

T ]).

If

[f(c0)
T , . . . , f(cn−1)

T ]

and

[f((Sτ1c′ + τ21)0)
T , . . . , f((Sτ1c′ + τ21)n−1)

T ]

differ in l columns then

d([f(c0)
T , . . . , f(cn−1)

T ], [f((Sτ1c′+τ21)0)
T , . . . , f((Sτ1c′+τ21)n−1)

T ]) ≥ ldinn.

We show that

l ≥ dout.

Obviously

l = d(c, Sτ1c′ + τ21).

Put

c = c1 + c∗

and

c′ = c2 + c∗
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(c1, c2 ∈ C ′), and

d(c, Sτ1c′ + τ21)

= w(c − Sτ1c′ − τ21)

= w(c1 − Sτ1c2 + c∗ − Sτ1c∗ − τ21).

Then
c1 − Sτ1c2 ∈ C ′

and
c∗ − Sτ1c∗ − τ21 ∈ C ′⊥,

so it suffices to show that at least one of these two codewords is not 0.
Case a): τ > 0.
The codewords c∗ − Sτ1c∗ and −τ21 are linearly independent so their sum
c∗−Sτ1c∗−τ21 can be 0 if and only if both c∗−Sτ1c∗ and −τ21 are 0, which
is possible if and only if τ1 = 0 and τ2 = 0. However, this cannot happen
because of τ > 0.
Case b): τ = 0 and c1 6= c2.
Then

c1 − Sτ1c2 = c1 − c2 6= 0.

3.7 Construction derived from a Reed-Solomon

code for OR channel

Let’s use the notations of Section 3.3. As an application of Theorem 3.7,
assume that L = p is a prime, and let C be a Reed-Solomon code over GF (p)
with parameters (n = p− 1, K). Using the notations of Theorem 3.7, we can
get Cout if

C ′ = {c = (0, 0, x2, . . . , xK−1)G}
and

C ′⊥ = {c = (x0, x1, 0, . . . , 0)G}
and

c∗ = (0, 1, 0, . . . , 0)G = (1, α, α2, . . . , αn−1),

where G has been defined by (3.1). The vector 1 is the first row of G,
therefore the code

Cout = {c = (0, 1, x2, . . . , xK−1)G}
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satisfy the the conditions of Theorem 3.7, and for the user population size
we have

T = qK−2.

Put
Cinn = GF (p),

and let f(a) be a binary vector of length m = p having 1 only at position a.
p is prime, therefore the map f(a) has the property (3.12). Thus, we get a
binary code of length

N = nm = (p− 1)p,

and Theorem 3.7 implies that

dcyc ≥ doutdinn = (n−K + 1)2 = (p−K)2,

therefore
ccyc = N − dcyc ≤ (p− 1)p− (p−K)2.

This code is due to A, Györfi, Massey (1992).

3.8 Construction derived from a BCH code

for OR channel

Apply the notations of Section 3.4. For a prime p, let C be a BCH code over
GF (p) of length

n = pr − 1

defined by the parity check polynomial

h(x) = l.c.m.{M0(x),M1(x),M2(x), . . . ,MK−1},

where 3 ≤ K < p− 1 and if α is a primitive element of GF(pr), then Mi(x)
denotes the minimal polynomial of αi over GF (p). Because of 3 ≤ K < p−1
and M0(x) = x− 1.

h(x) = (x− 1)
K−1∏

j=1

Mj(x).

Consider two other BCH codes with the same length. The code C ′ has the
parity check polynomial

h0(x) =
K−1∏

j=2

Mj(x),
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while the code C ′⊥ has the parity check polynomial

h1(x) = M0(x)M1(x) = (x− 1)M1(x).

Then in Section 3.4 we proved that

C = C ′ + C ′⊥,

C ′⊥ contains the vector 1 and a vector c∗ such that the cyclic shifts of c∗ are
all different. Define Cout by

Cout = C ′ + c∗.

It is easy to see that the population size is

T = |C∗| = p(K−2)r.

Theorem 3.4 and (A.13) imply that

dout ≥ dmin ≥ pr − 1 − (K − 1)pr−1.

Let Cinn and f(a) be as in Section 3.7, then we get a binary code of length

N = nm = (pr − 1)p,

and Theorem 3.7 implies that

dcyc ≥ doutdinn = (pr − 1 − (K − 1)pr−1)2,

therefore

ccyc = N − dcyc ≤ (pr − 1)p− (pr − 1 − (K − 1)pr−1)2.

This code is introduced in Györfi, Vajda (1993).



Chapter 4

Collision channel

4.1 Channel model

The concept of collision channel has been introduced by Massey and Mathys
(1985). A T user multiple access collision channel is a deterministic channel
without feedback which has T inputs (xi, i ∈ [T ]) and one output (y). The
traffic to send over this common channel is in the form of packets that are
assumed to take values from the input alphabet I. Each user can send an
arbitrary packet from the input alphabet I into the channel or if a user wants
to be silent, then he formally sends the ∅ symbol. The output of the channel
can be ∅ if all users were silent, an element of I if exactly one user sent this
element and the others were silent, and the so called erasure (collision) symbol
∗ otherwise. The time axis is assumed to be partitioned into intervals called
slots (slotted channel) whose duration corresponds to the transmission time
for one packet. There is a longer unit called frame or block which consists of
n slots. In Section 4.3 frame synchronization is assumed, so frames of users
begin at the same slots (no time shift), while in Sections 4.2 and 4.4 we study
the frame asynchronous case.

There is no feedback available to inform the senders of the channel outputs
in previous slots. If the user population is finite (T ), then the coding can be
done by a finite set of protocol sequences assigned in a one-to-one manner
to the users. Each user, e.g., the ith user has a protocol sequence qi which
is a binary sequence of length n that controls his sending of packets in the
following way. When user i becomes active—after some time of inactivity—
he can send a packet in the jth slot of this activity frame (1 ≤ j ≤ n) if
qi has a 1 in the jth position, and otherwise he must be silent in this slot.
He continues to use his protocol sequence periodically in this manner, until
he has no more packets to send, when he again becomes inactive. If qi has

87
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Hamming weight w(qi), then user i will send w(qi) packets in each frame of
length n slots where he is active. The protocol sequences can be considered
as an outer code.

Let A be the set of messages of user i and suppose that |A| = S. User

i encodes each message aj ∈ A into a code word c
(i)
j ∈ C(i) of length w(qi)

(j ∈ [S], i ∈ [T ]). The components of c
(i)
j are sent according to the protocol

sequence qi. C(i) is called the code of user i. If the protocol sequences have
the same weight, then C(i) can be the same for all users. Because of collisions,
some packets are erased during the transmissions, and these erasure errors
are corrected using C(i). C(i) is the inner code.

If all the T users were active all the time, then—for synchronous access—
the time sharing would be the best solution for them (for large T ) which
is not interesting in this case. Let us suppose that at most M users would
like to communicate simultaneously (2 ≤ M ¿ T ). Our task is to choose
codes C(i) and protocol sequences qi such that from the output of the channel
it can be determined which users were active (identification), where their
code words begin (synchronization) and what they sent (decoding). We are
looking for the minimum frame size n = n(T,M, S) which still ensures these
requirements.

Massey and Mathys (1985)) constructed an optimal code with n = MM

for T = M and asynchronous access. Tsybakov and Likhanov (1983) ex-
tended it for M < T with n = TM . A, Györfi, Massey (1992) and Györfi,
Vajda (1993) presented cyclically permutable codes for collision channel.

On the minimum frame size n we derive lower and upper bounds asymp-
totically with the following conditions: T → ∞, S → ∞ and log T

log S
→ 0.

We denote by & and . lower and upper bounds, respectively, which holds
asymptotically in case of some given conditions.

In this chapter we show that both for synchronous and asynchronous
access, the best possible throughput is e−1, and it can be achieved using
Reed–Solomon code as an inner code. Concerning the protocol sequences
(outer code), the rates of the existing constructions (A, Györfi, Massey (1992)
and Györfi, Vajda (1993)) are far from e−1.

4.2 Bounds for binary packets

In this section multiple access collision channel is considered based on Bas-
salygo and Pinsker (1983). For the sake of simplicity assume that the input
alphabet has only 2 elements, i.e., we have binary packets, I = {a, b}.
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Theorem 4.1 (Bassalygo and Pinsker (1983)). For fixed M , if T → ∞
and S → ∞ then

n(T,M, S) & max

{
M

(
1 − 1

M

)1−M
log S,

1

2
M log S +

1

2
M log T

}

Before proving the lower bound we need a lemma.

Definition 4.1 (Erasure sum of vectors). Erasure sum of binary vectors
of length n is a binary vector of length n which has in the ith position 0
iff all vectors have 0 in this position, 1 iff exactly one vector has 1 in this
position and the others have 0, and erasure symbol ∗ otherwise. We denote
the erasure sum of q1, . . . , qk by q1 ¢ · · ·¢ qk.

Let us compose a matrix G from the protocol sequences q1, . . . , qT as rows,
and let wk be the number of 1’s standing in the kth column of G.

Lemma 4.1 (Bassalygo and Pinsker (1983)). The sum of the number
of 1’s in all possible erasure sum vectors qi1 ¢ · · ·¢ qiM is

n∑

k=1

wk

(
T − wk
M − 1

)
,

where {i1, . . . , iM} ⊆ [T ].

Proof. The kth position of the erasure sum vector qi1¢· · ·¢qiM is 1 iff exactly
one of its component protocol sequences has 1 in the kth position and the
other M − 1 have 0 there. There are wk protocol sequences having 1 in the
kth position and T − wk having 0 there, so such an erasure sum vector can
be constructed as wk

(
T−wk

M−1

)
different sums. The statement of the lemma is

given if we add these quantities for all positions.

Proof of Theorem 4.1. Firstly, we show that

n(T,M, S) &
1

2
M log S +

1

2
M log T.

From the channel output it should be determined which M users out of T
were active (

(
T
M

)
possible sort) and what the active users sent (SM possible

sort). Because of the channel output symbols can be 4 different kind (∅
symbol, two information bits a and b, and erasure symbol ∗), the following
must stand

4n ≥
(
T

M

)
SM ,
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and from this by taking the logarithm of both sides

n ≥ 1

2
M log S +

1

2
log

(
T

M

)

=
1

2
M log S +

1

2
log

T (T − 1) · · · (T −M + 1)

M(M − 1) · · · 1

≥ 1

2
M log S +

1

2
M log

T

M

=
1

2
M log S +

1

2
M log T − 1

2
M logM

' 1

2
M log S +

1

2
M log T.

In the last step we used the conditions of the theorem.

Secondly, we derive that

n(T,M, S) &M

(
1 − 1

M

)1−M
log S.

There are
(
T
M

)
different erasure sum consisting of M vectors. From Lemma

4.1 follows that there are rows i1, . . . , iM of G such that the erasure sum
qi1 ¢ · · ·¢ qiM of them contains at most

n∑
k=1

wk
(
T−wk

M−1

)

(
T
M

) .

1’s. Consider users which correspond to rows i1, . . . , iM . Each of them can
send S different messages, independently of the others. In the output vector
of the channel just those positions can hold information about messages sent
where the erasure sum of the protocol sequences has 1. So that all the
messages can be decoded the following necessary condition must be fulfilled

n∑
k=1

wk
(
T−wk

M−1

)

(
T
M

) ≥ log SM = M log S. (4.1)

In the following we give upper bound to the left side of inequality (4.1)
which results the needed lower bound on n(T,M, S). For doing this we are
looking for the maximum value of w

(
T−w
M−1

)
.
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w
(
T−w
M−1

)
is increasing if

(w + 1)
(
T−(w+1)
M−1

)

w
(
T−w
M−1

) =
(w + 1)(T − w − 1)!(T − w −M + 1)!(M − 1)!

w(T − w)!(T − w −M)!(M − 1)!

=
(w + 1)(T − w −M + 1)

w(T − w)

≥ 1,

which is equivalent to

(w + 1)(T − w −M + 1) ≥ w(T − w)

wT − w2 − wM + w + T − w −M + 1 ≥ wT − w2

T + 1

M
− 1 ≥ w.

So w
(
T−w
M−1

)
has its maximum at w =

⌊
T+1
M

− 1
⌋

or w =
⌊
T+1
M

⌋
, but asymp-

totically does not matter which one we choose.
In inequality (4.1) replace each term of the sum by its maximum value

n
⌊
T+1
M

⌋ (T−bT+1
M c

M−1

)
(
T
M

) ≥

n∑
k=1

wk
(
T−wk

M−1

)

(
T
M

) ≥M log S,

so we get lower bound on n

n ≥ M log S ·
(
T
M

)
⌊
T+1
M

⌋ (T−bT+1
M c

M−1

)

≥ M log S ·
(
T
M

)

T+1
M

(T−bT+1
M c

M−1

)

= M log S · T (T − 1) · · · (T −M + 1)

(T + 1)
(
T −

⌊
T+1
M

⌋) (
T −

⌊
T+1
M

⌋
− 1
)
· · ·
(
T −

⌊
T+1
M

⌋
−M + 2

)

≥ M log S · T −M + 1

T + 1

(
T

T −
⌊
T+1
M

⌋
)M−1

≥ M log S ·
(

1 − M

T + 1

)(
T

T − T
M

+ 1

)M−1

= M log S ·
(

1 − M

T + 1

)(
1 − 1

M
+

1

T

)1−M
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' M log S ·
(

1 − 1

M

)1−M
,

where in the last step we used that M
T+1

→ 0.

Theorem 4.2 (Bassalygo and Pinsker (1983)). For fixed M , there exists
T0 and S0 such that if T ≥ T0 and S ≥ S0, then

n(T,M, S) ≤M

(
1 − 1

M

)1−M
(log S +M log T ) (1 + α)

(
1 +

√
3α
)
,

where

α =
M lnT

log S + (M − 1) log T
≤ 10 + o(1).

For getting the upper bound on the minimum block length n(T,M, S),
the random coding method will be used.

Definition 4.2 (information segment). The positions of code words of
a code C, where every code words differ, form an information segment with
respect to C.

Let us denote by Gi(i1, . . . , iM−1) the positions of row vectors of G where
both qi and erasure sum qi¢ qi1 ¢ · · ·¢ qiM−1

have 1’s (i, i1, . . . , iM−1 ⊆ [T ]).
It is easy to see that if users i, i1, . . . , iM−1 are active in the channel, then
the output vector of the channel has information about the message of the
ith user just on positions Gi(i1, . . . , iM−1), so these positions have to form an
information segment with respect to C (i). Hence, component codes C(i) have
to be chosen such that Gi(i1, . . . , iM−1) do form information segment for all
possible i, i1, . . . , iM−1 ∈ [T ]. On construction of such codes the following
lemma gives sufficient condition.

Lemma 4.2 (Bassalygo and Pinsker (1983)). Let A1, . . . , AN ⊆ [w]. If
|Aj| ≥ log S + logN (∀j ∈ [N ]), then there exists a binary code of length w
and size S such that the positions indicated by Aj form information segment
with respect to the code for every j ∈ [w].

Proof. The following greedy type method gives an appropriate code. Let
us consider the set of binary vectors of length w. It has 2w elements and
we choose the code words from it. The first code word can be an arbitrary
element of the set. Throw out those vectors from the set which do not
differ from the previously selected code word in positions indicated by any
Aj. From the remaining vectors of the set also choose an arbitrary element.
Continue with these steps, so throw out those vectors from the set which
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do not differ from any of the previously selected code words in positions
indicated by any Aj, and choose an arbitrary element from the remaining
vectors of the set. Algorithm can run until the set does not get empty. In

each step the newly chosen code word needs to throw out at most
N∑
j=1

2w−|Aj |

vectors from the set. Initially, the set has 2w binary vectors, so this algorithm
can run at least to the (S − 1)th step (throwing out) while producing S code
words, because

(S − 1) ·
N∑

j=1

2w−|Aj | ≤ (S − 1) ·N · 2w−log S−logN =
S − 1

S
· 2w ≤ 2w.

That is why the algorithm can produce at least S code words.

In the proof of Theorem 4.2 we apply some lemmas and we will use the
following two conditions on matrix G. Let us define the ZFD property as
|Gi(i1, . . . , iM)| ≥ 1 for all rows qi and qi1 , . . . , qiM (qi /∈ {qi1 , . . . , qiM}). If
the matrix G has the ZFD property, then the set of active users can be
determined from the output vector of the channel (identification). Moreover,
Gi(i1, . . . , iM−1) have to form information segment with respect to C(i) for
all i, i1, . . . , iM−1 ⊆ [T ], because then the message sent by user i can be
decoded. If we apply Lemma 4.2 with the number of code words S and
number of possible information segments with respect to C(i)

N =

(
T − 1

M − 1

)
≤ TM−1

we get
|Gi(i1, . . . , iM−1)| ≥ log S + (M − 1) log T

(decodable property).
Let us take a T × n 0-1 matrix G whose elements are chosen randomly

independently of each other and the probability of an element being 1 is
1
M

. We denote by probabilities P{ZFD} and P{decodable} that the code
represented by the random matrix is ZFD and decodable, respectively.

Lemma 4.3. If n ≥ k0
p

then

P{not decodable} ≤ exp

(
−(np− k0)

2

3np
+M lnT

)
,

where

p =

(
1 − 1

M

)M−1

M
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and
k0 = log S + (M − 1) log T.

Proof. Let us select M rows of the random matrix G and call one of them
tagged row. Let p be the probability of the event that a fixed position of the
tagged row is 1 while the other M − 1 rows have 0 there (i.e., the tagged row
has an uncovered 1 in a fixed position), thus

p =

(
1 − 1

M

)M−1

M
.

Then the probability that there are exactly k positions where the tagged row
has uncovered 1’s and the other n − k positions are covered by the other
M − 1 rows is at most

(
n
k

)
pk(1− p)n−k. The probability that the tagged row

has at most k0 uncovered positions is at most

∑

k<k0

(
n

k

)
pk(1 − p)n−k.

The probability that there is a row qi which has less than k0 uncovered
positions (other positions are covered by rows qi1 , . . . , qiM−1

) is at most

P{not decodable}
= P{∃i, i1, iM−1 ∈ [T ] : |Gi(i1, . . . , iM−1)| < log S + (M − 1) log T}
= P{∃i, i1, iM−1 ∈ [T ] : |Gi(i1, . . . , iM−1)| < k0}

≤ T

(
T − 1

M − 1

)∑

k<k0

(
n

k

)
pk(1 − p)n−k.

Let us apply now Bernstein’s inequality for upper bounding the tail of bino-
mially distributed random variable (which is the sum of indicator variables)

P{not decodable} ≤ T

(
T − 1

M − 1

)∑

k<k0

(
n

k

)
pk(1 − p)n−k

≤ exp

(
− n

(
p− k0

n

)2

2p(1 − p) + 2
3

(
p− k0

n

) +M lnT

)

≤ exp

(
−n

(
p− k0

n

)2

2p+ p
+M lnT

)

= exp

(
−(np− k0)

2

3np
+M lnT

)
.
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Lemma 4.4.

P{not ZFD} ≤ exp

(
(M + 1) lnT − n

1

M

(
1 − 1

M

)M)

Proof. The proof is similar to Lemma 4.3. Let us fix M different rows in
matrix G and choose an (M + 1)th (tagged) row distinctly from the oth-
ers. The probability that one of the positions of the tagged row is covered

by the erasure sum of the other M rows is 1 − 1
M

(
1 − 1

M

)M
. The prob-

ability that all positions of the tagged row are covered by the other rows

is
(
1 − 1

M

(
1 − 1

M

)M)n
, then the probability that there exists a row qi such

that all positions of it are covered by another M rows (qi1 , . . . , qiM ) is at most

P{not ZFD} ≤ T

(
T

M

)(
1 − 1

M

(
1 − 1

M

)M)n

≤ TM+1

(
1 − 1

M

(
1 − 1

M

)M)n

= exp

(
(M + 1) lnT + n ln

(
1 − 1

M

(
1 − 1

M

)M))

≤ exp

(
(M + 1) lnT − n

1

M

(
1 − 1

M

)M)

where in the last step we applied ln(1 − x) ≤ −x, ∀x ∈ [0, 1].

Proof of Theorem 4.2. If a random 0-1 matrix G of size T × n is ZFD
and decodable, then its rows can be used as protocol sequences for T users in
communication via a multiple access collision channel. This gives an upper
bound on minimum frame size n. Thus, we need the following

P{not ZFD} < 1 and P{not decodable} < 1.

For the ZFD property

P{not ZFD} ≤ exp

(
(M + 1) lnT − n

M

(
1 − 1

M

)M)
< 1,

so we need

(M + 1) lnT <
n

M

(
1 − 1

M

)M

M(M + 1)

(
1 − 1

M

)−M
lnT < n. (4.2)
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For the decodable property

P{not decodable} ≤ exp

(
−(np− k0)

2

3np
+M lnT

)
< 1.

By taking the logarithm of both sides we get

(np− k0)
2

3np
−M lnT > 0.

The solution of this inequality with respect to positive length n is

n >
k0

p

(
1 +

3

2

M lnT

k0

)

1 +

√√√√1 − 1
(
1 + 3

2
M lnT
k0

)2


 .

Let us introduce

α =
M lnT

k0

=
M lnT

log S + (M − 1) log T
,

then we get a simpler inequality on n

n >
k0

p

(
1 +

3

2
α

)(
1 +

√
1 − 1

(1 + 3
2
α)2

)

=
log S + (M − 1) log T

p

(
1 +

3

2
α

)(
1 +

√
1 − 1

(1 + 3
2
α)2

)
. (4.3)

From inequalities (4.2) and (4.3) the latter gives the stronger restriction
on n. If it is fulfilled then there exists an appropriate random protocol
sequence set for T users, so the minimum frame size is upper bounded

n(T,M, S) ≤ log S + (M − 1) log T

p

(
1 +

3

2
α

)(
1 +

√
1 − 1

(1 + 3
2
α)2

)

≤ log S + (M − 1) log T

p

(
1 +

3

2
α

)(
1 +

√
3α
)

(4.4)

Factor α can be bounded if M ≥ 2 in the following way

α =
M lnT

log S + (M − 1) log T

=
M

lnS
lnT

+M − 1
ln 2

≤ 1

1 − 1
M

ln 2

≤ 2 ln 2,
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so the constant factors of (4.4) can be bounded

(
1 +

3

2
α

)(
1 +

√
3α
)
≤ (1 + 3 ln 2)

(
1 +

√
6 ln 2

)
< 10.

Let us introduce the sum-rate

Rsum =
M log|I| S

n

of communication, as usually, and denote by Rsum(T,M, n) the maximum
sum-rate for parameters T,M, n.

Theorem 4.3 (Bassalygo and Pinsker (1983)). If M is fixed, T →
∞, S → ∞ and M log T

log S
→ 0, then

Rsum(T,M, n) '
(

1 − 1

M

)M−1

.

If, in addition, M → ∞, then

Rsum(T,M, n) ' e−1.

Proof. From Theorems 4.1 and 4.2 follows

M

(
1 − 1

M

)1−M
log S . n(T,M, S)

.M

(
1 − 1

M

)1−M
(log S +M log T )

(
1 +

3

2
α

)(
1 +

√
3α
)
, (4.5)

where

α =
M lnT

log S + (M − 1) log T
=

ln 2
logS
M log T

+ 1 − 1
M

.

As M log T
logS

→ 0, α → 0, that is why

(
1 +

3

2
α

)(
1 +

√
3α
)
→ 1.

Thus, from (4.5) we get

(
1 − 1

M

)M−1
1

1 + M log T
logS

. Rsum(T,M, n) .

(
1 − 1

M

)M−1

,
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and so (
1 − 1

M

)M−1

. Rsum(T,M, n) .

(
1 − 1

M

)M−1

, (4.6)

therefore

Rsum(T,M, n) '
(

1 − 1

M

)M−1

.

If, in addition, M → ∞, then
(
1 − 1

M

)M−1 → e−1, so

Rsum(T,M, n) ' e−1.

4.3 Bounds for non-binary packets

We consider now the case when the input alphabet I contains more than two
elements. Here k information packets are encoded, so S = |I|k, therefore the
sum-rate is defined as

Rsum =
kM

n
.

Theorem 4.4 (Györfi and Győri (2004)). For non-binary packets, if M
is fixed, T → ∞, |I| → ∞, and log T

log |I| → 0, then

n(T,M, k) & kM
(
1 − 1

M

)1−M
,

and for the sum-rate

Rsum(T,M) .
(
1 − 1

M

)M−1
.

If, in addition, M → ∞, then

n(T,M, k) & kMe,

and for the sum-rate
Rsum(T,M) . e−1.

Proof. For the minimum code length, entropy based lower bound is given.
For a deterministic channel, the entropy of the channel input block can not
be greater than the entropy of the output block of the channel. If the codes
can solve the tasks of identification and decoding, then the entropy of the
output block is equal to the entropy of the input block. If M users out of
T send packets into the channel and each message takes values from a set of
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size S = |I|k, then the input random variable can take
(
T
M

)
(|I|k)M different

values. (Note, that minimum block length needed for at most M users is
greater or equal to the minimum block length needed for exactly M users,
therefore it is enough to consider here the latter scenario.) Assume that the
input variable is uniformly distributed, so the entropy of the input random
variable is log

(
T
M

)
|I|kM . For the output random variable we can apply the

sum of the componentwise entropy as upper bound. All together we have
the following inequality

log

((
T

M

)
|I|kM

)
= H(O1, . . . , On) ≤

n∑

i=1

H(Oi) ≤ nmax
i
H(Oi),

where Oi corresponds to the ith position of the output. Let wi be the number
of protocol sequences which have 1’s at the ith position. The entropy H(Oi)
is the highest possible if Oi is uniformly distributed on all a ∈ I. In this case
the distribution of Oi can be calculated in the following way:

P{Oi = ∅} =

(
T−wi

M

)
(
T
M

) := p0

P{Oi = a} =
wi
(
T−wi

M−1

)
(
T
M

)
|I|

:=
p1

|I| , ∀a ∈ I

P{Oi = ∗} = 1 −
(
T−wi

M

)
(
T
M

) −
wi
(
T−wi

M−1

)
(
T
M

) = 1 − p0 − p1.

The entropy of Oi can be upper bounded as

H(Oi) ≤ −p0 log p0 − |I| · p1

|I| log
p1

|I| − (1 − p0 − p1) log(1 − p0 − p1)

= −p0 log p0 − p1 log p1 − (1 − p0 − p1) log(1 − p0 − p1) + p1 log |I|
≤ log 3 + p1 log |I|

= log 3 +
wi
(
T−wi

M−1

)
(
T
M

) log |I|

= log 3 +
wiM

T −M + 1
· (T − wi) · · · (T − wi −M + 2)

T · · · (T −M + 2)
log |I|

≤ log 3 +
wiM

T

1

1 − M−1
T

(
1 − wi

T

)M−1

log |I|

≤ log 3 +
1

1 − M−1
T

(
1 − 1

M

)M−1

log |I|
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' log 3 +

(
1 − 1

M

)M−1

log |I|,

where we used that wiM
T

(
1 − wi

T

)M−1
takes its maximum at wi = T

M
. The

calculation above implies that

log

((
T

M

)
|I|kM

)
≤ n

((
1 − 1

M

)M−1
log |I| + log 3

)
.

For the minimum code length we get (by using
(
T
M

)M ≤
(
T
M

)
)

n &
M log T

M
+ kM log |I|

(
1 − 1

M

)M−1
log |I| + log 3

=

M log T
M

log |I| + kM
(
1 − 1

M

)M−1
+ log 3

log |I|
.

If |I| → ∞ and log T
log |I| → 0, then

n(T,M, k) & kM
(
1 − 1

M

)1−M
,

and for the sum-rate

Rsum(T,M) =
kM

n
.
(
1 − 1

M

)M−1
.

If, in addition, M → ∞, then

n(T,M, k) & kMe,

and for the sum-rate

Rsum(T,M) =
kM

n
. e−1.

In order to get an upper bound on the minimum block length n(T,M, k),
randomly chosen protocol sequences of constant weight w are used, and as
an inner code Ci = C a Reed–Solomon code of parameters (w, k) is applied
over GF(|I|) (w ≤ |I|). (Remember, that each user has a binary vector of
length n called protocol sequence which has a 1 in those positions where the
user can send a packet.) Each active user can send w packets in each frame,
that is why the code length should be w. If there is a collision in a time slot,
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Step 1: Encoding of packets by Reed–Solomon code

u1 u2 c1 c2 c3 c4

Step 2: Sending of packets according to a protocol sequence

c1 c2 c3 c4

Step 3: Packets received with two active users

c2 c3

Step 4: Decoding of packets (correcting erasure errors)

u1 u2c2 c3

Figure 4.1: Packet communication scheme on a collision channel

the output of the channel is the erasure symbol ∗, so the erroneous positions
are known. A Reed–Solomon code of parameters (w, k) can correct up to
w − k erasure error.

In Figure 4.1 the communications scheme is illustrated in the viewpoint
of a tagged user. Let us suppose that the inner code is a Reed–Solomon
code of parameters (w, k) = (4, 2), and each user has a protocol sequence of
length n = 12. In the first step the user encodes its message packets (u1, u2)
into the code packets (c1, c2, c3, c4) by the Reed–Solomon code. If the user
has the protocol sequence 010001100100, then in the second step it sends
the encoded packets into the channel according to this protocol sequence.
In the figure the time slots where the tagged user can send a packet, i.e.,
the protocol sequence has 1’s, are light gray shadowed, while empty slots are
white boxes. Packets of the other active users may erase some of the packets
of the tagged user which are represented by black boxes. In the last step
the message packets can be decoded if there are at least k = 2 successfully
received packets.

Theorem 4.5 (Györfi and Győri (2004)). For synchronous access and
non-binary packets, if M is fixed, T → ∞, k → ∞, log T

k
→ 0 and |I| > ek,

then
n(T,M, k) . kM

(
1 − 1

M

)1−M
,

and for the sum-rate

Rsum(T,M) &
(
1 − 1

M

)M−1
.

If, in addition, M → ∞, then

n(T,M, k) . kMe,
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and for the sum-rate
Rsum(T,M) & e−1.

The coding method has to ensure the identification and decoding. The
latter depends on the codes of the users, while the first one on the protocol
sequences of the users.

The detection is done by a two phase algorithm. In the first step in a
given block the successfully transmitted packets and the collision symbol ∗
on the output of the channel are transformed to a bit 1, and the ∅ symbol
to bit 0. The resulting binary vector is actually the Boolean sum of the pro-
tocol sequences of the active users. If this binary vector covers the protocol
sequence of a user, then it is declared as active (identification). In the second
step it is already known which users are active in this block, and the task is to
decode their messages from the successfully transmitted packets (decoding).
Obviously, two different types of errors can happen: false identification, and
false decoding.

Let us choose T protocol sequences randomly. Each one has constant
weight w. Protocol sequences are divided into w segments of length n

w
(inte-

ger) and in each segment there is exactly one 1 whose position is uniformly
distributed and independent of the others.

Firstly, we consider the task of identification.

Lemma 4.5 (Györfi and Győri (2004)). For synchronous access and
non-binary packets

P{false identification} ≤ exp

(
(M + 1) lnT − w

(
1 − w

n

)M)
. (4.7)

Proof. This is the same problem what was solved in Theorem 2.7. Let the
weight of the code words be w = n

M
, so in Theorem 2.7 the segments’ length

L = M , and the statement follows from (2.17) if we apply that ln(1 − x) ≤
−x, ∀x ∈ R.

Decoding error occurs if there are less than k successfully transmitted
packets (uncovered 1’s in the protocol sequence) of an active user.

Lemma 4.6 (Györfi and Győri (2004)). For synchronous access and
non-binary packets, if w ≥ k

p
then

P{false decoding} ≤ exp

(
−(wp− k)2

3wp
+M lnT

)
, (4.8)

where

p =
(
1 − w

n

)M−1

.
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Proof. Let us select at most M protocol sequences (users), and call one of
them tagged user. Let p be the probability of the event that in a fixed
segment the tagged user has an uncovered 1 (i.e., its 1 is not covered by the
other M − 1 users), thus

p =
(
1 − w

n

)M−1

.

Then the probability that there are exactly i positions where the tagged user
has uncovered 1’s and the other w − i positions are covered by the other
M − 1 users is at most

(
w
i

)
pi(1− p)w−i. The probability that the tagged user

has less than k uncovered positions is at most

∑

i<k

(
w

i

)
pi(1 − p)w−i.

The probability that there is a protocol sequence which has less than k un-
covered positions (other positions are covered by the other M − 1 protocol
sequences) is at most

P{false decoding} ≤ T

(
T − 1

M − 1

)∑

i<k

(
w

i

)
pi(1 − p)w−i.

Let us apply now Lemma B.2 for upper bounding the tail of binomially
distributed random variable (which is the sum of indicator variables)

P{false decoding} ≤ T

(
T − 1

M − 1

)∑

i<k

(
w

i

)
pi(1 − p)w−i

= T

(
T − 1

M − 1

)
P

{
w∑
i=1

Xi < k

}

= T

(
T − 1

M − 1

)
P

{
1
w

w∑
i=1

(Xi − EXi) < −
(
p− k

w

)}

≤ exp

(
− w

(
p− k

w

)2

2p(1 − p) + 2
3

(
p− k

w

) +M lnT

)

≤ exp

(
−w

(
p− k

w

)2

2p+ p
+M lnT

)

= exp

(
−(wp− k)2

3wp
+M lnT

)
,

where X1, X2, . . . , Xw are independent indicator random variables with pa-
rameter p, and in Lemma B.2 a = 0, b = 1, σ2 = p(1− p) and ε = p− k

w
.
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Proof of Theorem 4.5. If T randomly chosen protocol sequences of length n
and weight w satisfy the requirement of identification and the decoding of
the sent messages is always possible, then the protocol sequences and codes
of users can be applied for T users in communication on a multiple access
collision channel.

Obviously,

P{bad code} ≤ P{false identification} + P{false decoding},

and we need
P{bad code} < 1,

since then there is a good code. This gives an upper bound on minimum
frame size n. Thus, we it is enough if the following probabilities tend to 0

P{false identification} → 0,

P{false decoding} → 0.

For the decodability property we get by taking the logarithm of (4.8)

−(wp− k)2

3wp
+M lnT < 0. (4.9)

The solution of this inequality with respect to positive weight w is

w >
k

p
(1 + α)

(
1 +

√
1 − 1

(1 + α)2

)
,

where

α =
3

2

M lnT

k
.

As α → 0, we have the following asymptotic inequality for w:

w &
k

p
.

Let the length of the segments be M , so n = Mw, and now p depends only
on M

p =
(
1 − 1

M

)M−1
.

If we choose the weight of the protocol sequences w to

w = (1 + δ)
k

p
(4.10)
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for an arbitrary constant δ > 0, the exponent in (4.8) become

−k
(

δ2

3(1 + δ)
− M lnT

k

)

which tends to −∞ when k → ∞ and lnT
k

→ 0, that is why for such a weight
w

P{false decoding} → 0.

By the choice of (4.10) the exponent in (4.7) become

−k
(

(1 + δ)
(
1 − 1

M

)
− (M + 1) lnT

k

)

which also tends to −∞ when k → ∞ and lnT
k

→ 0, that is why

P{false identification} → 0,

so there exists a good code C. As the reasoning above is true for all arbitrarily
small δ > 0, the next asymptotic upper bound on the minimum weight w is
true:

w .
k

p
= k

(
1 − 1

M

)1−M
.

Finally, we have shown the following asymptotic upper bound on the mini-
mum frame size n:

n(T,M, k) = Mw . kM
(
1 − 1

M

)1−M
,

and for the sum-rate

Rsum(T,M) &
(
1 − 1

M

)M−1
.

If, in addition, M → ∞, then

n(T,M, k) . kMe,

and for the sum-rate

Rsum(T,M) & e−1.

From Theorem 4.4 and 4.5 we have the following:
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Corollary 4.1 (Györfi and Győri (2004)). For synchronous access and
non-binary packets, if M is fixed, T → ∞, |I| → ∞, k → ∞, |I| > ek, log T

log |I| →
0 and log T

k
→ 0, then

n(T,M, k) ' kM
(
1 − 1

M

)1−M
,

and for the sum-rate

Rsum(T,M) '
(
1 − 1

M

)M−1
.

If, in addition, M → ∞, then

n(T,M, k) ' kMe,

and for the sum-rate

Rsum(T,M) ' e−1.

4.4 Bounds for asynchronous access

In Section 4.3 frame synchronization was assumed, so frames of the users
begin at the same slots (no time shift). In this section we study the frame
asynchronous case.

As the minimum block length for asynchronous access is lower bounded
by the minimum block length for synchronous access, Theorem 4.4 gives
us a lower bound on the minimum block length n(T,M, k) in the case of
asynchronous access, too.

In order to get an upper bound on the minimum block length n(T,M, k)—
similarly to the synchronous case—randomly chosen protocol sequences of
constant weight w are used, and as an inner code a Reed–Solomon code
Ci = C of parameters (w, k) is applied over GF(|I|) (w ≤ |I|).

For asynchronous access the upper bound on the minimum length of the
protocol sequences is the same as for synchronous case.

Theorem 4.6 (Györfi and Győri (2005)). For asynchronous access and
non-binary packets, if M is fixed, T → ∞, k → ∞, log T

k
→ 0 and |I| > ek,

then

n(T,M, k) . kM
(
1 − 1

M

)1−M
,

and for the sum-rate

Rsum(T,M) &
(
1 − 1

M

)M−1
.
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If, in addition, M → ∞, then

n(T,M, k) . kMe,

and for the sum-rate
Rsum(T,M) & e−1.

In the case of asynchronous access the coding method has to ensure the
synchronization in addition to the identification and decoding. The decoding
depends on the codes of the users, and the others on the protocol sequences
of the users.

The detection is done by a two phase algorithm. In the first step a slid-
ing window is used whose length equals to the block length. The successfully
transmitted packets and the collision symbol on the output of the channel
are transformed to a bit 1, and the ∅ symbol to bit 0. The resulted binary
vector is actually the Boolean sum of the protocol sequences of the active
users. If, starting at a position, this binary vector covers the protocol se-
quence of a user, then it is declared as active (identification) beginning at
this position (synchronization). In the second step it is already known which
users are active in this block, and the task is to decode their messages from
the successfully transmitted packets (decoding). Obviously, three different
types of errors can happen: false identification, false synchronization, and
false decoding.

Remark. During the design of the protocol sequences it is supposed that
the decoding algorithm does not have a memory (stateless). We have syn-
chronization error only when a protocol sequence is covered by the beginning
of its shifted version and some other protocol sequences. During the applica-
tion of these protocol sequences we use a decoding algorithm with memory
(stateful). If a user is declared as active beginning at a given position, then
he will be active in the next n time slots, so the algorithm need not to check
its coverage in the next n time slots. Consequently, it does not cause synchro-
nization problem if a protocol sequence is covered by the end of its shifted
version and some other protocol sequences.

Let us choose T protocol sequences randomly. Each one has constant
weight w. Protocol sequences are divided into w segments of length n

w
(inte-

ger) and in each segment there is exactly one 1 whose position is uniformly
distributed and independent of the others.

Firstly, we consider the identification task.

Lemma 4.7.

P{false identification} ≤ exp

(
(2M + 1) lnT + 2M lnn− w

(
1 − w

n

)M)

(4.11)
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Proof. Let us fix some arbitrarily shifted interfering protocol sequences (users)
such that there are at most M active ones in every time slot. (This can result
in at most 2M users.) Choose another (tagged) protocol sequence distinctly
from the others. Similarly to the proof of Lemma 4.7, the probability that
there exists a protocol sequence such that all positions of it are covered by
the sum of another arbitrarily shifted protocol sequences is at most

P{false identification}
≤ T

(
T−1
2M

)
n2M

(
1 −

(
1 − w

n

)M)w

≤ T 2M+1n2M
(
1 −

(
1 − w

n

)M)w

= exp
(
(2M + 1) lnT + 2M lnn+ w ln

(
1 −

(
1 − w

n

)M))

≤ exp
(
(2M + 1) lnT + 2M lnn− w

(
1 − w

n

)M)

where in the last step we applied that ln(1 − x) ≤ −x, ∀x ∈ R.

Now, we consider the synchronization task.

Lemma 4.8.

P{false synchronization} ≤ exp

(
2M lnT + 2M lnn− w

6

(
1 − w

n

)M)

(4.12)

Proof. Let us choose a tagged protocol sequence and suppose that it is also
among the active ones but it is shifted with 0 < s1

n
w

+ s2 < n time slots
(0 ≤ s2 ≤ n

w
− 1), and fix some arbitrarily shifted protocol sequences (users)

such that there are at most M active ones in every time slot. We denote by
Ai (1 ≤ i ≤ w) the event that the 1 of the tagged user in the ith segment is
covered (either by the shifted version of itself or by the other active users).
The probability of each event Ai is

P{Ai} = 1 −
(
1 − w

n

)M
,

but events Ai’s are dependent of each other, because Ai depends on the
position of the 1 in segments i, i− s1 − 1, i− s1 (if these segments are exists).
Variables ci (1 ≤ i ≤ w) correspond to the encoded packets, so their values
tell the position of the 1 in a segment. In Figure 4.2 the dependence of
covering events Ai is illustrated. Ai can be in conflict with at most 6 other
events, namely with Ai−1, Ai+1, Ai−s1−1, Ai−s1 , Ai+s1 , Ai+s1+1. That is why 6
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cici−1 ci+1

ci−s1−1 ci−s1

AiAi−1 Ai+1

Figure 4.2: The dependence of covering events

independent classes Bj, 1 ≤ j ≤ 6 of Ai’s can be formed, where Bj ∩B` = ∅,
and

6⋃
j=1

Bj = {A1, . . . , Aw}.
Let Ai’s be the vertices of an undirected graph, in which two vertices are

connected if they are in conflict, i.e., if they depend on the same c`. The
maximum degree of each vertex is at most 6, and the graph is neither a cycle
graph with an odd number of vertices, nor a complete graph, so it can be
colored with 6 colors (cf. Brooks (1941)). Events within one color class are
independent of each other. Bj is the class of Ai’s of color j. At least one of
the Bj’s has w

6
elements or more.

P

{
w⋂
i=1

Ai

}
= P

{
6⋂
j=1

{Ai : Ai ∈ Bj}
}

≤ min
j=1,...,6

P

{
⋂

Ai∈Bj

Ai

}

≤
(

1 −
(
1 − w

n

)M)w
6

,

therefore

P{false synchronization} ≤ T
(
T−1

2M−1

)
n2M

(
1 −

(
1 − w

n

)M)w
6

≤ T 2Mn2M
(
1 −

(
1 − w

n

)M)w
6

= exp
(
2M lnT + 2M lnn+ w

6
ln
(
1 −

(
1 − w

n

)M))

≤ exp
(
2M lnT + 2M lnn− w

6

(
1 − w

n

)M)
.

Decoding error occurs if there are less than k successfully transmitted
packets (uncovered 1’s in the protocol sequence) of an active user.
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Lemma 4.9 (Györfi and Győri (2005)). For asynchronous access and
non-binary packets, if w ≥ k

p
then

P{false decoding} ≤ exp

(
−(wp− k)2

3wp
+ (2M − 2) lnn+ (2M − 1) lnT

)
,

(4.13)
where

p =
(
1 − w

n

)M−1

.

Proof. Let us select some arbitrarily shifted protocol sequences (users), such
that there are at most M active ones in every time slot, and call one of them
tagged user. Let p be the probability of the event that in a fixed segment the
tagged user has an uncovered 1 (i.e., its 1 is not covered by the other M − 1
users). Similarly to the proof of Lemma 4.6 the probability that there is a
protocol sequence which has less than k uncovered positions (other positions
are covered by the other M − 1 protocol sequences) is at most

P{false decoding} ≤ T
(
T−1

2M−2

)
n2M−2

∑

i<k

(
w

i

)
pi(1 − p)w−i,

and by applying Bernstein’s inequality (Lemma B.2) for upper bounding the
tail of binomially distributed random variable we get

P{false decoding} ≤ exp

(
−(wp− k)2

3wp
+ (2M − 2) lnn+ (2M − 1) lnT

)
.

Proof of Theorem 4.6. If T randomly chosen protocol sequences of length n
and weight w satisfy the requirements of identification and synchronization,
and the decoding of the sent messages is always possible, then the protocol
sequences and codes of users can be applied for T users in communication
on a multiple access collision channel. Obviously,

P{bad code} ≤ P{false ident.} + P{false synch.} + P{false decoding},
and we need

P{bad code} < 1,

since then there is a good code. This gives an upper bound on minimum
frame size n. Thus, it is enough if the following probabilities tend to 0

P{false identification} → 0,

P{false synchronization} → 0,

P{false decoding} → 0.
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For the decodability property we get by taking the logarithm of (4.13)

−(wp− k)2

3wp
+ (2M − 2) lnn+ (2M − 1) lnT < 0. (4.14)

If the middle term is temporarily ignored, the solution of this inequality with
respect to positive weight w is

w >
k

p
(1 + α)

(
1 +

√
1 − 1

(1 + α)2

)
,

where

α =
3

2

(2M − 1) lnT

k
.

As α→ 0, we have the following asymptotic inequality for w:

w &
k

p
.

Let the length of the segments be M , so n = Mw, and now p depends only
on M

p =
(
1 − 1

M

)M−1
.

If we choose the weight of the protocol sequences w to

w = (1 + δ)
k

p
(4.15)

for an arbitrary constant δ > 0, the exponent in (4.13) becomes

−k


 δ2

3(1 + δ)
−

(2M − 2) ln
(
(1 + δ)kM

p

)

k
− (2M − 1) lnT

k




which tends to −∞ when k → ∞ and lnT
k

→ 0, that is why for such a weight
w

P{false decoding} → 0.

By the choice of (4.15) the exponent in (4.11) becomes

−k


(1 + δ)

(
1 − 1

M

)
− (2M + 1) lnT

k
−

2M ln
(
(1 + δ)kM

p

)

k



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and the exponent in (4.12) becomes

−k


1 + δ

6

(
1 − 1

M

)
− 2M lnT

k
−

2M ln
(
(1 + δ)kM

p

)

k




and both of them tend to −∞ when k → ∞ and lnT
k

→ 0, that is why

P{false identification} → 0,

and

P{false synchronization} → 0,

so there exists a good code C. As the reasoning above is true for all arbitrarily
small δ > 0, the next asymptotic upper bound on the minimum weight w is
true:

w .
k

p
= k

(
1 − 1

M

)1−M
.

Finally, we have shown the following asymptotic upper bound on the mini-
mum frame size n:

n(T,M, k) . kM
(
1 − 1

M

)1−M
,

and for the sum-rate

Rsum(T,M) &
(
1 − 1

M

)M−1
.

If, in addition, M → ∞, then

n(T,M, k) . kMe,

and for the sum-rate

Rsum(T,M) & e−1.

From Theorem 4.4 and 4.6 we have the following:

Corollary 4.2 (Györfi and Győri (2005)). For asynchronous access and
non-binary packets, if M is fixed, T → ∞, |I| → ∞, k → ∞, |I| > ek, log T

log |I| →
0 and log T

k
→ 0, then

n(T,M, k) ' kM
(
1 − 1

M

)1−M
,
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and for the sum-rate

Rsum(T,M) '
(
1 − 1

M

)M−1
.

If, in addition, M → ∞, then

n(T,M, k) ' kMe,

and for the sum-rate
Rsum(T,M) ' e−1.

4.5 Constructions
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Chapter 5

Slow Frequency Hopping

5.1 Channel model

In a slow frequency-hop packet radio network, the total RF bandwidth is
divided into L subbands, and the time is divided into intervals called slots.
Transmission of a packet must take place wholly within a packet slot. The
RF signal from a given transmitter is hopped from slot to slot by changing
the carrier frequency. The sequence of carrier frequencies used by a signal is
known as its frequency-hopping pattern or protocol sequence. The duration
between two consecutive hop epochs is called the hop interval. In our case
the hop interval is the time slot.

The requirement for slotted frequency hopping is that the hop intervals for
all transmitters must be aligned at all receivers. For many applications, this
requirement cannot be met, and only unslotted hopping is feasible. Within
slotted hopping the frames of the hop-sequences can be synchronous or asyn-
chronous. Assume that there is no noise in the system. Pursley (1987) made
an excellent survey on the general problem.

More formally, assume L frequency bands, so the channel consists of L
parallel multiple access channels without feedback, where the message to be
sent over a common communications channel is in the form of “packets”,
that are sent afteranother in time-frequency slots selected from a time-frame
of length n slots. If, in a particular time-frequency slot, a user is sending
a packet and there are no other users sending packets partially overlapping
with that slot, then the channel output is this packet value, otherwise the
channel output in that slot is the collision symbol. There is no feedback
available to inform the senders of the channel outputs in previous slots.

Take the slot duration as the unit of time. Assume the number of potential
users T < ∞. The arrivals of the messages are according to a birth process

115
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with intensity λm = c(T − m), where m is the number of active users (for
m = 1, 2, . . . , T ).

Each user has a protocol sequence. Let qi = (qi,1, . . . , qi,n) be the protocol
sequence of user i such that

0 ≤ qi,j ≤ L− 1.

If qi,j = ` then user i can send a packet during the jth slot at frequency `.
Assume that each message of length k is encoded by an (n, k) shortened

Reed–Solomon code (k < n < Q). In the jth slot at the selected frequency
the jth encoded packet of the Reed–Solomon codeword is sent (j = 1, . . . , n).
For a message from a given user (called the tagged user) decoding is possible
if there are at most n− k collisions (erasures), and the decoder knows which
are the n chosen slots for the actual encoded message. The decoder should
separate its packets from the others. Such separation is possible by the
addresses of the users: the address of the user is stored in the head of the
packet. Note that the decoder should know the serial numbers of the packets
sent, which is an additional overhead of size log n.

5.2 Bounds for non-binary packets

We consider the case when the input alphabet I contains more than two
elements. Here k information packets are encoded, so the number of different
messages is |I|k, therefore the sum-rate is defined as

Rsum =
kM

nL

Theorem 5.1. For non-binary packets, if M is fixed, T → ∞, |I| → ∞, and
log T
log |I| → 0, then

n(T,M,L, k) & k
(
1 − 1

L

)1−M
,

and for the sum-rate

Rsum(T,M,L) .
M

L

(
1 − 1

L

)M−1
.

Proof. For the minimum code length, entropy based lower bound is given.
Now, the proof is the same as the proof of Theorem 4.4, but n should be
replaced by nL.

The code words of the slow frequency hopping channel with L subbands
and length n can be mapped to the code words of the collision channel of
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length nL with the restriction that there are exactly one 1 in each segment
of length L. In the following we are dealing with the mapped code words.

For the minimum code length, entropy based lower bound is given. For
a deterministic channel, the entropy of the channel input block can not be
greater than the entropy of the output block of the channel. If the codes
can solve the tasks of identification and decoding, then the entropy of the
output block is equal to the entropy of the input block. If M users out of
T send packets into the channel and each message takes values from a set of
size S = |I|k, then the input random variable can take

(
T
M

)
(|I|k)M different

values. (Note, that minimum block length needed for at most M users is
greater or equal to the minimum block length needed for exactly M users,
therefore it is enough to consider here the latter scenario.) Assume that the
input variable is uniformly distributed, so the entropy of the input random
variable is log

(
T
M

)
|I|kM . For the output random variable we can apply the

sum of the componentwise entropy as upper bound. All together we have
the following inequality

log

((
T

M

)
|I|kM

)
= H(O1, . . . , On) ≤

nL∑

i=1

H(Oi) ≤ nLmax
i
H(Oi),

where Oi corresponds to the ith position of the output. Let wi be the number
of protocol sequences which have 1’s at the ith position. The entropy H(Oi)
is the highest possible if Oi is uniformly distributed on all a ∈ I. In this case
the distribution of Oi can be calculated in the following way:

P{Oi = ∅} =

(
T−wi

M

)
(
T
M

) := p0

P{Oi = a} =
wi
(
T−wi

M−1

)
(
T
M

)
|I|

:=
p1

|I| , ∀a ∈ I

P{Oi = ∗} = 1 −
(
T−wi

M

)
(
T
M

) −
wi
(
T−wi

M−1

)
(
T
M

) = 1 − p0 − p1.

The entropy of Oi can be upper bounded as

H(Oi) ≤ −p0 log p0 − |I| · p1

|I| log
p1

|I| − (1 − p0 − p1) log(1 − p0 − p1)

= −p0 log p0 − p1 log p1 − (1 − p0 − p1) log(1 − p0 − p1) + p1 log |I|
≤ log 3 + p1 log |I|

= log 3 +
wi
(
T−wi

M−1

)
(
T
M

) log |I|
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= log 3 +
wiM

T −M + 1
· (T − wi) · · · (T − wi −M + 2)

T · · · (T −M + 2)
log |I|

≤ log 3 +
wiM

T

1

1 − M−1
T

(
1 − wi

T

)M−1

log |I|

≤ log 3 +
M

L

1

1 − M−1
T

(
1 − 1

L

)M−1

log |I|

' log 3 +
M

L

(
1 − 1

L

)M−1

log |I|,

where we used that wiM
T

(
1 − wi

T

)M−1
takes its maximum at wi = T

L
, if there

is a restriction that the sum of L neighboring wi’s is T . The calculation
above implies that

log

((
T

M

)
|I|kM

)
≤ nL

(
M
L

(
1 − 1

L

)M−1
log |I| + log 3

)
.

For the minimum code length we get (by using
(
T
M

)M ≤
(
T
M

)
)

n &
M log T

M
+ kM log |I|

M
(
1 − 1

L

)M−1
log |I| + L log 3

=

M log T
M

log |I| + kM

M
(
1 − 1

L

)M−1
+ L log 3

log |I|
.

If |I| → ∞ and log T
log |I| → 0, then

n(T,M,L, k) & k
(
1 − 1

L

)1−M
,

and for the sum-rate

Rsum(T,M,L) =
kM

nL
.
M

L

(
1 − 1

L

)M−1
.

In order to get an upper bound on the minimum block length n(T,M,L, k)
randomly chosen protocol sequences are used, and as an inner code a Reed–
Solomon code Ci = C of parameters (n, k) is applied over GF(|I|) (n ≤ |I|).

For asynchronous access the upper bound on the minimum length of the
protocol sequences is at least the one for synchronous case, so it is enough
to consider only the asynchronous case.
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Theorem 5.2. For synchronous or asynchronous access and non-binary
packets, if M is fixed, T → ∞, k → ∞, log T

k
→ 0 and |I| > ek, then

n(T,M,L, k) . k
(
1 − 1

L

)1−M
,

and for the sum-rate

Rsum(T,M,L) &
M

L

(
1 − 1

L

)M−1
.

In the case of asynchronous access the coding method has to ensure the
synchronization in addition to the identification and decoding. The decoding
depends on the codes of the users, and the others on the protocol sequences
of the users.

The detection is done by a two phase algorithm. In the first step a slid-
ing window is used whose length equals to the block length. The successfully
transmitted packets and the collision symbol on the output of the channel
are transformed to a bit 1, and the ∅ symbol to bit 0. The resulted binary
matrix is actually the Boolean sum of the protocol sequences of the active
users. If, starting at a position, this binary matrix covers the protocol se-
quence of a user, then it is declared as active (identification) beginning at
this position (synchronization). In the second step it is already known which
users are active in this block, and the task is to decode their messages from
the successfully transmitted packets (decoding). Obviously, three different
types of errors can happen: false identification, false synchronization, and
false decoding.

Remark. During the design of the protocol sequences it is supposed that
the decoding algorithm does not have a memory (stateless). We have syn-
chronization error only when a protocol sequence is covered by the beginning
of its shifted version and some other protocol sequences. During the applica-
tion of these protocol sequences we use a decoding algorithm with memory
(stateful). If a user is declared as active beginning at a given position, then
he will be active in the next n time slots, so the algorithm need not to check
its coverage in the next n time slots. Consequently, it does not cause synchro-
nization problem if a protocol sequence is covered by the end of its shifted
version and some other protocol sequences.

Let us choose T protocol sequences randomly. In each time slot there is
exactly one 1 whose position is uniformly distributed and independent of the
others.

Firstly, we consider the identification task.
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Lemma 5.1.

P{false identification} ≤ exp
(
(2M + 1) lnT + 2M lnn− n

(
1 − 1

L

)M)

(5.1)

Proof. Let us fix some arbitrarily shifted interfering protocol sequences (users)
such that there are at most M active ones in every time slot. (This can result
in at most 2M users in a block.) Choose another (tagged) protocol sequence
distinctly from the others. The proof is exactly the same as the proof of
Lemma 3.1, but we have here 2M active users in a block instead of M , so

P{false identification}
≤ exp

(
(2M + 1) lnT + 2M lnn+ n ln

(
1 −

(
1 − 1

L

)M))
,

and then let us apply that ln(1 − x) ≤ −x, ∀x ∈ R.

Now, we consider the synchronization task.

Lemma 5.2.

P{false synchronization} ≤ exp
(
2M lnT + 2M lnn− n

(
1 − 1

L

)M)
(5.2)

Proof. Let us choose a tagged protocol sequence and suppose that it is also
among the active ones but with some shift, and fix some arbitrarily shifted
protocol sequences (users) such that there are at most M active ones in every
time slot. (This can result in at most 2M users in a block.) The proof is
exactly the same as the proof of Lemma 3.4, but we have here 2M active
users in a block instead of M , so

P{false synchronization}
≤ exp

(
2M lnT + 2M lnn+ n ln

(
1 −

(
1 − 1

L

)M))
,

and then let us apply that ln(1 − x) ≤ −x, ∀x ∈ R.

Decoding error occurs if there are less than k successfully transmitted
packets (uncovered 1’s in the protocol sequence) of an active user.

Lemma 5.3. For asynchronous access and non-binary packets, if n ≥ k
p

then

P{false decoding} ≤ exp

(
−(np− k)2

3np
+ (2M − 2) lnn+ (2M − 1) lnT

)
,

(5.3)
where

p =
(
1 − 1

L

)M−1
.
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Proof. Let us select some arbitrarily shifted protocol sequences (users), such
that there are at most M active ones in every time slot, and call one of them
tagged user. Let p be the probability of the event that in a fixed segment the
tagged user has an uncovered 1 (i.e., its 1 is not covered by the other M − 1
users). Similarly to the proof of Lemma 4.6 the probability that there is a
protocol sequence which has less than k uncovered positions (other positions
are covered by the other M − 1 protocol sequences) is at most

P{false decoding} ≤ T
(
T−1

2M−2

)
n2M−2

∑

i<k

(
n

i

)
pi(1 − p)n−i,

and by applying Bernstein’s inequality (Lemma B.2) for upper bounding the
tail of binomially distributed random variable we get

P{false decoding} ≤ exp

(
−(np− k)2

3np
+ (2M − 2) lnn+ (2M − 1) lnT

)
.

Proof of Theorem 5.2. If T randomly chosen protocol sequences of length n
satisfy the requirements of identification and synchronization, and the de-
coding of the sent messages is always possible, then the protocol sequences
and codes of users can be applied for T users in communication on a slow
frequency hopping channel. Obviously,

P{bad code} ≤ P{false ident.} + P{false synch.} + P{false decoding},

and we need

P{bad code} < 1,

since then there is a good code. This gives an upper bound on minimum
block size n. Thus, it is enough if the following probabilities tend to 0

P{false identification} → 0,

P{false synchronization} → 0,

P{false decoding} → 0.

For the decodability property we get by taking the logarithm of (5.3)

−(np− k)2

3np
+ (2M − 2) lnn+ (2M − 1) lnT < 0. (5.4)
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If the middle term is temporarily ignored, the solution of this inequality with
respect to positive weight n is

n >
k

p
(1 + α)

(
1 +

√
1 − 1

(1 + α)2

)
,

where

α =
3

2

(2M − 1) lnT

k
.

As α → 0, we have the following asymptotic inequality for n:

n &
k

p
.

If we choose the length of the protocol sequences n to

n = (1 + δ)
k

p
(5.5)

for an arbitrary constant δ > 0, the exponent in (5.3) becomes

−k


 δ2

3(1 + δ)
−

(2M − 2) ln
(
(1 + δ)kM

p

)

k
− (2M − 1) lnT

k




which tends to −∞ when k → ∞ and lnT
k

→ 0, that is why for such a length
n

P{false decoding} → 0.

By the choice of (5.5) the exponent in (5.1) becomes

−k


(1 + δ)

(
1 − 1

L

)
− (2M + 1) lnT

k
−

2M ln
(
(1 + δ)k

p

)

k




and the exponent in (5.2) becomes

−k


(1 + δ)

(
1 − 1

L

)
− 2M lnT

k
−

2M ln
(
(1 + δ)k

p

)

k




and both of them tend to −∞ when k → ∞ and lnT
k

→ 0, that is why

P{false identification} → 0,
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and
P{false synchronization} → 0,

so there exists a good code C. As the reasoning above is true for all arbitrarily
small δ > 0, the next asymptotic upper bound on the minimum block length
n is true:

n .
k

p
= k

(
1 − 1

L

)1−M
.

Finally, we have shown the following asymptotic upper bound on the mini-
mum block length n:

n(T,M,L, k) . k
(
1 − 1

L

)1−M
,

and for the sum-rate

Rsum(T,M,L) &
M

L

(
1 − 1

L

)M−1
.

Corollary 5.1. For synchronous access and non-binary packets, if M is
fixed, T → ∞, |I| → ∞, k → ∞, |I| > ek, log T

log |I| → 0 and log T
k

→ 0, then

n(T,M,L, k) ' k
(
1 − 1

L

)1−M
,

and for the sum-rate

Rsum(T,M,L) ' M

L

(
1 − 1

L

)M−1
.

5.3 Constructions
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Chapter 6

Collision Channel with Ternary
Feedback

6.1 Collision Channel with Feedback

In multi-user communications the problem is how to serve many senders if
one common communication channel is given. The classical solution is a
kind of multiplexing, i.e., either time-division multiplexing, or frequency-
division multiplexing. For partially active senders, always there are a large
number of senders, each which has nothing to send most of the time. In this
communication situation the multiplexing is inefficient. One such situation,
namely the problem of communicating from remote terminals on various
islands of Hawaii via a common radio channel to the main central computer,
led to the invention by Abramson (1970) of the first formal random-access
algorithm, now commonly called pure ALOHA and to the design of a radio
linked computer network, called ALOHANET (cf. Abramson (1985)).

In pure ALOHA, a transmitter always transmits a packet at the random
moment it is presented (arrived) to the transmitter. If during the transmis-
sion of this packet there is no other overlapping transmission by an other
transmitter, then the packet is transmitted successfully, and the transmit-
ter is informed about this success. Otherwise, there is a ”collision”, the
transmitter hasn’t got ACK that is assumed to destroy all the packets that
overlap. When collision happens, the packets must be retransmitted. In or-
der to avoid a repetition of the same collision, pure ALOHA specifies that
after a collision each transmitter involved randomly selects a waiting time
before it again retransmits its packet. For the analysis of a random access
scheme, one usually assumes that the packets have the same size, the trans-
mission time of a packet is called slot, it is the time unit, and we have Poisson

125
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traffic, i.e., the arrival moments of the packets form a stationary Poisson pro-
cess with intensity λ with respect to the slot. Abramson (1970) defined the
”throughput” as the fraction of time on the channel occupied by success-
fully transmitted packets. He showed that the maximum ”throughput” is
1
2e

≈ 0.184. Unfortunately, he assume a ”statistically equilibrium”, i.e., that
the time moments of transmissions and retransmissions form a stationary
Poisson process, too, which impossible, for any given Poisson λ > 0 arrivals
and for any distribution of the waiting time, the time moments of transmis-
sions and retransmissions cannot form a stationary process, so the conditions
of the ”throughput” computation cannot be satisfied.

In slotted ALOHA, the time axis is partitioned into slots and each packet
to be transmitted fits into one slot. Using the same ”statistically equilibrium”
assumption, Roberts (1975) showed that the maximum ”throughput” is 1

e
≈

0.368. According to the slotted ALOHA protocol, whenever a packet arrives
at a transmitter, that packet is transmitted in the next slot. Whenever
a collision occurs in a slot, each packet involved in the collision is said to
be backlogged and remains backlogged until it is successfully transmitted.
For some fixed 1 > p > 0, each backlogged packet is retransmitted in the
subsequent slot with probability p. It can be seen that, for Poisson arrival,
the number of backlogged packets forms a homogeneous Markov chain. We
sketch that for any (small) λ > 0, this Markov chain cannot be stable, i.e.,
it cannot have unique limit distribution. Let Xn be the number of packets
being ready to transmission or retransmission at the end of the n-th slot, Vn
the number of successful transmission in the n-th slot, and Yn the number of
arrivals in the n-th slot. Thus, Xn follows the evolution

Xn+1 = (Xn − Vn+1)
+ + Yn+1.

It can be seen that the transition probabilities are of the following form:

pk,k−1 = kp(1 − p)k−1e−λ

pk,k+i = kp(1 − p)k−1 λi+1

(i+ 1)!
e−λ + (1 − kp(1 − p)k−1)

λi

i!
e−λ, i ≥ 0.

IfDk denotes the conditional expectation of the one-step increase of the chain
given the state k, then

Dk = E{Xn+1 −Xn|Xn = k} = λ− kp(1 − p)k−1.

It implies that, for any λ > 0 and for any 1 > p > 0, Dk will be positive for
all sufficiently large k. Thus, if the system becomes sufficiently backlogged,
it drifts in the direction of becoming more and more backlogged. Kaplan
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(1979) gives a simple and elegant proof that this chain is unstable. From
this derivation it is clear that p should be changing, should be the function
of a good estimate of k. Hajek and VanLoon (1982) have introduced a class
of algorithms in which p is updated in each slot as a function of the previous
p and the feedback information. They showed that such functions can be
chosen with the property that for λ < 1/e the resulting chain is stable.

In this chapter we consider the multiple-access collision channel with
ternary feedback. An unlimited number of users are allowed to transmit
packets of a fixed length whose duration is taken as a time unit and called
slot. Stations can begin to transmit packets only at times n ∈ N, N =
{0, 1, 2, 3 . . . }. A slot is a time interval [n, n + 1). The destination for the
packet contents is a single common receiver. All users send their packets
through a common channel. Senders of different packets cannot interchange
information. Thus it is convenient to suppose that there are infinitely many
non cooperating users and that the packet arrivals can be modelled as a
Poisson process in time with, say, intensity λ.

When two or more users send a packet in the same time slot, these packets
“collide” and the packet information is lost, i.e., the receiver cannot deter-
mine the packet contents, and retransmission will be necessary. However,
all users, also those who were not transmitting can learn —from the ternary
feedback just before time instant n+ 1— the story of time slot [n, n+ 1):

• feedback 0 means an idle slot,

• feedback 1 means successful transmission by a single user,

• feedback of the collision symbol ∗ means that collision happened.

A conflict resolution protocol (or random multiple access algorithm) is a
retransmission scheme for the packets in a collision. Such a scheme must
insure the eventual successful transmission of all these packets. A conflict
resolution protocol has two components: the channel-access protocol (CAP)
and the collision resolution algorithm (CRA).

The CAP is a distributed algorithm that determines, for each transmitter,
when a newly arrived packet at that transmitter is sent for the first time. The
simplest CAP, both conceptually and practically, is the free-access protocol in
which a transmitter sends a new packet in the first slot following its arrival.
The blocked-access protocol is that in which a transmitter sends a new packet
in the first slot following the resolution of all collisions that had occured prior
to the arrival of the packet.

The CRA can be defined as an algorithm (distributed in space and time)
that organizes the retransmission of the colliding packets in such a way that



128 Chapter 6. Collision Channel with Ternary Feedback

every packet is eventually transmitted successfully with finite delay and all
transmitters become aware of this fact.

The time span from the slot where an initial collision occurs up to and
including the slot from which all transmitters recognize that all packets in-
volved in the above initial collision have been successfully received is called
collision resolution interval (CRI).

We consider blocked access which means that during the resolution of one
particular collision, all users which were not involved in it are not allowed
to transmit. This “blocking period” is called an epoch. Thus, an epoch
consists of the time slots needed by the conflict resolution protocol to (at
least partially) resolve one collision. The users involved in the initial collision
will be called the active users of that epoch.

Clearly, because of the Poisson arrival of messages, i.e., of new users,
message packets waiting for transmission will accumulate during the epoch.
These packets will all be transmitted in the time slot following the epoch, to-
gether with packets arriving in that time slot, and possibly also packets which
were not resolved previously. It is of course important that the maximum
transmission delay, i.e., the maximal expected time between the generation
and the successful transmission of a given packet, must be finite. (Because
of the probabilistic (Poisson) model for the message arrivals, this is the best
one can do.)

The supremum of the set of intensities λ for which a certain protocol still
gives raise to a finite delay is called its throughput. The capacity of a certain
collision channel is the supremum of achievable throughputs, taken over all
possible protocols.

6.2 Tree Algorithms for Collision Resolution

Independently of each other, Capetanakis (1979), and Tsybakov and Mi-
hailov (1978), (1980) introduced the first CRA which resulted in stable con-
flict resolution protocol. Capetanakis called it tree algorithm, while Tsy-
bakov and Mihailov called it stack algorithm, so we abridge by TCRA.

Let N denote the number of active transmitters. According to the al-
gorithm, all active transmitters send the packets in the next slot. If there
was no active transmitter (N = 0) then the feedback is 0 and the algorithm
terminates. If there was exactly one active transmitter (N = 1) then the
feedback is 1 and the transmission was successful, so, again, the algorithm
terminates. Otherwise N ≥ 2, the feedback is the collision symbol ∗. After
this collision, all transmitters involved flip a binary coin. Those flipping 0
retransmit in the next slot, those flipping 1 retransmit in the next slot after
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the collision (if any) among those flipping 0 has been resolved.
Example. In order to illustrate the algorithm, assume that N = 4, and
denote the four packets by A, B, C and D. Figure 6.1 shows the packets
sent in a slot, when the flipping values are according to Table 6.1.

packets:

A
B
C
D

B
C

C B
A
D

A
D

A
D

A D

slots: 1 2 3 4 5 6 7 8 9 10 11

Figure 6.1: Packets sent according to TCRA

slot packet flipping values
1 A 1
1 B 0
1 C 0
1 D 1
2 B 1
2 C 0
5 A 1
5 D 1
7 A 0
7 D 0
8 A 0
8 D 1

Table 6.1: Flipping values

Observe that the algorithm doesn’t terminates at slot 10. The reason is
that no one can be sure that there was not other active transmitter, say E.
This turns out only in slot 11.

The algorithm can be represented by a binary rooted search tree. This is
why Capetanakis called it by tree algorithm. Collisions correspond to inter-
mediate nodes, while empty slots and successful slots correspond to terminal
nodes. Gallager (1985) introduced a simple implementation: when a trans-
mitter flips 1 after a collision in which he is involved, he sets a counter to 1,
then increments it by one for each subsequent collision slot and decrements
by one for each subsequent collision-free slot. When the counter reaches 0,
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the transmitter retransmit in the next slot. Additionally, all active and non-
active transmitters must know when the original collision (if any) has been
resolved as this determines when new packets may be sent. For this purpose,
it suffices for each transmitter to have a second counter which is set to 1 just
prior to the first slot, then incremented by one for each subsequent collision
slot and decremented by one for each subsequent collision-free slot. When
this second counter reaches 0, the original collision (if any) has been resolved.

Tsybakov and Mihailov (1978), and Tsybakov and Vvedenskaya (1980)
interpreted the same algorithm by a stack.

In order to analyze the tree algorithm, letX denote the number of packets
sent in the first slot of the CRI, and let Y be the length (in slots) of the same
CRI, i.e., the collision resolution time resolving X conflicts. Introduce the
notation

LN = E{Y |X = N},
then LN is the conditional expectation of the collision resolution time, given
the multiplicity of the conflict N . Obviously,

L0 = 1

and
L1 = 1.

When N ≥ 2, there is a collision in the first slot. If i of the colliding
transmitters flip 0, then the expected CRI length is

1 + Li + LN−i,

and the probability of this flipping is
(
N

i

)
2−N ,

therefore

LN = 1 +
N∑

i=0

(
N

i

)
2−N(Li + LN−i) =

= 1 +
N∑

i=0

(
N

i

)
2−NLi +

N∑

i=0

(
N

i

)
2−NLN−i =

= 1 +
N∑

i=0

(
N

i

)
2−NLi +

N∑

i=0

(
N

N − i

)
2−NLi =

= 1 + 2
N∑

i=0

(
N

i

)
2−NLi.
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Thus

LN(1 − 2−N+1) = 1 + 2−N+1

N−1∑

i=0

(
N

i

)
Li. (6.1)

Using this recursion we can calculate LN , for example, Table 6.2 shows some
figures. Massey (1981) bounded the oscillation of LN/N . Hajek (1980) in-

N LN LN/N L(N)
0 1 1
1 1 1 2.338
2 5 2.5 4.864
3 7.667 2.555 7.674
4 10.524 2.631 10.545
5 13.419 2.684 13.427
6 16.313 2.719 16.312
7 19.201 2.743 19.198
8 22.085 2.761 22.083
9 24.969 2.774 24.969
10 27.853 2.785 27.854

Table 6.2: Values of LN for TCRA

dicated first that LN/N does not converge, and then Mathys and Flajolet
(1985) proved its asymptotic behavior. Janssen and de Jong (2000) clarified
the asymptotics of LN/N :

LN/N =
2

ln 2
+ A sin(2π logN + ϕ) +O(N−1),

where
A = 3.127 · 10−6, ϕ = 0.9826.

These imply that

2.8853869 ≤ lim inf
N→∞

LN
N

≤ lim sup
N→∞

LN
N

≤ 2.8853932.

Introduce the notation

L(z) =
∞∑

i=0

Li
zi

i!
e−z.

L(z) is called the Poisson transform of the sequence {LN} (cf. Szpankowski
(2001)). In the next sections we assume that new packets arrive according
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to a Poisson process, and in the analysis L(z) plays an important role. If N
is a random variable with Poisson(z) distribution then

L(z) = E{LN}.

For the tree algorithm, the coin flipping can be interpreted by the random
arrival time, too. If a packet arrived in the interval [0, 1] and this arrival
time is uniformly distributed, then the bits of its binary expansion can be
considered as flipping bits. Put N = N1 + N2, where N1 and N2 are in-
dependent random variables with Poisson(z/2) distribution. N1 and N2 are
the numbers of the arrivals in the first and second half of [0, 1], respectively.
Then for N ≤ 1

LN = 1,

otherwise

LN = 1 + LN1 + LN2 .

From these relation we can derive an equation for L(z):

L(z) = E{LN}
= E{I{N≤1}} + E{I{N≥2}(1 + LN1 + LN2)}
= E{I{N≤1}(1 − (1 + LN1 + LN2))}

+ E{1 + LN1 + LN2}
= −2E{I{N≤1}} + E{1 + LN1 + LN2}
= −2(e−z + ze−z) + 1 + 2L(z/2)

where we applied that for N ≤ 1, N1 ≤ 1 and N2 ≤ 1, therefore LN1 =
LN2 = 1. Thus

L(z) = 1 − 2(1 + z)e−z + 2L(z/2). (6.2)

The recursive equation (6.2) gives an easy and quick way of calculation
of L(z) numerically.

Algorithm 6.1. For any fixed z > 0 choose k0 such that ẑ := z/2k0 < 10−5,
and apply the following iteration:

L(2kẑ) = 1 − 2(1 + 2kẑ)e−2k ẑ + 2L(2k−1ẑ), (1 ≤ k ≤ k0)

then in the kth
0 step we get L(z). In order to get a good initial value for L(ẑ),
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1 2 3

2.0

2.5

3.0

3.5

z

F (z)

Figure 6.2: Values of F (z) for small z

we use the second order Taylor polynomial approximation:

L(ẑ) =

(
L0 + L1ẑ + L2

ẑ2

2
+ · · ·

)(
1 − ẑ +

ẑ2

2
· · ·
)

≈ L0 + (L1 − L0)ẑ +

(
L2

2
− L1 +

L0

2

)
ẑ2

= 1 + (1 − 1)ẑ +

(
5

2
− 1 +

1

2

)
ẑ2

= 1 + 2ẑ2.

Let us introduce

F (z) =
L(z)

z
,

the proportional average number of time slots F (z) required to resolve the
conflict among colliding users in case of Poisson(z) collisions (cf. Figure 6.2).

min
z
F (z) = min

z

L(z)

z
=
L(1.15)

1.15
= 2.32822469 (6.3)

Using Algorithm 6.1, one can calculate F (z) for 1 ≤ z ≤ 2, and based on
these values we give an algorithm to evaluate F (z) for large z, and shows its
oscillation.

Algorithm 6.2. From the equation (6.2) it follows that

F (2z) =
1 − 2(1 + 2z)e−2z

2z
+ F (z),
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Figure 6.3: The oscillation in F (z)

so if F (z) is given for 1 ≤ z ≤ 2 (e.g., using Algorithm 6.1), then F (2z) can
be calculated for 1 ≤ z ≤ 2, therefore F (z) is given for 2 ≤ z ≤ 4 this way.
So, by induction

F
(
2kz
)

=
k∑

i=1

1 − 2(1 + 2iz)e−2iz

2iz
+ F (z)

for any k ≥ 2. For large enough k we can write that for any 1 ≤ z ≤ 2

F
(
2kz
)
' G(z) + F (z), (6.4)

where k ≥ k0, and

G(z) =
∞∑

i=1

1 − 2(1 + 2iz)e−2iz

2iz
'

k0∑

i=1

1 − 2(1 + 2iz)e−2iz

2iz
.

If k ≥ k0 = 30, then this approximation error is of order 10−9.

Equation (6.4) gives us an easy way of studying F (z) (see Figure 6.3).
We found that

2.8853869 ≤ lim inf
z→∞

L(z)

z
≤ lim sup

z→∞

L(z)

z
≤ 2.8853932. (6.5)

In the next section we give a detailed analysis of the asymptotics (6.5).

Massey (1981) improved the TCRA. He observed that when a current
slot is empty following a collision, all transmitters know that all the packets
which collided in the past slot will be retransmitted in the future slot. Thus,
all transmitters know in advance that the future slot will contain a collision,
therefore it is wasteful actually to retransmit these packets in the future
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slot. The transmitters can ”pretend” that this collision has taken place and
immediately flip their binary coins and continue with the TCRA. We refer
to this CRA as modified tree collision resolution algorithm (MTCRA). He
proved that, for N ≥ 4,

L∗
N ≤ 2.664 ·N − 1,

and calculated some values of L∗
N :

N L∗
N L∗

N/N L∗(N)
0 1 1
1 1 1 2.187
2 4.5 2.25 4.466
3 7 2.333 7.030
4 9.643 2.411 9.668
5 12.314 2.463 12.324
6 14.985 2.497 14.986
7 17.651 2.522 17.649
8 20.314 2.539 20.313
9 22.977 2.553 22.976
10 25.640 2.564 25.640

Table 6.3: Values of L∗
N for MTCRA

For the modified tree algorithm, the coin flipping can be interpreted also
such that N = N1 +N2, where N1 and N2 are independent random variables
with Poisson (z/2) distribution. Then for N ≤ 1

L∗
N = 1,

otherwise
L∗
N = 1 + L∗

N1
+ L∗

N2
− I{N1=0}.

From these relation we can derive an equation for L∗(z):

L∗(z) = E{L∗
N}

= E{I{N≤1}} + E{I{N≥2}(1 + L∗
N1

+ L∗
N2

− I{N1=0})}
= E{I{N≤1}} + E{I{N≥2}(1 + L∗

N1
+ L∗

N2
)} − E{I{N≥2,N1=0}}

= E{I{N≤1}(1 − (1 + L∗
N1

+ L∗
N2

))}
+E{1 + L∗

N1
+ L∗

N2
} − E{I{N1+N2≥2,N1=0}}
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Figure 6.4: Values of F ∗(z) for small z

= −2E{I{N≤1}} + E{1 + L∗
N1

+ L∗
N2
} − E{I{N2≥2,N1=0}}

= −2(e−z + ze−z) + 1 + 2L∗(z/2) −
(
1 − e−z/2 − z

2
e−z/2

)
e−z/2

= 1 −
(
1 + 3

2
z
)
e−z − e−z/2 + 2L∗(z/2)

where we applied that for N ≤ 1, N1 ≤ 1 and N2 ≤ 1, therefore LN1 =
LN2 = 1. Thus

L∗(z) = 1 −
(
1 + 3

2
z
)
e−z − e−z/2 + 2L∗(z/2). (6.6)

Again, this gives a recursive way of calculating L∗(z) if we take into account
that for small values of z

L∗(z) ' 1 + 1.75z2.

Let us introduce F ∗(z) = L∗(z)
z

. From equation (6.6) it follows that

F ∗(2z) =
1 − (1 + 3z)e−2z − e−z

2z
+ F ∗(z),

so if F ∗(z) is given for 1 ≤ z ≤ 2, then F ∗(2z) can be calculated for 1 ≤ z ≤ 2,
therefore F ∗(z) is given for 2 ≤ z ≤ 4 this way (cf. Figure 6.4).

min
z
F ∗(z) = min

z

L∗(z)

z
=
L∗(1.25)

1.25
= 2.1632265 (6.7)

Generally,

F ∗ (2kz
)

=
k∑

i=1

1 − (1 + 3
2
2iz)e−2iz − e−2i−1z

2iz
+ F ∗(z)
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for any k ≥ 2. As this sum is convergent, for large enough k we can write
that

F ∗ (2kz
)
' G∗(z) + F ∗(z), (6.8)

where 1 ≤ z ≤ 2 and k ≥ k0

G∗(z) '
k0∑

i=1

1 − (1 + 3
2
2iz)e−2iz − e−2i−1z

2iz
.

Again, for k0 = 30, the approximation error is of order 10−9. (6.8) gives us

an easy way of studying F ∗(z) = L∗(z)
z

. We found that

2.664040 ≤ lim inf
z→∞

L∗(z)

z
≤ lim inf

z→∞
L∗(z)

z
≤ 2.664045. (6.9)

Similarly to L(z), it is possible to express L∗(z) by a non-recursive for-
mula, too.

L∗(z) = 1 +
∞∑

j=2

(−1)j
zj

j!

3
2
j − 1 − 2−j

1 − 21−j

= (1 + z)e−z +
∞∑

N=2

zN

N !
e−z

(
1 +

N∑

j=2

(−1)j
(
N

j

) 3
2
j − 1 − 2−j

1 − 21−j

)

from which we get a closed formula for L∗
N . L∗

N = 1 if N ≤ 1 and

L∗
N = 1 +

N∑

j=2

(−1)j
(
N

j

) 3
2
j − 1 − 2−j

1 − 21−j

if N ≥ 2.
If the multiplicity of the collision is large then the tree has many inter-

mediate nodes, so LN can be decreased if the tree has Q-ary root, otherwise
has binary nodes. Given N , let L

(Q)
N denote the conditional expectation of

the collision resolution time, and let L(Q)(z) be the Poisson transform of the

sequence {L(Q)
N }. Similarly to the previous calculation, if N is a random vari-

able with Poisson (z) distribution then the coin flipping can be interpreted
such that N = N1 + · · · + NQ, where N1, . . . , NQ are independent random
variables with Poisson (z/Q) distribution. Then for N ≤ 1

L
(Q)
N = 1,

otherwise
L

(Q)
N = 1 + LN1 + · · · + LNQ

,
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therefore

L(Q)(z)

= E{L(Q)
N }

= E{I{N≤1}} + E{I{N≥2}(1 + LN1 + · · · + LNQ
)}

= E{I{N≤1}(1 − (1 + LN1 + · · · + LNQ
))} + E{1 + LN1 + · · · + LNQ

}
= −QE{I{N≤1}} + E{1 + LN1 + · · · + LNQ

}
= −Q(e−z + ze−z) + 1 +QL(z/Q).

It implies that

L(Q)(z) = 1 −Q(1 + z)e−z +QL(z/Q). (6.10)

6.3 The oscillation of L(z)/z and of LN −L(N)

Hajek (1980) indicated first that LN/N does not converge, Massey (1981)
bounded the oscillation of LN/N , and then Mathys and Flajolet (1985)
showed its asymptotic behavior in an implicit way. Janssen and de Jong
(2000) clarified the exact asymptotics of LN/N :

LN/N =
2

ln 2
+ A sin(2π log2N + ϕ) +O(N−1),

where

A = 3.127 · 10−6, ϕ = 0.9826.

These imply that

2.8853869 ≤ lim inf
N→∞

LN
N

≤ lim sup
N→∞

LN
N

≤ 2.8853932.

The question naturally arises whether

lim sup
N→∞

LN
N

?
= lim sup

z→∞

L(z)

z

Firstly we show a result of Janssen and de Jong (2000) which is on the
oscillation of LN

N
. In its proof a similar technique is used as in the proof of

Theorem 6.1 in the sequel.
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Lemma 6.1 (Janssen and de Jong (2000)).

L(z)

z
' 2

ln 2
+ A sin(2π log2 z + ϕ), (6.11)

where

A = 3.127 · 10−6, ϕ = 0.9826.

Proof. Janssen and de Jong (2000) proved this lemma by Fourier analysis.
Here we give a different proof. The technique being used here is by Mellin
transform, and it will be applied also in the proof of Theorem 6.1. (Reader
can find an excellent survey on Mellin transform in Flajolet et al. (1995), and
some application of Mellin transform to similar problems in Knuth (1973)
pages 131–134, and Jacquet, Regnier (1986).)

Based on Gulko and Kaplan (1985), Mathys and Flajolet (1985) the for-
mula for LN can be written in a nonrecursive way: L0 = L1 = 1, and for
N ≥ 2,

LN = 1 + 2
∞∑

j=0

(
2j
(
1 − (1 − 2−j)N

)
−N(1 − 2−j)N−1

)
(6.12)

Actually, it can be easily seen as follows.

1 − (1 − 2−j)N −N2−j(1 − 2−j)N−1

is the probability of two or more successes in N Bernoulli trials, where the
probability of success is 2−j. This is the probability that a particular node
of the tree at level j contains two or more active users. The average number
of such nodes at level j is then

2j
(
1 − (1 − 2−j)N −N2−j(1 − 2−j)N−1

)
,

and each of them has two children at level j + 1. Average number of nodes
in the tree can be calculated by summing up for all possible j this quantity
multiplied by two plus 1 for the root node.

Let us calculate the Poisson transform of LN . By (6.12)

L(z) =
∞∑

N=0

LN
zN

N !
e−z

=
∞∑

N=0

zN

N !
e−z + 2

∞∑

N=2

∞∑

j=0

(
2j
(
1 − (1 − 2−j)N

)
−N(1 − 2−j)N−1

)zN
N !
e−z
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= 1 + 2
∞∑

j=0

2j
∞∑

N=2

(
1 − (1 − 2−j)N −N2−j(1 − 2−j)N−1

)zN
N !
e−z

= 1 + 2
∞∑

j=0

2j
(

(ez − 1 − z) −
(
e(1−2−j)z − 1 − (1 − 2−j)z

)

−
∞∑

N=2

N2−j(1 − 2−j)N−1 z
N

N !

)
e−z

= 1 + 2
∞∑

j=0

2j
(
ez − e(1−2−j)z − 2−jz −

∞∑

N=1

2−jz(1 − 2−j)N
zN

N !

)
e−z

= 1 + 2
∞∑

j=0

2j
(
ez − e(1−2−j)z − 2−jz − 2−jz

(
e(1−2−j)z − 1

))
e−z

= 1 + 2
∞∑

j=0

2j
(
ez − e(1−2−j)z − 2−jze(1−2−j)z

)
e−z

= 1 + 2
∞∑

j=0

2j
(
1 − e−2−jz − 2−jze−2−jz

)
(6.13)

We use the Mellin transform technique (cf. (2001)). The Mellin transform
of a complex valued function f(x) defined over positive reals is

M[f(x); s] = F (s) =

∞∫

0

xs−1f(x) dx, a < <(s) < b

where (a, b) is the fundamental (convergence) strip and <(·) (=(·)) denotes
the real (imaginary) part of its argument. The inversion formula is

f(x) =
1

2πi

c+i∞∫

c−i∞

x−sF (s) ds, a < c < b,

where c is an arbitrary real number from the fundamental strip (a, b). The
following Mellin transforms will be used.

M[1 − e−x − xe−x; s] = −(s+ 1)Γ(s), −2 < <(s) < 0, (6.14)

where Γ(·) denotes the complete gamma function that is in Euler’s limit form
(cf. Szpankowski (2001) page 41):

Γ(s) = lim
n→∞

nsn!

s(s+ 1)(s+ 2) · · · (s+ n)
. (6.15)
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Equation (6.14) can be verified by applying the inversion integral or if we
consider some elementary Mellin transforms (cf. Szpankowki (2001) page
401):

M[e−x; s] = Γ(s), 0 < <(s) <∞, (6.16)

M[e−x − 1; s] = Γ(s), −1 < <(s) < 0. (6.17)

One of the basic properties of the Mellin transform is that if

M[f(x); s] = F (s), a < <(s) < b,

then

M[αxβf(γx); s] = αγ−sF (s+ β), a− β < <(s) < b− β. (6.18)

That is why from (6.16) and (6.18) we have

M[xe−x; s] = Γ(s+ 1), −1 < <(s) <∞. (6.19)

Equation (6.14) follows from (6.17), (6.19) and from the fact that it does not
have a pole at −1.

So, by using the Mellin transform on (6.13) we get that

M[L(z) − 1; s] = 2
∞∑

j=0

2jM[1 − e−2−jz − 2−jze−2−jz; s]

= 2
∞∑

j=0

2j
(
2−j
)−s

(−(s+ 1)Γ(s))

= 2
∞∑

j=0

(
2s+1

)j
(−(s+ 1)Γ(s))

= −2
(s+ 1)Γ(s)

1 − 2s+1
,

where −2 < <(s) < −1 (in the last step <(s) < −1 is needed for the
convergence). Let us choose c := −3/2. From the inversion formula it
follows that

L(z) − 1 =
1

2πi

c+i∞∫

c−i∞

z−s
(
−2

(s+ 1)Γ(s)

1 − 2s+1

)
ds

= − 2

2πi

c+i∞∫

c−i∞

(s+ 1)Γ(s)z−s

1 − 2s+1
ds (6.20)
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1 2−1−2−3

2π
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4π
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− 2π
ln 2

− 4π
ln 2
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c = −3/2

Figure 6.5: Poles of M[L(z) − 1; s] and the line integral for the inversion
formula

The line integral in (6.20) can be evaluated by using Cauchy’s residue
theorem (cf. Figure 6.5). For this calculation some residues are needed. Γ(s)
has simple poles at s = 0,−1,−2, . . . . The residue in the pole at 0 is

res
s=0

Γ(s) = lim
s→0

sΓ(s)

= lim
s→0

Γ(s+ 1)

= 1.

1
1−2s+1 has simple poles at the roots of equation 2s+1 = 1, so if s + 1 =

ln 1+2kπi
ln 2

, namely s = −1 + 2kπi
ln 2

res
s=s0

1

1 − 2s+1
= lim

s→s0

1

(1 − 2s+1)′

= lim
s→s0

1

−2s+1 ln 2

= − 1

ln 2
,

for all s0 ∈
{
−1 + 2kπi

ln 2
, k ∈ Z

}
, and

res
s=−1

(s+ 1)Γ(s)

1 − 2s+1
= res

s=−1

Γ(s+ 2)

s(1 − 2s+1)

= − res
s=−1

1

1 − 2s+1



6.3. The oscillation of L(z)/z and of LN − L(N) 143

=
1

ln 2
.

If we close the integration contour of the inversion integral in the right
half plane (and negate the result because of the negative direction of the
integration contour), we get

L(z) − 1 = − 2

2πi

c+i∞∫

c−i∞

(s+ 1)Γ(s)z−s

1 − 2s+1
ds

=
2

2πi

(
2πi res

s=0

(s+ 1)Γ(s)z−s

1 − 2s+1

+ 2πi
∞∑

k=−∞
res

s=−1+ 2kπi
ln 2

(s+ 1)Γ(s)z−s

1 − 2s+1

)

= 2

(
1

1 − 2
+

z

ln 2
+
∑

k 6=0

2kπi
ln 2

Γ
(
−1 + 2kπi

ln 2

)
z1− 2kπi

ln 2

− ln 2

)

= −2 +
2z

ln 2
− 2z

ln 2

∑

k 6=0

2kπi
ln 2

Γ
(
−1 + 2kπi

ln 2

)
z−

2kπi
ln 2

= −2 +
2z

ln 2

(
1 −

∑

k 6=0

2kπi
ln 2

Γ
(
−1 + 2kπi

ln 2

)
e−2kπi log2 z

)
,

therefore

L(z) =
2z

ln 2

(
1 −

∑

k 6=0

2kπi
ln 2

Γ
(
−1 + 2kπi

ln 2

)
e−2kπi log2 z

)
− 1 (6.21)

As the gamma function decays exponentially fast over imaginary lines, for
L(z)
z

a sharp approximation can be given by (6.21) if we take into account
just the first two terms (for k = ±1) of the sum, i.e., the approximation error
is of order 10−12.

L(z)

z
≈ 2

ln 2

(
1 −

∑

k=±1

2kπi
ln 2

Γ
(
−1 + 2kπi

ln 2

)
e−2kπi log2 z

)
− 1

z
.

The last term is negligible asymptotically, so

L(z)

z
≈ 2

ln 2

(
1 −

∑

k=±1

2kπi
ln 2

Γ
(
−1 + 2kπi

ln 2

)
e−2kπi log2 z

)
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=
2

ln 2

(
1 −

∑

k=±1

2kπi
ln 2

Γ
(
−1 + 2kπi

ln 2

)
·

· (cos (−2kπ log2 z) + i sin (−2kπ log2 z))

)

=
2

ln 2

(
1 + 2πi

ln 2
Γ
(
−1 − 2πi

ln 2

)
(cos (2π log2 z) + i sin (2π log2 z))

− 2πi
ln 2

Γ
(
−1 + 2πi

ln 2

)
(cos (2π log2 z) − i sin (2π log2 z))

)

=
2

ln 2

(
1 + 2π

ln 2

(
i
(
Γ
(
−1 − 2πi

ln 2

)
− Γ

(
−1 + 2πi

ln 2

))
cos (2π log2 z)

−
(
Γ
(
−1 − 2πi

ln 2

)
+ Γ

(
−1 + 2πi

ln 2

))
sin (2π log2 z)

))

Using the well-known equality Γ(z) = Γ(z), and let

Γ
(
−1 + 2πi

ln 2

)
= x′ + iy′ = −3.31727 · 10−8 + 4.973654 · 10−8i,

then we get

L(z)

z
≈ 2

ln 2

(
1 + 4π

ln 2
(y′ cos (2π log2 z) − x′ sin (2π log2 z))

)
(6.22)

=
2

ln 2

(
1 + 4π

ln 2

√
x′2 + y′2 sin

(
2π log2 z + arctg

(
− y′

x′

)))

=
2

ln 2
+ A sin(2π log2 z + ϕ), (6.23)

where

A = 3.127 · 10−6, ϕ = 0.9826.

Mathys (1984) proved that LN−L(N) = O(1). Next we extend it showing
its oscillation.

Theorem 6.1.

LN − L(N) ' A cos(2π log2N + ϕ),

where

A = 1.29 · 10−4, ϕ = 0.698.
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Proof. By (6.12) and (6.13),

LN − L(N) = 1 + 2
∞∑

j=0

(
2j
(
1 − (1 − 2−j)N

)
−N(1 − 2−j)N−1

)

− 1 − 2
∞∑

j=0

(
2j(1 − e−2−jN) −Ne−2−jN

)

= 2
∞∑

j=0

2j
(
e−2−jN − (1 − 2−j)N

)

+ 2
∞∑

j=0

N
(
e−2−jN − (1 − 2−j)N−1

)

= 2
∞∑

j=0

2je−2−jN

(
1 −

(
e2

−j(1 − 2−j)
)N)

+ 2
∞∑

j=0

N
(
e−2−j

e−2−j(N−1) − (1 − 2−j)N−1
)

=: 2A+ 2B

For getting lower and upper bounds we use the following inequalities. If
0 ≤ x ≤ 1, then

1 + x+ x2

2
≤ ex ≤ 1 + x+ x2

2
+ x3

2

1 − x2

2
− x3

2
≤ ex(1 − x) ≤ 1 − x2

2
− x4

4
≤ 1 − x2

2

1 − x ≤ e−x ≤ 1 − x+ x2

2

and if a > b ≥ 0, then

(a− b)NbN−1 ≤ aN − bN ≤ (a− b)NaN−1.

Lower bound:

A ≥
∞∑

j=0

2je−2−jN

(
1 −

(
1 − 2−2j

2

)N)

≥
∞∑

j=0

2je−2−jN 2−2j

2
N

(
1 − 2−2j

2

)N−1

≥ 1

2

∞∑

j=0

2−jNe−2−jN

(
1 − (N − 1)

2−2j

2

)
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≥ 1

2

∞∑

j=0

2−jNe−2−jN

(
1 −N

2−2j

2

)

=
1

2

∞∑

j=0

2−jNe−2−jN − 1

4

∞∑

j=0

2−3jN2e−2−jN

=: I1 + I2,

and

B ≥
∞∑

j=0

N
(
(1 − 2−j)e−2−j(N−1) − (1 − 2−j)N−1

)

=
∞∑

j=0

Ne−2−j(N−1)

(
1 −

(
e2

−j

(1 − 2−j)
)N−1

)
−

∞∑

j=0

2−jNe−2−j(N−1)

≥
∞∑

j=0

(N − 1)e−2−j(N−1)

(
1 −

(
1 − 2−2j

2

)N−1
)

−
∞∑

j=0

2−jNe−2−j(N−1)

≥ 1

2

∞∑

j=0

2−2j(N − 1)2e−2−j(N−1)

(
1 − 2−2j

2

)N−1

−
∞∑

j=0

2−jNe−2−j(N−1)

≥ 1

2

∞∑

j=0

2−2j(N − 1)2e−2−j(N−1)

(
1 − (N − 1)

2−2j

2

)
−

∞∑

j=0

2−jNe−2−j(N−1)

=
1

2

∞∑

j=0

2−2j(N − 1)2e−2−j(N−1) − 1

4

∞∑

j=0

2−4j(N − 1)3e−2−j(N−1)

−
∞∑

j=0

2−j(N − 1)e−2−j(N−1) −
∞∑

j=0

2−je−2−j(N−1)

=: J1 + J2 + J3 + J4.

Upper bound:

A ≤
∞∑

j=0

2je−2−jN

(
1 −

(
1 − 2−2j

2
− 2−3j

2

)N)

≤
∞∑

j=0

2je−2−jN 2−2j

2
(1 + 2−j)N

=
1

2

∞∑

j=0

2−jNe−2−jN(1 + 2−j)
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=
1

2

∞∑

j=0

2−jNe−2−jN +
1

2

∞∑

j=0

2−2jNe−2−jN

=: I1 + Ĩ2,

and

B ≤
∞∑

j=0

N

((
1 − 2−j +

2−2j

2

)
e−2−j(N−1) − (1 − 2−j)N−1

)

=
∞∑

j=0

N
(
e−2−j(N−1) − (1 − 2−j)N−1

)

−
∞∑

j=0

2−jN

(
1 − 2−j

2

)
e−2−j(N−1)

=
∞∑

j=0

Ne−2−j(N−1)

(
1 −

(
e2

−j

(1 − 2−j)
)N−1

)

−
∞∑

j=0

2−jN

(
1 − 2−j

2

)
e−2−j(N−1)

≤
∞∑

j=0

Ne−2−j(N−1)

(
1 −

(
1 − 2−2j

2
− 2−3j

2

)N−1
)

−
∞∑

j=0

2−j(N − 1)

(
1 − 2−j

2

)
e−2−j(N−1)

≤ 1

2

∞∑

j=0

2−2jN(N − 1)(1 + 2−j)e−2−j(N−1)

−
∞∑

j=0

2−j(N − 1)

(
1 − 2−j

2

)
e−2−j(N−1)

=
1

2

∞∑

j=0

2−2j(N − 1)2e−2−j(N−1) +
∞∑

j=0

2−2j(N − 1)e−2−j(N−1)

+
1

2

∞∑

j=0

2−3j(N − 1)2e−2−j(N−1) +
1

2

∞∑

j=0

2−3j(N − 1)e−2−j(N−1)

−
∞∑

j=0

2−j(N − 1)e−2−j(N−1)
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=: J1 + 2J̃2 + J̃3 + J̃4 + J3

It can be shown that if N → ∞, then I2, Ĩ2, J2, J4, J̃2, J̃3, J̃4 all tend to
0. Both from the upper and the lower bounds the same terms remain, so we
have derived the following asymptotical equation which should be analyzed
further.

LN − L(N) = 2(A+B) = 2(I1 + J1 + J3) + o(1)

It can be further simplified by showing that 2I1 + J3 → 0 if N → ∞. Let us
lower bound it firstly,

2I1 + J3 =
∞∑

j=0

2−jN
(
e−2−j − 1

)
e−2−j(N−1) +

∞∑

j=0

2−je−2−j(N−1)

≥
∞∑

j=0

2−jN
(
1 − 2−j − 1

)
e−2−j(N−1) +

∞∑

j=0

2−je−2−j(N−1)

= −
∞∑

j=0

2−2jNe−2−j(N−1) +
∞∑

j=0

2−je−2−j(N−1)

and then upper bound it

2I1 + J3 ≤
∞∑

j=0

2−jN

(
1 − 2−j +

2−2j

2
− 1

)
e−2−j(N−1) +

∞∑

j=0

2−je−2−j(N−1)

= −
∞∑

j=0

2−2jN

(
1 − 2−j

2

)
e−2−j(N−1) +

∞∑

j=0

2−je−2−j(N−1).

Notice that both bounds tend to 0. That is why LN − L(N) asymptotically
equals to

LN − L(N) = 2J1 + J3 + o(1)

=
∞∑

j=0

2−2j(N − 1)2e−2−j(N−1) −
∞∑

j=0

2−j(N − 1)e−2−j(N−1) + o(1)

=: ∆(N − 1) + o(1)

By using Mellin transform technique the difference ∆(N) can be expressed
in terms of the gamma function. From (6.16) and (6.18) it follows that

M[x2e−x; s] = Γ(s+ 2), −2 < <(s) <∞.
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Thus, with also using (6.19) we have

M[∆(N); s] =
∞∑

j=0

M[2−2jN2e−2−jN ; s] −
∞∑

j=0

M[2−jNe−2−jN ; s]

=
∞∑

j=0

(
2−j
)−s

Γ(s+ 2) −
∞∑

j=0

(
2−j
)−s

Γ(s+ 1)

=
Γ(s+ 2)

1 − 2s
− Γ(s+ 1)

1 − 2s
,

where −1 < <(s) < 0 (in the last step <(s) < 0 is needed for the con-
vergence). Let us choose c := −1/2. From the inversion formula it follows
that

∆(N) =
1

2πi

c+i∞∫

c−i∞

N−s
(

Γ(s+ 2)

1 − 2s
− Γ(s+ 1)

1 − 2s

)
ds

This line integral can be evaluated by using Cauchy’s residue theorem (cf.
Figure 6.6). If we close the integration contour of the inversion integral in
the right half plane (and negate the result because of the negative direction
of the integration contour), we get

∆(N) = − 1

2πi

(
2πi

∞∑

k=−∞
res

s= 2kπi
ln 2

N−s
(

Γ(s+ 2)

1 − 2s
− Γ(s+ 1)

1 − 2s

))

LN − L(N) = ∆(N − 1) + o(1)

' 1

ln 2
+

1

ln 2

∑

k 6=0

Γ
(
2 + 2kπi

ln 2

)
e−2kπi log2(N−1)

−
(

1

ln 2
+

1

ln 2

∑

k 6=0

Γ
(
1 + 2kπi

ln 2

)
e−2kπi log2(N−1)

)

=
1

ln 2

∑

k 6=0

(
Γ
(
2 + 2kπi

ln 2

)
− Γ

(
1 + 2kπi

ln 2

))
e−2kπi log2(N−1)

Approximation by only the terms of k = ±1 is perfect, i.e., the approxi-
mation error is of order 10−9.

LN − L(N) ' A cos(2π log2(N − 1) + ϕ),
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1 2−1−2−3

2π
ln 2

4π
ln 2

− 2π
ln 2

− 4π
ln 2

<(·)

=(·)

c = −1/2

Figure 6.6: Poles of M[∆(N); s] and the line integral for the inversion formula

where

A =
2

ln 2

((
<
(
Γ
(
2 + 2πi

ln 2

)
− Γ

(
1 + 2πi

ln 2

)) )2

+
(
=
(
Γ
(
2 + 2πi

ln 2

)
− Γ

(
1 + 2πi

ln 2

)) )2
)1/2

= 1.29 · 10−4,

and

ϕ = arctg
=
(
Γ
(
2 + 2πi

ln 2

)
− Γ

(
1 + 2πi

ln 2

))

<
(
Γ
(
2 + 2πi

ln 2

)
− Γ

(
1 + 2πi

ln 2

)) = 0.698.

Thus

|LN − L(N)| . A = 1.29 · 10−4

In order to finish the proof of Theorem 6.1 we have to show that ifN → ∞

cos(2π log2N + ϕ) − cos(2π log2(N − 1) + ϕ) = o(1).

It is easy since

cos(2π log2N + ϕ) − cos(2π log2(N − 1) + ϕ)

= (cos(2π log2N) − cos(2π log2(N − 1))) cosϕ (6.24)

− (sin(2π log2N) − sin(2π log2(N − 1))) sinϕ (6.25)
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Then the first term of (6.24) can be written as

cos(2π log2N) − cos(2π log2(N − 1))

= −2 sin (π (log2N + log2(N − 1))) sin (π (log2N − log2(N − 1)))

= −2 sin (π log2(N(N − 1))) sin
(
π log2

(
1 + 1

N−1

))

As the function log2(·) is continuous in 1 and function sin(·) is continuous in
0

lim
N→∞

sin
(
π log2

(
1 + 1

N−1

))
= 0,

that is why (6.24) is o(1). With similar reasoning it can be easily seen that
(6.25) is also o(1). So, we have proved that

LN − L(N) ' A cos(2π log2N + ϕ).

Notice, that Theorem 6.1 implies that if N → ∞, then LN−L(N)
Nα → 0, for

any α > 0, and so

lim sup
N→∞

LN
N

= lim sup
z→∞

L(z)

z
.

6.4 Capetanakis Algorithm

Next we show three blocked access channel access protocols, three CAPs,
each of them apply TCRA or MTCRA.

Partition the time axis into collision resolution intervals (CRI) of random
length. The length of the first CRI is the collision resolution time of the
packets arrived in the first slot. The length of the nth CRI is the collision
resolution time of the packets arrived in the (n− 1)th CRI.

Theorem 6.2. For the Capetanakis-algorithm, assume that the arrivals of
the packets are according to a Poisson process {Z(t) : t ≥ 0} with intensity
λ > 0. If

λ <
1

lim sup
z→∞

L(z)
z

,

then the sequence of lengths of CRIs forms a stable Markov chain.

Proof. Let Xn be the number of packets arrived in the n-th CRI, and let Yn
be the length of the n-th CRI. It is easy to see that {Yn} is a homogeneous,
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irreducible and aperiodic Markov chain, so the Foster Theorem (Theorem
B.4) formulates sufficient conditions for the stability. For any k ≥ 1,

E{Yn+1 | Yn = k} =
E{Yn+1I{Yn=k}}

P{Yn = k}

=
E{∑∞

i=0 Yn+1I{Yn=k,Xn=i}}
P{Yn = k}

=

∑∞
i=0 E{Yn+1 | Yn = k,Xn = i}P{Xn = i, Yn = k}

P{Yn = k}

=
∞∑

i=0

E{Yn+1 | Xn = i, Yn = k}P{Xn = i | Yn = k}

=
∞∑

i=0

E{Yn+1 | Xn = i}P{Xn = i | Yn = k}

=
∞∑

i=0

Li
(λk)i

i!
e−λk

= L(λk).

Put

D = lim sup
z→∞

L(z)

z
,

then there is ε > 0 such that

λ <
1

D + ε
,

and there exists z0 > 0 such that for any z ≥ z0,

L(z) ≤ (D + ε) · z − 1.

Then on the one hand for λk < z0,

E{Yn+1 | Yn = k} = L(λk) ≤ sup
z<z0

L(z) <∞,

and on the other hand for λk ≥ z0

E{Yn+1 | Yn = k} = L(λk) ≤ (D + ε)λk − 1 ≤ k − 1,

and so we verified the conditions of Theorem B.4 with I = z0/λ, C =
supz<z0 L(z), d = 1.



6.5. Gallager-algorithm 153

Remark. For TCRA, (6.5) and this theorem implies the stability if

λ <
1

2.88545
= 0.3465 .

For MTCRA, (6.9) and this theorem implies the stability if

λ <
1

2.664
= 0.3753 .

6.5 Gallager-algorithm

Capetanakis called the previous algorithm as fixed tree algorithm. He ob-
served that in case of long CRI, approximately half of the nodes of the tree are
intermediate nodes, therefore the collision resolution time can be decreased
if the root node is not binary. He improved the fixed tree algorithm by the
so called dynamic tree algorithm, where the degree of the root depends on
an estimate of the number of new packets. Gallager (1978) keeps the CRI
small. For his channel access protocol, we have a second time increment of
size ∆. The i-th arrival epoch is [i∆, (i+ 1)∆). The i-th CRI is the collision
resolution interval of the packets arrived in the i-th arrival epoch, so a new
packet that arrived during the i-th arrival epoch is transmitted in the first
utilizable slot following the (i− 1)-th CRI. Let Yn be the length of the n-th
CRI then the waiting time of the resolution of the (n + 1)-th arrival epoch
is denoted by Wn+1 and can be calculated as follows:

Wn+1 = (Wn − ∆ + Yn+1)
+. (6.26)

Theorem 6.3. For the Gallager-algorithm, assume that the arrivals of the
packets are according to a Poisson process {Z(t) : t ≥ 0} with intensity
λ > 0. For TCRA, if

λ < max
z

z

L(z)
,

then {Wn} is a stable Markov process.

Proof. Under the conditions of the theorem, {Yn} are independent and iden-
tically distributed random variables, so {Wn} defined by the evolution equa-
tion (6.26) is a homogeneous, irreducible, aperiodic Markov process and a
sufficient condition of the stability can be derived from Theorem B.6:

E{Y1} < ∆.
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Let Xn be the number of packets arrived in the n-th arrival epoch, then Xn

is Poisson distributed with parameter λ∆. Thus for TCRA,

E{Y1} =
∞∑

i=0

E{Y1 | X0 = i}P{X0 = i}

=
∞∑

i=0

LiP{X0 = i}

= L(λ∆),

therefore {Wn} is stable if
L(λ∆) < ∆,

i.e.,

λ <
λ∆

L(λ∆)
.

Put z∗ such that
z∗

L(z∗)
= max

z

z

L(z)
,

and ∆λ such that λ∆λ = z∗ then we get that

λ <
z∗

L(z∗)
.

Remark. If in the Gallager algorithm, we use TCRA then from (6.3) the
stability condition is

λ < 0.4295,

and from (6.7) for MTCRA,

λ < 0.4622.

6.6 Part and try algorithm

Tsybakov and Mihailov (1980) introduced the part and try algorithm. Let
us divide the frame size ∆ into two subframe of length ∆

2
. Let the number

of arriving packets in a given frame be N from which N1 arrives in the first
subframe and N2 in the second one (N = N1 + N2). In the first slot of
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the CRI every packets are transmitted which arrived in the arrival epoch of
length ∆. If the first slot is empty or success, then collision resolution is done
and the length of CRI is 1. If there is a collision in the first slot, then only
the packets arrived in the first subframe of length ∆

2
is transmitted. If the

second slot is empty, then N2 ≥ 2, and from the third slot we do collision
resolution for N2 packets recursively with this algorithm and we are using
the modification of Massey. This needs all together L̃N2 + 1 slots. If the
second slot is success, then N2 ≥ 1, and from the third slot we do collision
resolution for N2 packets recursively with this algorithm. This needs L̃N2 +2
slots. Finally, if the second slot is collision, then we do collision resolution
for N1 packets from the second frame which needs L̃N1 + 1 slots. (In this
case we do not resolve the N2 packets. The next arrival epoch is initiated at
∆
2
. So, L̃N = 1 if N ≤ 1, and

L̃N =





1 + L̃N2 , N1 = 0

2 + L̃N2 , N1 = 1

1 + L̃N1 , N1 ≥ 2

if N ≥ 2. Thus

L̃N = I{N≤1} + I{N≥2}
(
1 + I{N1=0}LN2 + I{N1=1}(1 + LN2) + I{N1≥2}LN1

)

= 1 + I{N2≥2}I{N1=0}LN2 + I{N2≥1}I{N1=1}(1 + LN2) + I{N1≥2}LN1

= 1 +
(
1 − I{N2≤1}

)
I{N1=0}LN2 +

(
1 − I{N2=0}

)
I{N1=1}(1 + LN2)

+
(
1 − I{N1≤1}

)
LN1

= 1 + I{N1=0}LN2 − I{N2≤1}I{N1=0} + I{N1=1}(1 + LN2) − 2I{N2=0}I{N1=1}

+LN1 − I{N1≤1}

= 1 + I{N1≤1}LN2 − I{N≤1} − I{N2=0}I{N1=1} + LN1 − I{N1=0} (6.27)

and

L̃(λ∆) = E{L̃N}

= 1 +

(
e−

λ∆
2 +

λ∆

2
e−

λ∆
2

)
L̃
(
λ∆
2

)
− e−λ∆ − λ∆e−λ∆

−e−λ∆
2
λ∆

2
e−

λ∆
2 + L

(
λ∆
2

)
− e−

λ∆
2

= 1 − e−
λ∆
2 − 3λ∆

2
e−λ∆ − e−λ∆ +

(
1 + e−

λ∆
2 +

λ∆

2
e−

λ∆
2

)
L̃
(
λ∆
2

)
.
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An alternative way of calculating L̃N is the following:

L̃N = 1 + 2−N L̃N +N2−N(1 + L̃N−1) +
N∑

i=2

(
N

i

)
2−N L̃i

if N ≥ 2 (otherwise L̃N = 1).
This algorithm does not resolve necessarily all the packets which arrived

in the arrival epoch of length ∆. Let us denote by W̃N the time shift (in the
unity of ∆) which should be applied to the present arrival epoch to get the
next one, if there have been arrived N packets in the present arrival epoch.
W̃N = 1, if N ≤ 1 and

W̃N = I{N1≤1}
W̃N2 + 1

2
+ I{N1≥2}

W̃N1

2

= I{N1≤1}
W̃N2 + 1

2
+
(
1 − I{N1≤1}

) W̃N1

2

= I{N1≤1}
W̃N2

2
+
W̃N1

2
,

if N ≥ 2.
Let us calculate the expected value of W̃N .

W̃ (λ∆) = E{W̃N}

=

(
e−

λ∆
2 +

λ∆

2
e−

λ∆
2

)
1

2
W̃
(
λ∆
2

)
+

1

2
W̃
(
λ∆
2

)

=
1

2

(
1 + e−

λ∆
2 +

λ∆

2
e−

λ∆
2

)
W̃
(
λ∆
2

)

Note, that the expected value of the length of the arrival epoch processed is
∆W̃ (λ∆).

An alternative way of calculating W̃N is the following:

W̃N = 2−N
W̃N + 1

2
+N2−N

W̃N−1 + 1

2
+

N∑

i=2

2−N
(
N

i

)
W̃i

2

Similarly to the analysis of the Gallager algorithm, let Yn be the length of
the n-th CRI and let ∆n be the length of n-th arrival epoch processed, then
the waiting time of the resolution of the (n + 1)-th arrival epoch is denoted
by Wn+1 and can be calculated as follows:

Wn+1 = (Wn − ∆n + Yn+1)
+. (6.28)
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N L̃N W̃N

0 1 1
1 1 1
2 4 0.833
3 5.833 0.643
4 6.476 0.505
5 6.670 0.416
6 6.836 0.357
7 7.029 0.313
8 7.218 0.278
9 7.389 0.251
10 7.541 0.228

Table 6.4: Values of L̃N and W̃N

Theorem 6.4. For the part-and-try algorithm, assume that the arrivals of
the packets are according to a Poisson process {Z(t) : t ≥ 0} with intensity
λ > 0. For TCRA, if

λ < max
z

zW̃ (z)

L̃(z)
,

then {Wn} is a stable Markov process.

Proof. Under the conditions of the theorem, {Yn} are independent and iden-
tically distributed random variables, so {Wn} defined by the evolution equa-
tion (6.28) is a homogeneous, irreducible, aperiodic Markov process and a
sufficient condition of the stability can be derived from Theorem B.6:

E{Y1} < E{∆n}.
Let Xn be the number of packets arrived in the n-th arrival epoch, then Xn

is Poisson distributed with parameter λ∆. Thus for TCRA,

E{Y1} =
∞∑

i=0

E{Y1 | X0 = i}P{X0 = i}

=
∞∑

i=0

L̃iP{X0 = i}

= L̃(λ∆),

moreover
E{∆n} = ∆W̃ (λ∆),
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therefore {Wn} is stable if

L̃(λ∆) < ∆W̃ (λ∆),

i.e.,

λ <
λ∆W̃ (λ∆)

L̃(λ∆)
.

Put z∗ such that
z∗W̃ (z∗)

L̃(z∗)
= max

z

zW̃ (z)

L̃(z)
,

and ∆λ such that λ∆λ = z∗ then we get that

λ <
z∗W̃ (z∗)

L̃(z∗)

which has its maximum at z∗ = λ∆ = 1.266 (where ∆ = 2.6) resulting in
the bound

λ < 0.48711.

If the coin is biased with probability p, then from (6.27) we get

L̃(λ∆) = 1 + e−pλ∆(1 + pλ∆)L̃ ((1 − p)λ∆) − e−λ∆ − λ∆e−λ∆

−e−(1−p)λ∆λ∆e−pλ∆ + L̃(pλ∆) − e−pλ∆

= 1 − e−λ∆ (1 + (1 + p)λ∆) − e−pλ∆

+e−pλ∆(1 + pλ∆)L̃ ((1 − p)λ∆) + L̃(pλ∆)

For the arrival epoch shift

W̃N = I{N1≤1}
(
(1 − p)W̃N2 + p

)
+ I{N1≥2}pW̃N1

= I{N1≤1}(1 − p)W̃N2 + pW̃N1 ,

if N ≥ 2, which gives for the expected value

W̃ (λ∆) = e−pλ∆(1 + pλ∆)(1 − p)W̃ ((1 − p)λ∆) + pW̃ (pλ∆).

In the biased case intensity has its maximum at z∗ = λ∆ = 1.2725
(∆ = 2.61) when p = 0.4756 and value

λ = 0.48757.
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Multiple Access Adder Channel

7.1 Channel Model

The binary adder channel (Figure 7.1) is a special case of the multiple-access
channel. Here the channel input alphabet is binary (B = {0, 1}), while the
output alphabet is the set of nonnegative integer numbers (N). The channel
is deterministic: the output is the sum of the inputs, where the summation
is the usual summation over N (and it is not the mod 2 summation). The
channel transition probabilities can be written as

P (Y = y|X1 = x1, X2 = x2, . . . , Xt = xt) =

{
1 if y =

∑t
i=1 xi;

0 otherwise.

Using the vectorial form we can say, that the received vector is (almost sure)
the sum of the sent codeword vectors:

Y =
t∑

i=1

x
(i)
Mi
,

where x
(i)
j is the codeword for the jth message of the ith user, and the random

variable Mi denotes the message of the ith user.
The rate region of this channel has been determined by Chang and Weldon

(1979). For t = 2 it is shown in Figure 7.2.

For a deterministic channel, like the adder channel, it is interesting to
define the class of uniquely decipherable (u.d.) codes. Code C is a u.d.
code for the adder channel, if the messages of the users can be recovered
without error from the output of the channel (Pe(C) = 0). I.e. if the users
send different messages, then the received sum vector must be different. To

159
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y =
∑t

i=1 xiD
D
E
R

x1

x2

xt

A

Figure 7.1: The binary adder channel (x1, x2, . . . , xt ∈ B, y ∈ N)

1

0.5

0.5 1

r2

r1

Figure 7.2: The rate region of the binary adder channel for t = 2 users

formulate this, let us denote the actual message of the ith user with mi. We
call message-constellation the vector formed by the messages of the users:

m = (m1,m2, . . . ,mt) ∈
t⊗

i=1

{1, 2, . . . , |Ci|}.

For the adder channel, given the message-constellation m, the channel output
vector is deterministic, and is denoted by S(m). In the case of the adder
channel

S(m) =
t∑

i=1

x(i)
mi
.
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Definition 7.1. A multiple-access code is a uniquely decipherable (u.d.) code
for the adder channel, if the received vector is unique considering all message-
constellations:

S(m1) = S(m2) ⇐⇒ m1 = m2 ∀m1,m2 ∈
t⊗

i=1

{1, 2, . . . , |Ci|}.

Khachatrian (2000) has written an excellent survey on u.d. code construc-
tions for the adder channel, with various rates.

In this article, we will deal only with the class of u.d. codes with symmetric
rates. If we consider the sum rate

rsum =
t∑

i=1

ri

of arbitrary u.d. codes for the adder channel, then from the results of Chang
and Weldon (1979) it follows, that its maximum for large t is

rsum ∼ 1

2
log t.

They have also given a u.d. code construction with two codewords per user
with asymptotically the same rate. This means, that to asymptotically max-
imize the sum rate, it is enough to consider codes with two codewords per
user:

C = {C1, C2, . . . , Ct},

Ci =
{
x

(i)
1 ,x

(i)
2

}
∀i ∈ [t].

In this case, the rates for all users are the same, namely

ri =
1

n
∀i ∈ [t],

and because of this, we can even use the code length instead of the rate
vector to compare codes.

As we have just mentioned, Chang and Weldon (1979) and Lindström
(1964) have given u.d. code constructions for the binary adder channel.
Chang and Weldon’s construction is, in fact, a statistical design that was
given by Cantor and Mills (1966). Both constructions will be shown later in
Sections 7.9 and 7.10.

We will also deal with the signature coding problem. Consider an
alarming or signaling system: there are t stations, and some of them want to
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send an alarm signal: they send their codeword to the channel. The others,
who do not want to signal an alarm, turn off their transmitter to conserve
power. We can consider these stations as they are sending a zero vector to
the channel.

The task of the receiver is to detect the alarming stations. This scenario
is much like the general two codeword coding problem with one additional
constraint: one of the codewords in all component codes should be the zero
vector:

C =
{{

0,x(1)
}
,
{
0,x(2)

}
, . . . ,

{
0,x(t)

}}
.

In the followings, for the sake of simplicity, when dealing with signature codes
we will not mention the zero codeword, which is included in all component
codes. We will consider, that there is only one codeword per user. Thus we
can write the last equation quite simply:

C =
{
x(1),x(2), . . . ,x(t)

}

Corresponding to the semantics of the signature coding, that there are
some alarming and some quiet users, we will use the set U of alarming users
instead of the message constellation vector m we used before. For the binary
adder channel the channel output vector given the set U ⊆ [t] of active users
is

S(U) =
∑

i∈U
x(i).

We can define the class of u.d. signature codes in the same way as before:
the channel output must be different for all different set of alarming users.

Definition 7.2. A signature code for the adder channel is u.d., if the received
vector is unique considering all possible sets of active users:

S(U) = S(V ) ⇐⇒ U = V ∀U, V ⊆ [t].

7.2 User Models

Modeling the behavior of the users is as important as to model the channel
itself. There are two fundamental user models, the permanent activity model
and the partial activity model.

The permanent activity model is a rather simple one. Here the users
considered to be active all the time, i.e. they always have some information
to send. In the previous sections we considered this case.

In many real-life examples (think about a mobile phone network, for
example) the users are not always active, they are just partially active,
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i.e. sometimes they have information to send, but most of the time they do
not have. There are many possibilities to model a user population with this
behavior. One interesting scenario is the m-out-of-t model: in this model
we assume, that at most m users out of the t total ones are active at any
instant, but this active set can vary arbitrarily with time as long as its size
does not exceed m.

To make a good formalism for this partial activity case, we consider that
the zero vector is added to each component code as a new codeword. The
active users simply send the appropriate codeword belonging to their mes-
sages, while the inactive ones send the zero vector. This model corresponds
to real life, where inactivity means simply turning off the transmitter.

This motivates the use of signature codes, introduced in the previous
section. It signature codes, for the active users there are only one usable
codeword in their component codes. Thus we cannot transfer messages di-
rectly, but we can solve signaling and alarming tasks. For real information
transfer, we will show a simple scenario a bit later.

The point in using m-out-of-t model is that, if m is significantly smaller
than t, which is usually a realistic case, then an m-out-of-t code can be
significantly shorter than a conventional t user multiple-access code.

For real information transmission with signature codes, one can use the
following simple scenario. Consider a population of t users with m-out-of-t
partial activity model. (Note, that the following construction works also for
the permanent activity model.) We will create a u.d. multiple-access code
with three codewords per user, one codeword is the all zero one, for signaling
inactivity, while the other two are for the messages of the active users. Let
us take a u.d. signature code C∗ for 2t virtual users out of which at most m
are active simultaneously (a code for the 2t-out-of-m model):

C∗ =
{{

0,x(1)
}
,
{
0,x(2)

}
, . . . ,

{
0,x(2t)

}}
.

Create the component codes of the new multiple-access code by distributing
two codewords from C∗ for each of the t real users, and additionally, put the
all zero codeword into the component codes:

Ci = {0,x(2i−1),x(2i)} ∀i ∈ [t].

This way we have got a multiple-access code with two message codewords
and one inactivity codeword for t users:

C = {C1, C2, . . . , Ct}.
Each user can transmit messages with the nonzero codewords, or signal in-
activity with the zero one. If the number of simultaneously active users does
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not exceed m, then the code is u.d. Moreover, the partial activity of the
users is exploited in the code, so the codeword length can be far below the
length of a code for the permanent activity case.

7.3 Permanent Activity Case

In this section we survey some well known results regarding the u.d. coding
problem of the multiple-access adder channel for the permanent user activity
case. We will present some bounds on the minimal length of u.d. codes, as
well as some code constructions.

7.4 Equivalent Representations

There are many equivalent representations of the u.d. signature coding prob-
lem for the adder channel. In this section we show some of them.

Problem 7.1. (Coin Weighing Problem) Given t coins, some of them
are counterfeit, some are genuine, and we have to distinguish between them.
The weight of the counterfeit coins are e.g. 9 grams, while the original ones
weigh 10 grams. We have a scale, that weighs exactly. Give sets of coins,
for which by measuring the weight of these sets, we can find the counterfeit
coins. What is the minimal number of weighings required?

We have to stress, that we consider here the problem, when the set of
coins selected for the future weighings does not depend on the results of the
previous weighings, so the sets to weigh is given before we start measuring at
all. In terms of search theory this is called non-adaptive or parallel search.
(There is another problem, when the next set to weigh can be selected ac-
cording to the results of the previous weighings, but we do not deal with this
so called adaptive search problem here.)

To show how this problem is related to the coding problem, first make
some simplifications: let the weight of a counterfeit coin be one, and the
weight of a genuine one be zero. Certainly this is still the same problem.

Now let us consider that each coin represents a user. Construct a code-
word for each user: let the length of the codeword be equal to the number of
weighings. Put 1 to the ith position if the coin associated with this user par-
ticipates in the ith weighing. If the coin is not participating in that weighing,
then put 0 there. If we give the zero vector as a common second codeword
for all users, then we get a signature code.

Consider a given set of counterfeit coins, and consider that the users as-
sociated with the counterfeit coins send their non-zero codeword. We can
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consider, that the other users send the zero vector. The result of the weigh-
ings will be equal to the sum vector at the channel output. If we can de-
termine the set of false coins from the output of the weighings, then we can
determine the messages of the users from the sum vector, and vica versa. So
the problems of planning the weighings and finding u.d. signature codes are
equivalent.

Problem 7.2. (Combinatorial Detection Problem) Given a finite set
T construct a set M of subsets of it (M ⊆ P(T ), where P(T ) is the power-
set of T ), in such a way that given an arbitrary U ⊆ T we can determine U
if we know the sizes of the intersections |U ∩M | for all M ∈ M. What is
the minimal size of M?

To find the equivalence of this problem with the previous one is really
easy. Here the sets in M denote the sets of coins weighed together. So it
follows, that this combinatorial detection problem is equivalent to the u.d.
coding problem. But we will give a more formal proof of it using the matrix
representation.

The matrix representation is simply another representation of the last
combinatorial detection problem. If T = [t], then we can represent one subset
U ⊆ T with a binary column vector u = (u1, u2, . . . , ut):

[t] ⊇ U 7→ u ∈ Bt where ui =

{
1 if i ∈ U ;

0 if i /∈ U
∀i ∈ [t]. (7.1)

The combinatorial detection problem can be formulated as to find column
vectors y1,y2, . . . ,yn ∈ Bt in such a way, that if we know the values yi

>u
for all i ∈ [n], then we can determine the vector u. To complete the matrix
representation, create a matrix from the row vectors yi

> by simply writing
them below each other:

C =




y1
>

y2
>

...
yn

>


 .

Now the problem is to find a matrix C for which

Cu = Cv ⇐⇒ u = v ∀u ∈ Bt,∀v ∈ Bt, (7.2)

or equivalently, introducing w = u−v, the problem is to find a C, for which

Cw = 0 ⇐⇒ w = 0 ∀w ∈ {−1, 0, 1}t. (7.3)
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Now we show the mapping between this matrix representation of the
combinatorial detection problem and the u.d. coding problem of the multiple-
access adder channel.

Let us write the above matrix C as column vectors x(1),x(2), . . . ,x(t) ∈ Bn
written next to each other:

C =
(
x(1),x(2), · · · ,x(t)

)
.

Consider a signature code, where each user has a column vector x(i) from
above as codeword:

C = {x(1),x(2), . . . ,x(t)}.

It is easy to see, that this code is a u.d. signature code for the adder
channel for t users. Let [t] denote the population of the t users. Let us
denote the set of active users at a given instant with U ⊆ T . With these
notations, the u.d. property in the case of the adder channel was the following
(see Definition 7.2):

S(U) = S(V ) ⇐⇒ U = V ∀U, V ⊆ [t].

Let us represent sets U and V with vectors u and v in the way given by our
mapping (7.1). Now the uniquely decipherable property becomes

Cu = Cv ⇐⇒ u = v ∀u ∈ Bt,∀v ∈ Bt.

which is exactly the same formula as (7.2) which was given as the condition
on C.

7.5 Trivial Bounds on N(t)

First we present here a very simple statement about the minimal code length
for the binary adder channel with two codewords per user.

Definition 7.3. The minimal code length N(t) is the length of the short-
est possible u.d. code for a given number of users:

N(t) = min{n : ∃C u.d. code with length n for t users}.

Definition 7.4. The minimal signature code length Ns(t) is the length
of the shortest possible u.d. signature code for a given number of users:

Ns(t) = min{n : ∃C u.d. signature code with length n for t users}.
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Theorem 7.1.
t

log(t+ 1)
≤ N(t) ≤ Ns(t) ≤ t.

Proof. For the lower bound, we simply use enumeration: there are 2t possible
message-constellations for t users (m ∈ {1, 2}t). On the other side, the
received vector has components in {0, 1, . . . , t}, and in case of the shortest
possible code it is of length N(t). For the u.d. property, the number of
possible received vectors cannot be smaller than the number of possible user
subsets. Thus we have

(t+ 1)N(t) ≥ 2t,

from which

N(t) ≥ t

log(t+ 1)
.

(Here and from now, log represents the logarithm of base 2.)
The statement N(t) ≤ Ns(t) follows simply from the definition: all u.d.

signature code is also a u.d. code, so the minimal u.d. code length cannot be
greater than the minimal u.d. signature code length.

For the upper bound, we show a trivial u.d. signature code construction
for t users with codeword length n = t: simply let the codeword of the ith

user be e(i) which is the ith unit vector. Using the matrix representation,
we can say, that for t users let C = It (which is the identity matrix of size
t × t). Since this matrix is invertible, this signature code certainly has the
u.d. property (7.3). So Ns(t) ≤ t.

7.6 Upper Bound of Erdős and Rényi

Erdős and Rényi (1963) has presented a nontrivial asymptotic upper bound
on the minimal signature code length for the adder channel:

Theorem 7.2. (Erdős–Rényi (1963))

lim sup
t→∞

Ns(t) log t

t
≤ log 9.

Proof. The proof is based on random coding. We select a random signature
code C of length n + 1 in such a way, that the first n components of the
codewords are i.i.d. uniformly distributed binary random variables, while
the (n+ 1)th component is fixed to 1:

P
(
x

(j)
i = 0

)
= P

(
x

(j)
i = 1

)
=

1

2
∀j ∈ [t],∀i ∈ [n] (i.i.d.),

x
(j)
n+1 = 1 ∀j ∈ [t].
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We will work with the probability of the event

code C is not a u.d. signature code, (*)

and we will give an upper bound for it, which will tend to 0 as t→ ∞.
We have introduced S(U) as the channel output when the set of active

users is U . Simply we have that if C is not a u.d. signature code, then there
exist two different sets of active users, say U and V , for which S(U) = S(V ):

P
(
event (∗)

)
= P


 ⋃

U 6=V⊆[t]

{
S(U) = S(V )

}

 .

If there are two subsets U and V for which S(U) = S(V ), then there are
also two disjoint subsets with the same property: U \V and V \U will suite.
We also know, that |U | = |V |, since the (n+ 1)th component of the received
vector is simply the number of active users, so if the received vectors are
equal, then the sets of the active users must be of the same size:

P
(
event (∗)

)
= P




⋃

U 6=V⊆[t] :
|U |=|V |,U∩V=∅

{
S(U) = S(V )

}

 .

We can use the so called union bound as an upper bound:

P
(
event (∗)

)
≤

∑

U 6=V⊆[t] :
|U |=|V |,U∩V=∅

P
(
S(U) = S(V )

)

=

b t
2c∑

k=1

∑

U,V⊆[t] :
|U |=|V |=k,U∩V=∅

P
(
S(U) = S(V )

)
, (7.4)

since the common size of the active subsets is at most
⌊
t
2

⌋
.

The components of the codewords in C has a simple distribution, so it
is easy to calculate P

(
S(U) = S(V )

)
for some fixed disjoint U and V of the

same size k:

P
(
S(U) = S(V )

)
= P

(
n⋂

i=1

k⋃

`=0

{Si(U) = ` and Si(V ) = `}
)

=

(
k∑

`=0

(
k

`

)
2−k
(
k

`

)
2−k

)n

,
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since for disjoint U and V , the components of S(U) and S(V ) are indepen-
dent, and has binomial distribution.

Let us introduce

Q(k) =
k∑

`=0

(
k

`

)
2−k
(
k

`

)
2−k. (7.5)

We have

Q(k) =
k∑

`=0

(
k

`

)(
k

k − `

)
2−2k =

(
2k

k

)
2−2k.

For 1 < k (
2k

k

)
2−2k ≤ 1√

πk
.

(C.f. Gallager (1968) Problem 5.8 pp. 530.) Thus

Q(k) ≤ 1√
πk
. (7.6)

Substituting this result into (7.4), we get

P
(
event (∗)

)
≤

b t
2c∑

k=1

∑

U,V⊆[t] :
|U |=k,|V |=k,
U∩V=∅

(
1√
πk

)n

=

b t
2c∑

k=1

(
t

k

)(
t− k

k

)(
1√
πk

)n
. (7.7)

Split the summation into two parts:

k = 1, 2, . . . ,

⌊
t

2 log2 t

⌋
,

and

k =

⌊
t

2 log2 t

⌋
+ 1,

⌊
t

2 log2 t

⌋
+ 2, . . . ,

⌊
t

2

⌋
.
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For the first part, we use 1√
πk

≤ 1√
π

and
(
t
k

)(
t−k
k

)
≤ t2k:

j

t
2 log2 t

k

∑

k=1

(
t

k

)(
t− k

k

)(
1√
πk

)n
≤

j

t
2 log2 t

k

∑

k=1

t2k
(

1√
π

)n

≤ (t2)
t

2 log2 t − 1

t2 − 1

(
1√
π

)n

≤ t
t

log2 t

(
1√
π

)n

≤ 2
t

log t
−n

2
log π,

which tends to zero as t→ ∞ if

lim
t→∞

(
t

log t
− n

2
log π

)
= −∞. (7.8)

For the second part of the summation in (7.7), we use
∑b t

2c
k=1

(
t
k

)(
t−k
k

)
≤ 3t,

which holds since selecting two subsets of [t] is equivalent of partitioning it
into three parts. So

b t
2c∑

k=
j

t
2 log2 t

k

+1

(
t

k

)(
t− k

k

)(
1√
πk

)n
≤

b t
2c∑

k=1

(
t

k

)(
t− k

k

)
 1√

πt
2 log2 t



n

≤ 3t


 1√

πt
2 log2 t



n

= 2
t log 3−n

2
log πt

2 log2 t ,

which tends to zero as t→ ∞ if

lim
t→∞

(
t log 3 − n

2
log

πt

2 log2 t

)
= −∞. (7.9)

Let us set

n =

⌈
ct

log t

⌉
.

In the first condition (7.8) this yields

lim
t→∞

(
t

log t
− n

2
log π

)
≤ lim

t→∞

(
t

log t
− ct log π

2 log t

)

=

(
1 − c log π

2

)
lim
t→∞

t

log t
,
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which is −∞ if c > 2
log π

≈ 1.211. In the second condition (7.9),

lim
t→∞

(
t log 3 − n

2
log

πt

2 log2 t

)
≤ lim

t→∞

(
t log 3 − ct

2 log t
log

πt

2 log2 t

)

= lim
t→∞

(
t

(
log 3 − c

2

log πt− log
(
2 log2 t

)

log t

))

=
(
log 3 − c

2

)
lim
t→∞

t,

which is −∞ if c > log 9 ≈ 3.170.

So we have shown, that for all ε > 0 and n =
⌈

(ε+log 9)t
log t

⌉
,

lim
t→∞

P
(
event (∗)

)
= 0.

This means, that for t large enough, the random code of length n+1 we select
is a u.d. signature code with positive probability. So for t large enough, there
exists a u.d. signature code of this length:

Ns(t) ≤
⌈

(ε+ log 9)t

log t

⌉
+ 1 ≤ (ε+ log 9)t

log t
+ 2,

or equivalently

lim sup
t→∞

Ns(t) log t

t
≤ log 9.

7.7 Pippenger Theorem

Pippenger (1981) extended the definition of u.d. signature codes. A code
C = {x1,x2, . . . ,xt} is called a u.d. signature code with multiplicity, if the
sum

S(u) =
t∑

i=1

uixi

uniquely determines (S(u) = S(v) ⇐⇒ u = v) the components of vector
u = (u1, u2, . . . , ut) ∈ {0, 1, . . . , t}t satisfying

t∑

i=1

ui ≤ t.
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Theorem 7.3. (Pippenger (1981)) For the length Nsm(t) of the shortest
possible u.d. signature code with multiplicity for t users,

lim sup
t→∞

Nsm(t) log t

t
≤ 8.

Proof. Pippenger proved the existence of such codes by random coding. We
select a random code C of length n for t users, and we will show, that the
probability of the event, that

code C is not a u.d. signature code with mulitplicity (*)

is less than one for t large enough.
We select a random code C of length n+ 1 in such a way, that the first n

components of the codewords are i.i.d. uniformly distributed binary random
variables, while the (n+ 1)th component is fixed to 1:

P
(
x

(j)
i = 0

)
= P

(
x

(j)
i = 1

)
=

1

2
∀j ∈ [t],∀i ∈ [n] (i.i.d.),

x
(j)
n+1 = 1 ∀j ∈ [t].

We need a code with property

S(u) = S(v) ⇐⇒ u = v ∀u,v ∈ {0, 1, 2, . . . , t}t :
t∑

i=1

ui ≤ t,

t∑

i=1

vi ≤ t,

so

P
(
event (∗)

)
= P




⋃

u,v∈{0,1,2,...,t}t :
Pt

i=1 ui≤t,
Pt

i=1 vi≤t

{
S(u) = S(v)

}




= P




⋃

u,v∈{0,1,2,...,t}t :

u
>
v=0,

Pt
i=1 ui=

Pt
i=1 vi≤t

{
S(u) = S(v)

}


 ,

We also know, that
∑t

i=1 ui =
∑t

i=1 vi, since the (n+ 1)th component of the
vector S(u) is simply the number of active users, so if the received vectors
are equal, then the sum of the vectors must be the same. We also used that if
there is a vector pair (u,v) which satisfy S(u) = S(v), then there is also an
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orthogonal vector pair satisfying it. E.g. (u′,v′), where u′ =
(
u′1, u

′
2, . . . , u

′
t

)
,

v′ =
(
v′1, v

′
2, . . . , v

′
t

)
, where

u′i = ui − min{ui, vi}

and

v′i = vi − min{ui, vi}.

Now applying the union bound one gets

P
(
event (∗)

)
≤

∑

u,v∈{0,1,2,...,t}t :

u
>
v=0,

Pt
i=1 ui=

Pt
i=1 vi≤t

P
({

S(u) = S(v)
})
. (7.10)

For a given u and v we can bound P
({

S(u) = S(v)
})

. For this we will
use the following sets:

U =
{
i ∈ {1.2. . . . , t} : ui 6= 0

}

and

V =
{
i ∈ {1.2. . . . , t} : vi 6= 0

}
.

Since u>v = 0, we know that U ∩ V = ∅.
For each component k, we assign a subset of U ∪ V to each code:

fk : C 7→ U ∩ Ak(C) ∪ V \ Ak(C),

where Ak(C) =
{
i ∈ {1, 2, . . . , t} : x

(i)
k 6= 0

}
. We now state a lemma:

Lemma 7.1. For codes C and D for which

SC(u) = SC(v),

SD(u) = SD(v)

and

Ak(C) 6= Ak(D),

fk(C) and fk(D) are incomparable in the sense that neither is contained within
the other.



174 Chapter 7. Multiple Access Adder Channel

Note, that the third condition of the lemma can be interpreted as codes
must differ in the kth component for at least one user in U ∪ V .

Proof. Imagine the contrary: if fk(C) ⊆ fk(D), or equivalently

U ∩ Ak(C) ∪ V \ Ak(C) ⊆ U ∩ Ak(D) ∪ V \ Ak(D),

then since U ∩ V = ∅,

Ak(C) ∩ U ⊆ Ak(D) ∩ U, (7.11)

and

Ak(C) ∩ V ⊇ Ak(D) ∩ V. (7.12)

Moreover, if Ak(C) 6= Ak(D), then at least one of the coverings is of proper
subset. Remember that

SCk(u) =
t∑

i=1

uix
(i)
k =

∑

i∈Ak(C)

ui =
∑

i∈Ak(C)∩U
ui, (7.13)

and similary

SCk(v) =
∑

i∈Ak(C)∩V
vi, (7.14)

SDk(u) =
∑

i∈Ak(D)∩U
ui, (7.15)

and

SDk(v) =
∑

i∈Ak(D)∩V
vi. (7.16)

From (7.11), (7.13) and (7.15) we have that SCk(u) ≤ SDk(u), and similary,
from (7.12), (7.14) and (7.16) we have that SCk(v) ≥ SDk(v). Moreover,
if Ak(C) 6= Ak(D), then at least one of the inequalities is strict. But since
SC(u) = SC(v) and SD(u) = SD(v), this is a contradiction.

Using this lemma, for a fixed u and v with u>v = 0, we can get the
probability of S(u) = S(v). Since the distribution over the codes is uniform,
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we can simply enumerate the suitable codes and divide it by the number of
all possible codes:

P
({

S(u) = S(v)
})

=

∣∣{C ∈ (Bn)t : SC(u) = SC(v)
}∣∣

∣∣{(Bn)t
}∣∣ .

Let ` = |U | + |V |. Consider the kth components of the codewords. For
users not in U ∪V , the kth components can be arbitrary, this does not affect
SC(u) = SC(v). This creates 2t−` possibilities. For the kth components of
the codewords of users in U ∪ V , we have at most as many possibilities as
many incomparable subsets exists of U ∪ V . This is

(
`

b`/2c
)

by the theorem

of Sperner (1928). Thus

P
({

S(u) = S(v)
})

≤

(
2t−`

(
`

b`/2c
))n

2tn

=

(
2−`
(

`

b`/2c

))n

≤


 1√

π `
2



n

= 2−
n
2

log π`
2 . (7.17)

Returning to (7.10), we get

P
(
event (∗)

)
≤

∑

u,v∈{1,2,...,t}t :

u
>
v=0,

Pt
i=1 ui=

Pt
i=1 vi≤t

2−
n
2

log
π|U∪V |

2

=
t∑

`=1

∑

u,v : u+v=`

∑

U,V⊆{1,2,...,t} :
|U |=u,|V |=v,
U∩V=∅

∑

u,v∈{1,2,...,t}t :
Pt

i=1 ui=
Pt

i=1 vi≤t
{i : ui 6=0}=U
{i : vi 6=0}=V

2−
n
2

log π`
2 ,

where we enumerated the possible vectors u and v based on the size of their
base set U and V . Thus

P (event ∗) ≤
t∑

`=1

∑

u,v : u+v=`

(
t

u

)(
t− u

v

)(
t

u

)(
t

v

)
2−

n
2

log π`
2

≤
t∑

`=1

(
t

`

)
2`

∑

u,v : u+v=`

(
t

u

)(
t

v

)
2−

n
2

log π`
2
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=
t∑

`=1

(
t

`

)
2`
(

2t

`

)
2−

n
2

log π`
2 . (7.18)

Split the summation into two parts:

` = 1, 2, . . . ,

⌊
t

log2 t

⌋
,

and

` =

⌊
t

log2 t

⌋
+ 1,

⌊
t

log2 t

⌋
+ 2, . . . , t.

For the first part we use
(
t
`

)
≤ t` and

(
2t
`

)
≤ (2t)`:

j

t
log2 t

k

∑

`=1

(
t

`

)
2`
(

2t

`

)
2−

n
2

log π`
2 ≤

j

t
log2 t

k

∑

`=1

t2`22`−n
2

log π`
2

≤ t

log2 t
t

2t
log2 t 2

2t
log2 t

−n
2

log π
2

= 2
log t

log2 t
+ 2t

log2 t
(1+log t)−n

2
log π

2 ,

which tends to 0 as t→ ∞ if

lim
t→∞

(
log

t

log2 t
+

2t(1 + log t)

log2 t
− n

2
log

π

2

)
= −∞. (7.19)

For the second part of the summation in (7.18), we use
(
t
`

)
≤ 2t, 2` ≤ 2t

and
(
2t
`

)
≤ 22t:

t∑

`=
j

t
log2 t

k

+1

(
t

`

)
2`
(

2t

`

)
2−

n
2

log π`
2 ≤

t∑

`=
j

t
log2 t

k

+1

24t−n
2

log π`
2

≤
t∑

`=1

2
4t−n

2
log πt

2 log2 t

≤ t2
4t−n

2
log πt

2 log2 t

= 2
log t+4t−n

2
log πt

2 log2 t ,

which tends to 0 as t→ ∞ if

lim
t→∞

(
log t+ 4t− n

2
log

πt

2 log2 t

)
= −∞. (7.20)
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Let us set

n =

⌈
ct

log t

⌉
.

In the first condition (7.19) this yields

lim
t→∞

(
log

t

log2 t
+

2t(1 + log t)

log2 t
− n

2
log

π

2

)

≤ lim
t→∞

(
log

t

log2 t
+

2t(1 + log t)

log2 t
− ct

2 log t
log

π

2

)

= lim
t→∞

(
t

log t

(
log t

log2 t
t

log t

+
2(1 + log t)

log t
− c

2
log

π

2

))

=
(
2 − c

2
log

π

2

)
lim
t→∞

t

log t
,

which is −∞ if c > 4
log π

2
≈ 6.140. In the second condition (7.20),

lim
t→∞

(
log t+ 4t− n

2
log

πt

2 log2 t

)

≤ lim
t→∞

(
log t+ 4t− ct

2 log t
log

πt

2 log2 t

)

= lim
t→∞

(
t

(
log t

t
+ 4 − c

2 log t
log

πt

2 log2 t

))

=
(
4 − c

2

)
lim
t→∞

t,

which is −∞ if c > 8.

So we have shown, that for all ε > 0 and n =
⌈

(8+ε)t
log t

⌉
,

lim
t→∞

P
(
event (∗)

)
= 0.

This means, that for t large enough, the random code of length n we select
is a u.d. signature code with multiplicity with positive probability. So there
exists such a code of that length:

Ntm(t) ≤
⌈

(8 + ε)t

log t

⌉
≤ (8 + ε)t

log t
+ 1,

or equivalently

lim sup
t→∞

Ntm(t) log t

t
≤ 8.
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7.8 A Lower Bound

From our trivial lower bound (Theorem 7.1) and the upper bound of Erdős
and Rényi (Theorem 7.2), for the minimal length of u.d. codes for the adder
channel we have

1 ≤ lim inf
t→∞

N(t) log t

t
≤ lim sup

t→∞

Ns(t) log t

t
≤ log 9,

while the truth is that

lim
t→∞

N(t)
log t

t
= lim

t→∞
Ns(t)

log t

t
= 2.

Here we present an improved lower bound for the limes inferior. The upper
bound for the limes superior will follow from the construction of Lindström
(see Section 7.10).

Theorem 7.4. (Chang–Weldon (1979))

lim inf
t→∞

N(t) log t

t
≥ 2.

For the proof, we will need a lemma which is following from a bound of
the discrete entropy (cf. e.g. Cover–Thomas (1991) Theorem 9.7.1 pp. 235.):

Lemma 7.2. Let X have an arbitrary distribution over the integers:

P (X = i) = pi ∀i ∈ Z,
∑

i∈Z

pi = 1.

If X has variance Var (X) and Shannon–entropy H (X) = −∑i∈Z pi log pi,
then

H (X) ≤ 1

2
log

(
2πe

(
Var (X) +

1

12

))
.

Proof of Theorem 7.4. We will bound the same entropy in two different ways,
and this will yield the bound. Consider an arbitrary u.d. code for the adder
channel. Let us define the message-constellation M as a random vector
variable with uniform distribution over all the possible constellations:

P (M = m) =
1

2t
∀m ∈ {1, 2}t.

Since the code is u.d., the received vector Y must be different for all different
M, so

H (Y) = H (M) = t. (7.21)
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On the other hand, the entropy of Y can be upper bounded by the sum
of the entropies of its components. Each component of the vector Y has
a binomial distribution. To show this, considering only the jth bit of the
codewords, and split the user population into three groups. For the users in
the first group both codewords has 0 in the jth position. For the users in the
second group, one codeword is 0 and the other is 1 at the jth position, while
for the third group both codewords are 1 at the jth position. If we denote
the number of users in the first group with aj, in the second group with bj
and in the third group with cj the we can write

P (Yj = s) =
2aj
(
bj
s−cj
)
2cj

2aj+bj+cj
=

(
bj

s− cj

)
2−bj ∀s : cj ≤ s ≤ bj + cj,

where 2aj is the number of possible constellations for the users in the first
group,

(
bj
s−cj
)

is the number of possible constellations for users in the second

group (select exactly s− cj users out of the bi ones who have both zero and
one at position j), and 2cj is the number of possible constellations for users
in the third group. 2aj+bj+cj is the total number of possible constellations.

Now we can write

H (Y) ≤
n∑

j=1

H (Yj) ,

and using Lemma 7.2,

H (Y) ≤
n∑

j=1

1

2
log

(
2πe

(
Var (Yj) +

1

12

))
,

Since the variance of the binomial distribution with parameters
(
bj,

1
2

)
is

bj
4
,

we have

H (Y) ≤
n∑

j=1

1

2
log

(
2πe

(
bj
4

+
1

12

))
,

and since
bj
4

+ 1
12

≤ t
4

+ 1
12

≤ t
2
,

H (Y) ≤ n log πet

2
. (7.22)

Putting (7.21) and (7.22) together we get that

n log πet

t
≥ 2,
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which also holds for the code of minimal possible length N(t):

N(t) log t

t
≥ 2

log πet

log t
,

thus

lim inf
t→∞

N(t) log t

t
≥ 2.

7.9 Chang and Weldon’s Construction

In this section we show the u.d. code construction of Chang and Weldon
(1979) for the binary multiple-access adder channel. Their code construction
is for tk = (k+2)2(k−1) users, where k is an arbitrary natural number. Their
code length is nk = 2k. If we put these together, we get

lim
k→∞

nk log tk
tk

= 2,

from which

lim sup
k→∞

N(tk) log tk
tk

≤ 2.

First, we present a difference matrix representation of codes with two
codewords per user. Given an arbitrary code

C =
{{

x
(1)
1 ,x

(1)
2

}
,
{
x

(2)
1 ,x

(2)
2

}
, . . . ,

{
x

(t)
1 ,x

(t)
2

}}
,

we can create a so called difference matrix D by writing the differences of
the two vectors in the component codes next to each other:

D =
(
x

(1)
2 − x

(1)
1 ,x

(2)
2 − x

(2)
1 , . . . ,x

(t)
2 − x

(t)
1

)

It is easy to see, that given a difference matrix D (a matrix with all
elements from {−1, 0, 1}) we can construct at least one code, for which this
is the difference matrix. E.g. for all user i ∈ [t] and for all code bit j ∈ [n]
let

x
(i)
1j =





1 if Dij = −1;

0 if Dij = 0;

0 if Dij = 1,

and x
(i)
2j =





0 if Dij = −1;

0 if Dij = 0;

1 if Dij = 1.

Certainly we could also use 1 in both codewords if Dij = 0.
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It is easy to show (with the same reasoning given in Section 7.4 at the
matrix representation), that that the u.d. property can be expressed in the
following property of matrix D:

Dw = 0 ⇐⇒ w = 0 ∀w ∈ {−1, 0, 1}t. (7.23)

We have trivial u.d. difference matrices for t = 1 (D0) and for t = 3 (D1):

D0 =
(
1
)
,D1 =

(
1 1 1
1 −1 0

)
.

Moreover, we can find a recursive construction for u.d. difference matrices
Dk for t = (k + 2)2k−1 users. This is stated as the next theorem.

Theorem 7.5. (Chang–Weldon (1979)) The Dk matrices defined below are
u.d. difference matrices for tk = (k + 2)2k−1 users with code length nk = 2k:

D0 =
(
1
)

∀k ≥ 1 : Dk =

(
Dk−1 Dk−1 I2k−1

Dk−1 −Dk−1 02k−1

)

Proof. It is easy to see by induction, that Dk has tk = (k + 2)2k−1 columns,
since the two matrices Dk−1 have two times (k + 1)2k−2 columns, and the
additional identity and zero matrices have 2k−1 columns. The sum is really
tk = (k + 2)2k−1.

Now let us suppose, that for a given w ∈ {−1, 0, 1}tk ,
Dkw = 0.

We decompose vector w of length tk into three vectors w1,w2,w3 of length
(k + 1)2k−2, (k + 1)2k−2, and 2k−1 respectively:

w =




w1

w2

w3


 .

Now using the recursive definition of Dk we get

(
Dk−1 Dk−1 I2k−1

Dk−1 −Dk−1 02k−1

)


w1

w2

w3


 =

(
0
0

)
,

which gives two equations:

Dk−1w1 + Dk−1w2 + w3 = 0,

Dk−1w1 − Dk−1w2 = 0.
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From this we have
2Dk−1w1 = −w3

and since w3 has components in {−1, 0, 1}, it follows that w3 = 0, and
therefore

Dk−1w1 = 0

Dk−1w2 = 0.

But Dk−1 has property (7.23) by induction, so

w1 = 0,

w2 = 0.

follows, and the proof is complete.

Chang and Weldon (1979) have also given a decoding algorithm for their
code. It is the following: let us suppose, that user i sends message mi, so the
received vector y is

y =
t∑

i=1

x(i)
mi

Introduce vector u =
(
u1, u2, . . . , ut

)
∈ Btk which has 0 in the positions

corresponding to users sending their “message 1” and 1 in the positions
corresponding to users sending their “message 2”, so

ui =

{
0 if mi = 1;

1 if mi = 2
∀i ∈ [tk].

Then we can write

y = Dku +
t∑

i=1

x
(i)
1 ,

and therefore

Dkm = y −
t∑

i=1

x
(i)
1 . (7.24)

Now we make a decomposition:

y −
t∑

i=1

x
(i)
1 =

(
v1

v2

)
=

(
Dk−1 Dk−1 I2k−1

Dk−1 −Dk−1 02k−1

)


u1

u2

u3


 ,
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where v1 and v2 has 2k−1 rows, u1 and u2 has (k + 1)2k−2 rows, and u3 has
2k−1 rows. This equation yields

v1 + v2 = 2Dk−1u1 + u3.

Then

v1 + v2 ≡ u3 mod 2,

and from this we can get u3, since it is a binary vector. We have also

Dk−1u1 =
1

2
(v1 + v2 − u3),

Dk−1u2 =
1

2
(v1 − v2 − u3),

where the right hand side of the equations are known vectors. These are two
instances of the same problem but for k − 1. We can recursively continue at
formula (7.24). At last, for the case k = 0 we will have a trivial equation for
u since D0 = (1).

7.10 Lindström’s Construction

The last construction was for general u.d. multiple access codes for the adder
channel. For u.d. signature codes, Lindström (1964; 1964) presented a con-
struction. His code is asymptotically optimal, since it sets an upper bound
on the minimal u.d. signature code length which is equal to the lower bound
in Theorem 7.4.

We will construct a u.d. signature code for a given n. The number of
users in the code will be denoted by t(n), and it holds, that

t(n) ∼ n log n

2
.

If we need a code for t users, select the smallest n for which t(n) ≥ t, create
a code for this n, keep only the codewords for t users, and simply drop other
codewords.

To show that this code is assymptotically optimal, we will invert the
relation between n and t(n), and give an upper bound for the length of the
shortest possible code for t users. This way we will get the next theorem.
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Theorem 7.6. (Lindström (1964)) The construction of Lindström gives u.d.
signature codes of arbitrary length, and for code length n, the number of users
is t(n) users, for which

lim
n→∞

t(n)

n log n
=

1

2
.

From this, for the length N(t) of the shortest possible u.d. signature code for
t users

lim sup
t→∞

N(t) log t

t
≤ 2

follows.

Proof. In the construction we will use the binary representation of positive
integers: if a ∈ N is a positive integer, then let its binary representation be
ablog ac . . . a1a0:

a =

blog ac∑

i=0

2iai.

The set of the nonzero positions in the binary form of a is detoted by D(a):

D(a) = {i : ai = 1}.

Then we can write
a =

∑

i∈D(a)

2i.

Let us introduce
α(a) = |D(a)| ,

and define

a ⊆ b ⇐⇒ D(a) ⊆ D(b);

a ∩ b =
∑

i∈D(a)∩D(b)

2i.

For a given n, for each r ∈ {1, 2, . . . , n} construct a matrix C(r) of size
r× α(r) in the following way: for row i where i ⊆ r select the α(r) elements

c
(r)
ij ∈ B such that ∑

i⊆r
(−1)α(i)+1c

(r)
ij = 2j−1. (7.25)

This is possible, since there are 2α(r) terms in the sum, and in one half of these
terms (−1) has even exponent, in the other half it has an odd exponent. This
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yields a (+1) coefficient for c
(r)
ij exactly 2α(r)−1 times, and a (−1) coefficient

exactly the same times. Thus selecting c
(r)
ij = 0 for the terms with negative

coefficients, and selecting c
(r)
ij = 1 for the positive ones, we get a sum of 2α(r)−1

for i ⊆ r. Since 2α(r)−1 is an upper bound for 2j−1 (note that j−1 ≤ α(r)−1),

so selecting only some of the c
(r)
ij s with (+1) coefficients to 1, and leaving all

other c
(r)
ij to be 0 is a possible solution.

For all the other rows (where i * r), let

c
(r)
ij = c

(r)
i∩r j,

which is known from the above equation (7.25), since i ∩ r ⊆ r.

Create a code submatrix C(r) as

C(r) =




c
(r)
11 c

(r)
12 · · · c

(r)
1tr

c
(r)
21 c

(r)
22 · · · c

(r)
2tr

...
...

. . .
...

c
(r)
n1 c

(r)
n2 · · · c

(r)
ntr


 .

Create the code matrix C as concatenating these C(r) matrices for all
r = 1, 2, . . . , n:

C =
(
C(1)

∣∣C(2)
∣∣ . . .

∣∣C(n)
)
.

To get the code C, consider the columns of the code matrix C as the code-
words. Since C will have n rows, the codewords are of length n. Calculate
the number of columns, which is the number of users in the code, as the
following

t(n) =
n∑

r=1

tr =
n∑

r=1

α(r). (7.26)

The expression
∑n

r=1 α(r) is the number of “1”s in the binary represen-
tations of all numbers between 1 and n. To calculate this sum, divide it to
summation segments in the following way. Let

g1 > g2 > . . . > gα(n)

denote the elements of D(n). Then as we have already mentioned,

n =

α(n)∑

i=1

2gi .
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Thus

n∑

r=1

α(r) =
2g1−1∑

r=0

α(r) +
2g1+2g2−1∑

r=2g1

α(r) + . . .+
2g1+2g2+...+2

gα(n)−1∑

r=2g1+2g2+...+2
gα(n)−1

α(r) + α(n).

Consider only one summation segment: in the sum

2g1+2g2+...+2gi−1∑

r=2g1+2g2+...+2gi−1

α(r)

we sum the number of “1”s in the binary representations of 2gi numbers. Each
of these numbers have i− 1 fixed “1” digits at the positions g1, g2, . . . , gi−1,
and the last gi digits take all possible values:

positions: g1
^

· · · · · · g2
^

· · · · · · gi−1
^

· · · · · · gi
^

· · · · · · 1
^

0
^

2g1 + · · · + 2gi−1 + 2gi − 1 = 1 0 · · · 1 0 · · · 1 0 · · · 0 1 · · · 1 1
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
2g1 + · · · + 2gi−1 + 1 = 1 0 · · · 1 0 · · · 1 0 · · · 0 0 · · · 0 1
2g1 + · · · + 2gi−1 = 1 0 · · · 1 0 · · · 1 0 · · · 0 0 · · · 0 0

Here we can clearly determine the number of “1”s: this is 2gi gi

2
for the last gi

digits (half of all digits in this block is “1”, and 2gi(i− 1) for the i− 1 fixed
digits.

Now returning to
∑n

r=1 α(r), this yields

n∑

r=1

α(r) =

α(n)∑

i=1

2gi

(gi
2

+ i− 1
)

+ α(n),

where g1 > g2 > · · · > gα(n) are the elements of D(n), satisfying

n = 2g1 + 2g2 + · · · + 2gα(n) .

We will show, that

t(n) =
n∑

r=1

α(r) ∼ nblog nc
2

∼ n log n

2

as n→ ∞. The latter assymptotic equality is trivial. For the former, observe
first that blog nc = g1, and then take the difference of the left and the right
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side of the assymptotics, divided by the right hand side:

∑n
r=1 α(r) − nblog nc

2
nblognc

2

=

∑α(n)
i=1

(
gi−g1

2
+ i− 1

)
2gi + α(n)

Pα(n)
i=1 g12gi

2

=

∑α(n)
i=1 (gi − g1 + 2i− 2)2gi + 2α(n)

∑α(n)
i=1 g12gi

=

=

∑α(n)
i=1 (i− 1 − fi)2

−fi+1−i + 2α(n)
2g1∑α(n)

i=1 g12−fi+1−i

where we introduced fi = g1 − gi − i + 1, and divided by 2g1 . Notice, that
fi ≥ 0, and use that (c − x)2−x for x ≥ 0 is maximized at x = 0 with value
c, and minimized at x = log e+ c with value − log e

e
2−c. Then

∑n
r=1 α(r) − nblognc

2
nblog nc

2

≤
∑α(n)

i=1 (i− 1)21−i + 2α(n)
2g1

g1 +
∑α(n)

i=2 g12−fi+1−i

≤ bounded

g1

=
bounded

blog nc ,

which tends to 0 as n→ ∞. For the lower bound:
∑n

r=1 α(r) − nblognc
2

nblog nc
2

≥
∑α(n)

i=1 − log e
e

21−i21−i + 2α(n)
2−g1

2g1

=
− log e

e

∑α(n)
i=1 41−i + 2α(n)

2−g1

2g1

=
bounded

2g1

=
bounded

2blog nc .

Thus continuing (7.26), we get that this construction yields a maximal
number of t(n) users for a given n for which

t(n) ∼ n log n

2
,

or more precisely

lim
n→∞

t(n)

n log n
=

1

2
. (7.27)
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Now we will prove from this, that for the length N(t) of the shortest
possible u.d. code for t users

N(t) .
2t

log t
,

or precisely

lim sup
t→∞

N(t) log t

t
≤ 2.

To see this, we will set an arbitrary ε > 0, and show that

N ′(t) =
2(1 + ε)t

log t

is an upper bound for N(t) if t is great enough.
Let δ =

√
1 + ε− 1 and let δ′ = 1 − 1

1+δ
. Then we can write

N ′(t) =
2(1 + δ)t

(1 − δ′) log t
.

From (7.27) we know, that there exists an n0, for which

∀n > n0 : t(n) ≥ (1 − δ′)n log n

2
.

Since N ′(t) → ∞ as t→ ∞, there also exists a t
(1)
0 , for which

∀t > t
(1)
0 : t(N ′(t)) ≥ (1 − δ′)N ′(t) logN ′(t)

2

=
(1 − δ′) 2(1+δ)t

(1−δ′) log t

(
log 2(1+δ)

(1−δ′) + log t− log log t
)

2

=
t(1 + δ)

(
log 2(1+δ)

(1−δ′) + log t− log log t
)

log t
.

It is easy to see, that this last formula is approximatelly equal to (1 + δ)t, so

there exists a t
(2)
0 for which

∀t > max{t(1)0 , t
(2)
0 } : t(N ′(t)) > t,

which means that if t is great enough, then for code length N ′(t) the above
construction gives a u.d. signature code for more than t users. Then this
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N ′(t) is an upper bound for the length of the shortest possible u.d. signature
code for t users.

N(t) ≤ N ′(t) =
2(1 + ε)t

log t
.

Since ε > 0 is arbitrary, this yields

lim sup
t→∞

N(t) log t

t
≤ 2.

What remains to see, is that the above constructed C is really a u.d. code
matrix. Let us consider the contrary: suppose that m 6= n is two constella-
tions (m,n ∈ {0, 1}t) for which S(m) = S(n), or equivalently, Cm = Cn.
Decompose the constellation vectors as

m =




m(1)

m(2)

...
m(n)


 , n =




n(1)

n(2)

...
n(n)


 ,

where m(r) and n(r) is of size tr.
Since m 6= n, there is some r, for which m(r) 6= n(r). Let ` be the maximal

r with this property.
Let y = (x1, x2, . . . , xn)

> be defined by

xi =

{
(−1)α(i)+1 if i ⊆ `;

0 otherwise.

Since Cm = Cn, we have that y>Cm − y>Cn = y>C(m − n) = 0.
Thus

0 = y>C(m − n) =
n∑

r=1

y>C(r)(m(r) − n(r)),

where we separate the sum into three partitions: r ) `, r = ` and r + `:

y>C(m − n) =
∑

r)`

y>C(r)(m(r) − n(r))

+ y>C(`)(m(`) − n(`))

+
∑

r+`

y>C(r)(m(r) − n(r)).
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For r ) `, we know, that r > `, thus m(r) − n(r) = 0 (` was defined as
the largest index r for which m(r) and n(r) differs), so the sum of the first
partition is 0.

For r = `,

y>C(`)(m(`) − n(`)) =

t∑̀

j=1

(
∑

i⊆`
(−1)α(i)+1c

(`)
ij

)
(m

(`)
j − n

(`)
j )

=

t∑̀

j=1

2j−1(m
(`)
j − n

(`)
j ),

by formula (7.25).

For r + `, there is some q for which q ∈ D(`) and q /∈ D(r). Let the
number corresponding set {q} be p = 2q. Then

y>C(r)(m(r) − n(r))

=
tr∑

j=1

(
∑

i⊆`
(−1)α(i)+1c

(r)
ij

)
(m

(r)
j − n

(r)
j )

=
tr∑

j=1

(
∑

i⊆`−p

(
(−1)α(i)+1c

(r)
ij + (−1)α(i+p)+1c

(r)
i+p j

))
(m

(r)
j − n

(r)
j ),

and since α(i + p) = α(i) + 1, moreover q /∈ r, thus c
(r)
ij = c

(r)
i+p j by the

definition of c
(r)
ij . So the inner sum is 0, thus

y>C(r)(m(r) − n(r)) = 0.

So we have

0 = y>C(m − n)

= y>C(`)(m(`) − n(`))

=

t∑̀

j=1

2j−1(m
(`)
j − n

(`)
j ),

which means
t∑̀

j=1

2j−1m
(`)
j =

t∑̀

j=1

2j−1n
(`)
j .
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This is not possible, since

m(`) ∈ {0, 1}t` ,
n(`) ∈ {0, 1}t` ,
m(`) 6= n(`),

and we know, that the binary representation of integers is unique.

7.11 Partial Activity m-out-of-t Model

In this section we present the signature coding results for the partial activity
m-out-of-t model for the binary adder channel. Recall, that in this model
there are t total users of the channel, out of which at most m are active at any
instant. The inactive users send the zero vector from their component code,
while the active ones send their other (non-zero) codeword. The received
vector is the vectorial sum of the sent codewords, and from this we should
recover the set of active users. We still do not show the zero codewords in
the component codes, so we simply write that code C is

C = {x(1),x(2), . . . ,x(t)}.
We still use the simple notation S(U) for the received vector if the active
users are those in set U :

S(U) =
∑

u∈U
x(u).

Definition 7.5. For the m-out-of-t model, the minimal signature code
length N(t,m) is the length of the shortest possible u.d. signature code for
a given number t of total users and for a given maximal number m of simul-
taneously active ones:

N(t,m) = min
{
n : ∃C u.d. signature code with length n

for t users out of which at most m are active simultaneously
}
.

We show two bounds for N(t,m) saying that for 1 ¿ m¿ t,

2m

logm
log t . N(t,m) .

4m

logm
log t.

Based on Bose and Chowla’s (1962) work, Lindström (1975) constructed
a u.d. signature code with code length

n ∼ m log t.

We will show this construction soon. This is the best known so far, thus there
is no asymptotically optimal code construction for the m-out-of-t model.
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7.12 Bounds for U.D. Signature Codes

The next theorem gives the asymptotic upper bound onN(t,m). This follows
from a similar theorem of D’yachkov and Rykov in (1981), see the remark
after Theorem 7.10 and 7.11. We present here a more simple proof.

Theorem 7.7. (D’yachkov–Rykov (1981)) For N(t,m) we have that

lim sup
m→∞

lim sup
t→∞

N(t,m) logm

m log t
≤ 4.

Proof. Let the length of codewords be n+ 1, let the last component of each
codeword be fixed to 1, and the rest of the components be randomly chosen
from B = {0, 1} with uniform distribution:

P
(
x

(u)
k = 0

)
= P

(
x

(u)
k = 1

)
=

1

2
∀u ∈ U ,∀k : 1 ≤ k ≤ n (i.i.d.),

x
(u)
n+1 = 1 ∀u ∈ U .

We will give an upper bound on the probability of the event

code C =
{
x(1),x(2), . . . ,x(t)

}
is not a u.d. signature code (*)

and then show that for a given m and t, and for an n great enough this
bound is less than 1. So the probability of randomly selecting a good code
is definitely positive, and this means that there exists a good code for that
n great enough, so we have an upper bound on the length of the shortest
possible code.

A code is not a signature code, if and only if there are two different
subsets U and V ⊆ [t] which contain at most m users, and the sums of the
corresponding code vectors are the same:

P
(
event (∗)

)
= P




⋃

U 6=V⊆[t] :
|U |≤m,|V |≤m

{
S(U) = S(V )

}

 .

If there are two subsets U and V which satisfy S(U) = S(V ), then there are
also two disjoint subsets which satisfy it (e.g. U \ V and V \ U). Moreover,
the (n + 1)th component is 1 in all codewords, so the last component of the
received vector is the size of the active set. Thus, if S(U) = S(V ) then
|U | = |V |, so it is enough to take into account disjoint subsets of equal size:

P
(
event (∗)

)
= P




⋃

U 6=V⊆[t] :
|U |=|V |≤m,U∩V=∅

{
S(U) = S(V )

}

 .
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Now we can calculate the upper bound with the so called union bounding:

P
(
event (∗)

)
=

∑

U,V⊆[t] :
|U |=|V |≤m,U∩V=∅

P
({

S(U) = S(V )
})

≤
m∑

k=1

∑

U,V⊆[t] :
|U |=|V |=k,U∩V=∅

P
(
S(U) = S(V )

)
.

Here P
(
S(U) = S(V )

)
= Qn(k), where Q(k) is defined by (7.5) and bounded

by (7.6):

P
(
event (∗)

)
≤

m∑

k=1

∑

U,V⊆[t] :
|U |=|V |=k,U∩V=∅

Qn(k)

≤
m∑

k=1

(
t

k

)(
t− k

k

)(
1√
πk

)n

≤
m∑

k=1

t2k
(

1√
πk

)n

≤m max
k : 1≤k≤m

t2k
(

1√
πk

)n

=m exp

(
max

k : 1≤k≤m

(
2k log t− n

2
log πk

))
.

The exponent is convex in k, so the maximum is either at k = 1 or at k = m:

P
(
event (∗)

)
≤ m exp

(
max

{
2 log t− n

2
log π, 2m log t− n

2
log πm

})
.

If we want to ensure that a u.d. code exists, it is enough to show that
the probability of randomly selecting a non-u.d. code is less than 1, namely
P (event (∗)) < 1. This is surely satisfied if our upper bound tends to 0 as
t→ ∞. For this we require

lim
t→∞

2 log t− n

2
log π = −∞, (7.28)

and
lim
t→∞

2m log t− n

2
log πm = −∞. (7.29)

Let us set

n =

⌈
4m

logm
log t

⌉
. (7.30)
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Then (7.28) holds for all m ≥ 2:

lim
t→∞

2 log t− n

2
log π ≤ 2

(
1 − m log π

logm

)
lim
t→∞

log t = −∞,

and (7.29) also holds:

lim
t→∞

2m log t− n

2
log πm ≤ 2m

(
1 − log πm

logm

)
lim
t→∞

log t

= −2
m log π

logm
lim
t→∞

log t

= −∞.

So if we choose n as given in (7.30) then a u.d. signature code of length
n + 1 will exist, so the length of the shortest possible u.d. signature code is
bounded upper for large t:

N(t,m) ≤
⌈

4m

logm
log t

⌉
+ 1.

It follows, that

lim sup
t→∞

N(t,m) logm

m log t
≤ 4.

We show in the next theorem, that asymptotically for 1 ¿ m ¿ t we
have that N(t,m) & 2m

logm
log t. This is new, but closely relates to Theorem

7.10 of D’yachkov and Rykov.

Theorem 7.8. For N(t,m) we have that

lim inf
m→∞

lim inf
t→∞

N(t,m) logm

m log t
≥ 2.

Proof. Take an arbitrary u.d. signature code of length n for t users out of
which at most m are active, and let U (the set of active users) be a discrete
random variable with uniform distribution over the

(
t
m

)
m-sized subsets of

[t]:

P (U = A) =

{(
t
m

)−1
if A ⊆ [t] and |A| = m;

0 otherwise.

We will bound the entropy of S(U) in two different ways, to get an upper
and a lower bound. Then by joining these bounds, we will get a lower bound
on the code length.
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First we set the lower bound on H (S(U)), which is the Shannon–entropy
of the random variable S(U):

H (S(U)) = H (U) ,

since for all different values of U the corresponding S(U) values are different
for a u.d. signature code. But U has uniform distribution, so for it is entropy

H (U) = log

(
t

m

)
,

and now we are ready to derive the lower bound on H (S(U)):

h(S(U)) = H (U)

= log

(
t

m

)

= log
t(t− 1) · · · (t− (m− 1))

m(m− 1) · · · 1

≥ m log
t

m
. (7.31)

Now we will derive an upper bound, via bounding the entropy of the
individual components of S(U). We can easily get the distribution of the ith

component, if we introduce wi, which is the number of codewords having 1
in their ith component:

wi =
∣∣∣
{
x(u) : x

(u)
i = 1

}∣∣∣ .

The number of all possible values of U is
(
t
m

)
. Moreover, the number of

those U values for which [S(U)]i = k can be enumerated. First we select k
users out of the wi ones those have 1 in the ith component of their codeword.
Then we select m − k more out of the t − wi ones those have 0 there. This
is
(
wi

k

)(
t−wi

m−k
)
, if max{0,m− (t−wi)} ≤ k ≤ min{wi,m}. So the distribution

of [S(U)]i is hypergeometrical, with parameters (m,wi, t− wi):

P
(
S(U)i = k

)
=





(wi
k )(t−wi

m−k)
( t

m)
if max{0,m− (t− wi)} ≤ k ≤ min{wi,m};

0 otherwise.

If we introduce Hhyp(m, a, b) which is the entropy of the hypergeometrical
distribution with parameters (m, a, b), then we have that

H
(
S(U)i

)
= Hhyp(m,wi, t− wi).
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Since the entropy of a vector can be bounded by the sum of the entropies of
its components, we get the following upper bound on H (S(U)):

H (S(U)) ≤
n∑

i=1

H
(
S(U)i

)

=
n∑

i=1

Hhyp(m,wi, t− wi)

≤nmax
w

Hhyp(m,w, t− w),

and using Lemma 7.2 we get

H (S(U)) ≤ nmax
w

1

2
log

(
2πe

(
Varhyp(m,w, t− w) +

1

12

))
,

where Varhyp(m,w, t− w) denotes the variance of the hypergeometrical dis-
tribution with parameters (m,w, t− w). Therefore

H (S(U)) ≤nmax
w

1

2
log

(
2πe

(
m
w

t

(
1 − w

t

)(
1 − m− 1

t− 1

)
+

1

12

))

≤n1

2
log

(
1

2
πe

(
m

(
1 − m− 1

t− 1

)
+

1

12

))
. (7.32)

Combining (7.31) and (7.32) we get

m log
t

m
≤ H (S(U)) ≤ n

1

2
log

(
1

2
πe

(
m

(
1 − m− 1

t− 1

)
+

1

12

))
,

which holds for all u.d. signature codes, including the shortest possible one.
So

N(t,m) ≥ m log t
m

1
2
log
(

1
2
πe
(
m
(
1 − m−1

t−1

)
+ 1

12

)) ,

form which

lim inf
m→∞

lim inf
t→∞

N(t,m) logm

m log t
≥ 2.

7.13 Lindström’s signature code construction

In this section we will show a construction of Lindström (1975) for a sig-
nature code for the m-out-of-t multiple access binary adder channel. The
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construction will have a code length n(t,m) for which

lim
m→∞

lim
t→∞

n(t,m)

m log t
≤ 1.

The construction works only when the number of users is a prime power,
so first we take s ≥ t which is a prime power, construct a code for s users,
and then simply leave s− t codewords in order to obtain a code for t users.
Thus we can use the upper bound s ≤ 2dlog te.

The construction is the following: Take the elements β1, β2, . . . , βs of
GF(s) and take the primitive element α of GF(sm). Let x1, x2, . . . , xs be
integers such that

αxi = α + βi ∀i = 1, 2, . . . , s.

Such xi exists for all i, since α is a primitve element of GF(sm) and clearly
α+ βi is a nonzero element. It also follows, that 0 < xi < sm − 1, where the
left inequality follows from the fact, that α + βi cannot be 1 ∈ GF(sm).

The numbers x1, x2, . . . , xs has the important property, that different
sums of exactly m of them cannot coincide:

m∑

i=1

xai
=

m∑

i=1

xbi ⇐⇒ ai = bi for all i = 1, . . . ,m.

This is because the simple fact, that if the sums are equal, then

(α + βa1)(α + βa2) · · · (α+ βam) = (α+ βb1)(α+ βb2) · · · (α+ βbm),

where we can cancel αm on both sides, and zero one side to get a polynomial
of degree at most m− 1 over GF(s), which is satisfied by α. Note, that the
polynomial cannot be the constant zero, since the root sets of the original left
and right hand sides in the equation differ. Moreover, since α is a primitive
element of GF(sm), it cannot satisfy such a polynomial.

Let the codewords xi be the binary representations of the numbers xi
with one additional digit 1 appended. For binary representation of numbers
up to ` we need dlog(` + 1)e bits. So based on xi < sm − 1 and s ≤ 2dlog te

we have

n(t,m) = dlog(sm − 1)e + 1

≤ m log s+ 2

≤ mdlog te + 2

≤ (1 + log t)m+ 2.



198 Chapter 7. Multiple Access Adder Channel

If U denotes the active subset of the users, then clearly for the output
vector of the channel S(U) =

∑
u∈U xu. From S(U) we can simply calculate

|U | and S(U) =
∑

u∈U xu:

|U | = [S(U)]n(t,m),

S(U) =
∑

u∈U
xu =

n(t,m)−1∑

i=1

2n(t,m)−i−1[S(U)]i.

To finally see, that this code is u.d. we shall see, that for different U be-
longs different S(U). First, if U and U ′ differs in size, then the last element
of S(U) will also differ. If |U | = |U ′|, then take m−|U | arbitrary codewords.
Consider U and the new codewords as one set of numbers a1, a2, . . . , am
(with possible repetitions) and U ′ and the new codewords as the other set
b1, b2, . . . , bm (again with possible repetitions). The property of the code-
words shown above ensures that we will have different S(U).

7.14 Signature Coding and Information Trans-

fer

Here we deal with the coding problem of the multiple-access adder channel,
considering both the identification of the set of active users and decoding
of their messages. We examine the bounds on the minimal length of codes
solving these two tasks simultaneously.

The coding problem can be formulated in the following way: there are t
users of the channel: U = {1, 2, . . . , t}. Each user u has a component code,
which is formed by s binary codewords of length n: x(u,1),x(u,2), . . . ,x(u,s) ∈
{0, 1}n, each codeword is associated with a specific message of the user. At
a given instant, there are some (say r) active users. They are denoted by the
set U . Enumerate them as U = {u1, u2, . . . , ur} where u1 < u2 < . . . < ur.
We consider, that at any time at most m users are active, so r ≤ m. For
each active user ui ∈ U , let mi ∈ {1, 2, . . . , s} denote the message this
user wants to send. Form a vector of length r from the messages as m =(
m1,m2, . . . ,mr

)
. The pair (U,m), which is the set of active users and the

vector of their messages together, is called a message constellation.
The active users send their corresponding codeword to the channel: user

ui sends x(ui,mi). The receiver gets the sum of the codewords sent, which is
denoted by S(U,m):

S(U,m) =
r∑

i=1

x(ui,mi).
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If the code C is such that for each different pair (U,m), the channel output
is different, we say this code is a uniquely decipherable (u.d.) code. Formally,

S(U,m) = S(V,n) ⇐⇒ (U = V and m = n)

∀U, V,m,n : |U | ≤ m, |V | ≤ m.

This definition simply formalizes the fact, that if we want to recover the
active users and their messages from the received vector, then we cannot
have coincidence for different constellations.

We will show the following theorem:

Theorem 7.9.

2 ≤ lim inf
m→∞

lim inf
ts→∞

N(t,m, s) logm

m log ts

≤ lim sup
m→∞

lim sup
ts→∞

N(t,m, s) logm

m log ts
≤ 4.

Proof. For the upper bound, the proof is by random coding. We give each
user s codewords, each of length n + 1. The codewords are composed of
n random components independently and uniformly distributed over {0, 1},
and an (n+ 1)th component fixed to 1:

P
(
x

(u,i)
j = 0

)
= P

(
x

(u,i)
j = 1

)
=

1

2
∀j = 1, 2, . . . , n,

and x
(u,i)
n+1 = 1 for all message i = 1, 2, . . . , s of all user u = 1, 2, . . . , t, where

x
(u,i)
j denotes the jth component of the codeword x(u,i).

This is not a u.d. code, if and only if there are two different constellations
(U,m) and (V,n), for which the corresponding sum vectors are the same. So
if we define “event ∗” as “code C is not a u.d. code”, then we can write

P (event ∗) = P
{
∃(U,m), (V,n) :

|U | ≤ m, |V | ≤ m,S(U,m) = S(V,n)
}
.

If S(U,m) = S(V,n), so the sum vector is the same for two constellations,
then these constellations must have the same number of active users: |U | =
|V |. (This is because the (n+ 1)th component of the codewords is fixed to 1,
so this component of the sum vector is the number of active users.) Thus

P (event ∗) = P
{
∃(U,m), (V,n) :

|U | = |V | ≤ m,S(U,m) = S(V,n)
}
.
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In the followings, it will be convenient to have only different vectors added
in S(U,m) and S(V,n), but certainly, the same vector can occur in both
terms, if there is a common user in U and V , who is sending the same message
in m and n. We call such a user an invariant user. If (U,m) and (V,n) does
not have any invariant users, then we will denote it by (U,n) ⊥ (V,m),
because it will turn out to be some kind of independence.

Fortunately, to test whether a code is u.d. or not, it is enough to consider
only the constellations without invariant users: if there exists a constellation-
pair (U,m), (V,n) with S(U,m) = S(V,n), then there also exists at least one
pair (Û , m̂), (V̂ , n̂) for which S(Û , m̂) = S(V̂ , n̂) also, moreover it contains
no invariant users: (Û , n̂) ⊥ (V̂ , m̂). To find this constellation-pair, simply
leave each invariant user from the original constellations.

Thus we have

P (event ∗) = P
(
∃(U,m), (V,n) : |U | = |V | ≤ m,

(U,m) ⊥ (V,n),S(U,m) = S(V,n)
)
,

and by union bounding, we get

P (event ∗) ≤
∑

∀(U,m),(V,n) :
|U |=|V |≤m,
(U,m)⊥(V,n)

P
(
S(U,m) = S(V,n)

)
. (7.33)

Let us denote the jth component of the sum vector S(U,m) by Sj(U,m).
Since the components of the codewords are independent, it follows, that
the components of the sum vector are also independent. Moreover, the last
component of the sum vector equals to |U |. Then for |U | = |V |,

P
(
S(U,m) = S(V,n)

)
=

n∏

j=1

P
(
Sj(U,m) = Sj(V,n)

)
,

where

P
(
Sj(U,m) = Sj(V,n)

)
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= P




|U |∑

i=1

x
(ui,mi)
j =

|V |∑

i=1

x
(vi,ni)
j




= P




|U |∑

i=1

x
(ui,mi)
j −

|V |∑

i=1

x
(vi,ni)
j = 0




= P




|U |∑

i=1

x
(ui,mi)
j +

|V |∑

i=1

(
1 − x

(vi,ni)
j

)
= |V |


 .

Because the constellations are without invariant users, we know that no
common codewords appear in the sums. The jth component of the codewords
are independent random variables uniformly distributed over {0, 1}. Thus 1−
x

(vi,ni)
j has the same distribution as x

(vi,ni)
j . Moreover since the constellations

are without invariant users, each codeword appears at most once in the sum,
so the sum is the sum of |U |+ |V | independent uniformly distributed random
variables. This gives a binomial distribution with parameters

(
|U | + |V | , 1

2

)
,

so

P
(
Sj(U,m) = Sj(V,n)

)
=

(|U | + |V |
|V |

)
2−|U |−|V |.

Gallager ((1968) Problem 5.8 pp. 530) gives bounds on the binomial coeffi-
cients. It shows, that (

2r

r

)
2−2r ≤

√
1

πr
.

Using this, and that |U | = |V |, we get

P
(
Sj(U,m) = Sj(V,n)

)
≤
√

1

π |U | ,

and then

P
(
S(U,m) = S(V,n)

)
≤
(√

1

π |U |

)n

.

Substituting this result into (7.33) yields

P (event ∗) ≤
∑

∀(U,m),(V,n) :
|U |=|V |≤m,
(U,m)⊥(V,n)

(√
1

π |U |

)n
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≤
∑

∀(U,m),(V,n) :
|U |=|V |≤m

(√
1

π |U |

)n

.

By simple enumeration we get

P (event ∗) ≤
m∑

r=1

(
t

r

)(
t

r

)
s2r

(√
1

πr

)n

,

where we enumerated the suitable constellation pairs based on r = |U | = |V |.
We use

(
t
r

)
≤ tr and take the logarithm of base 2:

P (event ∗) ≤
m∑

r=1

22r log ts−n
2

log πr.

We bound the sum with m times the maximal element. The exponent to be
maximized is convex in r, so the maximum is either at r = 1 or at r = m:

P (event ∗) ≤ mmax
{
22 log ts−n

2
log π, 22m log ts−n

2
log(πm)

}
.

In both formulas, we substitute n = dc(m) log tke, and get the following
bounds for P (event ∗):

m (ts)2− c(m) log π
2 (case r = 1);

m (ts)2m− c(m) log πm
2 (case r = m).

Both formulas tend to 0 as ts→ ∞ if for some ε > 0

c(m) >
4 + ε

log π
(case r = 1);

c(m) >
4m+ ε

log πm
(case r = m).

Setting c(m) = 4m+1
log πm

satisfies both conditions (m ≥ 1), so for

n =

⌈
4m+ 1

log πm
log ts

⌉
,

we have
lim
ts→∞

P (event ∗) = 0.

This means, that the probability of the complementer event is greater than
0 for some large enough ts. So the random code we select is a u.d. code
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with positive probability, thus at least one u.d. code exists. This means, that
the value we derived for n is an upper bound for the minimal code length
N(t,m, s). For any ε > 0 and large enough ts we have

N(t,m, s) ≤ n =

⌈
4m+ 1

log πm
log ts

⌉
,

from which

lim sup
m→∞

lim sup
ts→∞

N(t,m, s) logm

m log ts
≤ 4.

For the proof of the lower bound, consider an arbitrary u.d. code of length
n, and select constellations at random: let U =

(
u1, u2, . . . , um

)
be uniformly

distributed over the m sized subsets of U , and let m be uniformly distributed
over the vectors {1, 2, . . . , s}m, independently of U . Since the code is u.d.,
for each different constellation (U,m), we get a different sum vector S(U,m),
thus for the Shannon-entropy,

H
(
S(U,m)

)
= H

(
U,m

)
= log

((
t

m

)
sm
)

≥ m log
ts

m
, (7.34)

where we used that
(
t
m

)
≥
(
t
m

)m
.

On the other side, using the standard bound on the entropy (c.f. (1991)),
we can bound the entropy of the individual components of S(U,m):

H
(
S(U,m)

)
≤

n∑

j=1

H
(
Sj(U,m)

)
, (7.35)

and

H
(
Sj(U,m)

)
≤ 1

2
log

(
2πe

(
Var
(
Sj(U,m)

)
+

1

12

))
. (7.36)

Here the variance Var
(
Sj(U,m)

)
can be bounded in the following way:

Var
(
Sj(U,m)

)

= E
((
Sj(U,m)

)2)−
(
E
(
Sj(U,m)

))2

= E



(

m∑

i=1

x
(ui,mi)
j

)2

−

(
E

(
m∑

i=1

x
(ui,mi)
j

))2

= E

(
m∑

i=1

(
x

(ui,mi)
j

)2
)



204 Chapter 7. Multiple Access Adder Channel

+ E




m∑

k=1

m∑

`=1
`6=k

x
(uk,mk)
j x

(u`,m`)
j




−
(

E

(
m∑

i=1

x
(ui,mi)
j

))2

. (7.37)

Here the first and the third expected values are easy to calculate. Let p
(u)
j =

1
s

∑s
i=1 x

(u,i)
j , and p̄j = 1

t

∑t
u=1 p

(u)
j . Then since x

(ui,mi)
j ∈ {0, 1},

E

(
m∑

i=1

(
x

(ui,mi)
j

)2
)

= E

(
m∑

i=1

x
(ui,mi)
j

)
= mp̄j,

and

(
E

(
m∑

i=1

x
(ui,mi)
j

))2

= m2p̄2
j .

For the second expected value,

E




m∑

k=1

m∑

`=1
6̀=k

x
(ur,mr)
j x

(u`,m`)
j


 =

E




m∑

k=1

m∑

`=1
`6=k

E
(
x

(uk,mk)
j

∣∣∣U
)
E
(
x

(u`,m`)
j

∣∣∣U
)

 ,

since for a given U , x
(uk,mk)
j and x

(u`,m`)
j are conditionally independent (k 6= `),

and calculating the conditional expected value yields

E




m∑

k=1

m∑

`=1
6̀=k

x
(uk,mk)
j x

(u`,m`)
j


 = E




m∑

k=1

m∑

`=1
`6=k

p
(uk)
j p

(u`)
j




=

(
t−2
m−2

)
(
t
m

)
t∑

k=1

t∑

`=1
`6=k

p
(k)
j p

(`)
j .
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Thus for Var
(
Sj(U,m)

)
we have obtained (c.f. (7.37))

Var
(
Sj(U,m)

)
= mp̄j +

(
t−2
m−2

)
(
t
m

)
t∑

k=1

t∑

`=1
`6=k

p
(k)
j p

(`)
j −m2p̄2

j

≤ mp̄j +
m(m− 1)

t(t− 1)

(
t∑

i=1

p
(i)
j

)2

−m2p̄2
j

= mp̄j +
m(m− 1)

t(t− 1)
t2p̄2

j −m2p̄2
j

= mp̄j +
m

t− 1

(
(m− 1)t−m(t− 1)

)
p̄2
j

= mp̄j +
m(m− t)

t− 1
p̄2
j

≤ m,

since m ≤ t and p̄j ≤ 1.

Returning to (7.35) and (7.36) and using that m+ 1
12
< 2m, we get

H
(
S(U,m)

)
≤

n∑

j=1

H
(
Sj(U,m)

)

<

n∑

j=1

1

2
log(4πem)

=
n

2
log(4πem).

Comparing this with (7.34) yields

n ≥ m log ts
m

1
2
log(4πem)

.

This holds for any u.d. code, even for the shortest possible one, with length
n = N(t,m, s). So

lim inf
m→∞

lim inf
ts→∞

N(t,m, s) logm

m log ts
≥ 2.

This finishes the proof of Theorem 7.9.
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7.15 Bounds for Bm Codes

D’yachkov and Rykov (1981) considered a special class of u.d. signature
codes, namely the Bm codes.

Definition 7.6. A Bm code is a set of t binary codewords of length n

C =
{
x(1),x(2), . . . ,x(t)

}
⊆ Bn

which has the following property: all sums of exactly m (not definitely differ-
ent) codewords are different.

It is obvious, that a Bm code C can be converted into a u.d. signature
code Cs for the adder channel. What we have to do, is just to append a fixed
1 bit to the end of all the codewords in the Bm code:

Cs =
{
y : y ∈ Bn+1,∃x ∈ C : ∀j ∈ [n] : yj = xj and yn+1 = 1

}
.

The length of this signature code is n + 1. To see that this is really a u.d.
signature code, we indirectly put up that there are two different subsets U
and V of the users for which the sum vector is the same. The size of U
and V cannot differ, since then the (n + 1)th component of the sum vectors
would also differ. So we can assume that |U | = |V |. Now take the following
(exactly) m codewords: all the codewords in U plus x(1) as many times as
needed to get exactly m codewords (m− |U | times). The sum vector of this
multiset must be equal to the sum vector of all the codewords in V plus x(1)

m− |V | times. But then we have found two multisets of codewords with m
elements in the original Bm code C, for which the sum vector is the same.
This is a contradiction with the definition of the Bm codes.

D’yachkov and Rykov (1981) have given upper and lower bounds on
NB(t,m), which is the length of the shortest possible Bm code for t total
users out of which at most m are active simultaneously. For the length
of the shortest possible signature code, they have proven the following two
theorems:

Theorem 7.10. (Dyachkov–Rykov (1981)) For any m < t

NB(t,m) ≥
log

tm

m!
Hbin(m,

1
2
)
.

Theorem 7.11. (Dyachkov–Rykov (1981)) If t→ ∞ then for any fixed m

NB(t,m) ≤ 2m

log
22m

(
2m
m

)
(1 + o(1)) log t.



7.15. Bounds for Bm Codes 207

Asymptotically for 1 ¿ m¿ t, these theorems say that

2m

logm
log t . NB(t,m) .

4m

logm
log t. (7.38)

Using the construction of signature codes from Bm codes, it is trivial,
that N(t,m) ≤ NB(t,m) + 1, thus the asymptotic lower bound follows from
Theorem 7.8. For the asymtotic upper bound, we show a proof here using
the technique of the Pippenger Theorem (Theorem 7.3).

Proof of the asymptotics of Theorem 7.11. Select a random code C of length
n + 1 for t users: the first n bits are randomly selected while the (n + 1)th

is fixed to one. (See the proof of the Pippenger Theorem 7.3 for the exact
distribution.)

We will show, that the probability of the event, that

code C is not a Bm code (*)

is less than one. We need a code with property

S(u) = S(v) ⇐⇒ u = v

∀u,v ∈ {1, 2, . . . ,m}t :
t∑

i=1

ui ≤ m,

t∑

i=1

vi ≤ m.

(Here we assumed only that the number of sent codewords is less than or
equals to m, while the definition of Bm codes says that it is exactly m. So we
are now proving a somewhat stronger statement. Via proving in this stronger
form, we will have an alternative proof of Theorem 7.7, which then can be
seen as a corollary of this.)

P
(
event (∗)

)
= P




⋃

u,v∈{1,2,...,m}t :
Pt

i=1 ui≤m,
Pt

i=1 vi≤m

{
S(u) = S(v)

}




= P




⋃

u,v∈{1,2,...,m}t :

u
>
v=0,

Pt
i=1 ui=

Pt
i=1 vi≤m

{
S(u) = S(v)

}


 ,

where we used that because the last fixed 1 bit, the number of codewords
must be the same for both constellations, and that if there is a vector pair
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u,v which satisfy S(u) = S(v), then there is also an orthogonal vector pair
satisfying it. (See the proof of the Pippenger Theorem 7.3 for explanation.)

Now applying the union bound one gets

P
(
event (∗)

)
≤

∑

u,v∈{1,2,...,m}t :

u
>
v=0,

Pt
i=1 ui=

Pt
i=1 vi≤m

P
({

S(u) = S(v)
})
. (7.39)

For a given u and v we can bound P
({

S(u) = S(v)
})

using (7.17) from
the proof of the Pippenger Theorem (Theorem 7.3). Let ` = |U |+ |V |, where
U =

{
i ∈ {1, 2, . . . , t} : ui 6= 0

}
and V =

{
i ∈ {1, 2, . . . , t} : vi 6= 0

}
. Then

P
({

S(u) = S(v)
})

≤ 2−
n
2

log π`
2 .

Returning to (7.39), we get

P
(
event (∗)

)
≤

∑

u,v∈{1,2,...,m}t :

u
>
v=0,

Pt
i=1 ui=

Pt
i=1 vi≤m

2−
n
2

log
π|U∪V |

2

=
m∑

`=1

∑

u,v : u+v=`

∑

U,V⊆{1,2,...,t} :
|U |=u,|V |=v,
U∩V=∅

∑

u,v∈{1,2,...,m}t :
Pt

i=1 ui=
Pt

i=1 vi≤m
{i : ui 6=0}=U
{i : vi 6=0}=V

2−
n
2

log π`
2 ,

where we enumerated the possible vectors u and v based on the size of their
base set U and V . Thus

P
(
event (∗)

)
≤

2m∑

`=1

∑

u,v : u+v=`

(
t

u

)(
t− u

v

)(
m

u

)(
m

v

)
2−

n
2

log π`
2

≤
2m∑

`=1

(
t

`

)
2`

∑

u,v : u+v=`

(
m

u

)(
m

v

)
2−

n
2

log π`
2

=
2m∑

`=1

(
t

`

)
2`
(

2m

`

)
2−

n
2

log π`
2 .

≤
2m∑

`=1

(4tm)`2−
n
2

log π`
2 ,

where in the last step we bounded
(
t
`

)
with t` and

(
2m
`

)
with (2m)`. Bounding

with the maximal element we get

P
(
event (∗)

)
≤ 2m2max`∈{1,2,...,2m}{` log 4tm−n

2
log π`

2 }.
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Since the exponent to be maximized is convex in `, the maximum is either
at ` = 1 or at ` = 2m. For the first case we get

P
(
event (∗)

)
≤ 2m2log 4tm−n

2
log π

2 ,

while for the second

P
(
event (∗)

)
≤ 2m22m log 4tm−n

2
log πm.

Set n =
⌈
cm log t
logm

⌉
, and examine the bounds as t→ ∞:

lim
t→∞

2m2log 4tm−n
2

log π
2 ≤ lim

t→∞
2m2log 4tm− cm log t

2 log m
log π

2

= 2m2(1− cm
2 log m

log π
2 ) limt→∞ log t.

This is 0, if c > 2 logm
m log π

2
.

For the second bound,

lim
t→∞

2m22m log 4tm−n
2

log πm ≤ lim
t→∞

2m22m log 4tm− cm log t
2 log m

log πm

≤ 2m2(2m− cm
2 log m

log πm) limt→∞ log t.

This is also 0, if c > 4 logm
log πm

. Let us set c = 4+ ε for some ε > 0. This satisfies
both bounds on c for m large enough. Thus the random code of length

⌈
(4 + ε)m log t

logm

⌉
+ 1

we select, is not a Bm code with probability less than one, so at least one Bm

code of that length must exist. So for the length NB(t,m) of the shortest
possible Bm code we have

NB(t,m) ≤
⌈

(4 + ε)m log t

logm

⌉
+ 1,

from which

lim sup
m→∞

lim sup
t→∞

NB(t,m) logm

m log t
≤ 4.
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Chapter 8

Collision Channel with Known
Collision Multiplicity

8.1 Channel Model

Similarly to Chapter 6, in this chapter we consider the slotted multiple-access
collision channel with feedback. Again, suppose that there are infinitely
many non cooperating users and that the packet arrivals can be modelled as
a Poisson process with intensity λ.

Here the feedback at the time slot [n, n+ 1) is:

• feedback 0 means an idle slot,

• feedback 1 means successful transmission by a single user,

• feedback c with c ≥ 2 means that collision happened such that c users
sent packet. c is called the multiplicity of the collision.

8.2 Pippenger’s Random Protocol of Through-

put 1

This protocol is based on the Pippenger’s Theorem (cf. Theorem 7.3), which
says that for any integer t there is a code

C = Ct = {c1, . . . , ct}

of code word length

n =
at

log t

211
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such that the following holds: The n-tuple

y =
t∑

i=1

uici

uniquely determines the nonnegative integers u1, u2, . . . , ut ∈ {0, 1, . . . , t}
satisfying

t∑

i=1

ui ≤ t.

Similarly to Chapter 6, the protocol consists of collision resolution inter-
vals (CRI) which contain a certain number of slots as follows. All channel
users are assumed to follow what is going on on the channel, so everybody
not involved in a certain initial collision has to wait until the end of the epoch
before transmitting his information packet (blocked access). All users can
find out the end of the CRI, because the protocol is known to everybody.
Therefore, it is sufficient to describe the protocol for one epoch.

1. In the initial time slot of a CRI, each active user sends his packet.
After this, all users know the number of transmitted packets, i.e., the
number say s of active users, because that number is the feedback they
receive (the multiplicity of the collisions). If this number is 0 or 1, the
CRI ends.

2. Choose an integer t = ts. Suppose there are s ≥ 2 active users, each
of which selects, randomly and uniformly, a number from {1, 2, . . . , t}.
These numbers i1, . . . , is are called the identifiers.

3. Having the code Cts with the property above, each user j (1 ≤ j ≤ s)
resends his packet according to the the code word cij . This means that
the packet will be resent in slots pointed out by 1′s in the code word
cij .

4. Let ui := #{j : ij = i} be the number of active users which chose the
identifier i and u = (u1, u2, . . . , ut). According to step 3 (and since
feedback is the multiplicity of the collisions) the feedback sequence will
be

y =
t∑

i=1

uici.
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Now each user determines u from y, which is possible by the above-
mentioned Pippenger’s Theorem because clearly

t∑

i=1

ui ≤ t.

5. Now, all users know the multiplicities ui by which the identifiers i were
chosen. In a reserved way, only the users with identifiers i with ui = 1
re-send their packets.

The number of slots needed for this procedure (i.e. the length of a CRI)
is

` = 1 + n+m,

where m is the number of successfully transmitted packets during this CRI.
(In step 1 of the protocol, 1 slot was used; in step 3 this was

n = ns =
ats

log ts

slots; and in step 5 we used m slots.)

Theorem 8.1. (Pippenger (1981)) For the Pippenger protocol, choose ts =
s(log s)b with 0 < b < 1, and assume that the arrivals of the packets are
according to a Poisson process {Z(t) : t ≥ 0} with intensity λ > 0. If

λ < 1,

then the sequence of numbers of packets at the end of a CRI forms a stable
Markov chain.

Proof. Let Xn be the number of packets at the end of the n-th CRI, Zn the
number of packets arrived in the n-th CRI, Vn the number of the successfully
transmitted packets in the n-th CRI. Then

Xn+1 = Xn − Vn+1 + Zn+1.

It is easy to see that {Xn} is an irreducible and aperiodic Markov chain, so
in order to prove its stability we have to check the Foster criteria (Theorem
B.4). For any s ≥ 0,

E{Xn+1|Xn = s} = E{Xn − Vn+1 + Zn+1|Xn = s}
= s− E{Vn+1|Xn = s} + E{Zn+1|Xn = s}.



214Chapter 8. Collision Channel with Known Collision Multiplicity

Let Yn be the length of the n-th CRI, then

E{Zn+1|Xn = s} =
E{Zn+1I{Xn=s}}

P{Xn = s}

=
E{∑∞

y=1 Zn+1I{Xn=s,Yn+1=y}}
P{Xn = s}

=

∑∞
y=1 E{Zn+1|Xn = s, Yn+1 = y}P{Xn = s, Yn+1 = y}

P{Xn = s}

=
∞∑

y=1

E{Zn+1|Xn = s, Yn+1 = y}P{Yn+1 = y|Xn = s}

=
∞∑

y=1

E{Zn+1|Yn+1 = y}P{Yn+1 = y|Xn = s}

=
∞∑

y=1

λyP{Yn+1 = y|Xn = s}

= λE{Yn+1|Xn = s}.

Given Xn = s,

Yn+1 = 1 + ns + Vn+1,

therefore

E{Zn+1|Xn = s} = λ(1 + ns + E{Vn+1|Xn = s}).
Thus

E{Xn+1|Xn = s} = s− E{Vn+1|Xn = s} + λ(1 + ns + E{Vn+1|Xn = s})
= s− (1 − λ)E{Vn+1|Xn = s} + λ(1 + ns).

From the definition and the notations of the protocol we get that

E{Vn+1|Xn = s} = E

{
ts∑

j=1

I{uj=1}|Xn = s

}

=
ts∑

j=1

P{uj = 1|Xn = s}

= tsP{u1 = 1|Xn = s}

= tss
1

ts

(
1 − 1

ts

)s−1
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= s

(
1 − 1

ts

)s−1

≥ s

(
1 − s− 1

ts

)
.

Because of the choice of ts,

ns =
ats

log ts
=

as(log s)b

log s+ b log log s
,= s · o(1)

and so

E{Xn+1|Xn = s} ≤ s− s(1 − λ)

(
1 − s− 1

ts

)
+ 2ns

= s− s

(
(1 − λ)

(
1 − s− 1

s(log s)b

)
+ o(1)

)

= s− s(1 − λ)(1 + o(1)).

For any fixed d > 0, one can choose I such that for s > I

s(1 − λ)(1 + o(1)) > d,

therefore
E{Xn+1|Xn = s} ≤ s− d,

and we verified the conditions of Theorem B.4.

8.3 Ruszinkó-Vanroose Conflict Resolution Pro-

tocol of Throughput 1

The only probabilistic argument in the proof of Pippenger’s protocol (Theo-
rem 8.1) is the construction of a code C based on Pippenger’s Theorem 7.3.
Thus, if someone could constructively generate such a code then Pippenger’s
probabilistic protocol would become a constructive protocol of throughput
1. Unfortunately, it is still an open problem how to generate such codes.
However, note that code C in the protocol can be seen as a parallel or non-
adaptive strategy for determining u. In this section, due to Ruszinkó and
Vanroose (1997), we give an adaptive search strategy instead.

Stated in terms of search theory, the code C of Pippenger’s Theorem 7.3 is
essentially a parallel solution to the following combinatorial search problem,
in n = O(t/log t) steps:



216Chapter 8. Collision Channel with Known Collision Multiplicity

Problem 8.1. Let u1, . . . , ut be a sequence of non negative integers with∑t
i=1 ui ≤ t. We are allowed to ask queries of type How much is

z(A) =
∑

i∈A
ui,

for any subset A of {1, . . . , t}. Find the sequence u1, . . . , ut with as few
queries as possible.

This is because of the following. Since C is binary, the coordinate yi
(i = 1, . . . , n) of the vector y =

∑t
j=1 ujcj is the sum of a certain subset of

coordinates of u = (u1, . . . , ut) pointed out by the 1s in the ith components
of the code words in C. Thus we can consider the vector y = (y1, . . . , yn) as
a sequence of answers for queries of the type above. Let Ai be the set

Ai = {j; cj,i = 1}

then
yi = z(Ai).

Since in this sense, we ask for each i (i = 1, . . . , n) the ith question according
to the ith components of the code words in C and it does not depend on
previous answers, it is a parallel strategy. The random coding argument
in the proof of Pippenger’s Theorem thus shows the existence of a parallel
search strategy solving Problem 8.1 in n = O(t/ log t) steps. But according
to the channel model all users get feedback immediately, thus it suffices to
have an adaptive search strategy which solves Problem 8.1 in o(t) steps.

These observations lead us to the following constructive solution of the
communication problem.

First we intend to solve the search Problem 8.1 in o(t) adaptive steps. For
this, we will use an extended version of Lindström’s construction (cf. section
7.10).

In 7.10, we have shown the construction of a uniquely decodable signature
code for the t-user multiple access adder channel. The t-user binary adder
channel has t binary inputs, and one output, which is the real sum of the
inputs. In the case of signature coding, each user can send his codeword
or the zero vector into the channel. The u. d. code is such that, we can
determine the set of those users sending their codeword.

Now, in the extended construction we consider a t-user channel with t
integer inputs and one integer output, which is the sum of the inputs. We
enable each user to send his codeword multiplied by an arbitrary integer
between 0 and k. The task is to recover this multiplier for each user.
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The formalization of the extended problem is as follows: A code for t
users is a set C = {x1,x2, . . . ,xt} of codewords. The message constellation is
a vector of length t over the nonnegative integers: m = (m1,m2, . . . ,mt)

>.
The ith integer mi shows that at a given instant, which multiple of xi does
the ith user send. Let us denote the output in the case of constellation m
with S(m), which is a vector of length n over the set of nonnegative integers:

S(m) =
t∑

i=1

mixi. (8.1)

Definition 8.1. A code is called u.d. if for all the input constellations where
each user sends his codeword with multiplicity of at most k − 1, the channel
output is unique.

∀m ∈ {0, 1, . . . , k−1}t,∀n ∈ {0, 1, . . . , k−1}t,m 6= n : S(m) 6= S(n). (8.2)

Such class of codes will be costructed for a certain subseries of t. In the
sequel, we will refer to these codes as Lindström codes. Lindström has shown
the following theorem:

Theorem 8.2. (Lindström, (1964)) One can construct a u.d. code of the
above type for t users with code length n(t), for which

lim sup
t→∞

n(t) log t

t log k
≤ 2.

Proof. In the followings, to construct the code, we will do almost the same
as in section 7.10. We will only give the differences here. We will use the
notations (e.g. a ⊆ b) on the binary forms given there.

For a given n, for each r ∈ {1, 2, . . . , n} construct the matrix C(r) of size

r×α(r) in the following way: for row i where i ⊆ r select jth element c
(r)
ij ∈ B

where

j ∈
{

1, 2, . . . ,

⌊
α(r) − 1

log k

⌋
+ 1

}

such that ∑

i⊆r
(−1)α(i)+1c

(r)
ij = kj−1. (8.3)

This is possible, for the same reasons as given in section 7.10, because here
2α(r)−1 is an upper bound for kj−1, since j − 1 ≤ α(r)−1

log k
. For the other rows,

the construction is the same.
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Create the code matrix in the same way. Since C still have n rows, the
codewords are of length n. To calculate the number of columns, which is the
number of users in the code, do as the following:

t(n) =
n∑

r=1

tr =
n∑

r=1

⌊
α(r) − 1

log k

⌋
+1 ≥

n∑

r=1

α(r) − 1

log k
≥
∑n

r=1 α(r) − n

log k
. (8.4)

We have proven in section 7.10 that

n∑

r=1

α(r) ∼ n log n

2
.

Thus continuing (8.4), we get that this construction yields a maximal number
of t(n) users for a given n for which

t(n) &
n log n

2 log k
,

or precisely

lim inf
n→∞

t(n) log k

n log n
≥ 1

2
. (8.5)

To this point we have a code construction of an arbitrary length n, for
t(n) users. Now we will invert the relation, and express the minimal code
length n(t) achievable with this construction for a given number t of users.
More precisely we will give an upper bound on this n(t).

n(t) .
2t log k

log t
,

or precisely

lim sup
t→∞

n(t) log t

t log k
≤ 2.

To see this, in the exact same way as we did in section 7.10, we can set
an arbitrary ε > 0, and show that

n′(t) =
2(1 + ε)t log k

log t

is an upper bound for n(t) if t is great enough. For the detailed proof refer
to section 7.10.

Since ε > 0 is arbitrary, this yields

lim sup
t→∞

n(t) log t

t log k
≤ 2.
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What remains to see, is that the above constructed C is really a u.d. code
matrix. Again, refer to section 7.10 with the following modifications:

For r ) `, and for r + ` the sum is zero, as there.
For r = `,

y>C(`)(m(`) − n(`)) =

t∑̀

j=1

(
∑

i⊆`
(−1)α(i)+1c

(`)
ij

)
(m

(`)
j − n

(`)
j )

=

t∑̀

j=1

kj−1(m
(`)
j − n

(`)
j ),

by formula (8.3).
So we have

0 = y>C(m − n)

= y>C(`)(m(`) − n(`))

=

t∑̀

j=1

kj−1(m
(`)
j − n

(`)
j ),

which means
t∑̀

j=1

kj−1m
(`)
j =

t∑̀

j=1

kj−1n
(`)
j .

This is not possible, since

m(`) ∈ {0, 1, . . . , k − 1}t` ,
n(`) ∈ {0, 1, . . . , k − 1}t` ,

m(`) 6= n(`),

and we know, that the representation of integers in radix k is unique.

Unfortunately this result of Lindström cannot be applied directly to our
problem, since in Problem 8.1 a single coordinate can be large, if the other
coordinates are zeroes it can be even t. Thus if we replace k by t into the
result of Lindström mentioned above, n will not be of magnitude o(t). But
we can do the following.

Construction: An adaptive algorithm which solves Problem 8.1 in

O

(
t

log log t

log t

)

steps:
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1. First partition the coordinates of u = (u1, . . . , ut] into t/log t parts of
size log t, for example, let Ti (1 ≤ i ≤ t/log t) contain coordinates uj
for which

(i− 1) log t ≤ j ≤ i log t

holds.

2. Ask for the total sum of the coordinates in each part Ti (1 ≤ i ≤
t/log t).

3. Now according to the answers we split the partition into two classes.
Let class C1 contain the partition elements where the sum of the coordi-
nates exceeds (log t)2, and let C2 contain the other partition elements.

4. Ask one-by-one each coordinate ui contained in parts Tj ∈ C1.

5. Determine coordinates ui contained in parts Tj ∈ C2 using a Lindström
code C with k = (log t)2. (By step 3 all such coordinates should be
≤ (log t)2.)

By this procedure we solve Problem 8.1 in

O

(
t

log log t

log t

)

constructive steps:
We ask questions only in steps 2, 4 and 5. Step 2 obviously needs t/log t

queries, as well as step 4. In the latter case it follows from the assumption∑t
i=1 ui ≤ t that the number of Tj-s contained in C1 is

≤ t/(log t)2,

and each part contains log t coordinates. In step 5, by Lindström’s construc-
tion we have to ask

O

(
t

log log t

log t

)

queries. Thus the total number of queries is also of magnitude

O

(
t

log log t

log t

)
.

Now we are ready to present a conflict resolution protocol of throughput 1
which uses almost the same steps as the non-constructive proof of Pippenger
presented in the previous section.
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This protocol also consists of CRIs which contain a certain number of
slots. All channel users are assumed to follow what is going on on the channel,
so everybody not involved in a certain initial collision has to wait until the
end of the CRI before transmitting his information packet. All users can
find out the end of the CRI, because the protocol is known to everybody.
Therefore, it is sufficient to describe the protocol for one CRI. We do this in
five consecutive steps, where for each step j we calculate the number `j of
time slots needed:

1. In the initial time slot, each active user sends his packet. Thus,

`1 = 1,

and after this, all users know the number of transmitted packets, i.e.,
the number say s of active users, because that number is the feedback
they receive (the multiplicity of the collisions). If this number is 0 or
1, the CRI ends.

2. Choose an integer t = ts. Suppose there are s ≥ 2 active users, each
of which selects, randomly and uniformly, a number from {1, 2, . . . , t}.
These numbers i1, . . . , is are called the identifiers. Group the identifiers
in intervals of length log t. I.e., for 1 ≤ d ≤ t/ log t let

Ld := {ij : (d− 1) log t < ij ≤ d log t}.

In the dth time slot, users with an identifier in Ld re-send their packet.
Thus,

`2 =
t

log t
.

(In this section, we avoid the use of “d.e” and “b.c” notations because
only magnitudes of the expressions are important.)

3. Consider first the groups Ld for which the feedback in the d-th slot
exceeds (log t)2. There are certainly less than t/(log t)2 such groups.
In a reserved way all users with an identifier belonging to these groups
re-send their packet. After that, these users leave the system. So,

`3 ≤
t

(log t)2
log t =

t

log t
.

4. Consider now the groups Ld for which the feedback in the d-th slot in
step 2 does not exceed (log t)2. Let ui := #{j : ij = i} be the number
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of still active users which chose the identifier i. Then ui ≤ (log t)2, so
construct a Lindström code C with k = (log t)2, and determine u from
y =

∑t
i=1 uici, where y is the feedback sequence of length

`4 ≤ O

(
t

logk t

)
= O

(
t

log log t

log t

)
.

5. Now, all users know the multiplicities ui by which the identifiers i were
chosen. In a reserved way, only the users with identifiers i with ui = 1
re-send their packets:

`5 ≤ m,

where m is the number of successfully transmitted packets during this
epoch. The users which left the system in step 3 with a collision, and
the users in step 5 with ui > 1 must try again in the next epoch.

Thus exactly m packets are successfully transmitted in ` = `1 + · · ·+`5 ≤
1 + n+m time slots, where

n = O

(
t

log log t

log t

)
. (8.6)

Now we are ready to prove that our algorithm is of throughput 1:

Theorem 8.3. (Ruszinkó and Vanroose (1997)) For the Pippenger protocol,
assume the conditions of Theorem 8.1. If

λ < 1,

then the sequence of numbers of packets at the end of a CRI forms a stable
Markov chain.

Proof. The proof is almost the same as that of Theorem 8.1. The only slight
difference is the end, where because of (8.6)

n = ns = O

(
ts

log log ts
log ts

)
= s ·O

(
(log s)b log log s

log s

)
= s · o(1).
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Euclidean Channel

9.1 Channel Model

The Euclidean channel is a special case of the multiple-access channel. This
channel is an adder channel for real numbers. The channel input and output
alphabets are the set R of real numbers, and the output is simply the sum
of the inputs:

Y =
t∑

i=1

Xi.

This channel is much like the binary adder channel, the difference is the
channel input and output alphabet, which is the set R of real numbers in the
case of this Euclidean channel instead of the set {0, 1} and the set N which
was the input and output alphabet of the binary adder channel, respectively.

We will discuss multiple-access codes for this channel. For simplicity,
we use signature codes, where as usual, each user (each component code)
has only two elements, and one of these is the all zero. The non-zero one
is denoted by x(i) for the ith user. Let us call users sending their all zero
codeword inactive, and users sending their nonzero one as active.

Since the channel is synchronized and deterministic, the channel output
is simply the sum of the codewords of the active users. If we denote the set
of active users by U , then the channel output is

yU =
∑

i∈U
x(i).

Certainly, if we do not have any noise, then the channel capacity is infi-
nite. To better model real transmissions, we introduce minimal distance and
maximal energy constraints. This yields the definition of Euclidean signature
codes:

223
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Definition 9.1. C =
{
x(1),x(2), . . . ,x(t)

}
is an Euclidean signature code with

length n for t total and m maximally active users if

x(i) ∈ Rn,
∥∥x(i)

∥∥ ≤ 1 ∀i ∈ [t],

and

dmin(C) ≥ d,

where

dmin(C) = min
U⊆[t],V⊆[t] :

|U |≤m,|V |≤m,U 6=V

‖yU − yV ‖ ,

and ‖.‖ denotes the Euclidean norm in Rn.

The reason for these constraints is straightforward. Consider some dis-
turbing noise in the communication. The minimum distance criteria makes it
possible to recover the messages of the users from the noisy output with a cer-
tain fidelity. Certainly, if the codewords are from Rn, the minimum-distance
criteria makes no sense without a maximal energy constraint.

Furthermore, we assume, that only a small subset of the users are com-
municating simultaneously. We will use the m-out-of-t model, where there
are t total users out of which at most m are active at any given instant.

For given values of t,m and d, we define the minimal Euclidean signa-
ture code length NE(t,m, d) as the length of the shortest possible Euclidean
signature code with this given parameters:

NE(t,m, d) = min
{
n ∈ N : ∃C(n, t,m) Euclidean code with dmin(C) ≥ d

}
.

(9.1)
Since for U = {1} and V = ∅ the distance ‖yU − yV ‖ =

∥∥x(1)
∥∥ ≤ 1, so there

are no codes with minimum distance dmin > 1, therefore we only consider
NE(t,m, d) for 0 < d ≤ 1.

9.2 Bounds for Euclidean Signature Codes

It is easy to see, that for the minimal Euclidean signature code length defined
by (9.1)

lim inf
m→∞

lim inf
t→∞

NE(t,m, d) logm

m log t
≥ 1.
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To see this, there is a rather simple sphere packing bound. Consider the
space Rn, and put a sphere with radius d

2
centered at each possible received

vector. These spheres must be disjoint, since each two received vector has at
least distance d.

The number of spheres is
m∑

i=0

(
t

i

)
,

while the volume of one sphere is
(
d

2

)n
cn,

where cn is the volume of the sphere with unit radius. So the total occupied
volume V is

V =
m∑

i=0

(
t

i

)(
d

2

)n
cn. (9.2)

On the other hand, for any signature code for at most m simultaneously
active users the length of the received vector v is bounded by m, so the
previous spheres are located inside a sphere of radius m+ d

2
. So for the total

occupied volume V ,

V ≤
(
m+

d

2

)n
cn. (9.3)

Putting (9.2) and (9.3) together we get

m∑

i=0

(
t

i

)(
d

2

)n
cn ≤

(
m+

d

2

)n
cn,

and then

(
t

m

)(
d

2

)n
≤
(
m+

d

2

)n
.

It implies that

(
t

m

)m(
d

2

)n
≤
(
m+

d

2

)n
,

therefore

m(log t− logm) + n(log d− log 2) ≤ n log

(
m+

d

2

)
,
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and

n logm

m log t
≥

logm
(
1 − logm

log t

)

log(2m+ d) − log d
.

This also holds for the shortest possible code with length NE(t,m, d):

NE(t,m, d) logm

m log t
≥

logm
(
1 − logm

log t

)

log(2m+ d) − log d
,

therefore

lim inf
t→∞

NE(t,m, d) logm

m log t
≥ logm

log(2m+ d) − log d
,

which implies that

lim inf
m→∞

lim inf
t→∞

NE(t,m, d) logm

m log t
≥ 1.

This was a simple sphere packing argument: if C is a Euclidean signature
code, then all vectors yU (U ⊆ [t], |U | ≤ m) are within a ball of radiusm. The
main idea of the next improved lower bound is to show that for any Euclidean
signature code, half of the vectors yU (U ⊆ [t], |U | = m) are within a ball
of radius of 2

√
m. From this, the second lower bound on the code length

immediately follows by the same sphere packing argument applied to the
sphere with radius 2

√
m.

Theorem 9.1. (Füredi–Ruszinkó, (1999))

lim inf
m→∞

lim inf
t→∞

NE(t,m, d) logm

m log t
≥ 2.

To proove this theorem, we need the following lemma:

Lemma 9.1. For any Euclidean signature code C = C(n, t,m) the inequality

∑

U⊆[t] : |U |=m
‖yU −mc‖2 ≤

(
t

m

)
m

holds, where c = 1
t

∑t
i=1 x(i) is the average vector.
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Proof.

∑

U⊆[t] : |U |=m
‖yU −mc‖2 =

∑

U⊆[t] : |U |=m

(
‖yU‖2 − 2m〈yU , c〉 +m2 ‖c‖2) (9.4)

We can do the summation by terms. For the second term,

∑

U⊆[t] : |U |=m
−2m〈yU , c〉 = −2m

〈
∑

U⊆[t] : |U |=m
yU , c

〉

= −2m

(
t− 1

m− 1

)
t〈c, c〉

= −2

(
t

m

)
m2‖c‖2,

since in the sum
∑

U⊆[t] : |U |=m yU every vector of code C is summed up with

multiplicity
(
t−1
m−1

)
. For the third term,

∑

U⊆[t] : |U |=m
m2‖c‖2 =

(
t

m

)
m2‖c‖2.

For the first term,

∑

U⊆[t] : |U |=m
‖yU‖2 =

∑

U⊆[t] : |U |=m

∥∥∥∥∥
∑

i∈U
x(i)

∥∥∥∥∥

2

=
∑

U⊆[t] : |U |=m

(
∑

i∈U

∥∥x(i)
∥∥2

+
∑

i,j∈U : i6=j

〈
x(i),x(j)

〉
)
,

and since ||x(i)|| ≤ 1,

∑

U⊆[t] : |U |=m
‖yU‖2 ≤

∑

U⊆[t] : |U |=m

(
m+

∑

i,j∈U : i6=j

〈
x(i),x(j)

〉
)
.

From the fact that a pair of vectors is contained in exactly
(
t−2
m−2

)
m-tuples,
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it follows that

∑

U⊆[t] : |U |=m
‖yU‖2

=

(
t

m

)
m+

(
t− 2

m− 2

) ∑

i,j∈[t] : i6=j

〈
x(i),x(j)

〉

≤
(
t

m

)
m+

(
t− 2

m− 2

) ∑

i,j∈[t] : i6=j

〈
x(i),x(j)

〉
+

(
t− 2

m− 2

)∑

i∈[t]

∥∥x(i)
∥∥2

=

(
t

m

)
m+

(
t− 2

m− 2

)∥∥∥∥∥∥

∑

i∈[t]

x(i)

∥∥∥∥∥∥

2

=

(
t

m

)
m+

(
t− 2

m− 2

)
t2 ‖c‖2

≤
(
t

m

)
m+

(
t

m

)
m2 ‖c‖2 .

And putting the three terms in (9.4) together we get

∑

U⊆[t] : |U |=m
‖yU −mc‖2 ≤

(
t

m

)
m.

Now we are ready to prove the new upper bound on the rate of Euclidean
superimposed codes.

Proof of Theorem 9.1. Take an arbitrary Euclidean superimposed code C for
t total users out of which at most m are active. Let n denote the length of
the code, and – similarly to the above lemma – let c = 1

t

∑
i∈[t] x

(i). Let U
be a random variable with uniform distribution over the m sized subsets of
[t].

P(U = V ) =
1(
t

m

) ∀V ⊆ [t] : |V | = m.

By the definition of expected value,

E||yU −mc||2 =
1(
t

m

)
∑

V⊆[t] : |V |=m
‖yV −mc‖2 ,



9.2. Bounds for Euclidean Signature Codes 229

and using Lemma 9.1:

E||yU −mc||2 ≤ m.

Jensen’s inequality for the random variable ||yU −mc|| says

(E (‖yU −mc‖))2 ≤ E
(
‖yU −mc‖2) ,

so
E‖yU −mc‖ ≤ √

m.

Thus by Markov’s inequality,

P
(
‖yU −mc‖ > 2

√
m
)
≤ E (‖yU −mc‖)

2
√
m

=
1

2
.

This means that at least half of the m active user’s sum vectors lies within
an n-dimensional sphere of radius 2

√
m.

But C is a Euclidean code, which means that even those received vectors
within the sphere of radius 2

√
m must have distance at least d from each

other. Applying the sphere packing argument to these vectors we get that

1

2

(
t

m

)
≤
(

2
√
m+ d

2
d
2

)n

,

thus

1

2

(
t

m

)m
≤
(

1 +
4
√
m

d

)n
,

and by taking the logarithm,

n ≥ log 1
2

+m(log t− logm)

log
(
1 + 4

√
m
d

) ,

and this also holds for the shortest possible Euclidean code with given pa-
rameters:

NE(t,m, d) ≥ log 1
2

+m(log t− logm)

log
(
1 + 4

√
m
d

) ,

thus

lim inf
m→∞

lim inf
t→∞

NE(t,m, d) logm

m log t
≥ 2.
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Theorem 9.2. (Ericson–Györfi, (1988))

lim sup
m→∞

lim sup
t→∞

NE(t,m, d) logm

m log t
≤ 4.

Proof. The proof is based on random coding. Choose a random code for t
total and m active users with length n with the following distribution:

P

({
X

(i)
j =

1√
n

})
= P

({
X

(i)
j = − 1√

n

})
=

1

2
∀i ∈ [t] ∀j ∈ [n].

For the probability of that this code does not have minimal distance d, we
have

P
(
dmin(C) < d

)
= P

(
d2

min(C) < d2
)

= P

(
min

(U,V )∈At,m

‖yU − yV ‖2 < d2

)
,

where

At,m =
{
(U, V ) : U ⊆ [t], V ⊆ [t], |U | ≤ m, |V | ≤ m,U 6= V

}
.

Since for each pair (U, V ) setting the minimum, the disjoint pair (U \ U ∩
V, V \ U ∩ V ) also sets the minimum, it is enough to take into account the
disjoint sets only:

P
(
dmin(C) < d

)
= P


 min

(U,V )∈At,m

U∩V=∅

‖yU − yV ‖2 < d2


 ,

and applying the union bound, we get

P
(
dmin(C) < d

)
≤

∑

(U,V )∈At,m

U∩V=∅

P
(
‖yU − yV ‖2 < d2

)
.

Since the codewords are composed of components ± 1√
n
, if |U | + |V | is odd,

then ∣∣[yU − yV ]j
∣∣ ≥ 1√

n
∀j ∈ [n],

so ‖yU − yV ‖ ≥ 1. Thus for |U | + |V | odd for d ≤ 1, the probability

P
(
‖yU − yV ‖2 < d2

)
= 0,
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so we do not have to sum these cases:

P
(
dmin(C) < d

)
≤

∑

(U,V )∈At,m

U∩V=∅
|U |+|V | is even

P
(
‖yU − yV ‖2 < d2

)
.

Moreover, for U ∩ V = ∅ the distribution of yU − yV and yU + yV are the
same, so we can use this latter in the formula:

P
(
dmin(C) < d

)
≤

∑

(U,V )∈At,m

U∩V=∅
|U |+|V | is even

P
(
‖yU + yV ‖2 < d2

)

=
∑

(U,V )∈At,m

U∩V=∅
|U |+|V | is even

P



∥∥∥∥∥
∑

i∈U∪V
X(i)

∥∥∥∥∥

2

< d2




=
∑

(U,V )∈At,m

U∩V=∅
|U |+|V | is even

P


n

n∑

j=1

(
∑

i∈U∪V
X

(i)
j

)2

< nd2


 ,

and by the Chernoff bounding technique,

P
(
dmin(C) < d

)

=
∑

(U,V )∈At,m

U∩V=∅
|U |+|V | is even

P


exp


−n

2

n∑

j=1

(
∑

i∈U∪V
X

(i)
j

)2

 > e−

nd2

2




≤
∑

(U,V )∈At,m

U∩V=∅
|U |+|V | is even

e
nd2

2 Eexp


−n

2

n∑

j=1

(
∑

i∈U∪V
X

(i)
j

)2



=
∑

(U,V )∈At,m

U∩V=∅
|U |+|V | is even

e
nd2

2

n∏

j=1

Eexp


−1

2

(
√
n
∑

i∈U∪V
X

(i)
j

)2



=
∑

(U,V )∈At,m

U∩V=∅
|U |+|V | is even

e
nd2

2


Eexp


−1

2

(
√
n
∑

i∈U∪V
X

(i)
1

)2




n

.
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If |U | + |V | is even, then
√
n
∑

i∈U∪V X
(i)
j is also even, with distribution

P

(
√
n
∑

i∈U∪V
X

(i)
j = 2z

)
=

(
2k

k + z

)
1

22k

over z ∈ {−k, . . . , k}, where 2k = |U | + |V |. Thus

Eexp


−1

2

(
√
n
∑

i∈U∪V
X

(i)
j

)2

 =

k∑

z=−k
e−2z2

(
2k

k + z

)
1

22k
.

So the Chernoff-bound is

P(dmin(C) < d) ≤
∑

(U,V )∈At,m

U∩V=∅
|U |+|V |=2k

e
nd2

2

(
k∑

z=−k
e−2z2

(
2k

k + z

)
1

22k

)n

,

where we enumerate the appropriate pairs (U, V ) with respect to 2k = |U |+
|V |:

P(dmin(C) < d) ≤
m∑

k=1

(
t

2k

)
22ke

nd2

2

(
k∑

z=−k
e−2z2

(
2k

k + z

)
2−2k

)n

,

and since
(
t

2k

)
22k ≤ 2t2k and d ≤ 1,

P(dmin(C) < d) ≤ 2
m∑

k=1

t2ke
n
2

(
k∑

z=−k
e−2z2

(
2k

k + z

)
2−2k

)n

= 2(A+B),

where

A = t2e
n
2

(
1∑

z=−1

e−2z2
(

2

1 + z

)
2−2

)n

,

and

B =
m∑

k=2

t2ke
n
2

(
k∑

z=−k
e−2z2

(
2k

k + z

)
2−2k

)n

.

We will derive upper bounds on A and B:

A = exp

(
2 log t+ n

(
1

2
+ log(1 + e−2) − log 2

))

≤ exp (2 log t− 0.066n) .
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For B, we will use
(

2k
k+z

)
≤
(
2k
k

)
and

(
2k
k

)
2−2k ≤ 1√

πk
(c.f.: Gallager ):

k∑

z=−k
e−2z2

(
2k

k + z

)
2−2k ≤ 1√

πk

k∑

z=−k
e−2z2 ,

and using exp(−2z2) ≤ exp(−2|z|), we get

k∑

z=−k
e−2z2

(
2k

k + z

)
2−2k ≤ 1√

πk

k∑

z=−k
e−2|z|

=
1√
πk

(
1 + 2

k∑

z=1

e−2z

)

≤ 1√
πk

(
1 + 2

e−2

1 − e−2

)

≤ 0.741√
k
.

So for B, we have

B ≤
m∑

k=2

t2ke
n
2

(
0.741√
k

)n

≤ m max
k=2...m

exp

(
2k log t+ n

(
0.201 − log k

2

))
.

It can be easily seen, that the exponent is convex in k. So the maximum is
either at k = 2 or at k = m:

B ≤ mmax{C,D},

where

C = exp

(
4 log t+ n

(
0.201 − log 2

2

))

≤ exp (4 log t− 0.145n) ,

and

D = exp

(
2m log t+ n

(
0.201 − logm

2

))
.
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We want to show that for large values of t, the probability of that this
random code does not have a certain minimal distance is less than one. We
have P (dmin(C) < d) ≤ 2(A+mmin{B,C}), so it is enough to show that

lim
t→∞

A = 0, lim
t→∞

C = 0 and lim
t→∞

D = 0.

Set n = dc(m) log te, then

A ≤ exp
((

2 − 0.066c(m)
)
log t

)
,

C ≤ exp
((

4 − 0.145c(m)
)
log t

)
,

and

D ≤ exp

((
2m−

(
logm

2
− 0.201

)
c(m)

)
log t

)
.

All these quantities A, B and C tends to 0 as t → ∞ if in the exponents
log t has a negative factor. We have this for A if c(m) > 30.304, for C if
c(m) > 27.587, and for D if

2m−
(

logm

2
− 0.201

)
c(m) < 0.

All of these conditions are satisfied by

c(m) =
4(1 + ε)m

logm

for m ≥ 25 and m ≥ exp
(

0.402(1+ε)
ε

)
, where ε > 0 arbitrary.

Summarizing, we have shown that for any ε > 0, if

m > max

{
25, exp

(
0.4005(1 + ε)

ε

)}
,

the probability of a randomly selected code with length

n =

⌈
4(1 + ε)m

logm
log t

⌉

not having minimal distance d tends to 0:

lim
t→∞

P(dmin(C) < d) = 0.
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This means that for t large enough, a good code with certain parameters
exists, so for any ε > 0, m large enough and t large enough

NE(t,m, d) <
4(1 + ε)m

logm
log t+ 1,

which implies that

lim sup
m→∞

lim sup
t→∞

NE(t,m, d) logm

m log t
≤ 4.

9.3 Signature Coding and Information Trans-

fer for the Euclidean Channel

Introduction

There are t users of the channel: U = {1, 2, . . . , t}. Each user u has a
component code, which is formed by s real valued codewords of length n:

Cu = {x(u,1),x(u,2), . . . ,x(u,s)},
each codeword is associated with a specific message of the user. We have an
energy constraint:

∥∥x(u,j)
∥∥ ≤ 1, where ‖.‖ denotes the Euclidean norm. At a

given instant, there are some (say r) active users. They are denoted by the
set U . Enumerate them as U = {u1, u2, . . . , ur}, where u1 < u2 < . . . < ur.
We consider, that at any time at most m users are active, so r ≤ m. For
each active user ui ∈ U , let mi ∈ {1, 2, . . . , s} denote the message this
user wants to send. Form a vector of length r from the messages as m =(
m1,m2, . . . ,mr

)
. The pair (U,m), which is the set of active users and the

vector of their messages together, is called a message constellation.
The active users send their corresponding codewords to the channel: user

ui with message mi sends x(ui,mi). The receiver gets the sum of the codewords
sent, which is denoted by S(U,m):

S(U,m) =
r∑

i=1

x(ui,mi).

If the code C is such that for each different pair (U,m), the channel output
is different at least by d in Euclidean norm, then say this code has distance
d. Formally,

‖S(U,m) − S(V,n)‖ < d ⇐⇒ (U = V and m = n)

∀U, V,m,n : |U | ≤ m, |V | ≤ m.
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Bounds for the code length

Given t, m, s and d, the smallest codeword length for which a d-distance
s-message Euclidean code C for t total users out of which at most m are
active exists is noted by N(t,m, s, d).

Theorem 9.3.

lim inf
m→∞

lim inf
ts→∞

N(t,m, s, d) logm

m log ts
≥ 2.

To proove this theorem, we need the following lemma:

Lemma 9.2. (Füredi–Ruszinkó, (1999)) For any code C defined above, the
inequality

∑

U⊆[t] : |U |=m
m∈{1,2,...,s}m

‖S(U,m) −mc‖2 ≤
(
t

m

)
smm

holds, where

c =
1

ts

∑

i∈{1,2,...,t}
k∈{1,2,...,s}

x(i,k)

is the average vector.

Proof. We will denote the Euclidean inner product with 〈., .〉.
∑

U⊆[t] : |U |=m
m∈{1,2,...,s}m

‖S(U,m) −mc‖2

=
∑

U⊆[t] : |U |=m
m∈{1,2,...,s}m

(
‖S(U,m)‖2 − 2m 〈S(U,m), c〉 +m2 ‖c‖2) (9.5)

We can do the summation by terms. For the second term,

∑

U⊆[t] : |U |=m
m∈{1,2,...,s}m

−2m 〈S(U,m), c〉 = −2m

〈
∑

U⊆[t] : |U |=m
m∈{1,2,...,s}m

S(U,m), c

〉

= −2m

〈(
t− 1

m− 1

)
sm−1tsc, c

〉

= −2

(
t

m

)
smm2 ‖c‖2 ,



9.3. Signature Coding and Information Transfer for the Euclidean Channel237

since in the sum
∑

U⊆[t] : |U |=m
m∈{1,2,...,s}m

S(U,m)

every vector of code C is summed up with multiplicity
(
t−1
m−1

)
sm−1.

For the third term,

∑

U⊆[t] : |U |=m
m∈{1,2,...,s}m

m2 ‖c‖2 =

(
t

m

)
smm2 ‖c‖2 .

For the first term,

∑

U⊆[t] : |U |=m
m∈{1,2,...,s}m

‖S(U,m)‖2 =
∑

U⊆[t] : |U |=m
m∈{1,2,...,s}m

∥∥∥∥∥

m∑

i=1

x(ui,mi)

∥∥∥∥∥

2

=
∑

U⊆[t] : |U |=m
m∈{1,2,...,s}m




m∑

i=1

∥∥x(ui,mi)
∥∥2

+
m∑

i=1

m∑

j=1
j 6=i

〈
x(ui,mi),x(uj ,mj)

〉

 ,

and since
∥∥x(ui,mi)

∥∥ ≤ 1,

∑

U⊆[t] : |U |=m
m∈{1,2,...,s}m

‖S(U,m)‖2 ≤
∑

U⊆[t] : |U |=m
m∈{1,2,...,s}m


m+

m∑

i=1

m∑

j=1
j 6=i

〈
x(ui,mi),x(uj ,mj)

〉

 .

From the fact that a pair of vectors is contained in exactly
(
t−2
m−2

)
sm−2 con-

stellations, it follows that

∑

U⊆[t] : |U |=m
m∈{1,2,...,s}m

‖S(U,m)‖2
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=

(
t

m

)
smm+

(
t− 2

m− 2

)
sm−2

∑

i∈{1,2,...,m}
k∈{1,2,...,s}

∑

j∈{1,2,...,t},j 6=i
`∈{1,2,...,s}

〈
x(i,k),x(j,`)

〉

≤
(
t

m

)
smm+

(
t− 2

m− 2

)
sm−2

∑

i∈{1,2,...,t}
k∈{1,2,...,s}

∑

j∈{1,2,...,t}
`∈{1,2,...,s}

〈
x(i,k),x(j,`)

〉

=

(
t

m

)
smm+

(
t− 2

m− 2

)
sm−2

∥∥∥∥∥∥∥∥

∑

i∈{1,2,...,t}
k∈{1,2,...,s}

x(i,k)

∥∥∥∥∥∥∥∥

2

=

(
t

m

)
smm+

(
t− 2

m− 2

)
sm−2t2s2 ‖c‖2

≤
(
t

m

)
smm+

(
t

m

)
smm2 ‖c‖2 .

And putting the three terms in (9.5) together we get

∑

U⊆[t] : |U |=m
m∈{1,2,...,s}m

‖S(U,m) −mc‖2 ≤
(
t

m

)
smm.

Now we are ready to prove the new upper bound on the rate of Euclidean
s-message codes.

Proof of Theorem 9.3. Take an arbitrary s-message Euclidean code C for the
m-out-of-t case. Let n denote the length of the code, and—similarly to the
above lemma—let c = 1

ts

∑t
i=1

∑s
k=1 x(i,k). Let U be a random variable with

uniform distribution over the m sized subsets of {1, 2, . . . , t}, and let m be
an independent random vector with uniform distribution over {1, 2, . . . , s}m.
By the definition of expected value,

E
(
‖S(U,m) −mc‖2) =

1(
t

m

)
sm

∑

U⊆[t] : |V |=m
m∈{1,2,...,s}m

‖S(U,m) −mc‖2 ,

and using Lemma 9.2:

E
(
‖S(U,m) −mc‖2) ≤ m.
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Jensen’s inequality for the random variable ‖S(U,m) −mc‖ says
(
E‖S(U,m) −mc‖

)2 ≤ E
(
‖S(U,m) −mc‖2) ,

so
E‖S(U,m) −mc‖ ≤ √

m.

Thus by Markov’s inequality,

P
(
‖S(U,m) −mc‖ > 2

√
m
)
≤ E (‖S(U,m) −mc‖)

2
√
m

=
1

2
.

This means that at least half of the sum vectors S(U,m) with m active user’s
lies within an n-dimensional sphere of radius 2

√
m.

But C is an s-message Euclidean code, which means that even those
received vectors within the sphere of radius 2

√
m must have distance at least

d from each other. Apply the sphere packing argument to these vectors: the
sum vectors must differ by Euclidean distance at least d, thus we can draw
disjoint n-dimensional spheres of radius d

2
around them. This way we get(

t
m

)
sm spheres, and at least the half of these spheres are contained within

the sphere of radius 2
√
m+ d

2
. For the volumes, we get that

1

2

(
t

m

)
sm
(
d

2

)n
≤
(

2
√
m+

d

2

)n
,

thus

1

2

(
ts

m

)m
≤
(

1 +
4
√
m

d

)n
,

and by taking the logarithm,

n ≥ log 1
2

+m(log ts− logm)

log
(
1 + 4

√
m
d

) ,

and this also holds for the shortest possible s-message Euclidean code with
given parameters:

N(t,m, s, d) ≥ log 1
2

+m(log ts− logm)

log
(
1 + 4

√
m
d

) ,

thus

lim inf
m→∞

lim inf
ts→∞

N(t,m, s, d) logm

m log ts
≥ 2.
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For the upper bound, consider that an Euclidean signature code with
t′ = ts users (and so with t′ = ts codewords) is also an s-message Euclidean
code for t users. This is because for a signature code with t′ = ts users we
required that all sum of at most m codewords should be distinct by distance
d. For an s message code for t users we require that only those at most m
sums must be distinct, which has at most one codeword from all component
code. Thus the theorem of Ericson and Györfi provides an upper bound also
for the minimal codeword length of s-message Euclidean codes:

Theorem 9.4. (Ericson–Györfi, (1988))

lim sup
m→∞

lim sup
ts→∞

N(t,m, s, d) logm

m log ts
≤ 4.



Appendix A

Linear codes

A.1 Error detection, error correction, erasure

error correction

Let u denote the message vector, and û its reconstruction. The coordinates
of vectors u and û are in set S. This set S is called source alphabet. The
message vector u is encoded into a code word c = (c1, c2, . . . , cn) which is sent
through the channel, and the output vector is denoted by r. The coordinates
of vectors c and r are in set F . This set F is called code alphabet. Here
r = (r1, r2, . . . , rn) is an n-tuple, a possibly corrupted version of c, which the
decoder gets.

If |S| = |F | = q there are exactly qk q-ary k-tuples u = (u1, u2, . . . , uk).
We can assign one codeword to each such k-tuple and therefore say that we
are encoding k “information digits” into n “encoded digits”.

We can define an encoder, for the length n, q-ary block code C the set of
code words, as a one-to-one mapping from the set of qk q-ary message vectors
to C. We say in this case that the code has parameter (n, k).

It is the task of the decoder to operate on r to obtain an estimate û =
(û1, û2, . . . , ûk) of the message vector u. Equivalently, we can view the task
of the decoder as that of forming an estimate ĉ = (ĉ1, ĉ2, . . . , ĉn) of the
codeword, since the process of recovering û from ĉ is quite trivial compared
to that of forming an estimate ĉ of c. It is obvious that the ability to recover
correctly c from r highly depends on the number of positions where c and r
differs, i.e., where the channel made an error.

As customary, F n will denote the set of all n-tuples which has coordinates
from F .

Definition A.1. For x = (x1, . . . , xn) and y = (y1, . . . , yn), the Hamming
distance between x and y, denoted d(x,y), is the number of positions in which

241
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x and y differ.

We can readily see that d(x,y) satisfies the following three properties:

(1) d(x,y) ≥ 0, with equality if and only if x = y.
(2) d(x,y) = d(y,x). (Symmetry)
(3) d(x,y) ≤ d(x, z) + d(z,y). (Triangle inequality)

The three properties above are defining axioms for a metric.

Definition A.2. The minimum distance, dmin, of the code C is defined as
the minimum value of d(c, c′) over all c and c′ in C with c 6= c′.

We now show the importance of dmin in determining the error detecting
or correcting power of the code.

Error detection. Suppose that the task of the decoder is only to detect
whether the received vector is erroneous or not. Obviously we can detect the
errors by checking the received vector is a codeword or not. If the channel
had errors in less than dmin positions then the received vector is surely not a
new codeword. Thus the decoder can detect up to dmin − 1 errors.

Error correction. A more difficult task is to correct errors. The task of the
decoder is to find the “closest” codeword to the received vector measured in
Hamming distance. If the channel had errors in less than dmin/2 positions
then there is a unique codeword which is closest to the received vector. Thus
the decoder can correct up to b dmin−1

2
c errors where b.c denotes integer part.

Erasure correction. Another kind of error when we have information of
the positions of the errors. This kind of error is called erasure. If we erase
less than dmin positions of a codeword, the remainder part cannot correspond
to an other codeword otherwise these two codewords would have less than
dmin position distinct. Thus the decoder can correct up to dmin − 1 erasures.

We saw that the quality of the “closest neighbor” decision in the decoder,
which is in some case the maximum likelihood decision, is better if the mini-
mum distance of the code is greater. However it is obvious that if the encoder
maps q-ary k-tuples into q-ary n-tuples, then it cannot have arbitrarily high
minimum distance. In other words an n-length code with minimum distance
dmin cannot have arbitrarily many codewords. One of the simplest upper
bound is the so called Singleton bound on the size of a code.

Theorem A.1. A q-ary code of length n and minimum distance dmin cannot
have more than qn−dmin+1 codewords. In other words, for an (n, k) parameter
code

dmin ≤ n− k + 1.
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Proof. Since the number of distinct q-ary k− 1-tuples are qk−1 and there are
qk codewords, there must be at least two codewords c and c′ such that they
coincide in the first k − 1 positions. For these

d(c, c′) ≤ n− k + 1,

which implies

dmin ≤ n− k + 1,

therefore

qk ≤ qn−dmin+1.

An important class of the codes which reach the Singleton bound is the
following.

Definition A.3. An (n, k) parameter code with

dmin = n− k + 1

is called maximum distance separable (or MDS) code.

A.2 Finite fields

Structured code alphabet F is necessary to construct efficient error-control
codes. We introduce algebraic operations on F for this purpose.

A finite group is a finite set of elements together with a binary operation
that satisfy the four fundamental properties of closure, associativity, the
identity property, and the inverse property. A group with a commutative
operation is called commutative (Abelian) group.

Definition A.4. A field is an algebraic system (F,+, ·) consisting of a set
F and operations + (addition) and · (multiplication) such that:

1. (F,+) is a commutative (Abelian) group having the neutral element 0.

2. (F \ {0}, ·) is commutative (Abelian) group, and define a · 0 = 0 for all
a ∈ F .

3. The addition is distributive in respect of the multiplication: for every
a, b and c in F , a·(b+ c) = (a·b) + (a·c).
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A finite field, or Galois field, is a field (F,+, ·) in which F is a finite set.
A Galois field of size p is denoted by GF(p). One can prove that the size of
a Galois field is either a prime, or a power of prime.

First we discuss finite fields of prime number of elements. We shall write
amod b to denote the unique remainder when the integer a is divided by the
non-zero integer b.

For a prime p the algebraic system GF(p) = (F,⊕,¯), where F =
{0, 1, . . . p − 1} and where the field operations are defined for a and b in
F by

a⊕ b = a+ b mod p (A.1)

a¯ b = a·b mod p (A.2)

(where the operations on the right sides are integer addition and multiplica-
tion, respectively) is a field.

Next we shall see how to construct a bigger field (Fm,+, ·) that contains
a given field (F,+, ·). But, in order to do this, we need to exploit some
properties of polynomials.

Let (F,+, ·) be an arbitrary field. Then a polynomial over (F,+, ·) in the
indeterminate x is an expression of the form a0 + a1·x+ a2·x2 + · · · in which
ai ∈ F for all i, but in which at most a finite number of the “coefficients” ai
are non-zero. If A(x) = a0 + a1·x+ · · · + an·xn is a polynomial with an 6= 0,
then n is the degree of A(x), denoted deg(A(x)), and an is called the leading
coefficient. When the leading coefficient is 1, the polynomial is called monic.

Elements of (Fm,+, ·) are vectors (c0, c1, . . . , cm−1) of length m over the
field (F,+, ·) which are represented by polynomials c0+c1·x+· · ·+cm−1·xm−1

of degree at most m − 1 and with coefficients in F . Whether adding or
multiplying polynomials, the arithmetic for the coefficients is carried out in
the field F . The powers of the indeterminate are, however, always ordinary
integers. We shall write F [x] to denote the set of all polynomials over the
field F .

The polynomial property analogous to the integer property of “prime-
ness” is “irreducibility”. A polynomial P (x) in F [x] is irreducible in F [x] if
deg(P (x)) ≥ 1 and P (x) cannot be written as a product of polynomials in
F [x], each having degree smaller than deg(P (x)). Notice that all first degree
polynomials are trivially irreducible.

Let p be a prime, then we introduce the arithmetic of GF(pm). The ele-
ments of GF(pm) are considered as vectors from GF(p)m, and are represented
by the corresponding polynomials. So for a,b ∈ GF(pm)

a = (a0, a1, . . . , am−1)
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and

b = (b0, b1, . . . , bm−1)

and the corresponding polynomials

a(x) = a0 + a1x · · · + am−1x
m−1

and

b(x) = b0 + b1x · · · + bm−1x
m−1.

The addition in GF(pm) is defined by

c(x) = a(x) + b(x).

Concerning the multiplication, choose an irreducible polynomial P (x) of de-
gree m. One can prove that such a polynomial always exists. The multipli-
cation in GF(pm) is defined by

d(x) = a(x)·b(x) modP (x).

A.3 Linear codes

Brief summary of linear algebra: linear space, linear independence, basis.

Definition A.5. A block code C of length n is linear if its codewords form a
vector space over the field F , i.e., if C is a subspace of F n. To check to see
if C is a subspace of F n, we need only check to see that
(1) if x and y are in C, then so is x + y,
(2) if x is in C, then so is c·x for all c ∈ F .

Suppose C is linear and g1,g2, . . . ,gk are a basis for C, i.e., C is a k-
dimensional subspace of F n. Then the qk vectors

c = u1·g1 + u2·g2 + · · · + uk·gk, ∀u1, . . . , uk ∈ F (A.3)

are all and only the codewords of C. Writing gi = (gi1, gi2, . . . , gin), we can
then rewrite (A.3) in matrix form as

(c1, c2, . . . , cn) = (u1, u2, . . . , uk)·




g11 g12 . . . g1n

g21 g22 . . . g2n
...

...
. . .

...
gk1 gk2 . . . gkn


 (A.4)
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or, more compactly, as c = u·G where

G =




g11 g12 . . . g1n

g21 g22 . . . g2n
...

...
. . .

...
gk1 gk2 . . . gkn


 .

We can consider (A.4) as defining a linear code C and, thus we shall call
G an encoding matrix or generator matrix. The encoding matrix of code
C is any matrix whose rows are a basis for C. In particular for C(n, k) the
encoding matrix must be a k × n matrix.

A linear encoder G is said to be systematic whenever its use results in

(c1, c2, . . . , ck) = (u1, u2, . . . , uk),

i.e., whenever the information digits appear unchanged in the first k compo-
nents of the codeword. We see from this definition that G is systematic if
and only if it has the form

G = (Ik P) (A.5)

where Ik is the k×k identity matrix and where P is some k× (n−k) matrix.
Clearly if C has a systematic encoder G, then this systematic encoder is
unique. It can be proved with Gauss-elimination that either a linear code
has a systematic encoder, or one can rearrange the order of the digits in the
codeword so that the new code does. Hence, for most purposes, it suffices
to consider systematic linear codes, i.e., linear codes which has a systematic
encoder as in (A.5).

Definition A.6. The Hamming weight of a vector x, denoted w(x), is defined
as the number of non-zero components in x.

Clearly then,
d(x,y) = w(x − y).

Definition A.7. The minimum weight, wmin, of a linear code C is the small-
est value of w(c) for c ∈ C and c 6= 0.

One of the most important facts about linear codes is

Theorem A.2. For a linear code, wmin = dmin.

Proof. Let c be a non-zero codeword such that w(c) = wmin. Then, since 0
is also a codeword, dmin ≤ d(c,0) = w(c) = wmin. Conversely, let c1 and c2

(c1 6= c2) be codewords such that d(c1, c2) = dmin. But c = c1 − c2 6= 0 is
also a codeword and wmin ≤ w(c) = w(c1 − c2) = d(c1, c2) = dmin.
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The importance of Theorem A.2 is that one need not look at distances
between all pairs of distinct codewords to find dmin for a linear code. One
can just as well look only at the weights of single codewords.

A.4 Shortened Reed–Solomon codes

We need a few more algebraic concepts to construct some of the most inter-
esting and powerful error-correcting codes yet discovered.

In any field GF(q), we say that a number α is a primitive element when
m = q−1 is the smallest positive integer that αm = 1. When α is a primitive
element, then α, α2, . . . , αm = 1 must off be non-zero and distinct because
αj = αi for 1 ≤ i < j ≤ m would imply αj−i = 1 and 1 ≤ j − i < m. One
can prove that each Galois field has a primitive element.

In this section we introduce the shortened Reed–Solomon codes, and then
we give a proof of its MDS property.

Definition A.8. Let α ∈ GF(q) be a primitive element and

u(x) = u0 + u1x+ · · · + uk−1x
k−1

be the message polynomial in GF(q)[x]. Then the codewords of the (n, k)
shortened Reed–Solomon code (n ≤ q − 1) determined by α are

c0 = u(1)

c1 = u(α)

c2 = u(α2)

... =
...

cn−1 = u(αn−1).

If n = q − 1 then this code is called Reed–Solomon code.

It is easy to see that the shortened Reed–Solomon code is a q-ary linear
code for which

G =




1 1 1 . . . 1
1 α α2 . . . αn−1

1 α2 α4 . . . α2(n−1)

...
...

...
. . .

...
1 αk−1 α(k−1)2 . . . α(k−1)(n−1)




(A.6)

is a generator matrix.
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Theorem A.3. The minimum distance of (n, k) shortened Reed–Solomon
codes is

dmin = n− k + 1,

i.e., the shortened Reed–Solomon codes are MDS codes.

Proof. Because of the Singleton bound dmin ≤ n− k + 1 for any (n, k) code,
it is sufficient to prove dmin ≥ n − k + 1. The shortened Reed–Solomon
code is linear, so we should prove that w(c) ≥ n − k + 1 for any non-zero
codeword in the code. Thus we should lower bound the weights of non-zero
codewords, which is equivalent to give an upper bound on the number of
zero components of non-zero codewords. But the zero components of the
codewords correspond to distinct roots of the message polynomial, and by
the fundamental theorem a non-zero polynomial cannot have more roots than
its degree. Formally,

w(c) = |{non-zero coordinates of c}|
= n− |{zero coordinates of c}|
≥ n− |{roots of u(x)}|
≥ n− (k − 1),

so the theorem follows.

A.5 Shortened Bose-Chaudhuri-Hocquenghem

codes

A linear code over GF (qm) will have some codewords all of whose components
are in the smaller field GF (q); (0, 0, . . . , 0) is always one such codeword. The
entire set of these codewords with components in GF (q) is called the GF (q)
subcode of the original GF (qm) code. This GF (q) subcode is a vector space
over the smaller field GF (q) and hence is a linear code over GF (q). Its
minimum weight, and hence also its minimum distance, cannot be less than
that of the original code since its non-zero codewords are subset of those in the
original code. But in general the new code will have fewer information digits
since, when we use a systematic encoder for the original code, we cannot get
a codeword all of whose components are in GF (q) unless the k information
digits are all in GF (q); but some of the qk choices of the k information digits
as elements of GF (q) in the original code might yield codewords whose n−k
parity digits are not all in GF (q). Thus, the GF (q) subcode will in general
have fewer than qk codewords. We summarize these facts in the following
theorem.
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Theorem A.4. If C is an (n, k) linear code over GF (qm) with minimum
distance dmin, then its GF (q) subcode is an (n, k′) linear code over GF (q)
with minimum distance d′min, where

k′ ≤ k

and
d′min ≥ dmin.

With this background, we can now define the shortened Bose-Chaudhuri-
Hocquenghem codes (or shortened BCH codes).

Consider a shortened Reed–Solomon code over GF(qm) with parameters
(n, k). The (n, k′) shortened BCH code over GF(q) is the GF(q) subcode
of the shortened Reed–Solomon code. It follows immediately from Theorem
A.4 that, for the shortened BCH code,

d′min ≥ n− k + 1 (A.7)

and
k′ ≤ k. (A.8)

(Note that (A.8) also could have been obtained from the Singleton-bound
(Theorem A.1).) We shall see in later examples that (A.7) often holds with
equality, but that the bound (A.8) is usually very loose for BCH codes.

This definition of shortened BCH codes does not give much insight into
their nature. This will be remedied in a later section where we will show how
one can determine k′ exactly.

A.6 Cyclic codes

By cyclic shift of an n-tuple c = (c0, c1, . . . , cn−1), denoted c·T, we mean the
n-tuple (cn−1, c0, . . . , cn−2). Notice that when the digits ci are in a field we
can consider the cyclic shift operator T to be the matrix

T =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0



,

which emphasizes that taking the cyclic shifts is a linear operation, i.e.,
(a·c + b·c′)·T = a·c·T + b·c′·T.
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Definition A.9. A block code (whether linear or not) is said to be cyclic if
the cyclic shift of every codeword is also a codeword.

We shall now examine the general structure of cyclic codes, after which
we shall show that RS codes and BCH codes are cyclic.

It is convenient to identify the n-tuple c = (c0, c1, . . . , cn−1) with compo-
nents in the field F = GF (q) with the polynomial

c(x) = c0 + c1·x+ · · · + cn−1·xn−1 (A.9)

of degree less than n in F [x]. We shall speak interchangeably of c or c(x)
since either uniquely specifies the other. Notice that the cyclic shift, c·T,
has the polynomial representation

cn−1 + c0·x+ c1·x2 + · · · + cn−2·xn−1 = x·c(x) − cn−1·(xn − 1)

which we can also write as

x·c(x) − cn−1·(xn − 1) = x·c(x) mod (xn − 1). (A.10)

Equation (A.10) shows that cyclic shifting of c corresponds to multiplication
of c by x, modulo the polynomial xn − 1.

Suppose that C is a linear cyclic code, and that the minimum degree
among the polynomials corresponding to its non-zero codewords is r. We
first claim that there is a unique monic polynomial of degree r in the code;
since if there were two their difference would be a non-zero polynomial of
degree less than r and also in the code (because C is linear) and this would
contradict the definition of r. We shall hereafter write

g(x) = g0 + g1·x+ · · · + gr−1·xr−1 + xr

to denote this unique monic polynomial of minimum degree in the code. This
polynomial corresponds to the codeword (g0, g1, . . . , gr−1, 1, 0, . . . , 0) and has
n−r−1 ending zeros. Because C is cyclic, the n-tuples (0, g0, g1, . . . , gr−1, 1, 0, . . . , 0),
(0, 0, g0, g1, . . . , gr−1, 1, 0, . . . , 0), . . . , (0, . . . , 0, g0, g1, . . . , gr−1, 1) must all be
in the code and these n-tuples correspond to the polynomials x·g(x), x2·g(x),. . . ,
xn−r−1·g(x). Again because C is linear,

u0·g(x) + u1·x·g(x) + · · · + un−r−1·xn−r−1·g(x)

must also be in the code for all choices of u0, u1, . . . , un−r−1 in GF (q). Letting

u(x) = u0 + u1·x+ · · · + un−r−1x
n−r−1,
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we can equivalently say that u(x)·g(x) must be also in the code for every
choice of u(x), a polynomial of degree less than n − r. One can show that
there are no other codewords, which will further imply that

k = n− r,

because we can take u0, u1, . . . , uk−1 as the information digits if we wish.
We next show that g(x) divides xn − 1. We have already seen that

xk−1·g(x) is in the code. But C is cyclic so that the cyclic shift of this
codeword is also a codeword, i.e., xk·g(x) − (xn − 1) or, equivalently, that
g(x) must divide xn − 1 as we wished to show.

The code generated by a monic polynomial g(x) of degree r that divides
xn− 1 is cyclic and has k = n− r information digits. If c(x) = u(x)·g(x) has
degree less than n, then u(x) has degree less than k thus we can choose the k
coefficients of the polynomial u(x) as the information digits. The cyclic shift
of c = (c0, c1, . . . , cn−1) is represented by

x·c(x) mod(xn − 1) = x·c(x) − cn−1·(xn − 1)

where both term on the right side is divisible by g(x) therefore the cyclic
shift of c is in the code.

We have thus proved the following theorem that states the principal struc-
tural features of linear cyclic codes.

Theorem A.5. There is a unique monic code polynomial, g(x), of degree
n − k in every q-ary linear cyclic (n, k) code. This generating polynomial,
g(x), specifies the code in the sense that the q-ary n-tuple c is a codeword
if and only if g(x) divides c(x); moreover, g(x) divides xn − 1. Conversely,
every q-ary monic polynomial of degree r that divides xn − 1 generates such
a q-ary linear cyclic (n, k) code with k = n− r.

Our proof of Theorem A.5 establishes that the k × n matrix

G =




g0 g1 . . . gn−k−1 1 0 . . . 0
0 g0 g1 . . . gn−k−1 1 . . . 0
...

...
. . . . . . · · · . . . . . .

...
0 0 . . . g0 g1 . . . gn−k−1 1


 (A.11)

is an encoding matrix for the cyclic code generated by g(x), because it showed
that the rows of this matrix are a basis for the vector space of codewords.
Since the first k columns form a non-singular matrix, we can by appropriate
linear operations on the rows of G obtain an encoding matrix of the form
G′ = (Ik P). Thus every linear cyclic code is a systematic code.
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g(x) divides xn − 1, therefore we can introduce

h(x) =
xn − 1

g(x)

which is called parity check polynomial. Since the generating polynomial
uniquely determines the linear cyclic code, so the parity check polynomial
does it, too.

It is easy to prove that a polynomial c(x) with degree at most n− 1 is a
code word polynomial if and only if

c(x)h(x) = 0 mod(xn − 1).

A.7 Reed–Solomon codes

We now show that the Reed–Solomon codes over GF(q) (shortened Reed–
Solomon codes with n = q − 1) are cyclic.

Theorem A.6. The (n, k) Reed–Solomon code determined by a primitive
element α is cyclic if n = q − 1.

Proof. We must show that for any c = (c0, c1, . . . , cn−1) in the code cT =
(cn−1, c0, . . . , cn−2) ∈ C also holds. From Definition A.8 it follows that

(cT)i = ci−1 modn

= u(αi−1 modn)

=
k−1∑

j=0

ujα
(i−1 modn)j

=
k−1∑

j=0

ujα
(i−1)j

=
k−1∑

j=0

ujα
−1αij

=
k−1∑

j=0

ûjα
ij

= û(αi)

= ĉi,

therefore the cyclic shift of c is also in the code.
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A.8 BCH codes

Here we introduce just a special case of the primitive BCH code over GF(p)
with parameters (n, k′), where p is a prime. Concerning the concept of general
BCH code and the details we refer to Blahut (1984). Choose an integer r ≥ 1
and let the length n of the code be the so called primitive length:

n = pr − 1.

We have the unique factorization

xn − 1 = M0(x) · · · · ·Ms(x)

over GF(p), where Mj(x) are irreducible monic polynomials over GF(p). Let
α be a primitive element of GF(pr). Over GF(pr),

xn − 1 = (x− α0) · (x− α1) · · · · · (x− αp
r−2),

where αi are the non-zero elements of GF(pr). It implies that for each αi

there is an Mj(x) such that (x−αi) divides Mj(x). Then we say that Mj(x)
is the minimal polynomial of αi.

Both g(x) and h(x) should be a product of some Mj(x)’s. Concerning
g(x), the minimum distance of the code can be increased by increasing the
number of factors of g(x), while the size of the code (pk

′
) is large if the degree

of g(x) is small.
Choose 1 ≤ k ≤ p. Let Mi(x) denote the minimal polynomial of αi,

i = 0, 1, . . . , k−1. Choose the parity check polynomial of the primitive BCH
code as

h(x) = l.c.m{M0(x), . . . ,Mk−1(x)}.
We have that

M0(x) = x− 1.

If M(x) is the primitive polynomial of a β ∈ GF (pr) then

M(x) = (x− β)(x− βp) . . . (x− βp
m−1

),

where m is such that βp
m

= β (cf. Theorem 5.3.6 in Blahut (1984)). Thus,
because of k ≤ p, for each 1 ≤ j ≤ k − 1

Mj(x) =
r∏

i=1

(x− αjp
i−1

),
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and therefore degMj(x) = r for j ≥ 1, and M1(x), . . . ,Mk−1(x) are different,
and

h(x) =
k−1∏

j=0

Mj(x),

and
k′ = deg h(x) = (k − 1)r + 1. (A.12)

One can calculate a lower bound on the minimum distance of the code, called
designed distance d:

dmin ≥ d = pr − 1 − (k − 1)pr−1. (A.13)



Appendix B

Probability

B.1 Inequalities

Lemma B.1. (Chernoff (1952)). Let B be a binomial random variable
with parameters n and p. Then, for 1 > ε > p > 0,

P{B > nε} ≤ e−n[ε log
ε
p
+(1−ε) log 1−ε

1−p ] ≤ e−n[p−ε+ε log(ε/p)]

and, for 0 < ε < p < 1,

P{B < nε} ≤ e−n[ε log
ε
p
+(1−ε) log 1−ε

1−p ] ≤ e−n[p−ε+ε log(ε/p)].

Proof. We proceed by Chernoff’s exponential bounding method. In particu-
lar, for arbitrary s > 0,

P{B > nε} = P{sB > snε}
= P{esB > esnε}
≤ e−snεE{esB}

(by the Markov inequality)

= e−snε
n∑

k=0

esk
(n
k

)
pk(1 − p)n−k

= e−snε(esp+ 1 − p)n

= [e−sε(esp+ 1 − p)]n.

Next choose s such that

es =
ε

1 − ε

1 − p

p
.

255
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With this value we get

e−sε(esp+ 1 − p) = e−ε·log(
ε

1−ε
1−p

p ) ·
(

ε

1 − ε

1 − p

p
· p+ 1 − p

)

= e−ε·log(
ε
p

1−p
1−ε ) ·

(
ε · 1 − p

1 − ε
+ 1 − p

)

= e−ε·log
ε
p
−ε·log 1−p

1−ε
+log 1−p

1−ε

= e−ε·log
ε
p
+(1−ε)·log 1−p

1−ε ,

which implies the first inequality.
The second inequality follows from

(1 − ε) log
1 − ε

1 − p
= −(1 − ε) log

1 − p

1 − ε

= −(1 − ε) log

(
1 +

ε− p

1 − ε

)

≥ −(1 − ε) · ε− p

1 − ε

(by log(1 + x) ≤ x)

= p− ε.

To prove the second half of the lemma, observe that n − B is a binomial
random variable with parameters n and 1− p. Hence for ε < p the results of
the first step imply that

P {B < nε} = P {n−B > n(1 − ε)}
≤ e−n[(1−ε) log 1−ε

1−p
+ε log ε

p ]

= e−n[ε log
ε
p
+(1−ε) log 1−ε

1−p ]

≤ e−n[p−ε+ε log(ε/p)].

Lemma B.2 (Bernstein (1946)). Let X1, . . . , Xn be independent real-
valued random variables, let a, b ∈ R with a < b, and assume that Xi ∈ [a, b]
with probability one (i = 1, . . . , n). Let

σ2 =
1

n

n∑

i=1

Var{Xi} > 0.
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Then, for all ε > 0,

P

{∣∣∣∣∣
1

n

n∑

i=1

(Xi − E{Xi})
∣∣∣∣∣ > ε

}
≤ 2e

− nε2

2σ2+2ε(b−a)/3 .

Proof. Set Yi = Xi − E{Xi} (i = 1, . . . , n). Then we have, with probability
one,

|Yi| ≤ b− a and E{Y 2
i } = Var{Xi} (i = 1, . . . , n).

By Chernoff’s exponential bounding method we get, for arbitrary s > 0,

P

{
1

n

n∑

i=1

(Xi − E{Xi}) > ε

}
= P

{
1

n

n∑

i=1

Yi > ε

}

= P

{
s

n∑

i=1

Yi − snε > 0

}

≤ E
{
es
Pn

i=1 Yi−snε
}

= e−snε
n∏

i=1

E{esYi},

by the independence of Yi’s. Because of |Yi| ≤ b− a a.s.

esYi = 1 + sYi +
∞∑

j=2

(sYi)
j

j!

≤ 1 + sYi +
∞∑

j=2

sjY 2
i (b− a)j−2

2 · 3j−2

= 1 + sYi +
s2Y 2

i

2

∞∑

j=2

(
s (b− a)

3

)j−2

= 1 + sYi +
s2Y 2

i

2

1

1 − s(b− a)/3

if |s(b−a)/3| < 1. This, together with E{Yi} = 0 (i = 1, . . . , n) and 1+x ≤ ex

(x ∈ R), implies

P

{
1

n

n∑

i=1

(Xi − E{Xi}) > ε

}

≤ e−snε
n∏

i=1

(
1 +

s2 Var{Xi}
2

1

1 − s(b− a)/3

)
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≤ e−snε
n∏

i=1

exp

(
s2 Var{Xi}

2

1

1 − s(b− a)/3

)

= exp

(
−snε+

s2nσ2

2(1 − s(b− a)/3)

)
.

Set
s =

ε

ε(b− a)/3 + σ2
.

Then ∣∣∣∣
s(b− a)

3

∣∣∣∣ < 1

and

−snε+
s2nσ2

2(1 − s(b− a)/3)

=
−nε2

ε(b− a)/3 + σ2
+

ε2

(ε(b− a)/3 + σ2)2
· nσ2

2
(
1 − ε(b−a)/3

ε(b−a)/3+σ2

)

=
−nε2

ε(b− a)/3 + σ2
+

ε2

ε(b− a)/3 + σ2
· nσ2

2 (ε(b− a)/3 + σ2 − ε(b− a)/3)

=
−nε2

2ε(b− a)/3 + 2σ2
,

hence

P

{
1

n

n∑

i=1

(Xi − EXi) > ε

}
≤ exp

( −nε2
2ε(b− a)/3 + 2σ2

)
.

Similarly,

P

{
1

n

n∑

i=1

(Xi − EXi) < −ε
}

= P

{
1

n

n∑

i=1

(−Xi − E{−Xi}) > ε

}

≤ exp

( −nε2
2ε(b− a)/3 + 2σ2

)
,

which implies the assertion.

Lemma B.3 (Hoeffding (1963)). Let X1, . . . , Xn be independent real-
valued random variables, let a1, b1, . . . , an, bn ∈ R, and assume that Xi ∈
[ai, bi] with probability one (i = 1, . . . , n). Then, for all ε > 0,

P

{∣∣∣∣∣
1

n

n∑

i=1

(Xi − E{Xi})
∣∣∣∣∣ > ε

}
≤ 2e

− 2nε2

1
n

Pn
i=1

|bi−ai|
2
.
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Proof. Let s > 0 be arbitrary. Similarly to the proof of Lemma B.2 we get

P

{
1

n

n∑

i=1

(Xi − EXi) > ε

}

≤ exp(−snε) ·
n∏

i=1

E {exp (s · (Xi − EXi))} .

We will show momentarily

E {exp (s · (Xi − EXi))} ≤ exp

(
s2(bi − ai)

2

8

)
(i = 1, . . . , n), (B.1)

from which we can conclude

P

{
1

n

n∑

i=1

(Xi − EXi) > ε

}
≤ exp

(
−snε+

s2

8

n∑

i=1

(bi − ai)
2

)
.

The right-hand side is minimal for

s =
4n ε∑n

i=1(bi − ai)2
.

With this value we get

P

{
1

n

n∑

i=1

(Xi − EXi) > ε

}

≤ exp

(
− 4nε2

1
n

∑n
i=1(bi − ai)2

+
2nε2

1
n

∑n
i=1(bi − ai)2

)

= exp

(
− 2nε2

1
n

∑n
i=1(bi − ai)2

)
.

This implies that

P

{∣∣∣∣∣
1

n

n∑

i=1

(Xi − EXi)

∣∣∣∣∣ > ε

}

= P

{
1

n

n∑

i=1

(Xi − EXi) > ε

}
+ P

{
1

n

n∑

i=1

(−Xi − E{−Xi}) > ε

}

≤ 2 exp

(
− 2nε2

1
n

∑n
i=1(bi − ai)2

)
.
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So it remains to show (B.1). Fix i ∈ {1, . . . , n} and set

Y = Xi − EXi.

Then Y ∈ [ai −EXi, bi −EXi] =: [a, b] with probability one, a− b = ai − bi,
and EY = 0. We have to show

E {exp(sY )} ≤ exp

(
s2(b− a)2

8

)
. (B.2)

Because of esx convex we have

esx ≤ x− a

b− a
esb +

b− x

b− a
esa for all a ≤ x ≤ b,

thus

E{exp(sY )} ≤ E{Y } − a

b− a
esb +

b− E{Y }
b− a

esa

= esa
(

1 +
a

b− a
− a

b− a
es(b−a)

)

(because of E{Y } = 0).

Setting

p = − a

b− a

we get

E{exp(sY )} ≤ (1 − p+ p · es(b−a))e−s p (b−a) = eΦ(s(b−a)),

where
Φ(u) = ln

(
(1 − p+ peu)e−pu

)
= ln (1 − p+ peu) − pu.

Next we make a Taylor expansion of Φ. Because of

Φ(0) = 0,

Φ′(u) =
peu

1 − p+ peu
− p, hence Φ′(0) = 0

and

Φ′′(u) =
(1 − p+ peu)peu − peupeu

(1 − p+ peu)2
=

(1 − p)peu

(1 − p+ peu)2

≤ (1 − p)peu

4(1 − p)peu
=

1

4
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we get, for any u > 0,

Φ(u) = Φ(0) + Φ′(0)u+
1

2
Φ′′(η)u2 ≤ 1

8
u2

for some η ∈ [0, u]. We conclude

E{exp(sY )} ≤ eΦ(s(b−a)) ≤ exp

(
1

8
s2(b− a)2

)
,

which proves (B.2).

Theorem B.1 (Binomial bound, c.f. Problem 5.8 in Gallager (1968)).
For 1 ≤ k ≤ n− 1, n ≥ 2,

√
n

8k(n− k)
≤
(
n

k

)
2−nh k

n <

√
n

2πk(n− k)
,

where
h(x) = −x log x− (1 − x) log(1 − x)

is the binary entropy function.

Proof. For the proof, we will use the Stirling formula, (c.f. Feller (1968) pp.
53.) which is

n! =
√

2πn
(n
e

)n
exp (εn) ,

where εn is a decreasing sequence, which satisfies 0 < εn <
1

12n
. Using this,

(
n

k

)
2−nh k

n =
n!

k!(n− k)!
2k log k

n
+(n−k) log n−k

n

=

√
n

2πk(n− k)

exp (εn)

exp (εk + εn−k)
.

For the upper bound, use that εn is decreasing, so εk + εn−k > εn > 0, thus

(
n

k

)
2−nh k

n <

√
n

2πk(n− k)
.

For the lower bound, use 0 < εn <
1

12n
:

exp (εn)

exp (εk + εn−k)
≥ 1

exp
(

1
12k

+ 1
12(n−k)

) = exp

(
− n

12k(n− k)

)
.
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Since 1 ≤ k ≤ n− 1, we have k(n− k) ≥ n− 1. Thus for n ≥ 4,

n

k(n− k)
≤ n

n− 1
≤ 4

3
,

and then

exp

(
− n

12k(n− k)

)
≥ exp

(
−1

9

)
≈ 0.8948.

Since
√
π

2
≈ .8862, we have that for n ≥ 4,

(
n

k

)
2−nh k

n =

√
n

2πk(n− k)

exp (εn)

exp (εk + εn−k)
≥
√

n

8k(n− k)
.

For (n, k) ∈
{
(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)

}
, we can verify the same

bound by direct calculations:

n k
(
n
k

)
2−nh k

n

√
n

8k(n−k)

2 1 0.5 0.5
3 1 or 2 0.4444 0.4330
4 1 or 3 0.4219 0.4082
4 2 0.3750 0.3536

Theorem B.2. For the probability density functions f(x) and g(x), we have
that for the I-divergence,

D(f, g) =

∫ ∞

−∞
f(x) log

f(x)

g(x)
dx ≥ 0.

Proof. Let X be a random variable with probability density function f(x),

and let Y = g(X)
f(X)

. Then from the Jensen inequality,

E (− log Y ) ≥ − log E (Y ) ,
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thus

D(f, g) =

∫ ∞

−∞
f(x) log

f(X)

g(x)
dx

=

∫ ∞

−∞
f(x)

(
− log

g(x)

f(x)

)
dx

= E (− log Y )

≥ − log E (Y )

= − log

∫ ∞

−∞
f(x)

g(x)

f(x)
dx

= − log

∫ ∞

−∞
g(x) dx

= 0.

Theorem B.3. (Discrete Entropy Bound) If X is an integer valued random
variable, then

H (X) ≤ 1

2
log

(
2πe

(
Var (X) +

1

12

))
.

This theorem was developed independently by Massey (unpublished),
Willems (unpublished) and D’yachkov (1977). Cover and Thomas (1991)
published it in their book, and later Mow (1998) extended it by eliminating
the factor 1

12
for some cases.

Proof. Put pi = P (X = i), and let U be a continuous random variable uni-
formly distributed over (0, 1) independent of X. Define Y = X + U , which
has the density

f(x) = pi if x ∈ (i, i+ 1).

Then for the entropy of X,

H (X) = −
∞∑

i=−∞
P (X = i) log P (X = i)

= −
∞∑

i=−∞

(∫ i+1

i

f(y) dy

)
log P (X = i)

= −
∞∑

i=−∞

∫ i+1

i

f(y) log P (X = i) dy
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= −
∞∑

i=−∞

∫ i+1

i

f(y) log f(y) dy

= −
∫ ∞

−∞
f(y) log f(y) dy.

This formula is the differential entropy of Y , which is maximized over all
distributions with the same variance, by the Gaussian distribution. To see
this, let g(x) be the distribution of the normal distribution with zero mean
and variance VarY :

g(x) =
1√

2πVarY
exp

(
− x2

2VarY

)
,

∫ ∞

−∞
f(x) dx =

∫ ∞

−∞
g(x) dx = 1,

∫ ∞

−∞
f(x)x2 dx =

∫ ∞

−∞
g(x)x2 dx = VarY.

Thus we have

−
∫ ∞

−∞
g(x) log g(x) dx

= −
∫ ∞

−∞
g(x)

(
log

1√
2πVarY

− x2

2VarY
log e

)
dx

= − log
1√

2πVarY

∫ ∞

−∞
g(x) dx+

log e

2VarY

∫ ∞

−∞
g(x)x2 dx

= − log
1√

2πVarY

∫ ∞

−∞
f(x) dx+

log e

2VarY

∫ ∞

−∞
f(x)x2 dx

= −
∫ ∞

−∞
f(x)

(
log

1√
2πVarY

− x2

2VarY
log e

)
dx

= −
∫ ∞

−∞
f(x) log g(x) dx.

Subtracting −
∫∞
−∞ f(x) log f(x) dx yields

−
∫ ∞

−∞
g(x) log g(x) dx+

∫ ∞

−∞
f(x) log f(x) dx
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= −
∫ ∞

−∞
f(x) log g(x) dx+

∫ ∞

−∞
f(x) log f(x) dx

=

∫ ∞

−∞
f(x) log

f(x)

g(x)
dx

≥ 0,

by Theorem B.2. This means, that

−
∫ ∞

−∞
g(x) log g(x) dx ≥ −

∫ ∞

−∞
f(x) log f(x) dx.

The differential entropy of the normal distribution g(x) can be calculated:

−
∫ ∞

−∞
g(x) log g(x) dx = −

∫ ∞

−∞
g(x)

(
log

1√
2πVarY

− x2

2VarY
log e

)
dx

= − log
1√

2πVarY
+

log e

2VarY

∫ ∞

−∞
g(x)x2 dx

=
1

2
log 2πVarY +

1

2
log e

=
1

2
log 2πeVarY.

Here we substitute Var(Y ) = Var(X)+Var(U) = Var(X)+ 1
12

, and conclude
that

H (X) = −
∫ ∞

−∞
f(x) log f(x) dx ≤ 1

2
log

(
2πe

(
Var(X) +

1

12

))
.

B.2 Markov Chains

Let {Xi} = {X0, X1, . . . , Xn, . . .} be a stochastic process with discrete time
parameter and discrete state space S = {0, 1, 2, . . .}.
Definition B.1. The process {Xi} is called a Markov chain if it holds the
Markov property, i.e., if for all n ≥ 1 and x0, x1, . . . , xn−1, xn ∈ S we have

P{Xn = xn|Xn−1 = xn−1, . . . , X0 = x0} = P{Xn = xn|Xn−1 = xn−1},

whenever the conditional probabilities exist.
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In general, the transition probability P{Xn = j|Xn−1 = i} depends not
only on i and j, but is a function of the time parameter n, too.

Definition B.2. If P{Xn = j|Xn−1 = i} doesn’t depend on n, then the
Markov chain {Xi} is called homogeneous.

From this point we will deal only with homogeneous Markov chains.

pij = P{X1 = j|X0 = i} (i, j ∈ S)

denote the one-step transition probability from state i to state j and let

Π = {pij} .
Π is called the one-step transition probability matrix or transition matrix of
the chain. Let the initial probability of state i be denoted by p

(0)
i , i. e.,

p
(0)
i = P{X0 = i} (i ∈ S).

We can represent the initial distribution of {Xi} as a row vector

P (0) =
{
p

(0)
i

}
=
{
p

(0)
0 p

(0)
1 p

(0)
2 . . .

}
.

If
p

(n)
ij = P{Xn = j|X0 = i}

(n ≥ 1) denotes the n-step transition probability from i to j and

Π(n) =
{
p

(n)
ij

}

is the n-step transition probability matrix, moreover the marginal distribu-
tion of Xn is the row vector

P (n) =
{
p

(n)
0 p

(n)
1 . . .

}
,

where
p

(n)
i = P{Xn = i}

then it’s easy to see by induction that

Π(n) = Πn (B.3)

and
P (n) = P (0)Π(n) = P (0)Πn. (B.4)

The most important problem concerning a Markov chain is the long term
behavior of the process. Henceforth we would like to characterize those
Markov chains for which the distribution P (n) has a limit P (∞) (i. e., for

all j ∈ S the sequence {p(n)
j } is convergent), P (∞) is a probability distribu-

tion and is independent from the initial distribution.
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Definition B.3. If the limit

lim
n→∞

P (n) = P (∞)

exists, P (∞) is a probability distribution and is independent from the initial
distribution P (0) then the Markov chain {Xi} is called stable with limit dis-
tribution P (∞).

In the literature stable chains are named as ergodic ones.

In case P (∞) exists and is independent from P (0) let pj (j = 0, 1, 2, . . .)
denote the (j + 1)th element of P (∞), i. e., let

pj = lim
n→∞

p
(n)
j .

Definition B.4. The Markov chain {Xi} is called irreducible if any of its
states can be reached from any other state through some transitions, i. e., for

any pair i, j ∈ S there exists nij > 0 with p
(nij)
ij > 0.

Definition B.5. A state i ∈ S of a Markov chain is aperiodic if there exists
ni ≥ 1 such that for all n ≥ ni we have p

(n)
ii > 0.

We remark that an equivalent definition of aperiodicity of i ∈ S is

gcd{n ≥ 1 : p
(n)
ii > 0} = 1,

where gcd stands for the greatest common divisor. It’s trivial that our def-
inition implies the latter one, the converse requires some number theoretic
considerations. Observe that if pii > 0 then p

(n)
ii > 0 for all n ≥ 1, thus i is

aperiodic.

Definition B.6. A Markov chain {Xi} is called aperiodic if all of its states
are aperiodic.

It is easy to see that if an irreducible Markov chain {Xi} has an aperiodic
state then {Xi} is aperiodic.

In general the irreducibility or aperiodicity of a chain can be decided
without much effort. One can show, for example, that if for all i, j ∈ S with
|i− j| ≤ 1 we have pij > 0, then the chain is irreducible and aperiodic. The
condition says that the central three diagonals of the transition matrix Π
contain positive elements. Moreover, if for every pair i, j ∈ S with |i− j| = 1

there is an nij > 0 such that p
(nij)
ij > 0, then the chain is irreducible.



268 Appendix B. Probability

Theorem B.4 (Foster’s criterion). Let {Xi} be an irreducible and ape-
riodic Markov chain. If there exist I ≥ 0, C > 0 and d > 0 such that for
k ≤ I

E{Xn+1|Xn = k} ≤ C (B.5)

and for k > I
E{Xn+1|Xn = k} ≤ k − d, (B.6)

then {Xi} is stable.

As an application of Theorem B.6 consider a discrete time queueing with
random service rate Vn, and denote by Yn the number of arrivals in time slot
n. Let the initial length of the queue Q0 be arbitrary non-negative integer
valued random variable independent of {Vn} and {Yn}. Then the queue
length {Qn} is according to the following evolution:

Qn+1 = (Qn − Vn+1)
+ + Yn+1

for n ≥ 0.

Theorem B.5. (Loynes (1962), Györfi and Morvai (2002)) If the sequences
{Vn} and {Yn} are independent and identically distributed, and they are in-
dependent of each other, and E{Yn} < E{Vn}, then {Qn} is a stable Markov
chain.

The waiting time follows a similar evolution. According to Lindley (1952)
consider the extension of the G/G/1 model. Let Wn be the waiting time of
the n-th arrival, Sn be the service time of the n-th arrival, and Tn+1 be the
inter arrival time between the (n + 1)-th and n-th arrivals. Let W0 be an
arbitrary random variable independent of the arrivals and services. Then the
waiting time Wn of the n-th arrival can be calculated by

Wn+1 = (Wn − Tn+1 + Sn)
+

for n ≥ 0.

Theorem B.6. (Lindley (1952), Loynes (1962), Feller (1968), Györfi and
Morvai (2002)) If {Si−1 − Ti} is independent and identically distributed,
E{Si−1} < E{Ti}, then {Wi} is a stable Markov process.

Proof. Put
Zn = Sn−1 − Tn,

then the recursion of the waiting times is of the form

Wn+1 = (Wn + Zn+1)
+
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for n ≥ 0, where {Zi} is a sequence of independent and identically distributed
(i.i.d.) random variables with E{Zi} < 0. Introduce the notations

V0 = 0,

Vn =
n−1∑

i=0

Z−i, (n ≥ 1).

We prove that there is a stationary and Markov {W ′
i} and an almost surely

finite random variable τ such that

W ′
0 = sup

n≥0
Vn,

and

W ′
n = Wn

for n > τ .
Step 1. Fix an integer N > 0. Let W−N,−N = 0 and define W−N,n for
n > −N by the following recursion,

W−N,n+1 = (W−N,n + Zn+1)
+ for n ≥ −N .

We show that W−N,0 is increasing in N , and almost surely,

lim
N→∞

W−N,0 = W ′,

where

W ′ = sup
n≥0

Vn,

and W ′ is finite a.s.
Notice that W−N,n+1 = (W−N,n + Zn+1)

+ for n ≥ −N . First we prove that
for n > −N ,

W−N,n = max{0, Zn, Zn + Zn−1, . . . , Zn + · · · + Z−N+1}. (B.7)

For n = −N + 1,

W−N,−N+1 = (W−N,−N + Z−N+1)
+

= (Z−N+1)
+

= max{0, Z−N+1}.
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For n = −N + 2,

W−N,−N+2 = (W−N,−N+1 + Z−N+2)
+

= max{0,W−N,−N+1 + Z−N+2}
= max{0,max(0, Z−N+1) + Z−N+2}
= max{0, Z−N+2, Z−N+2 + Z−N+1}.

Now we proceed by induction from n to n+ 1.

W−N,n+1 = (W−N,n + Zn+1)
+

= max{0,max{0, Zn, Zn + Zn−1, . . . , Zn + · · · + Z−N+1} + Zn+1}
= max{0, Zn+1, Zn+1 + Zn, . . . , Zn+1 + · · · + Z−N+1}.

We have completed the proof of (B.7). Thus

W−N,0 = max{0, Z0, Z0 + Z−1, . . . , Z0 + · · · + Z−N+1},

which implies that W−N,0 is increasing, since the maximum is taken over
larger and larger set. It remains to prove that W−N,0 converges to a random
variable W ′ which is finite a.s.. Now by the strong law of large numbers for
i.i.d. sequences, a.s.

lim
N→∞

1

N

0∑

i=−N+1

Zi = EZ1 < 0,

hence a.s.

lim
N→∞

0∑

i=−N+1

Zi = −∞.

We got that there is a random variable τ such that for all i > 0

∞ > W−τ,0 = W−τ−i,0,

and therefore
W ′ = sup

n≥0
Vn.

Step 2. Put
W ′

0 = W ′

and for n ≥ 0,
W ′
n+1 = (W ′

n + Zn+1)
+.
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{W ′
i} is Markov, we show that {W ′

i} is stationary. For any sequence z∞−∞ =
(. . . , z−1, z0, z1, . . . ) put

F (z∞−∞) = lim
N→∞

max{0, z0, z0 + z−1, . . . , z0 + · · · + z−N}.

Then by Step 1
W ′

0 = W ′ = F (Z∞
−∞).

We proceed by induction that for n ≥ 0,

W ′
n = F (T nZ∞

−∞),

where T is the left shift. For n = 1,

F (TZ∞
−∞) = lim

N→∞
max{0, Z1, Z1 + Z0, . . . , Z1 + Z0 + . . . , Z−N+1}

= ( lim
N→∞

max{0,max{0, Z0, . . . , Z0 + . . . , Z−N+2} + Z1})

= (max{0, [ lim
N→∞

max{0, Z0, . . . , Z0 + . . . , Z−N+2}] + Z1})

= (W ′
0 + Z1)

+

= W ′
1.

Now we prove from n to n+ 1.

W ′
n+1 = (W ′

n + Zn+1)
+

= (F (T nZ∞
−∞) + Zn+1)

+

= ( lim
N→∞

max{0, Zn, Zn + Zn−1, . . . , Zn + Zn−1 + . . . , Zn−N} + Zn+1)
+

= lim
N→∞

max{0, Zn+1, Zn+1 + Zn, . . . , Zn+1 + Zn + . . . , Zn+1−N}

= F (T n+1Z∞
−∞).

{Zi} is stationary, therefore {W ′
i} is stationary, too.

Step 3. Similarly to the proof of Step 1,

Wn = max{0, Zn, Zn + Zn−1, . . . , Zn + · · · + Z1, Zn + · · · + Z1 +W0},

and

W ′
n = max{0, Zn, Zn + Zn−1, . . . , Zn + · · · + Z1, Zn + · · · + Z1 +W ′

0}.

But for large n, both
Zn + · · · + Z1 +W0 < 0
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and
Zn + · · · + Z1 +W ′

0 < 0,

and so

Wn = W ′
n = max{0, Zn, Zn + Zn−1, . . . , Zn + · · · + Z1}.
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