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Abstract. Consider the problem of learning how long to wait for a bus
before walking, experimenting each day and assuming that the bus arrival
times are independent and identically distributed random variables with
an unknown distribution. Similar uncertain optimal stopping problems
arise when devising power-saving strategies, e.g., learning the optimal
disk spin-down time for mobile computers, or speeding up certain types of
satisficing search procedures by switching from a potentially fast search
method that is unreliable, to one that is reliable, but slower. Formally,
the problem can be described as a repeated game. In each round of the
game an agent is waiting for an event to occur. If the event occurs while
the agent is waiting, the agent suffers a loss that is the sum of the event’s
“arrival time” and some fixed loss. If the agent decides to give up waiting
before the event occurs, he suffers a loss that is the sum of the waiting
time and some other fixed loss. It is assumed that the arrival times
are independent random quantities with the same distribution, which is
unknown, while the agent knows the loss associated with each outcome.
Two versions of the game are considered. In the full information case
the agent observes the arrival times regardless of its actions, while in
the partial information case the arrival time is observed only if it does
not exceed the waiting time. After some general structural observations
about the problem, we present a number of algorithms for both cases
that learn the optimal weighting time with nearly matching minimax
upper and lower bounds on their regret.

1 Introduction

Each day a student travels to school, either by bus or on foot, whichever is faster.
The expected travel time for the bus is five minutes and is denoted by β while
walking takes twenty minutes and is denoted by ω. Unfortunately, the bus is not
always on time, so on each day t the student must decide how long he wants to
wait for the bus, Yt. The bus comes at random time Xt and if Xt ≤ Yt, then the
student catches the bus. If Xt > Yt, then they walk. The loss at time step t is
the total travel time, which the student wants to keep as small as possible and
is defined by

`t(Yt)
.
=

{
Xt + β, if Xt ≤ Yt ;

Yt + ω, otherwise .



p(x) `(y) y∗ `(y∗)

Power 1{x≥1}
x2

β + 1 + ω−β
y

+ log y ω − β β + 2 + log(ω − β)

Exponential λe−λx β + 1
λ

+ e−λy
[
(ω − β)− 1

λ

] 0, if ω − β < 1
λ

;
∞, otherwise

ω, if ω − β < 1
λ

;
β + 1

λ
, otherwise

Table 1: Examples of losses and optimal waiting times for particular choices of arrival distributions.
The first column gives the density of the arrival times.

We assume that β < ω and that the arrival times for the bus (Xt)t are identically
and independently distributed according to some unknown distribution over the
positive real line. We make no additional assumptions on the distribution of
arrival times.1 The expected loss of a fixed deterministic waiting time y ≥ 0 is

`(y) = E [1{X ≤ y} (X + β) + 1{X > y} (y + ω)] ,

where X is identically distributed to Xt.
2 An optimal waiting time is given by

y∗
.
= arg miny≥0 `(y), which we will show to exist (y∗ may be infinite and the

optimal waiting may not be unique, as we will demonstrate below).

To guide the reader’s intuition, in Table 1 we tabulate the loss function, the
optimal action, and the loss of the optimal action for two particular arrival time
distributions. The examples show that the loss may be convex, or concave, it
can be unbounded and the optimal action can also take on any value between
0 and infinity. These examples should not mislead the reader. Our methods do
not need to know the form of the arrival time distributions, i.e., we consider the
nonparametric setting.

Since the distribution of arrival times is unknown, the student cannot know
when to stop waiting and must experiment to gain information. The regret at
time step t is the difference between the actual travel time and the travel time
under an optimal waiting time, rt

.
= `t(Yt)−`t(y∗). Note that rt may be negative,

but has non-negative expectation, and that rt does not depend on the choice of
y∗. The cumulative regret until time step n is

Rn
.
=

n∑
t=1

(
`t(Yt)− `t(y∗)

)
.

In the long run the student hopes to choose Yt in such a way as to learn the
optimal waiting time, in which case limn→∞ E[Rn]/n = 0.

Two observation models will be considered. The first is a full information set-
ting where Xt is always observed. This assumption is unnatural for the problem
of waiting for a bus because the student would not usually observe the arrival
time of the bus if they decided to walk. There are, however, waiting problems
for which the full information setting is appropriate. An example is maximising
hard-disk efficiency in mobile computing, previously considered by Krishnan,

1 Note that the game is trivial if β ≥ ω, since in this case the student should always
walk regardless of the expected arrival time of the bus.

2 One can show that the expected loss is minimized by a fixed deterministic waiting
time, i.e., there is no advantage to using a stopping rule. The simple reason is that
when the bus arrives, due to our assumption that ω > β it is better to take the bus
then to continue waiting and then eventually walk (since no more buses are coming).



Long and Vitter [12] where a hard-disk controller must decide after each inter-
action how long to wait before spinning down the disk to conserve energy. This
is modelled by choosing β = 0 and ω to be some value that reflects the cost
(in terms of time/energy/annoyance) of spinning up the disk. The goal of the
controller is to minimise the sum of energy consumption and spin-up costs.

The second setting, called the partial information setting, is trickier, but
often more natural, e.g., for the bus-stop problem, when the student in general
will not observe Xt unless Xt ≤ Yt. More precisely, the student observes the
pair (Zt, δt) where Zt = min {Xt, Yt} and δt = 1{Xt ≤ Yt}. So δt is 1 if the
student travelled by bus and 0 otherwise, while Zt is the time at which the travel
starts. Another application of the partial information setting is the problem
of combining algorithms to solve a number of instances of a satisficing search
problems.3 We assume that the agent has access to two algorithms for a given
type of search problem. The first is potentially fast, but unreliable, while the
second is typically slower, but has known guarantees on its performance. For each
problem instance, the agent tries to use the potentially fast solver, switching to
the more consistent algorithm if the first fails to deliver a solution within a certain
amount of time. The task of the agent is to learn when to switch between solvers.
Formally, the unreliable solver provides a solution to instance t at random time
Xt, and the completion time of the slower method is deterministically ω for all
instances. As for the hard-disk problem, β = 0. Comparisons between stochastic
satisficing search algorithms have been made before (e.g., [16] and references
there-in), but to our knowledge the sequential setting combined with the regret
criterion are new.

Estimating the common distribution of Xt (or other quantities depending
on this distribution) in the partial information (or “censored”) setting is heavily
studied in the statistics literature [e.g. 6], but the focus tends to be on the natural
medical applications where the censoring times are uncontrolled and independent
of the arrival times. We know of no previous work on the decision problem studied
here. Optimising the regret is more complex when only partial information is
available because in this case the actions influence the observations.

The censored information problem is an instance of stochastic partial moni-
toring, first studied by Agrawal, Teneketzis and Anantharam [1]. In recent years
there has been significant progress towards understanding partial monitoring
with finitely many actions, both in the stochastic and adversarial settings [4, 9, 3],
but the case where the number of actions is infinite/continuous the work has been
more limited and specialised [11].

Summary of Results. The full information setting is analysed in Section 3
where we present two algorithms. The first is based on discretising the action
space and applying the exponential weighting algorithm (EWA), while the second
is an instance of the Follow-the-Leader (FTL) algorithm. We prove that EWA

suffers a regret of at most O(log3/2(n)
√
n) while for FTL we were able to shave

3 A search problem is satisficing if the searcher can stop once a satisfactory solution
has been found, with SAT being a prototypical example.



off a small amount and bound the regret by O(log(n)
√
n). We also establish a

lower bound of Ω(
√
n).

For the partial information case we also consider two algorithms (Section 4).
The first is again based on a variant of the exponential weights algorithm, which
cleverly controls the exploration of actions to deal with the partial information
setting [2]. We establish that this algorithm enjoys a regret of O(log2(n)

√
n).

Next we propose a novel optimistic algorithm that conservatively waits for the
longest time that it cannot prove to be sub-optimal with high probability. We
prove that this algorithm enjoys a regret of O(log3/2(n)

√
n). Thus, for both

algorithms, the cost of partial information is surprisingly small and of order
O(log1/2(n)). Some proofs have been omitted or sketched, but complete versions
may be found in our report [13].

The theoretical findings are complemented by computer simulations in a
variety of controlled scenarios (Section 5). Results are presented for the full in-
formation setting only (similar results were observed in the partial information
setting). The most interesting finding here is that for the exponential distri-
bution, both algorithms perform better than is predicted by theory, with at
least FTL achieving O(log n) regret. The EWA algorithm behaves comparably
to FTL, but only when the learning rate is tuned to be much larger than is
theoretically justified.

Notation. At time step t define the empirical probability measure by Pt {A}
.
=

1
t

∑t
s=1 1{Xs ∈ A} where A is any Borel-measurable subset of the real line.

The cumulative distribution of the samples X1, . . . , Xt is Ft(x) = Pt {(−∞, x]}.
Expectations with respect to the empirical distribution Pt {·} are denoted by
Et{·}. Further, by slightly abusing the notation for any measurable function
f : R → R, we define Et[f(X)] =

∫
f(x)dPt(x) and for any Borel measurable

subset A of the real line, Pt {X ∈ A} = Et[1{X ∈ A}].

2 Structure of the Waiting Problem

Before the main theorems we present a crucial lemma that characterises the
cumulative distribution of the arrival times in terms of the optimal action y∗.
The result shows that the tail of X decays exponentially for times before y∗. As
a consequence, if the optimal waiting time is large then the loss of choosing y
much smaller than optimal cannot be too large. This latter fact should not be
surprising. If it is optimal to wait for the bus for a very long time, then there
must be a reasonable probability that it will arrive soon. This means that the
bus is still likely to arrive if you wait for a shorter time. The critical case occurs
when arrival times are exponentially distributed. As a result, it is not hard to
see that to achieve a polynomially decreasing regret in n time steps, it is enough
to consider waiting times below some O(log n) threshold.

Lemma 1. Let 0 < ŷ ≤ ỹ such that infy∈[0,ŷ] `(y) ≥ `(ỹ). Then, the following
hold true for any y ∈ [0, ŷ]:

1. P {X > y} ≤ 2−b
y

2(ω−β)c.



2. `(y)− `(ŷ) ≤ (ω − β)2−b
y

2(ω−β)c.
In particular, if y∗ ∈ [0,∞] is optimal, then the above holds with ỹ = ŷ = y∗.

The proof of the lemma utilizes the following bounds on loss differences,
which will also be useful later and follows trivially from the definitions. The
proof may be found in the technical report [13].

Lemma 2. Let y2 ≥ y1, then
1. `(y2)− `(y1) = E[1{y1 < X ≤ y2} (X − y1 + β−ω) +1{X > y2} (y2− y1)].
2. `(y2)− `(y1) ≥ (y2 − y1)(1− F (y2))− (ω − β)(F (y2)− F (y1)).
3. `(y2)− `(y1) ≤ (y2 − y1)(1− F (y1))− (ω − β)(F (y2)− F (y1)).

Proof (Lemma 1). Let c ≥ 0 be some constant to be chosen later and 0 ≤ y ≤
ŷ − c. Then we have

0
(a)

≤ `(y)− `(ỹ)
(b)
= E[(y + ω − β −X)1{y < X ≤ ỹ}+ (y − ỹ)1{X > ỹ}]

(c)

≤ E[(y + ω − β −X)1{y < X ≤ y + c}+ (ω − β − c)1{X > y + c}]
(d)

≤ (ω − β)E[1{y < X ≤ y + c}+ (ω − β − c)1{X > y + c}]
(e)
= (ω − β)P {y < X ≤ y + c}+ (ω − β − c)P {X > y + c} (1)

(f)

≤ (ω − β)P {y < X} , (2)

where (a) follows since `(ỹ) ≤ `(y) by assumption, (b) follows from Part 1 of
Lemma 2, (c) follows by breaking 1{y + c < X ≤ ỹ} off from both indicators and
since y ≤ ŷ − c ≤ ỹ − c, while (d) is true by noting that y + ω − β −X ≤ ω − β
for y ≤ X. (e) and (f) are trivial. Choosing c = 2(ω − β) > 0, (1) implies

P {y < X ≤ y + 2(ω − β)} ≥ P {X > y + 2(ω − β)} .
Therefore, for any y ≥ 0 such that y + 2(ω − β) ≤ ŷ,

P {X ≤ y + 2(ω − β)|X > y} ≥ 1

2
(3)

and if 2k(ω − β) ≤ ŷ, then

P {X > 2k(ω − β)} (a)
=

k∏
i=1

P {X > 2i(ω − β)|X > 2(i− 1)(ω − β)}

(b)
=

k∏
i=1

(1− P {X ≤ 2i(ω − β)|X > 2(i− 1)(ω − β)})
(c)

≤ 2−k , (4)

where (a) follows from the chain rule for probability, (b) is just P {A|B} =
1 − P {Ac|B} for events A and B and (c) follows by substituting (3), which is
permitted thanks to 2k(ω − β) ≤ ŷ. The above inequality immediately implies
Part 1 (for y ≤ ŷ < 2k(ω− β) the result holds trivially) and, combined with (2)
for c = 0, it also yields Part 2. ut

That an optimal waiting time is guaranteed to exist follows from Lemma 1
by a tedious case-based analysis. See the technical report for the proof [13].



Theorem 1. For any arrival time distribution there exists a y∗ ∈ [0,∞] such
that `(y∗) = infy∈[0,∞] `(y).

Part 2 of Lemma 1 also shows that to guarantee an ε-optimal action, it suffices
to consider the waiting times in an interval of length O(log(1/ε)) starting at zero:

Corollary 1. Let ε > 0 and ȳ(ε)
.
= 2(ω − β) max

{
1 + log2(ω−βε ), 0

}
. Then

infy∈[0,ȳ(ε)] `(y)− `(y∗) < ε.

Proof. The result follows immediately from Part 2 of Lemma 1.

3 Full Information Setting

We consider the case when Xt is always observed in round t. Our first algo-
rithm discretises the set of actions and then applies the exponential weighting
algorithm [e.g., 5]. The key observation is that by Corollary 1, to guarantee an ε-
optimal action, it suffices to play in the interval of length O(log(1/ε)). Since the
exponential weights algorithm assumes a finite action set, we need to discretise
the action space. The following elementary observation, which follows directly
from Part 1 of Lemma 2 shows that to achieve an ε-error, it suffices to discretise
the interval with an accuracy of ε.

Proposition 1. For any y2 ≥ y1 ≥ 0, `(y2)− `(y1) ≤ y2 − y1.

The exponential weights algorithm enjoys a regret smaller than R
√
n log(K)/2,

where n is the number of rounds, K is the number of actions, and R is the range
of losses [5, §4.2, Thm 2.2]. So we see that this method suffers a regret of at
least O(

√
n). This suggests choosing ε = (ω − β)/

√
n and using the action set

A = {kε : 0 ≤ k ≤ ȳ(ε)/ε, k ∈ N}, leading to Algorithm 1, where for tuning the
learning rate η we use that the range of the loss function is m + ω when the
largest waiting time is m = maxA. The running time of the algorithm is O(|A|)
per time step, which in this case is O(

√
n log(n)).

Algorithm 1 EWA for Optimal Waiting

1: Input: ω, β, and n
2: ε← (ω − β)/

√
n,A← {kε : 0 ≤ k ≤ ȳ(ε)/ε, k ∈ N}, R← ȳ(ε) + ω

3: η ←
√

8 log(|A|)/n/R and w1(y)← 1 for all y ∈ A
4: for t = 1, . . . , n do
5: Wt ←

∑
y∈A wt(y) and pt(y)← wt(y)/Wt for each y

6: Sample waiting time Yt from distribution pt on A and observe Xt
7: for y ∈ A do // Update the weights

`t(y)← 1{Xt ≤ y} (Xt + β) + 1{Xt > y} (y + ω)

wt+1(y)← wt(y) exp(−η`t(y))

8: end for
9: end for



Theorem 2 (EWA Regret). Let n > 0 and Rn be the regret of Algorithm 1

when used for n rounds. Then E [Rn] ∈ O((ω − β) log3/2(n)
√
n).

Proof. Let ε, A and R be as in the pseudo-code of the algorithm. As noted before-
hand, the expected regret4 of EWA against the best action in A is R

√
n/2 logK,

where K = |A| ≤ dȳ(ε)/εe = dȳ((ω − β)/
√
n)
√
n/(ω − β)e. By Proposition 1,

miny∈A `(y)− infy∈[0,ȳ(ε)] `(y) ≤ ε and by Corollary 1, infy∈[0,ȳ(ε)] `(y)− `(y∗) ≤
ε. Hence, E [Rn] ≤ R

√
n/2 log(ȳ((ω − β)/

√
n)
√
n/(ω − β) + 1) + 2(ω − β)

√
n ∈

O((ω − β) log3/2(n)
√
n), where we used R = ȳ((ω − β)/

√
n) + ω and that

ȳ((ω − β)/
√
n) ∈ O((ω − β) log(n)).

Under the full information stochastic setting the FTL algorithm, which at
each round chooses the waiting time that minimises the empirical loss so far, is
also expected to do well. The next theorem shows that FTL does indeed improve
slightly on EWA.

Theorem 3 (FTL Regret). Let Yt be defined by Y1
.
= 0 and, for all t ≥ 2,

Yt ∈ arg min
y

t−1∑
s=1

(1{Xs ≤ y} (Xs + β) + 1{Xs > y} (y + ω)) .

Then, E[Rn] ≤ (ω − β)(11.6
√
n log n− 11

√
n+ log n+ 12).

Remark 4 It is easy to see that for any t ≥ 1, Yt = Xs for some 1 ≤ s ≤ t− 1,
hence Yt can be computed in O(t) time. Note that Yt is not unique.

Proof. The empirical loss of wait-time y at time step t is

ˆ̀
t(y)

.
=

1

t

t∑
s=1

(1{Xs ≤ y} (Xs + β) + 1{Xs > y} (y + ω)) .

The expected regret at time step t may be decomposed. Let (st)t be a sequence
of constants to be chosen later. Then,

E [rt|Yt] = `(Yt)− `(y∗) = `(Yt)− `(st) + `(st)− `(y∗)

= `(Yt)− ˆ̀
t−1(Yt) + ˆ̀

t−1(Yt)− `(st) + ˆ̀
t−1(st)− ˆ̀

t−1(st) + `(st)− `(y∗)
(a)

≤
∣∣∣`(Yt)− ˆ̀

t−1(Yt)
∣∣∣+
∣∣∣`(st)− ˆ̀

t−1(st)
∣∣∣+ `(st)− `(y∗) ,

where in (a) we used the fact that ˆ̀
t−1(Yt) ≤ ˆ̀

t−1(st). Now,

|`(y)− ˆ̀
t(y)| (a)

= |(E− Et)[1{X ≤ y} (X + β) + 1{X > y} (ω + y)]|
(b)
= |(E− Et)[1{X ≤ y} (X − y) + 1{X > y} (ω − β)]|

4 Bounds for adversarial algorithms like EWA are typically proven for the regret with-
out the expectation, but in the stochastic case this distinction is not important
with bounds on the expected regret following from a straight-forward application of
standard concentration inequalities.



(c)

≤ y |F (y)− Ft(y)|+ (ω − β) |F (y)− Ft(y)| ,
where (a) is simply the definition of the losses and (E− Et), (b) by rearranging
and using the fact that (E − Et)α = 0 for any constant α, (c) by |X − y| ≤ y
which holds for 0 ≤ X ≤ y and the definition of the cumulative distribution.
Combined with [7, Thm. 3.3], which states that E[supx |Ft(x)− F (x)|] ≤ 1/

√
t,

the last inequality gives

E
[
sup
y≤s

∣∣∣`(y)− ˆ̀
t(y)

∣∣∣] ≤ s+ ω − β√
t

. (5)

Next we show that Yt+1 ∈ O(log t) for any t ≥ 1. Since Yt+1 is the optimal
waiting time for the empirical distribution of the arrival times, we can apply
Part 1 of Lemma 1 to obtain

Pt {X ≥ Yt+1} = inf
ε>0

Pt {X > Yt+1 − ε} ≤ inf
ε>0

2
−
⌊
Yt+1−ε
2(ω−β)

⌋

≤ inf
ε>0

21−Yt+1−ε
2(ω−β) = 21− Yt+1

2(ω−β) .

Therefore, if Yt+1 > mt+1
.
= 2(ω − β)(1 + log2 t), then Pt {X ≥ Yt+1} < 1/t.

On the other hand, Pt {X ≥ Yt+1} ≥ 1/t since Yt+1 ∈ {X1, . . . , Xt}. Thus,
Yt+1 ≤ mt+1. Choose st = min {y∗,mt}. Then, by (5),

E [rt+1] ≤ E
[∣∣∣`(Yt+1)− ˆ̀

t(Yt+1)
∣∣∣+
∣∣∣`(st+1)− ˆ̀

t(st+1)
∣∣∣]+ `(st+1)− `(y∗)

≤ E

[
sup

y≤mt+1

∣∣∣`(y)− ˆ̀
t(y)

∣∣∣+
∣∣∣`(st+1)− ˆ̀

t(st+1)
∣∣∣]+ `(st+1)− `(y∗)

≤ (mt+1 + st+1 + 2(ω − β))
1√
t

+ `(st+1)− `(y∗)

≤ (mt+1 + st+1 + 2(ω − β))
1√
t

+
ω − β
t

,

where in the last step we used Part 2 of Lemma 1 to bound `(st+1) − `(y∗).
Summing over t ultimately leads to

E [Rn] = E [r1] +

n∑
t=2

E [rt] ≤ (ω − β)

(
1 +

n−1∑
t=1

[
6 + 4 log t

log 2√
t

+
1

t

])
≤ (ω − β)(11.6

√
n log n− 11

√
n+ log n+ 12) .

as required. ut

If the arrival time Xt is exponentially distributed, then the regret of the FTL
algorithm may be shown to be at most poly-logarithmic. Experimental results
suggest that the true regret is actually logarithmic in n, but so far the proof
eludes us.

Theorem 5. Assume that Xt is exponentially distributed with parameter λ such
that 1/λ < ω − β. Then, for the algorithm of Theorem 3, we have E [Rn] ∈
O(log2 n).



3.1 Lower Bound

The general upper bounds given in the previous section cannot be greatly im-
proved in the worst-case. Note that the following theorem is proven for the
easier full information setting, so translates immediately to give an identical
lower bound in the partial information setting.

Theorem 6. There exists a universal constant c > 0 such that for each algo-
rithm and fixed n there exists a distribution such that ERn ≥ c(ω − β)

√
n.

Proof. For p ∈ [0, 1] let Pp be a measure defined such that Pp(X = 1/2) = p and
Pp(X =∞) = 1− p. Let us denote the expected loss under measure Pp by `p. A
simple calculation shows that

`p(y) =

{
y + ω, if y < 1

2 ;

p( 1
2 + β) + (1− p)(y + ω), otherwise.

Thus, `p is piecewise linear, with two increasing segments. The two local minima
of `p are at 0 and 1/2 with values `p(0) = ω and `p(1/2) = 1/2 + ω − p(ω − β).
For simplicity, we set ω = 1, β = 0, the full result can be obtained by scaling.
Thus, `p(0) = 1, `p(1/2) = 3/2 − p and the optimal waiting time y∗p is 0 for
p < 1/2 and 1/2 for p > 1/2. If p = 1/2, then 0 and 1 are both optimal. It is
also clear that for the “rounding function” ρ defined by ρ(y) = 1

21{y ≥ 1/2},
then for any y ≥ 0 it holds that `p(ρ(y)) ≤ `p(y): By “rounding down” the
waiting time y to either 0 or 1/2, one can only win in terms of the expected loss.
Based on Pp, we construct three environments and will use a fairly standard
technique based on the relative entropy that shows that the regret will be large
in at least in one of the environments. The three environments are given by
the measures P1/2, P1/2+ε and P1/2−ε for some ε ∈ [0, 1/2) to be chosen later.
Note that |`1/2+σε(0)− `1/2+σε(1/2)| = σε. Fix n > 0. Now, take any algorithm
A and let Yt be the choice made by A in round 1 ≤ t ≤ n. Let Rσ be the
expected regret of A during the first n rounds when used on the measure P1/2+σε,
σ ∈ {−1, 0,+1}. Denoting by Eσ the expectation under P1/2+σε, we thus have

Rσ = Eσ[
∑n
t=1 `1/2+σε(Yt)− `1/2+σε(y

∗
1/2+σε)]. Let Ŷt = ρ(Yt) be the “rounded”

decision and let N(y) =
∑n
t=1 1

{
Ŷt = y

}
, y ∈ {0, 1/2}. Then,

Rσ ≥ Eσ

[
n∑
t=1

`1/2+σε(Ŷt)− `1/2+σε(y
∗
1/2+σε)

]
and thus

R1 ≥ εE1[N(0)], R−1 ≥ εE−1[N(1/2)] . (6)

Now, a standard argument shows that

E0[N(0)]− E1[N(0)] ≤ n
√
n

2
D(P0||P1) ≤ 2nε

√
n

2
,

E0[N(1/2)]− E−1[N(1/2)] ≤ n
√
n

2
D(P0||P−1) ≤ 2nε

√
n

2
,



where D(P0||P−1) denotes the relative entropy between P0 and P−1. Summing
up these two inequalities and using (6), n−(R1/ε+R−1/ε) ≤ 4nε

√
n/2. Setting

ε = c/
√
n and reordering gives

√
nc(1−2

√
2c) ≤ R1 +R−1. Choose c = 1/(4

√
2)

and note that 2 max(R1, R−1) ≥ R1 +R−1 to finish the proof. ut

4 Partial Information

We now consider the more challenging case where Xt is not observed if Yt < Xt

and so the waiting time directly influences the amount of information gained
at each time step. Just like in the previous section, our first algorithm is based
on a discretisation idea. As before, we first notice that it is enough to consider
stopping times in an interval of length O((ω−β) log(n)) and also that a discreti-
sation accuracy of ε = (ω − β)/

√
n will suffice to get a Õ(

√
n) regret, which is

conjectured to hold. In this case, however, an appropriately modified version of
the exponential weights algorithm is needed which works with estimated losses
and adds exploration to facilitate the estimation of losses. In fact, as it turns
out, after discretisation, our problem falls into the framework of prediction with
expert advice with side-observations, where after the learner chooses an action
Yt ∈ A it observes the losses for a subset S(Yt) ⊂ A of actions. In our case,
S(Yt) = {y ∈ A : y ≤ Yt}, which means that waiting for a longer time leads
to more information than waiting for a shorter time. This framework was first
studied by Mannor and Shamir [14]. Here, we will use the Exp3-DOM algo-
rithm of Alon et. al. as this algorithm improves upon the results of Mannor
and Shamir for our setting [2]. The general idea of Exp3-DOM is to restrict
exploration to actions in a dominating set D, which is a subset of actions such
that ∪a∈DS(a) = A. In particular, exploration is restricted to a minimal dom-
inating set. In our case, the minimal dominating set contains a single element,
ymax = maxA. This results in Algorithm 2. If the learning rate η is chosen care-
fully, then Theorem 7 of [2] shows that the algorithm suffers a Õ(

√
n) regret.

Recall the definition of ȳ(ε)

Theorem 7. Pick n > 0 and let Rn be the regret of Algorithm 1 when used for
n rounds. Then, E [Rn] ∈ O((ω − β) log2(n)

√
n).

Proof. Let ε, A and R be as in the pseudo-code of the algorithm. Using that
in our case the the observation sets S(a) are fixed, Theorem 7, Eq. (2) of
[2] gives that the regret of Exp3-DOM against the best waiting time in A
is O(K log(K) + log(K)(1/η + ηR2

∑n
t=1(1 + Qt))), where K = |A| is the

number of actions and Qt =
∑
y∈A pt(y)/qt(y) and where we used that the

dominant set in our case has a single element. Now, Lemma 13 of [2] gives
that Qt = α ln(K/η), where α is the so-called independence number of the
graph (A,E) underlying the observation system: (a1, a2) ∈ E if a1 ∈ S(a2) or
a2 ∈ S(a1). In our case, the graph is a clique and hence its independence number
is α = 1. Choosing η = 1/(R

√
n) thus gives that the regret of Exp3-DOM against

the best waiting time in A is O(R log(K)
√
n + K log(K)). By Proposition 1,

miny∈A `(y)−infy∈[0,ȳ(ε)] `(y) ≤ ε, while by Corollary 1, infy∈[0,ȳ(ε)] `(y)−`(y∗) ≤



Algorithm 2 Exp3-Dom

1: Input: ω, β, and n
2: // Recall definition of ȳ(ε) given in Corollary 1
3: ε← (ω − β)/

√
n, A← {kε : 0 ≤ k ≤ ȳ(ε)/ε, k ∈ N}, R← ȳ(ε) + ω, η ← 1/(R

√
n)

4: w1(y)← 1 for all y ∈ A
5: for t = 1, . . . , n do
6: Wt ←

∑
y∈A wt(y) and pt(y)← ηwt(y)/Wt + (1− η)1{y = maxA} for each y

7: Sample waiting time Yt from distribution pt on A and observe Zt, δt
8: wt+1(y)← wt(y) for all y ∈ A
9: for y ∈ A ∩ [0, Yt] do // Update the weights

`t(y)← 1{Zt ≤ y} (Zt + β) + 1{Zt > y} (y + ω)

qt(y)←
∑

y′∈A:y′≥y

pt(y
′) and ˜̀

t(y)← `t(y)/qt(y)

wt+1(y)← wt(y) exp(−η ˜̀
t(y))

10: end for
11: end for

ε. Hence, E [Rn] ∈ O(R log(K)
√
n+K log(K)+(ω−β)

√
n). Now, using the def-

inition of ȳ, ȳ((ω−β)/
√
n) ∈ O((ω−β) log(n)). Thus, K = |A| ∈ O(dȳ(ε)/εe) =

O(ȳ((ω − β)/
√
n)
√
n/(ω − β)) = O(log(n)

√
n) and R = ȳ((ω − β)/

√
n) + ω ∈

O((ω − β) log(n)). Plugging these into the previous bound, we get E [Rn] ∈
O((ω − β) log2(n)

√
n).

Note that since the partial information setting is strictly more difficult than
the full information setting, our previous lower bound shows that the regret
cannot be better than Ω(

√
n). However, as in the full information setting, we

can expect to improve upon the performance of Exp3-DOM by using an algo-
rithm that exploits the fact that the environment is stochastic. In particular, as is
common in sequential learning algorithms we make use of an optimistic strategy,
which will wait for the bus as long as reasonably possible. The algorithm main-
tains an estimate of the cumulative distribution and chooses a non-increasing
sequence of waiting times starting from a carefully chosen upper bound. The
waiting times decrease at a data-dependent rate that is chosen to ensure some
nearly-optimal waiting time is always smaller than the action chosen. This results
in Algorithm 3.

The following theorem bounds the expected regret of Algorithm 3. The bound
is worse by a factor of O(

√
log n) than that obtained in the full information

setting described in Section 3, but improves the bound announced in Theorem 7.

Theorem 8. The regret is bounded by E [Rn] ≤ (ω − β)(42 + 7 log3/2(n)
√
n).

Lemma 3. Define ȳ = min {y∗, ymax}, where ymax is given in Algorithm 3.
Then `(ȳ)− `(y∗) ≤ (ω − β)/

√
n.

Proof. Apply Part 2 of Lemma 1 and the definition of ȳ. ut

The following lemma shows that Yt ≥ ȳ for all 1 ≤ t ≤ n with high probabil-
ity. This means that if y∗ ≥ ymax, then with high probability the algorithm will



Algorithm 3 Optimistic Waiting

1: Input: ω, β, and n
2: α← 3/2 and ymax ← 2(ω − β)(1 + log2

√
n) and Y1 ← ymax

3: for t = 1, . . . , n do
4: Observe Zt, δt

5: Compute the empirical distribution: Gt(y)
.
=

1

t

t∑
s=1

1{Zs ≤ y}

6: Compute waiting time for next day:

εt ←
√

log 2nα

2t

Yt+1 ← max

{
0 ≤ y ≤ Yt : Gt(y)−Gt(y′) + 2εt ≥

y − y′

ω − β (1−Gt(y)− εt)−
1√
n
, 0 ≤ y′ ≤ y

}
7: end for

always choose Yt = ymax and suffer no more than (ω − β)/
√
n regret per time

step. On the other hand, if y∗ < ymax, then the algorithm will choose Yt ≥ y∗,
which guarantees that it is continually learning information about the loss of the
optimal action.

Lemma 4. For 1 ≤ t ≤ n, we have that P {Acn} ≤ n1−α, where event At is

defined by At =
⋂
s≤t

{
Ys ≥ ȳ and supy≤Ys−1

|Gs−1(y)− F (y)| ≤ εt−1

}
.

Proof. Define event B =
⋃
t≤n

{
supx≤Yt−1

|Gt−1(x)− F (x)| ≥ εt−1

}
and re-

call that Ft(x) = 1
t

∑t
s=1 1{Xs ≤ x}, which is unknown to the learner. The

Dvoretzky–Kiefer–Wolfowitz–Massart theorem [8, 15] gives that

P
{

sup
x
|Ft(x)− F (x)| ≥ εt

}
≤ 2 exp

(
−2ε2

t t
)

= n−α.

Therefore, by the union bound, with probability at least 1− n1−α it holds that
|Ft(x)−F (x)| ≤ εt for all t ≤ n and x ∈ R. By the definition of the observations
(Zs)s, Gt(y) = Ft(y) for all y ≤ min1≤s≤t Ys. Further, since by construction
(Yt)t is non-increasing, min1≤s≤t Ys = Yt and so Gt(y) = Ft(y) for all y ≤ Yt.
Therefore P {B} ≤ n1−α. We now show that if B does not occur then At holds
for 1 ≤ t ≤ n. We prove this by induction on t. That Bc implies A1 is trivial.
Now, assume that Bc implies that At holds for some 1 ≤ t < n. On Bc we have

sup
y≤Yt

|Gt(y)− F (y)| ≤ εt. (7)

Thus, it suffices to show that on Bc, Yt+1 ≥ ȳ also holds. By the induction
hypothesis, Yt ≥ ȳ. Combining this with (7) we get

sup
y≤ȳ
|Gt(y)− F (y)| ≤ εt. (8)



Now let y′ ≤ ȳ ≤ y∗. Then

0
(a)

≥ `t(y
∗)− `t(y′)

(b)

≥ `t(ȳ)− `t(y′)−
ω − β√

n

(c)

≥ (ȳ − y′)(1− F (ȳ))− (ω − β)(F (ȳ)− F (y′))− ω − β√
n

(d)

≥ (ȳ − y′)(1−Gt(ȳ)− εt)− (ω − β)(Gt(ȳ)−Gt(y′) + 2εt)−
ω − β√

n
,

where (a) follows since y∗ is the optimal waiting time, (b) by Lemma 3, (c) by
Part 2 of Lemma 2, and (d) holds by (8). Rearranging we obtain

Gt(ȳ)−Gt(y′) + 2εt ≥
ȳ − y′

ω − β
(1−Gt(ȳ)− εt)−

1√
n
,

which implies, by the definition of Yt+1, that Yt+1 ≥ ȳ. Therefore At+1 holds
and so Bc implies that An holds. Therefore P {An} ≥ P {Bc} ≥ 1− n1−α. ut

Proof (of Theorem 8). The proof follows almost immediately from Lemmas 2
to 4. Assume that An holds. Then

`(Yt)− `(y∗)
(a)

≤ `(Yt)− `(ȳ) +
ω − β√

n

(b)

≤ (Yt − ȳ)(1− F (ȳ))− (ω − β)(F (Yt)− F (ȳ))

(c)

≤ (Yt − ȳ) (1−Gt−1(ȳ) + εt−1)− (ω − β) (Gt−1(Yt)−Gt−1(ȳ)− 2εt−1)

(d)

≤ 2εt−1(Yt − ȳ) + 4εt−1(ω − β) +
ω − β√

n
, (9)

where (a) follows from Lemma 3, (b) by Part 2 of Lemma 2 and the fact that
Yt ≥ ȳ, (c) follows from the definition of An while (d) follows from the definition
of Yt. Therefore, on An,
n∑
t=1

`(Yt)−`(y∗)
(a)

≤ `(Y1)− `(y∗) +

n∑
t=2

(
2εt−1(Yt − ȳ) + 4εt−1(ω − β) +

ω − β√
n

)
(b)

≤ ymax+

n∑
t=2

(
2εt−1(ymax + 2(ω − β)) +

ω − β√
n

)
(c)

≤ (ω − β)(40 + 5 log
3
2 (n)
√
n),

where (a) follows from (9), (b) follows by naively bounding Yt− ȳ ≤ ymax, while
(c) follows arduously from the definition of εt and ymax. In case An does not
hold, the regret may be as much as ymax per day, but P {Acn} ≤ n1−α = 1/

√
n.

Combining with the previous display completes the result. ut

5 Experiments

We performed three experiments comparing EWA with FTL in the full-
information case with ω = 20 and β = 5. We used two exponential distributions
with λ = 1/20 and 1/5 respectively, as well as a power law distribution (see



Table 1). The horizon was set to n = 10, 000 and the learning rate of exponential
weighting was tuned to be a factor of 100 larger than the theoretical optimum,
which was observed to give a good performance across all three problems. The
FTL algorithm generally out-performs the exponential weighting algorithm, but
not by an enormous margin. If the theoretically optimal learning rate is used
then the performance of exponential weighting deteriorates significantly. Figures
(e) and (f) suggest that FTL suffers

√
n regret on the power-law distribution,

but logarithmic regret for exponentially distributed arrival times with parameter
λ = 1/20. Each data point is the average of 20 independent trials. Code is avail-
able at http://downloads.tor-lattimore.com/projects/optimal_waiting.
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6 Conclusions

We introduced the problem of learning an optimal waiting time with two vari-
ants. In both cases, we presented two general algorithms relying on no assump-
tions that were shown to enjoy near-optimal worst-case regret. Interesting fu-
ture work is to further analyse the problem-dependent regret bounds of FTL
and other algorithms in both full and partial information settings beyond ex-
ponentially distributed arrivals. One approach for less conservative algorithms
may be to use the Kaplan-Meier estimator rather than the standard empirical
distribution, but the mathematical theory behind this estimator is not yet well-
developed for this setting where the censoring times are known and not i.i.d.
One exception is by Ganchev et. al., but unfortunately their confidence bound
depends on the scale and is not suitable for obtaining optimal regret bounds
in our problem [10]. Another challenge is to improve the running time of the
algorithms to O(1) per time step. While our results are the first in this setting,
we expect various extensions to related problems, such as when one can choose
between multiple options with random durations.

http://downloads.tor-lattimore.com/projects/optimal_waiting
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