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On the Maximization of Divergence 
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Abstract-An erroneow method for maximizing the projected diver- 
gence between two Gaussian multivariate hypotheses appeared in a recent 
paper. The correct solution is given. 

Distance measures between statistical populations have found 
wide applicability in several diverse areas. Recent advances in 
source coding theory [l]-[3] and robust estimation [4] rely 
heavily on distance measures and their intrinsic properties. In 
addition, a large segment of the statistical pattern recognition 
literature deals with the problem of finding a linear transforma- 
tion that maximizes some distance measure between classes 
w~101. 

In a recent paper [ll], an erroneous method was used for 
finding the linear transformation that maximizes the divergence 
between two Gaussian populations. In the present correspon- 
dence we give the correct solution, which turns out to be a 
special case of the general result of [12]. 

MAXIMIZATION OF DIVERGENCE 

Let ft(x), fs(x) be the probability density functions of the 
observation vector x E R” under hypothesis H,, H,, respectively. 
The divergence J is defined as 

J= 
J RnIfi(X) -.ux)l hz [ fiw?(~)] fix* (1) 

If fi(x) are Gaussian with means &Zi and covariance matrices Zi, 
i = 1, 2, the divergence becomes 

2J=(M,-M2)‘[~:1’+Z~‘](M,-Mz) 

+trace [Z;‘Z,+Z;‘Z,--211. (2) 

Following the development of [ll], let Z=Zi +&, Ri= PZiP’, 
i=l, 2, and M=P(M,-M,), where PZP’=Z. Let Y=PX and 
z = V’Y, where V is an n-dimensional unit norm vector. Then 
the transformed divergence for the scalar random variable z and 
for the two hypotheses HI, Hz is 

2J=[l+(V’M)‘][ VtR,V-(V’R,V)2]-1-4 (3) 

under the condition 

V’V= 1. (4) 
In order to find the value of V that maximizes J, we must seek 
the maximum of (3) under the constraint (4) because (3) is valid 
only for a unit norm V. In [ 111, the author ignores the unit norm 
constraint and proceeds to find the unconstrained extremal 
points of J by setting its gradient [l 1, (13)] equal to zero. As a 
result, his subsequent equations are in error. To correct this, let 

L(V,h)=J-2A(V’V-1). (5) 
Setting the gradient of L with respect to V equal to zero, we 
obtain 
M(V’M)V’R,V-R,V(1+(V’M)2) 

=h(V’R,V)2(1- V’RIV)V. (6) 
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Multiplying (6) by V’ we find 

A= -(I- V’R,V)-‘. 

From (6) and (7) 
(7) 

M(V’M)(V’R,V)=[(1+(V’M)2)R,-(VfR,V)Z]V. (8) 

The solution of (8) with respect to V provides the optimal V that 
maximizes J. The form of (8) is also derivable as a special case 
of Peterson and Mattson’s theorem in [12]. 
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On The Rate of Convergence of Nearest Neighbor 
Rule?3 

LzkZLi) GYhFI 

Abstract-The rate of convergence of the conditional error probabilities 
of the nearest neighbor rule and the kth nearest neighbor rule are 
investigated. 

INTRODUCTION 

Let (XI, 44, (X,, 4); . . , (X,, 0,) be a sequence of indepen- 
dent identically distributed random vectors where Xj takes val- 
ues in Euclidean d-space Ed and the possible values of its label 5 
are the integers (1, 2;. . ,M}, j= 1, 2; 1. ,n. The a posteriori 
probability functions will be denoted by 

p,(x)= P(ej=ilxj=x), i= 1, 2;. . ,M. 

Given 2” = ((Xi, 0,). . . ,(X,, e,)), we wish to estimate the label 
Z3, of X0. The nearest neighbor rule estimates t9, by the label of 
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the NN of X0, say Xi,,, from the set Xi; * . ,X,, (see [l]) where 
the measure of closeness is defined by the Euclidean norm 1.1. If 
&J;,, denotes the label of Xl,, then the I-NN decision is incorrect 
if 0a# f&,. For an integer k < n the k-NN decision rule can be 
formulated as follows. Let X;,,, Xi,,; . . ,X& be the first, sec- 
and, . . . ,kth NN of Xc from the set {Xi;..,X,,}=X”. If for 
i<j IX,- Xi] = IX,-- Xj( then Xi is closer to Xi by definition. 
Denote by ej:, the label of X& If Li is the number of those 
labels that are equal to i, 1 < i <M, then the k-NN decision 0$,, 
is equal to i if Lr =max {L,, Lz; . . ,&}. If Li and Lj are equal 
and maximal with i a, then 0,* ,, is taken equal to i. The k-NN 
decision makes an error if &+&,. 

We will make two assumptions. 
A) The random variable Xc has a continuous probability 

where 

G(u)=2Me-“‘+ P 

I 

’ 
(4) 

and [x] denotes the integer part of x. If k, =[n”] where 0 <a < 
2/(2 + d), then 

- lim P 
n+m ( 

~~p(eo~e~,.~xo,z~)-r*(xo~~~u)~2~e-~1. 

(5) 
PROOFS 

density f. 

Ipi(X)-pi(y)l~<(X)lX-yl, x,yEEd, i=l,2;+*,M. 

T. Cover [2] has investigated the rate of convergence of 

B) The a posteriori probabilities satisfy the weakened 

P(&,#&,) to R, the asymptotic error probability of the I-NN 

Lipschitz condition: there exists a Bore1 function Ki such that 

rule. If d= 1 and M=2, then he has proved that IP(f&#&,)- 
R \ = O(1 /n*) provided that the conditional densities of the ran- 
dom variable X0 have third derivatives and these densities are 
bounded away from zero on their support sets. Under some mild 
conditions on the conditional densities, T. Wagner [3] and J. 
Fritz [4] have proved that P(IP(O,#O;,,lZ”)- RI 2 E) converges 
exponentially fast. 

lim P(n(“d’]Xe-Xi,,] >u]Xa)=exp (-f(xO)udcd) as. n-cc 

The proofs are mainly based on the limit distribution of Xi, R 

(7) 

and on a weak law for x, 
Lemma 1: Under the ?%dition A, for each II > 0, 

Proof: By the definition of Xi,, 

p(~l’dlxo-Xi,.l~~lXo)=(l-QIS(Xo, +)I)” 

=ev (n-log (l-Q[ $X0, --&)I)), 

(8) 
&ZXJLTS 

Using the notation of Cover and Hart [l], let 

r(x) A 1- $ p’(x) 
i=l 

be the asymptotic conditional l-NN error probability (or risk) 
for the point x, and let 

r*(X) A 1 - ,zy&x) 

be the corresponding conditional Bayes risk. Let cd be the 
Lebesgue measure of the unit sphere in Ed. 

Theorem I: With assumptions A, B we have for each a > 0 
- 
hm P(n”dlP(e,#ei,.lX,,X,,...,X,)-r(Xo)l~u)~F(~), 

n** 

(1) 
where 

The expression (2) has the disadvantage that it cannot be 
calculated because f, pi, Xi, i = 1, 2, * * * , M are unknown. How- 
ever, (1) implies that 

&% P(n*IP(flo+O;,.IXo, Xn)-r(Xo)l >u)=O 

forO<cu<l/dandu>O. 

where Q stands for the distribution of Xc and S(x, r) is the 
sphere of radius r centered at x. Because f is continuous, 

Q( +op $2)) =f(Xo)$ + 2 o(l), (9) 

as n+co. On the other hand, Q(S(X,, (~/n’/~))) >0 a.s., and for 
each O<z< 1 

log (1 - z) = - z + O(z2), z+o. (10) 
Therefore (8)-( 10) imply (7). 

Proof of Theorem I: Cover and Hart [l] have shown that 

wo+q.ixo~ X”)= I- St PiCxOlPiCx;,n)9 (11) 
i=l 

so that by condition B 

IfVo+&,.l& xn)-rWOl G ~~IPi~xO~lPi~xO~-Pi~xi,n)I 

( IXo-Xi, A 2 K,(xO)Pi(xOh 
i=l 

(12) 
Applying the dominated convergence theorem, Theorem 1 
follows from (12) and Lemma 1 since 

JJirn P(n’~dJP(Bo~B~,.JXo, Xn)-r(Xo)l >u) 

Theorem 2: With assumptions A, B we have for each u >0 I 
and k,, = [n2/(2+d)] 

n1/(2+d)p(eo+e~,nlxo, Z”)-r*(Xo)l 224) <G(U), =E 

(3) 

9 KXXo)P,(Xo) >UlXo 
i=l )I 

5 Ki(Xo)pi(Xo) >U(Xo 
i=l 

exp 
U 

2 Ki(xO)pi(xO) 
i=l 



Lemma 2: Let {,, 12,. *. ,S,; * - be a sequence of independent 
identically distributed nonnegative random variables with a 

~~~ by (14) and (17) 

common continuous distribution function F. Denote by 
sr,,, * - * ,Q, the ordered sample of S’, . + . ,{,. Assume that for a 

;io h(x) =0, 

real r > 0, the limit and 

exists and is positive. Then 

in probability. 
-log(l-F,(g;i)) 

(15) 

Proof Introduce the notation 

F,(z) i P({; < z). (17) 
I’hen -log (1 - F,.({,‘)), i = 1, 2; . . , is a sequence of indepen- 
ient exponentially distributed random variables of parameter 
me. A. Renyi [9] has proved that 

j-1 
-log (‘-F,(sjfi:))= 2 &S.,i (‘8) 

i=O 

uhere for fixed n {c?,,~, 6,,‘,. + * ,S, ,,} is a set of independent 
:xponentially distributed random variables of parameter one. We 
;how that 

“r$l(-log(l-F&*;,~)))l”+ (19) 

n mean square and therefore in probability. On the one hand 
18) and k,,/n+O imply that 

Qn 

( -log (1- F,(c’,)) “’ 

+,l’.$J:l( 5 
--log (‘-C;(sjt’,)) “rh(5+ > 

go 1 
1. n 

<h({c,,)( ;)‘?!& ( --log (’ ;o’(i;:)))“r_, 

n 

in probability, since SC,, -+O a.s. (see [5]) and (19) and (22) are 
satisfied. 

The proof of Theorem 2 needs a result of L. Gyorfi and Z. 
Gyorfi [5]. 

Lemma 3: For each 1/2>u>O and 1 <i<M 

P 
(I 

< 2eCuzkn. (26) 

Lemma 4: Under conditions A and B, for each u >0, k,, > 
L’u(M+ ')I*, 

I”= L (20) 

:ince E[(ll/j)Z{;&, i]‘/’ does not depend on n and tends to one 
f j tends to infinity. On the other hand by Jensen’s inequality, 

P 
( 

IL ~Ip(eo+B,:,.Ix,, Zn)-r*(Xo)l aulxo,x” 
1 

Proof We show that 
(27) 

G lim n*m ug' "~'E(8&J "' 
i=O I=0 1 

3quations (20) and (21) imply (19). Let 

h(x) A sup Y -1. 
o<y <x -log (1- F,(y’)) “’ 

go 
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(22) 

p(~0+V,,IX0~ Zn)-r*(XO)g ,$, 12 -pi(X 

Let us denote-by A”‘; . . ,J,,, the partition of Ed for the decision 
6& so that Ai={f?&=i}, i=l;-.,M, and by A,;.e,A, the 
partition of the Bayesian decision. ISy the definition of k,,-NN 
decision, (Li/k,,) - (Lj/k,,) > 0 on Ai, for each i, j= 1; . * , M, 
and 

p(e,#e;,.Ix,, z”)= l- 5 P(B,=i, @.=ilX,, z”) 
i=l 

Therefore 

= 1 - 5 Xii (xO)pi(xO)* 
i=l 

w,+e, .1x0, -V - r*(X0) 

= $, XA, (xO)pi(xO)- ,g, XA; (xO~pi(xO) 

= $, jgl XA,nA; <xO>(pi<xO>- pj<xO>>. W-9 
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SmCe Pi(Xo) > pi(Xe) on Ai and Li > Lj on Ji, 

wo+e,,ixo, zYr*(X,) 
M-l M 

i=I j=i+l 
M-l M 

g iz, j=~+lX(Ain~)u(A,ng.)(xo) 

‘(lpi(xO)-~l+lP,(xO)-~~) 

G 5JpiCxO)-$I* 

Applying (29) and condition B 

fv,+q .1x0, zn)- r*(X0) 

(29) 

(30) 

If 0 <u < l/2, then by (30) and Lemma 3, we get 

p(iWo+~~,.Ixo, z~)-r*(~~wl~~ xn) 

< 2.~~-(“/(M+‘))**a 
+X{(z~,IK,(Xo))((‘/k,)~~,IX~-~,,l)au/(M+l)}’ (31) 

Under the condition of Lemma 4, u can be replaced by u(M + 
l)/ fl , and then (3 1) implies (27). 

Proof of Theorem 2: In case {i = ]Xe- Xi], r g d Lemma 2 
implies that for kn-+co, k,,/n+O and e >0 

>elX, -0. 

I 
Consequently for each z 

“x{ l/(‘+(l/d))(c~AXg))“d >z). (32) 

Therefore (32), Lemma 4, and k,, = [na] imply Theorem 2. 
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An Upper Bound on the Asymptotic Error Probability 
of the k-Nearest Neighbor Rule for Multiple Classes 

LiSZLb GYijRFI AND ZOLTiN GYijRFI 

Abstract-If 4 denotes the asymptotic error probabiity of the. k- 
nearest neighbor rule for M classes and R* denotes the Bayes probability 
of error, then conditions are given that yield Rk - R* < vm . 

If k is a fixed odd number, then Cover and Hart [1] have 
calculated the asymptotic error probability of the k-NN rule for 
the two-class pattern classification problem. Our goal is to give 
an upper bound for the error probability of the k-NN for 
arbitrary fixed k and an arbitrary number of classes. We in- 
vestigate the conditional error probability Lk,n and the asymp- 
totic error probability Rk of the k-NN rule. Wagner [5] and Fritz 
[6] dealt with the almost sure convergence of L,,, in the case 
when the sample space is Euclidean space and the observation is 
nonatomic. If the a posteriori probability functions satisfy the 
Cover-Hart condition [ 1] (see the theorem), if k/n :O, and if, 
for each e>O, Zzw’e-“kn < + co, then we have shown [3] that 
Lksn converges to R*, the Bayesian error probability, almost 
surely. 

Our main result is a bound on the asymptotic mean-square 
error E(&, - R*)* and a bound on Rk - R*. These bounds on 
the error probability are not tight. For example, in the two-class 
case, the Cover-Hart bound [1] is tight and is much better than 
that presented here. It is not known how to extend their result to 
the case of multiple classes. 

THE MAIN h3SULT 

Let .$ be a random variable taking values in a separable metric 
space X with the metric d. Denote by p an integer-valued 
random variable taking values in { 1,2,. . . , M}. The problem is 
to estimate p after observing 5. The function pi(x)= P(p= iIt= 
x), x=X, i- 1,2,. . . , M, is called the ith a posteriori probability 
function. Let A,,A,; . . ,A, be the partition of the space X 
given by 

Ai= { xlPi(x) >Pj(x), if i G, Pi(x) >pi(x), if i>j}, 
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