
On the asymptotic properties of a nonparametric

L1-test statistic of homogeneity

Gérard Biau ∗ László Györfi †
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Abstract

We present two simple and explicit procedures for testing homogeneity

of two independent multivariate samples of size n. The nonparametric

tests are based on the statistic Tn, which is the L1 distance between

the two empirical distributions restricted to a finite partition. Both

tests reject the null hypothesis of homogeneity if Tn becomes large,

i.e., if Tn exceeds a threshold. We first discuss Chernoff-type large

deviation properties of Tn. This results in a distribution-free strong

consistent test of homogeneity. Then the asymptotic null distribution

of the test statistic is obtained, leading to an asymptotically α-level

test procedure.
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1 Introduction

Consider two mutually independent samples of R
d-valued random vectors

X1, . . . ,Xn and X ′
1, . . . ,X

′
n with i.i.d. components defined on the same

probability space and distributed according to unknown probability mea-

sures µ and µ′. We are interested in testing the null hypothesis that the two

samples are homogeneous, that is

H0 : µ = µ′.

Such tests have been extensively studied in the statistical literature for spe-

cial parametrized models, e.g. for linear or loglinear models. For example,

the analysis of variance provides standard tests of homogeneity when µ and

µ′ belong to a normal family on the Borel line. For multinomial models

these tests are discussed in common statistical textbooks, together with the

related problem of testing independence in contingency tables. For testing

homogeneity in more general parametric models, we refer the reader to the

monograph of Greenwood and Nikulin [12] and further references therein.

However, in many real life applications, the parametrized models are ei-

ther unknown or too complicated for obtaining asymptotically α-level ho-

mogeneity tests by the classical methods. As explained in Pardo, Pardo and

Vajda [14], this is typically the case in electroencephalographic (EEG) and

electrocardiographic (ECG) biosignal analysis, or in speech source charac-

terization. In such situations parametric families cannot be adopted with

confidence, nonparametric tests should be used. For d = 1, there are non-

parametric procedures for testing homogeneity, for example the Cramer-von

Mises, Kolmogorov-Smirnov, or Wilcoxon tests. The problem of d > 1 is

much more complicated, but nonparametric tests based on finite partitions

of R
d may provide a welcome alternative. In this context, Pardo, Pardo and

Vajda [14] recently presented a partition-based generalized likelihood ratio

test of homogeneity and derived its asymptotic distribution under the null

hypothesis, enabling to control the asymptotic test size. The results of these

authors extend former results of Read and Cressie [17], and Pardo, Pardo
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and Zografos [15] on disparity statistics.

In the present paper, we discuss a simple approach based on a L1 distance

test statistic. The advantage of our test procedure is that, besides being

explicit and relatively easy to carry out, it requires very few assumptions

on the partition sequence, and it is consistent. Let us now describe our test

statistic.

Denote by µn and µ′
n the empirical measures associated with the samples

X1, . . . ,Xn and X ′
1, . . . ,X

′
n, respectively, so that

µn(A) =
#{i : Xi ∈ A, i = 1, . . . , n}

n

for any Borel subset A, and, similarly,

µ′
n(A) =

#{i : X ′
i ∈ A, i = 1, . . . , n}

n
.

Based on a finite partition Pn = {An1, . . . , Anmn} of R
d (mn ∈ N

∗), we let

the test statistic comparing µn and µ′
n be defined as

Tn =

mn
∑

j=1

|µn(Anj) − µ′
n(Anj)|.

The paper is organized as follows. We first discuss in Section 2 Chernoff-

type large deviation properties of Tn. This results in a distribution-free

strong consistent test of homogeneity, which rejects the null hypothesis if Tn

becomes large, i.e., Tn is larger than a threshold. In Section 3, we derive the

asymptotic null distribution of Tn. This yields another – in fact, a smaller

– threshold resulting in a consistent asymptotically α-level test procedure.

2 Large deviation properties

For testing a simple hypothesis versus a composite alternative, Györfi and

van der Meulen [13] introduced a related goodness of fit test statistic Ln

defined as

Ln =

mn
∑

j=1

|µn(Anj) − µ(Anj)|.
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The asymptotic normality of this statistic in case µ has a density was dis-

cussed in Beirlant, Györfi and Lugosi [4]. Moreover, Beirlant, Devroye,

Györfi and Vajda [3], and Devroye and Györfi [8] proved that if

lim
n→∞

mn = ∞, lim
n→∞

mn

n
= 0, (1)

and

lim
n→∞

max
j=1,...,mn

µ(Anj) = 0, (2)

then, for all 0 < ε < 2,

lim
n→∞

1

n
lnP{Ln > ε} = −gL(ε),

where

gL(ε) = inf
0<p<1−ε/2

D(p ‖ p + ε/2),

and

D(α ‖β) = α ln
α

β
+ (1 − α) ln

1 − α

1 − β
.

It means that

P{Ln > ε} = e−n(gL(ε)+o(1)) as n → ∞.

The following theorem extends the results of Beirlant, Devroye, Györfi and

Vajda [3], and Devroye and Györfi [8] to the statistic Tn.

Theorem 1 Assume that conditions (1) and (2) are satisfied. Then, under

H0, for all 0 < ε < 2,

lim
n→∞

1

n
lnP{Tn > ε} = −gT (ε),

where

gT (ε) = (1 + ε/2) ln(1 + ε/2) + (1 − ε/2) ln(1 − ε/2).

Observe that for small ε,

gT (ε) ∼ ε2/4, (3)

and that

lim
ε↑2

gT (ε) = 2 ln 2.
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According to Beirlant, Devroye, Györfi and Vajda [3], for small ε,

gL(ε) ∼ ε2/2.

Moreover, in contrast to gT (ε), the rate function gL(ε) is unbounded as ε ↑ 2,

so Tn and Ln have different large deviation properties.

Proof. Introduce the generating function of the sequence (Tn)n≥1:

λT (s) = lim
n→∞

1

n
lnE{esnTn}, s > 0.

By Scheffé’s [18] theorem for partitions

Tn =
∑

A∈Pn

|µn(A) − µ′
n(A)| = 2 max

A∈σ(Pn)

(

µn(A) − µ′
n(A)

)

,

where the class of sets σ(Pn) contains all sets obtained by unions of cells of

Pn. Therefore

E{esnTn} = E{ max
A∈σ(Pn)

e2sn(µn(A)−µ′
n(A))}

≤
∑

A∈σ(Pn)

E{e2sn(µn(A)−µ′
n(A))}

≤ 2mn max
A∈σ(Pn)

E{e2sn(µn(A)−µ′
n(A))} (4)

= 2mn max
A∈σ(Pn)

E{e2snµn(A)}E{e−2snµ′
n(A)}.

Clearly,

E{e2snµn(A)} =

n
∑

k=0

e2sk
(n

k

)

µ(A)k (1 − µ(A))n−k

=
(

e2sµ(A) + 1 − µ(A)
)n

,

and, similarly, under H0,

E{e−2snµ′
n(A)} =

n
∑

k=0

e−2sk
(n

k

)

µ(A)k (1 − µ(A))n−k

=
(

e−2sµ(A) + 1 − µ(A)
)n

.
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The remainder of the proof is under the null hypothesis H0. From above,

we deduce that

E{esnTn}
≤ 2mn max

A∈σ(Pn)

(

e2sµ(A) + 1 − µ(A)
)n (

e−2sµ(A) + 1 − µ(A)
)n

= 2mn max
A∈σ(Pn)

[(

e2sµ(A) + 1 − µ(A)
) (

e−2sµ(A) + 1 − µ(A)
)]n

= 2mn max
A∈σ(Pn)

[

1 + µ(A) (1 − µ(A)) (e2s + e−2s − 2)
]n

≤ 2mn
[

1 + (e2s + e−2s − 2)/4
]n

= 2mn
[

1/2 + (e2s + e−2s)/4
]n

. (5)

This together with (1) implies that

λT (s) ≤ ln(1/2 + (e2s + e−2s)/4). (6)

Similarly

E{esnTn} = E{ max
A∈σ(Pn)

e2sn(µn(A)−µ′
n(A))}

≥ max
A∈σ(Pn)

E{e2sn(µn(A)−µ′
n(A))}

= max
A∈σ(Pn)

E{e2snµn(A)}E{e−2snµ′
n(A)}

= max
A∈σ(Pn)

(

e2sµ(A) + 1 − µ(A)
)n (

e−2sµ(A) + 1 − µ(A)
)n

= max
A∈σ(Pn)

[(

e2sµ(A) + 1 − µ(A)
) (

e−2sµ(A) + 1 − µ(A)
)]n

= max
A∈σ(Pn)

[

1 + µ(A) (1 − µ(A)) (e2s + e−2s − 2)
]n

.

This together with (2) implies that

λT (s) ≥ ln(1/2 + (e2s + e−2s)/4). (7)

From (6) and (7) we deduce that

λT (s) = ln(1/2 + (e2s + e−2s)/4).

The function λT (s) is differentiable. Therefore, by the Gärtner-Ellis theorem

(cf. Dembo and Zeitouni [7]), for all 0 < ε < 2,

gT (ε) = max
s>0

(sε − λT (s)) = max
s>0

(

sε − ln(1/2 + (e2s + e−2s)/4)
)

.
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One can verify that the maximum is achieved at

e2s =
1 + ε/2

1 − ε/2
, (8)

and then

gT (ε) = ε/2 ln

(

1 + ε/2

1 − ε/2

)

+ ln
(

1 − (ε/2)2
)

= (1 + ε/2) ln(1 + ε/2) + (1 − ε/2) ln(1 − ε/2).

�

The next proposition and Figure 1 clarify the respective positions of the rate

functions gT (ε) and gL(ε).

Proposition 1 For all 0 < ε < 2,

2gL(ε/2) ≤ gT (ε) ≤ gL(ε). (9)

Proof. We start with the right-hand side of inequality (9). By Jensen’s

inequality

E{esnTn} = E{ max
A∈σ(Pn)

e2sn(µn(A)−µ′
n(A))}

≥ max
A∈σ(Pn)

E{e2sn(µn(A)−µ′
n(A))}

= max
A∈σ(Pn)

E
{

E{e2sn(µn(A)−µ′
n(A)) |X1, . . . ,Xn}

}

≥ max
A∈σ(Pn)

E{e2sn(µn(A)−E{µ′
n(A) |X1,...,Xn})}

= max
A∈σ(Pn)

E{e2sn(µn(A)−µ(A))}.

The last term is also an upper bound on 2−mnE{esnLn} (to see this, just

adapt inequality (4) to the statistic Ln =
∑mn

j=1 |µn(Anj)−µ(Anj)|). There-

fore

λT (s) ≥ λL(s),

and so

gT (ε) ≤ gL(ε).

6



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 1: Rate functions gT (ε) (solid), gL(ε) (dashed) and 2gL(ε/2) (dotted).

With respect to the lower bound, define

L′
n =

mn
∑

j=1

|µ′
n(Anj) − µ(Anj)|.

Because of the triangle inequality

Tn ≤ Ln + L′
n.

Consequently,

E{esnTn} ≤ E{esn(Ln+L′
n)}

= E{esnLn}E{esnL′
n}

= E2{esnLn}.
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Thus

λT (s) ≤ 2λL(s),

and so

gT (ε) = max
s>0

(sε − λT (s)) ≥ max
s>0

(sε − 2λL(s)) = 2max
s>0

(sε/2 − λL(s)) ,

which implies that

gT (ε) ≥ 2gL(ε/2).

�

Remark 1. Beirlant, Devroye, Györfi and Vajda [3] calculated gL(ε) using

Sanov’s theorem. The proof of Theorem 1 provides an alternative derivation

of gL(ε). Indeed, by Scheffé’s [18] theorem for partitions

Ln =
∑

A∈Pn

|µn(A) − µ(A)| = 2 max
A∈σ(Pn)

(µn(A) − µ(A)) .

Therefore

E{esnLn} = E{ max
A∈σ(Pn)

e2sn(µn(A)−µ(A))}

≤
∑

A∈σ(Pn)

E{e2sn(µn(A)−µ(A))}

≤ 2mn max
A∈σ(Pn)

E{e2sn(µn(A)−µ(A))}

= 2mn max
A∈σ(Pn)

E{e2snµn(A)}e−2snµ(A)

= 2mn max
A∈σ(Pn)

(

e2sµ(A) + 1 − µ(A)
)n

(

e−2sµ(A)
)n

≤ 2mn

[

max
x∈[0,1]

e−2sx
(

e2sx + 1 − x
)

]n

.

Condition (1) implies that

λL(s) ≤ ln

[

max
x∈[0,1]

e−2sx
(

e2sx + 1 − x
)

]

.

We have to maximize on [0, 1] the function

x 7→ e−2sx
(

e2sx + 1 − x
)

.
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The maximum is achieved at

x =
e2s − 1 − 2s

2s(e2s − 1)
,

which results in

λL(s) ≤ −1 +
2s

e2s − 1
+ ln

(

e4s − 2e2s + 1

2s(e2s − 1)

)

, (10)

and we may get, under (2), the same lower bound, so

gL(ε) = max
s>0

(sε − λL(s)) = max
s>0

[

sε + 1 − 2s

e2s − 1
− ln

(

e4s − 2e2s + 1

2s(e2s − 1)

)]

.

This is the same rate function as in Beirlant, Devroye, Györfi and Vajda [3],

just in a different form. �

Remark 2. By virtue of inequality (10), the sole condition (1) implies

that

P{Ln > ε} ≤ e−n(gL(ε)+o(1)) as n → ∞.

Therefore, by the Borel-Cantelli lemma, Ln → 0 a.s. In other words, the

goodness of fit test statistic Ln is strongly consistent, independently of the

underlying distribution µ. �

The technique of Theorem 1 yields a distribution-free strong consistent test

of homogeneity, which rejects the null hypothesis if Tn becomes large. The

concept of strong consistent test is quite unusual, it means that both on H0

and on its complement the test makes a.s. no error after a random sample

size. In other words, denoting by P0 (resp. P1) the probability under the

null hypothesis (resp. under the alternative), we have

P0{rejecting H0 for only finitely many n} = 1

and

P1{accepting H0 for only finitely many n} = 1.

In a real life problem, for example, when we get the data sequentially, one

gets data just once, and should make good inference for these data. Strong
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consistency means that the single sequence of inference is a.s. perfect if

the sample size is large enough. This concept is close to the definition of

discernability introduced by Dembo and Peres [6]. For a discussion and

references, we refer the reader to Devroye and Lugosi [10]. We insist on the

fact that the test presented in Corollary 1 is entirely distribution-free, i.e.,

the measures µ and µ′ are completely arbitrary.

Corollary 1 Consider the test which rejects H0 when

Tn > c1

√

mn

n
,

where

c1 > 2
√

ln 2 ≈ 1.6651.

Assume that condition (1) is satisfied and

lim
n→∞

mn

ln n
= ∞.

Then, under H0, after a random sample size the test makes a.s. no error.

Moreover, if

µ 6= µ′,

and for any sphere S centered at the origin

lim
n→∞

max
Anj∩S 6=0

diam(Anj) = 0, (11)

then after a random sample size the test makes a.s. no error.

Proof. Under H0, we easily obtain from the proof of Theorem 1 (cf. (5)

and (8)) a non-asymptotic bound for the tail of the distribution of Tn, namely

P{Tn > ε} ≤ inf
s>0

E{esnTn}
esnε

≤ 2mne−ngT (ε).

Thus, by (3),

P

{

Tn > c1

√

mn

n

}

≤ 2mne
−ngT

“

c1
√

mn/n
”

= 2mne−nc2
1
(mn/n)/4+no(mn/n)

= e−(c2
1
/4−ln 2+o(1))mn ,
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as n → ∞. Therefore the condition mn/ ln n → ∞ implies that

∞
∑

n=1

P

{

Tn > c1

√

mn

n

}

< ∞,

and by the Borel-Cantelli lemma we are ready with the first half of the

corollary. Concerning the second half, apply the triangle inequality

Tn ≥
∑

A∈Pn

|µ(A) − µ′(A)| − Ln − L′
n.

According to Remark 2, Ln → 0 and L′
n → 0 a.s.. Moreover, we prove that

by condition (11),

∑

A∈Pn

|µ(A) − µ′(A)| → 2 sup
B

|µ(B) − µ′(B)| > 0, (12)

as n → ∞, where the last supremum is taken over all Borel subsets of R
d,

and therefore

lim inf
n→∞

Tn ≥ 2 sup
B

|µ(B) − µ′(B)| > 0 (13)

a.s. In order to show (12) we apply the technique from Barron, Györfi and

van der Meulen [1]. Choose a measure λ which dominates µ and µ′, for

example, λ = µ + µ′, and denote by f the Radon-Nikodym derivative of

µ − µ′ with respect to λ. Then, on the one hand,

∑

A∈Pn

|µ(A) − µ′(A)| =
∑

A∈Pn

∣

∣

∣

∣

∫

A
f dλ

∣

∣

∣

∣

≤
∑

A∈Pn

∫

A
|f |dλ

=

∫

|f |dλ

= 2 sup
B

|µ(B) − µ′(B)|.

On the other hand, for uniformly continuous f , using (11),

∑

A∈Pn

∣

∣

∣

∣

∫

A
f dλ

∣

∣

∣

∣

→
∫

|f |dλ.
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If f is arbitrary then, for a given δ > 0, choose a uniformly continuous f̃

such that
∫

|f − f̃ |dλ < δ.

Thus

∑

A∈Pn

∣

∣

∣

∣

∫

A
f dλ

∣

∣

∣

∣

≥
∑

A∈Pn

∣

∣

∣

∣

∫

A
f̃ dλ

∣

∣

∣

∣

−
∑

A∈Pn

∣

∣

∣

∣

∫

A
(f − f̃) dλ

∣

∣

∣

∣

≥
∑

A∈Pn

∣

∣

∣

∣

∫

A
f̃ dλ

∣

∣

∣

∣

−
∫

|f − f̃ |dλ

≥
∑

A∈Pn

∣

∣

∣

∣

∫

A
f̃ dλ

∣

∣

∣

∣

− δ

→
∫

|f̃ |dλ − δ

≥
∫

|f |dλ − 2δ

= 2 sup
B

|µ(B) − µ′(B)| − 2δ.

The result follows since δ was arbitrary. �

We conclude this section by mentioning that the problem of the good choice

of the partition in Tn is a difficult one. The rectangle partition is ’good’ if the

cell’s probabilities are approximately equal. A promising direction of further

study would be to consider random partitions, where, for example, the cells

are statistically equivalent blocks with respect to the sample X1, . . . ,Xn (see

Devroye, Györfi and Lugosi [9], Chapter 21).

3 Asymptotic normality

Beirlant, Györfi and Lugosi [4] proved that, under conditions (1) and (2),

√
n (Ln − E{Ln}) /σ

D→ N (0, 1),

where
D→ stands for the convergence in distribution and σ2 = 1 − 2/π. The

technique of Beirlant, Györfi and Lugosi [4] involves a Poisson representation

of the empirical process in conjunction with Bartlett’s [2] idea of partial
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inversion for obtaining characteristic functions of conditional distributions.

Using the method of these authors, we can prove the following:

Theorem 2 Assume that conditions (1) and (2) are satisfied. Then, under

H0, there exists a centering sequence (Cn)n≥1 depending on µ such that

√
n (Tn − Cn) /σ

D→ N (0, 1),

where σ2 = 2(1 − 2/π). (The centering constant Cn will be defined at the

beginning of the proof of Theorem 2).

The main difficulty in proving Theorem 2 is that it states asymptotic nor-

mality of Tn, which is a sum of dependent random variables. To overcome

this problem, we use a ’Poissonization’ argument originating from the fact

that an empirical process is equal in distribution to the conditional distribu-

tion of a Poisson process given the sample size (for more on Poissonization

techniques, we refer the reader to Beirlant, Györfi and Lugosi [4], Beirlant

and Mason [5], and Giné, Mason and Zaitsev [11]).

To go straight to the point, for each n ≥ 1, denote by Nn and N ′
n two

independent Poisson (n) random variables, defined on the same probabil-

ity space as the sequences (Xi)i≥1 and (X ′
i)i≥1, and independent of these

sequences. The Poissonized version T̃n of Tn is then defined by

T̃n =
mn
∑

j=1

|µNn(Anj) − µ′
N ′

n
(Anj)|,

where, for any Borel subset A,

µNn(A) =
#{i : Xi ∈ A, i = 1, . . . , Nn}

n
,

and, similarly,

µ′
N ′

n
(A) =

#{i : X ′
i ∈ A, i = 1, . . . , N ′

n}
n

.

Clearly, for each j ∈ {1, . . . ,mn},

nµNn(Anj) =

Nn
∑

i=1

1[Xi∈Anj ]
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and

nµ′
N ′

n
(Anj) =

N ′
n

∑

i=1

1[X′
i∈Anj ].

Thus, setting

Yn = (nµNn(An1), . . . , nµNn(Anmn))

and

Y′
n = (nµ′

N ′
n
(An1), . . . , nµ′

N ′
n
(Anmn)),

it is a simple exercise to show that Yn and Y′
n are independent vectors of

independent random variables with

(nµNn(Anj))
D
= (nµ′

N ′
n
(Anj))

D
= Poisson (nµ(Anj)) .

Moreover,

(Yn|Nn = n)
D
= (Y′

n|N ′
n = n)

D
= Multinomial (n;µ(An1), . . . , µ(Anmn)) .

The key of the proof of Theorem 2 is the following property, which is a

slight extension of the proposition page 311 in Beirlant, Györfi and Lugosi

[4]. The notation N3(µ1, µ2, µ3, σ
2
1 , σ

2
2 , σ

2
3) will stand for the trivariate nor-

mal distribution with means µ1, µ2, µ3, variances σ2
1 , σ

2
2 , σ

3
3 , and independent

components.

Proposition 2 Let gnj (n ≥ 1, j = 1, . . . ,mn) be real measurable functions,

with

E
{

gnj

(

µNn(Anj) − µ′
N ′

n
(Anj)

) }

= 0,

and let

Mn =

mn
∑

j=1

gnj

(

µNn(Anj) − µ′
N ′

n
(Anj)

)

.

Assume that
(

Mn,
Nn − n√

n
,
N ′

n − n√
n

)

D→ N3(0, 0, 0, σ
2 , 1, 1) as n → ∞,

where σ is a positive constant. Then

1

σ

mn
∑

j=1

gnj

(

µn(Anj) − µ′
n(Anj)

) D→ N (0, 1).
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Sketch of proof of Proposition 2. Consider the characteristic functions

Φn(t, u, u′)
def
= E

{

exp
(

itMn + iuNn + iu′N ′
n

)}

and

Ψn(t)
def
= E







exp



it

mn
∑

j=1

gnj

(

µn(Anj) − µ′
n(Anj)

)











.

Clearly,

Ψn(t) = E
{

exp (itMn) |(Nn, N ′
n) = (n, n)

}

, (14)

and

Φn(t, u, u′) =

∞
∑

k=0

∞
∑

k′=0

eiuk+iu′k′

E
{

exp (itMn) |(Nn, N ′
n) = (k, k′)

}

pn(k, k′),

with

pn(k, k′) = P
{

(Nn, N ′
n) = (k, k′)

}

= e−2nnk+k′

/(k!k′!) .

From this, by Fourier’s inversion formula, it follows that

E
{

exp (itMn) |(Nn, N ′
n) = (n, n)

}

=
1

(2π)2pn(n, n)

∫ π

−π

∫ π

−π
e−i(u+u′)nΦn(t, u, u′) dudu′.

Stirling’s formula gives

(2π)2pn(n, n) = (2π)2e−2nn2(n−1)/ ((n − 1)!)2 ∼ 2π/n as n → ∞.

Hence, substituting v for u
√

n and v′ for u′√n, we get by (14) that

Ψn(t) =
1

2π
(1 + o(1))

∫ π
√

n

−π
√

n

∫ π
√

n

−π
√

n
e−i(v+v′)

√
n Φn(t, v/

√
n, v′/

√
n) dvdv′.

By the assumption of the proposition

e−i(v+v′)
√

n Φn(t, v/
√

n, v′/
√

n) → e−t2σ2/2e−(v2+v′2)/2 as n → ∞.

Therefore, by a variant of the dominated convergence theorem (see Rao [16],

page 136), it follows that

Ψn(t) → e−t2σ2/2.

15



�

We are now ready to prove Theorem 2.

Proof of Theorem 2. We will show the theorem with the centering con-

stant

Cn =

mn
∑

j=1

E|µNn(Anj) − µ′
N ′

n
(Anj)|.

We use Proposition 2 to prove that

√
n

σ

mn
∑

j=1

(

|µn(Anj)−µ′
n(Anj)|−E|µNn(Anj)−µ′

N ′
n
(Anj)|

) D→ N (0, 1), (15)

where we recall that σ2 = 2(1−2/π). To prove (15), we choose the functions

gnj as

gnj(x) =
√

n
(

|x| − E

∣

∣

∣
µNn(Anj) − µ′

N ′
n
(Anj)

∣

∣

∣

)

, j = 1, . . . ,mn,

and we check the conditions of Proposition 2. Introduce

Sn = t
√

n

mn
∑

j=1

(

|µNn(Anj) − µ′
N ′

n
(Anj)| − E|µNn(Anj) − µ′

N ′
n
(Anj)|

)

+v
Nn − n√

n
+ v′

N ′
n − n√

n
,

for which a central limit result is to be shown to hold. Observe first that

Var{Sn} = n

mn
∑

j=1

[

t2Var|µNn(Anj) − µ′
N ′

n
(Anj)|

+2tvE
{

|µNn(Anj) − µ′
N ′

n
(Anj)| (µNn(Anj) − µ(Anj))

}

+2tv′E
{

|µNn(Anj) − µ′
N ′

n
(Anj)|

(

µ′
N ′

n
(Anj) − µ(Anj)

)} ]

+v2 + v′2,

as E{nµNn(Anj)} = Var{nµNn(Anj)} = nµ(Anj), j = 1, . . . ,mn. In

Lemma 1 at the end of this section, we bring together some technical results

16



on the Poisson distribution, which will be used here. From (c) in Lemma 1,

for any ε > 0, one can choose s0 such that for s > s0

2(1 − 2/π) − ε ≤ Var|U − U ′|
s

≤ 2(1 − 2/π) + ε,

where U and U ′ are independent Poisson (s) random variables. Thus, on

the one hand, we get that

n

mn
∑

j=1

Var|µNn(Anj) − µ′
N ′

n
(Anj)|

≤
mn
∑

j=1

µ(Anj)
{

21[nµ(Anj)≤s0] + (2(1 − 2/π) + ε)1[nµ(Anj )>s0]

}

≤ 2(1 − 2/π) + ε +

mn
∑

j=1

2µ(Anj)1[nµ(Anj )≤s0]

≤ 2(1 − 2/π) + ε +

mn
∑

j=1

2s0

n
1[nµ(Anj)≤s0]

≤ 2(1 − 2/π) + ε +
2mns0

n
→ 2(1 − 2/π) + ε as n → ∞.

On the other hand, we have

n

mn
∑

j=1

Var|µNn(Anj) − µ′
N ′

n
(Anj)|

≥ (2(1 − 2/π) − ε)

mn
∑

j=1

µ(Anj)1[nµ(Anj )>s0]

= (2(1 − 2/π) − ε)



1 −
mn
∑

j=1

µ(Anj)1[nµ(Anj )≤s0]





→ 2(1 − 2/π) − ε as n → ∞.

Therefore, since ε was arbitrary,

n
mn
∑

j=1

Var|µNn(Anj) − µ′
N ′

n
(Anj)| → 2(1 − 2/π).

17



To complete the asymptotics of Var{Sn}, it remains to show that

n

mn
∑

j=1

E
{

|µNn(Anj) − µ′
N ′

n
(Anj)| (µNn(Anj) − µ(Anj))

}

→ 0 as n → ∞.

This however follows from (d) in Lemma 1 using a similar argument as above.

To finish the proof of

Sn
D→ N

(

0, t2σ2 + v2 + v′2
)

as n → ∞,

by Lyapunov’s central limit theorem, it suffices to prove that

n3/2

( mn
∑

j=1

E
{∣

∣

∣ t
(

|µNn(Anj) − µ′
N ′

n
(Anj)| − E|µNn(Anj) − µ′

N ′
n
(Anj)|

)

+v(µNn(Anj) − µ(Anj)) + v′(µ′
N ′

n
(Anj) − µ(Anj))

∣

∣

∣

3}
)

goes to 0, or, by invoking the cr-inequality, that

n3/2
mn
∑

j=1

E

{

∣

∣

∣|µNn(Anj) − µ′
N ′

n
(Anj)| − E|µNn(Anj) − µ′

N ′
n
(Anj)|

∣

∣

∣

3
}

→ 0,

and

n3/2
mn
∑

j=1

E|µNn(Anj) − µ(Anj)|3 → 0,

as n → ∞. From (b) in Lemma 1, we deduce that

n3/2
mn
∑

j=1

E

{

∣

∣

∣
|µNn(Anj) − µ′

N ′
n
(Anj)| − E|µNn(Anj) − µ′

N ′
n
(Anj)|

∣

∣

∣

3
}

≤ Cn−3/2





mn
∑

j=1

nµ(Anj) +

mn
∑

j=1

n3/2µ(Anj)
3/2





(where C is a positive universal constant)

≤ C

(

1√
n

+ max
j=1,...,mn

µ(Anj)
1/2

)

→ 0,

as n → ∞. Analogously, using (a) in Lemma 1, the second limit is shown

to be zero. �
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Theorem 2 yields the asymptotic null distribution of a consistent homogene-

ity test, which rejects the null hypothesis if Tn becomes large. In contrast to

Corollary 1, and because of condition (2), this new test is not distribution-

free. In particular, the measures µ and µ′ have to be nonatomic.

Corollary 2 Put α ∈ (0, 1), and let C∗ ≈ 0.7655 denote the universal

constant in Lemma 2. Consider the test which rejects H0 when

Tn > c2

√

mn

n
+ C∗ mn

n
+

σ√
n

Φ−1(1 − α),

where

σ2 = 2(1 − 2/π) and c2 =
2√
π
≈ 1.1284,

and where Φ denotes the standard normal distribution function. Then, under

the conditions of Theorem 2, the test has asymptotic significance level α.

Moreover, under the additional condition (11), the test is consistent.

Proof. According to Theorem 2, under H0,

P{√n(Tn − Cn)/σ ≤ x} ≈ Φ(x),

therefore the error probability with threshold x is

α = 1 − Φ(x).

Thus the α-level test rejects the null hypothesis if

Tn > Cn +
σ√
n

Φ−1(1 − α).

However, Cn depends on the unknown distribution, thus we apply an upper

bound on Cn, and so decrease the error probability. The following chain of

inequalities is valid:

Cn =
mn
∑

j=1

E|µNn(Anj) − µ′
N ′

n
(Anj)|

≤
mn
∑

j=1

√

2µ(Anj)

n
E|Zj| + C∗ mn

n

19



(by Lemma 2, where Z1, . . . , Zmn are i.i.d. standard normal)

=

mn
∑

j=1

√

µ(Anj)

n

2√
π

+ C∗ mn

n

≤ c2

√

mn

n
+ C∗ mn

n

(by Jensen’s inequality).

Thus

α ≈ P

{

Tn > Cn +
σ√
n

Φ−1(1 − α)

}

≥ P

{

Tn > c2

√

mn

n
+ C∗ mn

n
+

σ√
n

Φ−1(1 − α)

}

.

This proves that the test has asymptotic error probability at most α.

Under µ 6= µ′, the consistency of the test follows from (13). �

Note that, by condition (1),

c2

√

mn

n
+ C∗ mn

n
+

σ√
n

Φ−1(1 − α) = c2

√

mn

n
(1 + o(1)) ,

therefore the order of the threshold does not depend on the level α.

In the sequel, the letter C will denote a positive universal constant, whose

value may vary from line to line. The notation Z stands for the standard

normal random variable.

Lemma 1 Let U and U ′ be independent Poisson (s) random variables.

Then

(a) E|U − s|3 ≤ C (s + s3/2).

(b) E

∣

∣

∣|U − U ′| − E|U − U ′|
∣

∣

∣

3
≤ C (s + s3/2).

(c) lim
s→∞

∣

∣

∣

∣

E

∣

∣

∣

∣

U − U ′
√

2s

∣

∣

∣

∣

− E|Z|
∣

∣

∣

∣

= 0,

20



and lim
s→∞

∣

∣

∣

∣

∣

E

∣

∣

∣

∣

U − U ′
√

2s

∣

∣

∣

∣

2

− E|Z|2
∣

∣

∣

∣

∣

= 0.

Consequently, lim
s→∞

Var|U − U ′|
s

= 2Var|Z| = 2(1 − 2/π).

(d) lim
s→∞

E{|U − U ′|(U − s)}
s

= 0.

Proof. (a) is a consequence of extension of Rosenthal’s inequality to Pois-

sonized sums of random variables (see for example Giné, Mason and Zaitsev

[11], Lemma 2.3, page 730).

To prove (b), observe that by the cr- and Jensen’s inequalities, we have

E

∣

∣

∣|U − U ′| − E|U − U ′|
∣

∣

∣

3
≤ CE |U − s|3 ,

and apply (a).

Let us now turn to the proof of (c) and (d). To this aim, observe first that

U
D
=

n
∑

i=1

ζi,

where the ζi’s are independent Poisson (s/n) random variables. Similarly,

set

U ′ D
=

n
∑

i=1

ζ ′i.

The result is related to the classical Berry-Esseen theorem and will follow

from Theorem 1 of Sweeting [20]. More precisely, according to Fact 6.1,

inequality (6.18), page 746, in Giné, Mason and Zaitsev [11], and using (a),

we can write
∣

∣

∣

∣

E

∣

∣

∣

∣

U − U ′
√

2s

∣

∣

∣

∣

− E|Z|
∣

∣

∣

∣

≤ C√
n

(

1 + (s/n)−1/2
)

,

∣

∣

∣

∣

∣

E

∣

∣

∣

∣

U − U ′
√

2s

∣

∣

∣

∣

2

− E|Z|2
∣

∣

∣

∣

∣

≤ C√
n

(

1 + (s/n)−1/2
)

,

and ∣

∣

∣

∣

E{|U − U ′|(U − s)}
s

∣

∣

∣

∣

≤ C√
n

(

1 + (s/n)−1/2
)

.

Taking for n the upper part of s leads to the desired result. �
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Lemma 2 Let B and B′ be independent Binomial (n, p) random variables,

n ∈ N
∗ and p ∈ (0, 1). Then

∣

∣

∣

∣

∣

E

∣

∣

∣

∣

∣

B − B′
√

2np(1 − p)

∣

∣

∣

∣

∣

− E|Z|
∣

∣

∣

∣

∣

≤ C∗
√

2np(1 − p)
,

where C∗ ≈ 0.7655.

Proof. Note that

B
D
=

n
∑

i=1

wi,

where the wi’s are independent Bernoulli (p) random variables, and apply

Fact 6.1, inequality (6.18), page 746, in Giné, Mason and Zaitsev [11]. Note

that C∗ is the Berry-Essen constant. The best current estimate is 0.7655

(Shiganov [19]). �
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[11] Giné, E., Mason, D. M. and Zaitsev, A.Yu (2003). The L1-norm density

estimator process, Ann. Probab., 31, pp. 719-768.

[12] Greenwood, P.E. and Nikulin, M. S. (1996). A Guide to Chi-Squared

Testing, Wiley, New York.

[13] Györfi, L. and van der Meulen, E.C. (1990). A consistent goodness of fit

test based on the total variation distance, in Nonparametric Functional

Estimation and Related Topics, (G. Roussas, Ed.), Kluwer, Dordrecht,

pp. 631-645.

[14] Pardo, M. C., Pardo, L. and Vajda, I. (2004). Testing homogeneity of

independent samples from arbitrary models, Research Report, No 2104,

Institute of Automation and Information Theory of the Czech Academy

of Sciences.

[15] Pardo, L., Pardo, M. C. and Zografos, K. (1999). Homogeneity for

multinomial populations based on φ-divergences, J. Japan Statist. Soc.,

29, pp. 213–228.

23



[16] Rao, C.R. (1973). Statistical Inference and its Applications, Second

Edition, Wiley, New York.

[17] Read, T.R.C. and Cressie, N. A.C. (1988). Goodness-of-fit Statistics

for Discrete Multivariate Data, Springer-Verlag, Berlin.
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