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Abstract—We consider a mobile user accessing contents in a
dynamic environment, where new contents are generated over
time (by the user’s contacts), and remain relevant to the user for
random lifetimes. The user, equipped with a finite-capacity cache
memory, randomly accesses the system, and requests all the rele-
vant contents at the time of access. The system incurs an energy
cost associated with the number of contents downloaded and the
channel quality at that time. Assuming causal knowledge of the
channel quality, the content profile, and the user-access behavior,
we model the proactive caching problem as a Markov decision
process with the goal of minimizing the long-term average energy
cost. We first prove the optimality of a threshold-based proactive
caching scheme, which dynamically caches or removes appro-
priate contents from the memory, prior to being requested by
the user, depending on the channel state. The optimal threshold
values depend on the system state, and hence, are computationally
intractable. Therefore, we propose parametric representations for
the threshold values, and use reinforcement-learning algorithms
to find near-optimal parametrizations. We demonstrate through
simulations that the proposed schemes significantly outperform
classical reactive downloading, and perform very close to a genie-
aided lower bound.

Index Terms—Markov decision process, proactive content
caching, policy gradient methods, reinforcement learning.

I. INTRODUCTION

Content delivery networks (CDNs), such as Amazon Web
Service (AWS) and Akamai, replicate contents from a local
repository at servers that are geographically closer to users;
specifically, at Internet exchange points or Internet service
providers. This approach significantly improves utilization of
the Internet “backbone” capacity, thereby reducing latency
and improving reliability [3]. However, today a large pro-
portion of high-rate contents, e.g., videos, are delivered to
users through cellular/wireless networks, which may introduce
bottlenecks. Researchers have recently proposed proactive
caching of contents at the wireless network edge, that is,
at the micro/macro base stations (BS) and/or even directly
at user equipments (UEs). Proactive caching is particularly
appropriate for prerecorded contents, e.g., YouTube videos or
user generated contents in online social networks (OSNs), and
is based on the assumption that the system knows/predicts in
advance which contents are likely to be requested by the users.
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Content popularity is highly dynamic, and the performance
of caching systems depends critically on tracking the relevance
of contents. Learning theoretic tools have been applied to
proactive caching at wireless access points to reduce conges-
tion in back-haul links [4], to reduce the service delay [5], and
to improve hit-rate [6]–[9]. Caching at macro and micro BSs is
modeled as a stochastic optimization problem in [10], with the
objective of minimizing the average transmission power and
delay in an heterogeneous wireless network. Proactive caching
of contents directly at user devices has been studied in [11]
and [12] from an energy efficiency perspective, considering
an offline setting, that is, the user demands and channel
conditions are known in advance. Both offline and online
proactive caching is considered in [13] to improve the effective
throughput (hit-rate) given random user requests and a limited
cache capacity. However, most of these works do not take
into account the time-varying nature of content generation,
particularly in the context of OSNs, where new contents are
generated over time, and the popularity of each content is non-
stationary. In practice, popularity typically diminishes soon
after a content is generated [14]; for example, the average
lifetime, that is, the duration a content remains popular is
approximately 2 hours for a video posted on Facebook, and 18
minutes on Twitter [15]. Instead, most caching schemes in the
literature make caching decisions based on a static content-
popularity profile and a fixed content library, which results
in performance degradation. For example, it is shown in [16]
that service delay increases and cache-hit ratio decreases, when
caching decisions for social media contents are done without
taking the time variations in popularity into consideration.
Learning time-varying popularity of contents is studied in [8],
[9]. Time variations in the wireless channel quality and traffic
conditions, together with variations in the lifetime and pop-
ularity of contents require intelligent content placement and
cache update mechanisms that can adapt to these variations.

In this paper, we consider proactive content caching into
a mobile UE in the framework of an OSN, such that new
contents (messages, videos, pictures), posted by a user’s con-
nections, become available over time. Each content has a finite
lifetime, which is known at the time of generation1. Contents
are delivered via a wireless link at a transmission energy cost2.
The cost depends on the number of contents downloaded as
well as the channel and network conditions, which typically

1In practice, a content’s lifetime depends on its popularity in a dynamic
manner; however, online popularity estimation is out of the scope of this paper;
hence, we assume that the lifetime of each content is known at generation.

2The proposed framework can be easily adapted to any other network
resource, e.g., bandwidth, delay or the energy cost at the UE.
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vary over time due to traffic, user mobility, pathloss, as well
as large scale fading effects.

Conventional wireless networks employ reactive content
delivery; that is, every time the user accesses the OSN through
an application software (app), all the relevant contents whose
lifetime has not yet expired, are downloaded to the UE. Al-
ternatively, in proactive caching, contents can be downloaded
to the UE by a cache manager (CM) before the user accesses
the OSN to request these contents. Downloaded contents are
stored in the cache, and are retrieved and delivered to the
application layer, i.e., to the app, whenever the user accesses
the OSN. Therefore, contents can be downloaded under more
favorable channel conditions, providing energy savings. On
the other hand, the CM may push contents that will not be
requested by the user within their lifetimes, increasing the
energy consumption. The limited cache capacity at the UE
limits the amount of contents that can be proactively cached, or
may require replacing already downloaded contents, increasing
the cost. Hence, we aim to answer the question of which
contents, and at what time, should be pushed to the cache.

We consider a slotted time model, in which a random num-
ber of relevant contents are generated with random lifetimes at
each time slot. For simplicity, we assume that all the contents
have equal size, which is without loss of generality if we
assume that larger contents are split into smaller chunks of
equal size, e.g., video segments in DASH. We model both the
channel quality and the user behavior as stochastic processes.
The user randomly accesses the contents in her OSN feed in
order to view/consume all the relevant contents at the time of
access. We will propose reinforcement-learning algorithms for
the CM that can learn and adapt to an unknown environment
even when the statistics governing the system are unknown.

Our specific contributions can be summarized as follows:
• We formulate the problem as an infinite-horizon average-

cost Markov decision process (MDP), with the objective
of minimizing the long term average energy consumption.

• To overcome the technical difficulty due to the continuous
distribution of the channel quality, we introduce a new
MDP model, referred to as an MDP with side information
(MDP-SI). We show the optimality of a threshold-based
proactive caching policy, which downloads contents into,
and removes contents from the cache depending on the
remaining lifetime of the contents and the relative value
of the current channel state with respect to a threshold.

• Since the optimal threshold values depend on the system
state, the prohibitively large size of the state space makes
it practically infeasible to compute and store them. Hence,
we introduce two low-complexity parametric policy rep-
resentations that are able to approximate the optimal
performance. The first policy, called Longest lifetime In–
Shortest lifetime Out (LISO), assigns a single threshold to
each pair of contents, the one with the longest remaining
lifetime outside the cache, and the one with the shortest
remaining lifetime inside the cache, independent of the
system state. The second policy, called linear function
approximation (LFA), represents the threshold values for
every possible pair of remaining lifetimes as a linear
function of the system state.

Fig. 1: Illustration of the system architecture. The OSN server
has a list of relevant contents with random lifetimes. Contents
can be pushed to the cache memory before being requested by
the user, to take advantage of favorable channel conditions.

We use reinforcement learning techniques to optimize
the threshold values for the proposed caching schemes.
In particular, we apply two policy gradient schemes, the
finite difference method (FDM) and the likelihood-ratio
method (LRM) [17].

• We present two lower bounds on the performance: one
assuming unlimited cache capacity, and another assuming
non-causal knowledge of the user-access times. Through
numerical simulations, we demonstrate that the proposed
schemes perform close to the latter lower bound when the
cache capacity is small, and to the former for larger cache
capacities, and significantly outperform reactive caching.
We also show that the LFA policy outperforms LISO to
some considerable extent, and that the PG with LRM
finds a better solution than with FDM.

• We introduce memory into the stochastic processes for
content (lifetime) generation and channel quality, and
show via simulations that the performance gain of the
LFA policy over LISO is higher in such scenarios.

II. SYSTEM MODEL

We consider a slotted (discrete time) system model (see
Fig. 1). At the beginning of each time slot t, a random number
of contents, denoted by Mt, are generated. We denote the set
of newly generated contents by Nt, where |Nt| = Mt. Each
content is generated with a lifetime, after which it becomes
irrelevant, and the lifetime of every content is assumed to
be known perfectly by the CM when they are generated. In
particular, if, at the beginning of time slot t, content i is
generated with lifetime Kt,i, it can be consumed in time slots
t, t+ 1, . . . , t+Kt,i− 1, and otherwise will be removed from
the system after time slot t + Kt,i − 1. We denote the set of
contents that are already in the cache at the beginning of time
slot t by It, and the set of relevant contents not inside the
cache, including the Mt newly generated contents, by Ot.

At each time slot, the user either accesses the system and
consumes all the relevant contents, or does not access the
system. User access behavior is represented by the binary
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random variable Ut; that is, Ut = 1 if the user accesses the
system, and Ut = 0 otherwise. When Ut = 1, all the contents
that are not in the cache, Ot, are downloaded, and moved,
together with all the contents already in the cache, It, to the
application layer. Even if Ut = 0, the CM has the option of
downloading some contents to the cache, and removing others
if needed. We denote the set of contents that are downloaded
at time slot t by A(1)

t ⊂ Ot, and those that are discarded from
the cache by A

(2)
t ⊂ It. To unify notation, if Ut = 1 we set

A
(1)
t = Ot and A(2)

t = It.3
Since all the contents have the same size, it will be con-

venient to represent each content by its remaining lifetime.
Following this representation, all sets of contents, that is, Nt,
Ot, It, A(1)

t and A
(2)
t , are multisets of remaining lifetimes

(positive integers, with the set of all positive integer tuples
denoted by N∗). To simplify the treatment, when it does
not cause confusion, we will only talk about sets instead of
multisets, or subsets instead of sub-multisets of multisets, and
operations, such as union, should be treated in a multiset
manner. For a multiset Y with positive elements, we let
Y − 1 = {y > 0 : y+ 1 ∈ Y} denote the multiset obtained by
reducing each element of Y by 1 and removing the elements
which become 0. With these definitions in mind, if Ut = 0,
the system evolves according to the following equations:

It+1 =
(
It ∪A(1)

t \A
(2)
t

)
− 1,

Ot+1 =

((
Ot ∪A(2)

t \A
(1)
t

)
− 1

)
∪Nt+1,

(1)

and according to the following equations if Ut = 1:

It+1 = ∅ and Ot+1 = Nt+1. (2)

We assume that the user is equipped with a cache of capacity
B, that is, |It| ≤ B, for all t. Hence, the CM’s actions, At =

(A
(1)
t , A

(2)
t ), are constrained by the available cache capacity,

and any valid action leads to a new state with |It| ≤ B.
Downloading a content at time t has a cost Ct that depends

on the channel state. The total instantaneous cost at time t
is µt = |A(1)

t | · Ct, while the average cost after T time slots
is given by JT = 1

T

∑T
t=1 µt. The goal is to minimize the

long-term expected average cost defined as

ρ , lim sup
T→∞

E [JT ] = lim sup
T→∞

E

[
1

T

T∑
t=1

µt

]
.

1) User Access Model: We assume that the user access
sequence {Ut} is an arrival process with i.i.d. inter-arrival
times {Dn}, where Dn denotes a positive-integer-valued ran-
dom variable. Throughout, we will make one of the two
assumptions regarding Dn: (i) Bounded inter-arrival times, i.e.,
0 ≤ Dn ≤ Dmax; (ii) Geometric inter-arrival times: Dn has
a geometric distribution with parameter pa; hence, {Ut} is an
i.i.d. process with P [Ut = 1] = pa (in turn, Dmax = ∞ in
this case). The latter assumption is standard in the literature,
is known as the independent reference model (IRM) [10], [18].

3We do not allow the CM to download and remove the same content in the
same time slot, which is obviously suboptimal.

2) Content Generation Model: We assume that {Mt} is
an i.i.d. sequence with generic random variable M , and is
upper-bounded by Mmax ∈ Z+. We further assume that the
lifetimes are also i.i.d. with generic random variable K, and
upper-bounded by Kmax ∈ Z+.

3) Channel Model: We assume that the energy cost for
downloading a content Ct > 0 is a continuous random variable
with cumulative distribution function (cdf) FC(c), and it is
assumed to be i.i.d. across time, and bounded by Cmax ∈ R+.
Aside from simplifying our system model, the i.i.d. assumption
here is appropriate for micro BS deployments, where the user
switches micro BSs across time slots. We assume that the mi-
cro BSs can operate at the same time without any interference
because they operate at a relatively low transmit power. We
also assume zero download delay [10], [13], implying that the
duration of a time slot is long enough to download the required
contents. Hence, the channel is approximately ergodic within
a time slot, and is only subject to large-scale fading effects.

In the rest of the paper, we assume that the sequences
{Ct}, {Dn}, {Mt},{Kt,i} are independent of each other. In
the following section, we assume that the CM is aware of the
above stochastic model governing the system behavior.

III. OPTIMAL SOLUTION

In this section we derive a general result concerning the
structure of the optimal cache management policy. First, we
define a special class of MDPs, called MDP-SI, and show that
our problem is an instance of this class. Then, we derive a
general structural result for optimal policies in MDP-SI under
some assumptions, and show that they apply to our problem.

A. Standard MDP model

A finite-state finite-action MDP is characterized by a
quadruple (S,A, P, µ), where S and A, the state and action
spaces, respectively, are finite sets, P : S × A × S → [0, 1]
is a probability kernel (we will write P (s′|s, a) instead of
P (s, a, s′)), and µ : S × A → [0, µmax] ∪ {∞} is a cost
function with some µmax > 0. The purpose of introducing
an infinite cost is to allow a different action set in every state
without complicating the notation too much: for every state
s ∈ S, the set As = {a ∈ A : µ(s, a) < ∞} denotes the
set of feasible actions (otherwise the agent suffers infinite
cost), and we assume that As 6= ∅, for all s ∈ S . In an
MDP, an agent controls a Markov chain and pays some cost
over time. Assuming the agent selects an action a ∈ As at
state s ∈ S , the system evolves to state s′ with probability
P (s′|s, a) , P [St+1 = s′|St = s,At = a] (for any time slot
t), where

∑
s′∈S P (s′|s, a) = 1, for all s ∈ S, a ∈ A. The

cost of taking action a in state s is µ(s, a). Denoting the state
of the system at time t by St and the agent’s action by At, the
agent’s goal is to minimize the infinite horizon average cost
ρ = limT→∞ E

[
1
T

∑T
t=1 µ(St, At)

]
.

A deterministic policy is a mapping π : S → A, which
selects a single action for each state; and let Π denote the set of
all deterministic policies. For policy π, let Pπ : S×S → [0, 1]
denote the transition kernel induced by π, that is Pπ(s′|s) =
P (s′|s, π(s)). Assuming the Markov chain defined by Pπ is
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irreducible and aperiodic for all π, let ρπ denote the infinite-
horizon average cost ρ when At = π(St), that is,

ρπ = lim
T→∞

E

[
1

T

T∑
t=1

µ(St, π(St))

]
. (3)

Due to our assumption on Pπ , the initial state S0 does not
matter, and the limit in (3) exits thanks to the non-negativity
assumption on µ(s, a). It is well-known (see, e.g., [19]) that
there exists a deterministic policy π∗ that minimizes the
infinite-horizon average cost over all, possibly non-stationary
and non-deterministic causal control policies, that is,

π∗ = argmin
π

ρπ, (4)

where the minimum is taken over all admissible (causal)
control strategies, in which At may depend on the history
Ht , (S1, . . . , St, A1, . . . , At−1) and some randomization.

B. MDPs with side information (MDP-SI)

In the MDP-SI model, we extend the classical MDPs such
that there is an i.i.d. sequence of side information Zt ∈ Z
for some Z ⊂ R, which is available to the agent before
selecting At, and effects the cost µ, that is, µ : S ×A×Z →
[0, µmax]∪ {∞}. Then the decision of the agent may depend
on Ht, the randomization, and (Z1, . . . , Zt). This setup can
be easily modeled in the MDP framework by changing the
state space to S × Z , but if Z is not finite, the analysis of
the resulting MDP is significantly more complicated. Before
delving into the analysis of the MDP-SI model, first we show
that our problem can be cast as an MDP-SI problem.

At the end of time slot t, the state of the contents can be
described by the sets It and Ot, while the state of the user
can be described by the time elapsed since the last access,
denoted by Et. To be precise, we assume that the user accesses
the OSN at time t = 0 (i.e., we set U0 = 1); then Et is
defined as Et , min{t − n : t > 0, 0 ≤ n ≤ t, Un = 1}.
We denote by S ⊂ N∗ × N∗ × N the set of all possible
combinations of Ot, It, and Et. That is, the system state in
time slot t is St = (Ot, It, Et). Under the IRM user-access
model (i.e., when the user-access process is i.i.d. and the inter-
access times are geometrically distributed), the memoryless
property of the geometric distribution implies that the exact
value of Et does not affect the future given that Et > 0, and
hence, the state of the user can be redefined as I{Et>0}, the
indicator function of the event {Et > 0}.4 Unless otherwise
stated explicitly, we will use I{Et} in place of Et for the IRM
model; accordingly, S will denote the possible combinations
of Ot, It, and I{Et>0}. Note that under both of our user-access
models (i.e., IRM or bounded inter-access times–Dmax <∞),
the state space S is finite. Furthermore, let As denote the
set of download/discard actions available to the CM in a
state s ∈ S. The action of the agent in time slot t is
the pair At = (A

(1)
t , A

(2)
t ), and Ct can be regarded as the

i.i.d. side information Zt. Indeed, the decision of the CM
(i.e., the agent) depends on Ct, as the cost of action At is
µ(St, At, Ct) = Ct · |A(1)

t |.

4For an event E , I{E} = 1 if E holds, and 0 otherwise.

The state s ∈ S of the system evolves according to (1) and
(2), where the user access sequence depends on E, which
evolves independently according to the distribution of Dn.
The channel cost Ct, which is the side information, also
evolves independently, with cdf FC in every time slot t. These
independence assumptions ensure that the resulting model is
indeed an MDP-SI.

C. Structure of the optimal policy in MDP-SI

In this section we derive the structure of the optimal
policy for a general MDP-SI under certain conditions. To
begin with, assume we have an MDP-SI characterized by
(S,ASI , PSI , µSI ,Z, FZ), where FZ is the cdf of the real-
valued side information, S andASI are countable, and Z ⊂ R.
Let A denote the set of Borel-measurable5 functions {g : Z →
ASI}, and consider the MDP (S,A, P, µ) where

P (s′|s, g) = E [PSI(s
′|s, g(Z))] , (5)

and

µ(s, g) = E [µSI(s, g(Z), Z)] , (6)

where the expectations are taken over Fz . It is easy to see that
any deterministic policy πSI : S ×Z → ASI for the MDP-SI
can be turned into a deterministic policy for the corresponding
MDP using

π(s) = πSI(s, ·) ∈ A, (7)

and vice versa, and that the expected average cost of the two
models are the same for the corresponding policies. Therefore,
it is enough to consider the MDP (S,A, P, µ). If Z is finite,
the new MDP is finite, and we can use standard results (see,
e.g., [19]) to analyze the structure of the optimal policy:
Assume that the MDP is finite, Pπ is irreducible and aperiodic
for any deterministic policy π ∈ Π, and let S1, A1, S2, A2, . . .
denote the state-action sequence obtained by following policy
π. Then ρπ in (3) exists, and the differential value function
for any state s ∈ S is defined as

V π(s) = E

[ ∞∑
t=1

(µ(St, π(St))− ρπ)

∣∣∣∣∣S1 = s

]
. (8)

Furthermore, the optimal policy π∗ in (4) satisfies

V π
∗
(s) = min

a∈A

{
µ(s, a)− ρπ∗ +

∑
s′∈S

P (s′|s, a)V π
∗
(s′)

}
,

(9)
and a = π∗(s) minimizes the right hand side. While these
results make the analysis easy, unfortunately they do not
directly apply to our case, where the state space S can be
countably infinite and, due to the fact that Z is not finite,
the action set A is infinite (and uncountable). Luckily, it is
possible to extend the above results, specifically (9), to the
MDP (S,A, P, µ) when Z is an interval (this will be done in
the proof of Lemma 1). Using the definition of the MDP in
(5)–(7) and the expression for the optimal value function in

5Throughout the paper we assume the existence of the necessary probability
spaces and the measurability of functions as required.
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(9), we can prove the following property of the optimal policy
π∗(s, ·) of an MDP-SI (the proof is given in Appendix A).

Lemma 1. Consider the countable-state, finite-action MDP-
SI problem (S,ASI , PSI , µSI ,Z, FZ). Suppose that Pπ is er-
godic for any policy π in the corresponding MDP (S,A, P, µ)
and that Z is an interval. Then (9) holds for (S,A, P, µ).
Furthermore, if µSI(s, aSI , z) is a linear function of z for
any s ∈ S, aSI ∈ ASI , then the optimal policy π∗(s, ·) is a
piecewise constant function for any s ∈ S.

Combining the MDP-SI formulation of Section III-B with
Lemma 1, we obtain that for any state s ∈ S , the optimal
decision is a piecewise constant function of the channel cost
Ct with values taken from As. Also note that the technical
condition in the lemma that Pπ is ergodic is easily satisfied
in our cache management problem due to the user access
model: The fact that the user access clears all contents from
both inside and outside of the cache at least once in every
Dmax time slots or after a geometric waiting time ensures that
any state visited with positive probability is positive recurrent.
Thus, to achieve ergodicity, it is sufficient to guarantee that
the process is aperiodic. This readily follows from the IRM
model, and also holds for the bounded inter-access time model
under mild assumptions (e.g., if the user can access the OSN
in two consecutive time slots with positive probability).

D. Structure of the optimal cache management policy

Here we will describe the structure of the optimal policy
for the proactive caching problem.

We start with the technical definition of partial ordering for
multisets, which will be useful to characterize the effect of
good actions: For two multisets Y1 and Y2 with nonnegative
elements, we write Y1 ≤ Y2, if, either (i) they are of equal
size and there is a one-to-one mapping between the elements
of Y1 and Y2 such that the element from Y1 is never larger
than the corresponding element from Y2; or (ii) if they are
of different size, but the same relationship holds after adding
zeros to the smaller set to equalize their sizes.

Now consider two states of the MDP describing the caching
problem: s = (O, I, E) ∈ S and s′ = (O′, I ′, E′) ∈ S. We
will say that s is better than s′, and write s � s′, if E = E′,
the remaining lifetimes of all the contents are the same, that is,
O∪I = O′ ∪ I ′, and O ≤ O′ and I ≥ I ′. Intuitively, s � s′
means that the same contents are available for pre-caching in
s and s′, but in state s, “better” contents have already been
downloaded to the cache (i.e., the contents in the cache remain
relevant longer while the ones outside expire earlier). The next
lemma formalizes this statement:

Lemma 2. Assume the conditions of Lemma 1 hold. Let s, s′ ∈
S and suppose that s � s′. Then, V π

∗
(s) ≤ V π∗(s′), that is,

the future average download cost starting form s is not larger
than the cost starting from s′.

Proof. It is easy to see that if any action a′ is performed in s′,
it is always possible to find another action â in s such that the
cost of â is no more than that of a′, that is, µ(s′, a′) ≥ µ(s, â),
and the resulting new states satisfy ŝ2 � s′2, where s′2 and

ŝ2 denote the next state for the chains starting from s′ and
s, respectively, assuming the content generation process and
the user access process are the same (e.g., if a′ downloads
a content from outside the cache of s′, â should download
the content with the largest remaining lifetime from outside
the cache of s, unless all the contents in the cache of s have
larger lifetimes, in which case â should not do anything). Now
consider three coupled realizations of the MDP: {(S′t, A′t)}
starts from S′1 = s′, and follows the optimal policy π∗; the
second realization {(Ŝt, Ât)} starts from Ŝ1 = s, and selects
Ât such that Ŝt � S′t and µ(Ŝt, Ât) ≤ µ(S′t, A

′
t) for all t;

finally, {(St, At)} starts form S1 = s, and follows the optimal
policy π∗. Then, using the optimality of At and π∗, by (9)
(which holds by Lemma 1), we have

V π
∗
(s) = V π

∗
(S1) ≤ µ(Ŝ1, Â1)− ρπ

∗
+ E

[
V π
∗
(Ŝ2)

]
≤ µ(Ŝ1, Â1)− ρπ

∗
+ E

[
µ(Ŝ2, Â2)− ρπ

∗
+ E

[
V π
∗
(Ŝ3)

]]
...

≤ E

[ ∞∑
t=1

(µ(Ŝt, Ât)− ρπ
∗
)

∣∣∣∣∣ Ŝ1 = s

]
.

Furthermore, by the coupling of the realizations,

E

[ ∞∑
t=1

(µ(Ŝt, Ât)− ρπ
∗
)

∣∣∣∣∣ Ŝ1 = s

]

≤ E

[ ∞∑
t=1

(µ(S′t, A
′
t)− ρπ

∗
)

∣∣∣∣∣S′1 = s′

]
= V π

∗
(s′) .

Putting everything together, we obtain V π
∗
(s) ≤ V π∗(s′).

Next we express the actions in As more intuitively by
defining a simple action, which we also denote as a, to
simplify the notation.

Definition 1 (Simple Action). For any l ∈ I and L ∈ O
(recall that l and L denote the remaining lifetime of some
contents), a simple action a = (l|L) is defined as follows: If
Et > 0, a = (l|L) replaces a cache content with remaining
lifetime l with a relevant content outside the cache with
remaining lifetime L, by removing the former content from the
cache and downloading and caching the latter; i.e., it “swaps”
the two contents. If Et = 0, a = (l|L) downloads the content
with remaining lifetime L, and moves both contents to the app.

In this definition, l = 0 means that the content with lifetime
L is downloaded without removing any content from the
cache. Similarly, L = 0 means that no content is downloaded
while a content with lifetime l is removed. Note that, with
the optimal policy, the latter (i.e., L = 0) can only happen
if either l = 0 (i.e., an expired content is removed from the
cache), or when Et = 0 and more contents are moved from the
cache to the app than those downloaded from the OSN server
to the app. At every time slot t, due to the cache capacity
constraint, the CM can take up to B simple actions if Et > 0.
Therefore, at such instances, any action of an optimal policy
can be expressed as at most B consecutive simple actions,
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and an action At = ({L1, . . . , Lb}, {l1, . . . , lb}),6 for some
0 ≤ b ≤ B can be written as a sequence of simple actions
{(l1|L1) · · · (lb|Lb)}.

For a state s = (O, I, E) with E > 0, assume that l1 ≤
· · · ≤ lB are the contents in I, and L1 ≥ · · · ≥ LB denote
the B largest elements in O. To find the optimal action, first
we determine the best simple action. Let s∗1 denote the next
state if action (l1|L1) is taken, and let s′1 denote the state
after a different simple action (l′|L′). Since l1 is the smallest
element of the cache, and L1 is the largest element outside,
assuming the same content generation, it is immediate that
s∗1 � s′1. Then, by Lemma 2, V π

∗
(s∗1) ≤ V π∗(s′1). Therefore,

by (9), (l1|L1) is the best simple action. Considering larger
actions composed of b simple actions for b ≥ 2, it follows
similarly that the optimal action is Ab = {(l1|L1) · · · (lb|Lb)}
(note that the energy cost associated with such an action is
bC, where C is the channel cost of a single download). To
find the optimal action, it remains to compare the actions Ab

for different values of b ∈ {0, . . . , B}. Denoting the next state
following action Ab by sb, the relative action value of Ab for
channel cost C is given by

Qπ∗(s,Ab, C) = bC − ρπ
∗

+ E
[
V π
∗
(sb)

]
,

and, by (9), the optimal action is the one minimizing
Qπ∗(s,Ab, C) for a given C: that is, Ab

∗
with b∗ =

argminbQ
π∗(s,Ab, C). Notice that, as a function of C,

Qπ∗(s,Ab, C) is a linear function with slope b and intersecting
the y axis at E

[
V π
∗
(sb)

]
. Since, obviously, sb � sb

′
for any

b > b′, we have V π
∗
(sb) ≤ V π

∗
(sb
′
), and so E

[
V π
∗
(sb)

]
is non-increasing in b. Therefore, there exist thresholds 0 =
TB+1 ≤ TB ≤ · · · ≤ T1 ≤ Cmax, such that the optimal action
is Ab if the channel cost belongs to the interval [Tb+1, Tb].
Since Ab

′ ⊂ Ab for b > b′, this also means that the simple
action ab = (lb|Lb) is performed whenever C ≤ Tb (note
that Tb = 0 means that action ab is never performed because
C > 0). This implies the following theorem.

Theorem 1. Let s = (Os, Is, Es) ∈ S denote a state of the
MDP-SI, and let C denote the channel cost. Let ls1 ≤ · · · ≤ lsB
denote the contents in Is, and Ls1 ≥ · · · ≥ LsB denote the
B largest elements of Os. Then, for all states s, there exist
thresholds 0 ≤ T sB ≤ T sB−1 ≤ · · · ≤ T s1 ≤ Cmax, and an
optimal caching policy that, in state s, performs the simple
actions ai = (lsi |Lsi ) for all i such that C ≤ T si if Es > 0
(i.e., the user does not access the OSN).

The thresholds for different simple actions depend on what
other simple actions are available, and on the cache contents.
This is because if we cache a content, its value depends on the
likelihood of the content to be removed from the cache before
being consumed by the user, and this likelihood is affected by
the lifetime of the other contents in the cache.

We still have to evaluate the optimal thresholds to char-
acterize the optimal policy and its performance. The number
of thresholds to be determined is in the order of the cardi-
nality of the state space S, which is extremely large. This

6If either |O| or |I| is less than b, we simply zero-pad the set so that
|A(1)

t | = |A(2)
t | = b.

makes it computationally infeasible to compute the optimal
threshold values. Interestingly, this is not the case if we have
a sufficiently large cache capacity, e.g., B ≥ MmaxKmax,
in which case we never remove a content from the cache
unless it is consumed, or has expired; and hence, we can
decide about each content individually, and independently of
the cache contents. We refer to this as the case of unlimited
cache capacity.

Corollary 1. For unlimited cache capacity, i.e., B = ∞, for
any state s = (O, I, E) with E > 0, there exist thresholds 0 ≤
T1,E ≤ · · · ≤ TKmax,E ≤ Cmax (where Kmax is the maximum
lifetime), which depend only on E, such that a content with
remaining lifetime L ∈ O is downloaded if C ≤ TL,E .

Since the decision to download any content is independent
of the others, the problem can be modeled as a finite-horizon
MDP-SI, where the horizon equals the remaining lifetime L
with maximum horizon Kmax. Thus, we can apply dynamic
programming [19] to determine the optimal thresholds re-
cursively: Let VL,E denote the future cost associated with a
content with lifetime L from a state with time E since the
past user access following an optimal policy. Since there is
no need to proactively download a content with lifetime 1,
T1,E = 0 for all E > 0, and so V1,E = 0 for any E > 0. Let
pE = P [Ut+1 = 1|Et = E] = P [D1 ≤ E + 1]− P [D1 ≤ E]
denote the probability of user access in the next time slot.7

Assuming optimal decisions are made for lifetimes up to L−1
for all E, a decision with threshold T for lifetime L > 1 and
elapsed time E has a future download cost

VL,E,T = P [C ≤ T ]E [C|C ≤ T ] (10)

+ P [C > T ]
(
pEE[C] + (1− pE)VL−1,E+1

)
.

By setting the derivative of the above expression to zero,
we obtain the optimal threshold TL,E = pEE [C] + (1 −
pE)VL−1,E+1, which is exactly the expected future cost if the
content is not downloaded in the current state. Noticing that
TL,E equals the last term in parentheses in (10), we obtain the
following result.

Corollary 2. For unlimited cache capacity, i.e., Bmax = ∞,
the optimal thresholds TL,E can be computed recursively as
follows: T1,E = 0, ∀E > 0. For L ≥ 1, given TL,E for all E,
the optimal thresholds for L+ 1 can be obtained for all E as

TL+1,E = pEE [C]

+ (1− pE)

(
P [C ≤ TL,E+1]E [C|C ≤ TL,E+1]

+ P [C > TL,E+1] TL,E+1

)
.

For the IRM user access model, the same thresholds can
be used in all states, and the expression for the thresholds
simplifies to T1 = 0, and for L ≥ 1,

TL+1 = paE [C] + (1− pa) (11)

·
(
P [C ≤ TL]E [C|C ≤ TL] + P [C > TL] TL

)
.

7Recall that Dn denotes the nth inter-access time, and Dn are i.i.d.
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The optimal performance with an infinite cache capacity
will be studied as a lower bound on the optimal performance
for a practical finite cache capacity system in Section VI.

IV. LOW-COMPLEXITY CACHING SCHEMES VIA POLICY
APPROXIMATION

According to Theorem 1, the optimal policy has a threshold
structure, and the threshold for each simple action depends in
general on the remaining lifetimes of all the relevant contents
and the time elapsed since the last user access. Hence, the
optimal policy may employ different threshold values for
the same simple action at different states, and it belongs to
the family of policies parametrized by these thresholds. The
dimension of this policy space is |S̄|, where S̄ ⊂ S denotes
the set of states in which the user does not access the OSN.
Moreover, we have approximately K2

max/2 potential simple
actions, each of which can have a different threshold at each
state. For any reasonable cache size B, this is huge; and
hence, it is infeasible to compute an optimal policy (e.g., if
Mmax ≥ B, then just the cache content I can take

(
B+Kmax

Kmax

)
different values, which is already prohibitively large for even
moderate values of B or Kmax). To resolve this problem,
we use policy approximation techniques, and approximate the
policy space using some simple parametrized form.

From now on we adopt the IRM user access model, which
alleviates the need to consider the time Et elapsed since
the last user access, reducing the state space. We introduce
two low-dimensional approximations to the policy space,
which allow us to run optimization algorithms (policy search
algorithms, described in Section V) to find computationally
feasible policies with good performance. These schemes are
not based on the knowledge of the system statistics, and
optimize the policy parameters based on observations (which
can be obtained either from interactions with the real system,
or via simulations through a generative model). Therefore, the
proposed methods can be used in a learning context, where an
agent learns from its actions and updates its policy to adapt to
the unknown environment in a reinforcement learning fashion.

A. LISO policy

LISO is a suboptimal threshold-based caching policy with
a simplified structure. It employs a single threshold value
for each simple action (corresponding to the content pair
consisting of the content with the shortest remaining lifetime
in the cache and the one with the longest remaining lifetime
outside the cache), independent of the state. For every such
pair, if the channel cost is below this threshold, the two
contents are “swapped,” and no action is taken otherwise.
LISO is directly parametrized by the threshold values:

T (l|L) = θ(l, L),

where θ(l, L) ∈ [0, Cmax], for all pairs a = (l|L), l, L ∈
{0, . . . ,Kmax}. The set of policies parametrized this way is
of dimension (Kmax + 1)2, which is feasible. We can further
reduce the dimension by explicitly forbidding simple actions
(l|L) with l ≥ L (by setting the corresponding θ(l, L) to zero),
since an optimal policy will not replace a cached content with

a content with a shorter remaining lifetime. Hence, for such
simple actions, we have T (l|L) = 0. We also note that the
optimal policy has a monotonic structure; that is, T (l|L1) ≤
T (l|L2) if L1 < L2 and T (l1|L) ≥ T (l2|L) if l1 < l2, which
further limits the search space, and speeds up the policy search.

B. LFA policy

Next, we propose an improved policy representation (an
extension of LISO), which takes into account the remain-
ing lifetimes of the contents in the cache memory when
determining the threshold values; which can be useful in
estimating the likelihood that a downloaded content will be
removed from the cache before it expires or is consumed.
To characterize the state of the cache, we define features of
the cache-state based on the number of contents in the cache
with a particular remaining lifetime. We define the vector
Φt , [φt(0), φt(1), . . . , φt(Kmax)], where φt(i) denotes the
ratio of the number of contents with lifetime i in the cache at
time t, that is,

φt(i) ,

∑
l∈I I{l=i}
B

, for i = 0, 1, · · · ,Kmax,

where l = 0 denotes the empty locations as before. Clearly,
0 ≤ φt(i) ≤ 1, and

∑Kmax

i=0 φt(i) = 1. To keep the
computational complexity feasible, the threshold value for
each simple action a(l|L) for l < L, l, L ∈ {0, . . . ,Kmax}, is
defined as a linear function of vector Φt as

T (l|L) =

Kmax∑
i=0

φt(i)θi(l, L) = Φ>t θ(l, L),

where θi(l, L) ∈ R for l < L, and θi(l, L) = 0 otherwise. This
results in a Kmax(Kmax + 1)2/2-dimensional policy space.

Remark 1. We remark that the LISO policy, which is directly
parametrized by the threshold values for each simple action
ignoring the other contents in the cache, is a special case of
the LFA policy with parameters θi(l, L) = θ(l, L) for all i.

In the next section, we describe two policy search algo-
rithms that we use to optimize the parameters of the proposed
approximate caching schemes.

V. POLICY SEARCH METHODS

Optimizing parametric policies for MDPs has been exten-
sively studied in reinforcement learning [20]. We are going
to employ policy gradient (PG) methods [17] to optimize
the parameters of our LISO and LFA policies. PG methods
are model-free reinforcement learning algorithms to find an
optimal policy in an MDP by running gradient descent over
the policy space to minimize the expected average cost ρπθ ,
where πθ denotes the policy defined by the parameter vector
θ. In every step of the policy gradient algorithm, parameter
θj is updated using the gradient ∇θρ

πθ of ρπθ as

θj+1 = θj − λ∇θρ
πθj , (12)

for some positive step size λ.
Since the gradient ∇θρ

πθj is not known in closed form in
most cases, the gradient (and the average cost of the policy)
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has to be estimated through sample averages over independent,
finite trajectories obtained via Monte Carlo rollouts, i.e.,
instead of (12) we use a random estimate of the gradient;
so, in practice, (12) becomes a stochastic gradient descent
algorithm. To curtail the effect of noise introduced due to
the randomness, we obtain θj+1 as the average of m policy
updates, i.e., θj+1 = 1

m

∑m
i=1 θj+1,i, where each θj+1,i

is obtained using (12) with an independent estimate of the
gradient. The estimation procedure usually requires two steps:

1) Policy evaluation: The average cost of a sample trajec-
tory τθ = (S1, C1, A1), . . . , (ST , CT , AT ), obtained by
following policy πθ with parameter vector θ, is found as

J(τθ) =
1

T

T∑
t=1

µ(St, At, Ct).

2) Policy exploration: New sample trajectories are gener-
ated. Exploration is implemented either directly on the
actions At, or on the parameter vector θ, by introducing
an exploration noise either at every time step of the
trajectory, or at the beginning of the trajectory.

In what follows, we review two practical policy gradient
algorithms that employ different estimation techniques.

A. Finite difference method (FDM)

In FDM, the gradient is estimated by generating sample
trajectories following policy πθj , specified by parameter vector
θj (determining the threshold values T (l|L)), and by new
policies obtained by applying small perturbations ∆θ[i] to θj .
Generating trajectory τ [i] for θj and τ

[i]
∆ for θj + ∆θ[i], the

change in the cost is estimated by

∆J [i] = J
(
τ

[i]
∆

)
− J

(
τ [i]
)
, (13)

which is approximately equal to (∇θρ
πθ )>∆θ[i]. Thus, gen-

erating N independent trajectories τ [i], i = 1, . . . , N , the
gradient can be estimated from ∆Jπθ

= [∆J [1], · · · ,∆J [N ]]>

and ∆Θ = [∆θ[1], · · · ,∆θ[N ]]> by linear regression as:

∇θρ
πθ ≈

(
∆Θ>∆Θ

)−1

∆Θ>∆Jπθ
. (14)

In FDM, policy exploration is implemented on the param-
eter vector at the beginning of each trajectory. Perturbations
can be chosen randomly; in this paper perturbations for each
coordinate of θj are drawn from a uniform distribution over
[−r, r], for some relatively small positive real number r.

B. Likelihood-ratio method (LRM)

In LRM, exploration is implemented directly on the actions,
by using a randomized policy πθ(A|S) ∈ [0, 1], which takes
action A in state S with probability πθ(A|S). Since A may
consist of several simple actions, for each simple action (l|L)
for l < L, l, L ∈ {0, 1, . . . ,Kmax}, we define a randomized
policy πθ((l|L)|S) as a sigmoid function with negative slope
parameter η:

πθ((l|L)|S) =
1

1 + e−η(T (l|L)−C)
.

Given cache contents l1 ≤ · · · ≤ lB , and the B con-
tents outside the cache with the largest remaining lifetimes
L1 ≥ . . . ≥ LB , we repeatedly try to perform the action
ai , (li|Li) with probability πθ(ai|S) for i = 1, . . . , B, until
the first failure. This implies that for b ≤ B, the probability
of performing action Ab = {a1, . . . , ab} is

πθ(Ab|S) =
(
1− πθ(ab+1|S)

) b∏
i=1

πθ(ai|S),

where πθ(ab+1|S) is defined to be zero for all states S.
Let Pθ denote the density of an infinite trajectory τ =

(S1, A1), (S2, A2), . . . obtained by following policy πθ, and
let J(τ) = lim supT→∞

1
T

∑T
t=1 µ(St, At). Then, under gen-

eral, non-restrictive assumptions, we have

∇θρ
πθ =

∫
∇θPθ(τ)Jπθ

(τ)dτ .

Using the “likelihood-ratio” identity ∇θ logPθ(τ) =
∇θPθ(τ)/Pθ(τ), the above gradient can be expressed as

∇θρ
πθ =

∫
Pθ(τ)∇θ logPθ(τ)J(τ)dτ (15)

= E[∇θ logPθ(τ)J(τ)] .

The expectation with respect to Pθ is approximated
by sample averages over sample trajectories τ [i] of fi-
nite length. Interestingly, this can be done without
the knowledge of Pθ [17]. Indeed, since Pθ(τ) =
P (S1)

∏T
t=1 P (St+1|St, At)πθ(At|St), taking logarithm and

differentiating with respect to θ gives

∇θ logPθ(τ) =

T∑
t=1

∇θ log πθ(At|St), (16)

which can be computed directly using the parametric form
of πθ. Thus, the expectation in (15) can be estimated by
averaging over a number of independent trajectories sampled
from policy πθ. To minimize the variance of the estimate,
we introduce a baseline vector β, as in the REINFORCE
algorithm [21], and estimate the hth coordinate of the gradient
by

∇θh
ρπθ = E

[
T∑
t=1

∇θh
log πθ(At|St)(J(τ)− βh)

]
.

The baseline does not introduce any bias in the gradient
estimate: using (16), the likelihood-ratio identity, and the fact
that

∫
∇θh

Pθ(τ)dτ = 0 since
∫
Pθ(τ)dτ = 1, we get

E

[
T∑
t=1

∇θh
log πθ(At|St)βh

]
= βh

∫
∇θh

Pθ(τ)dτ

= βh∇θh

∫
Pθ(τ)dτ = 0.

As in [21], we select the baseline βh for ∇θh
ρπθ by minimiz-

ing the variance of the estimate of the hth coordinate, which
yields

βh =

E
[(∑T

t=1∇θh log πθ(At|St, Ct)
)2

J(τ)

]
E
[(∑T

t=1∇θh log πθ(At|St, Ct)
)2
] .
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Numerical results obtained with the proposed low-
complexity caching algorithms optimized with both PG meth-
ods will be presented in Section VII. Next, we present lower
bounds on the performance to evaluate the performance loss
introduced by the proposed low-complexity caching policies.

VI. LOWER BOUNDS

We present two lower bounds on the average cost: the first
bound assumes infinite cache capacity while the second one
assumes non-causal knowledge of the user access times.

A. Lower bound with unlimited cache capacity (LB-UC)

LB-UC is obtained by considering an unlimited cache
capacity (i.e., B = ∞). In this case, there is no need to
remove or replace any content inside the cache. The decision
to download and store a content can be taken individually,
and independently of the existing contents in the cache. The
structure of the optimal threshold values for LB-UC follows
from Corollary 2 and (11).

B. Lower bound with non-causal knowledge of the user access
times (LB-NCK)

LB-NCK is obtained by assuming non-causal knowledge of
the user access times. Since the user access times are known
in advance, contents that will expire before the user accesses
the OSN will never be downloaded and can be removed from
the system. Therefore, there is no need to remove any content
from the cache, thus A(2)

t = ∅ when Et > 0. All the remaining
contents must be downloaded before the next user access,
which means that there is no difference among contents, and
so whenever the CM decides to download a content, it does
not matter which one it is. As such, without loss of generality,
we assume that the CM may cache only the first B contents
generated after a user access. This means that there will always
be space for these contents to be downloaded. It follows that
the optimal policy only needs to decide when to download
these contents, and this decision is independent of the contents
in O and I, and only depends on the time till the next user
access and the current cost.

To determine the optimal policy, similarly to Corollary 2 and
(11), the problem can be modeled as a finite-horizon MDP-SI,
where the time horizon is dictated by the time G until the next
user access. Denoting by V NCKG the average energy cost of
downloading a content following the optimal policy; we have
V NCK0 = E [C], since the content must be downloaded when
G = 0. For any G ≥ 1, the dynamic programming equations
imply that V NCKG = E

[
min{C, V NCKG−1 }

]
. Therefore, the

optimal decision is to download a content if the channel cost
C is smaller than the future download cost V NCKG−1 . Thus, the
optimal policy again has a threshold structure.

Corollary 3. Assuming that the user access times are known
non-causally, there exist thresholds Cmax ≥ T NCK1 ≥ · · · ≥
T NCKDmax

≥ 08 such that, for any O, I, if there are G time

8Note that Dmax is the bound on the length of the user access interval,
and can be infinite under the IRM model.

slots left until the next user access, a content with remaining
lifetime L ∈ O (with L ≥ G) is downloaded for G ≥ 0
(i.e., when Ut = 0) if |I| < B and Ct ≤ TG. The thresholds
are given by the recursion T NCK1 = E [C] and for G ≥ 2,
T NCKG = E

[
min{C, T NCKG−1 }

]
.

VII. NUMERICAL RESULTS

Here we present numerical simulations implementing the
proposed caching schemes with both FDM and LRM. We
compare their performances with the two lower bounds in
Section VI, as well as with reactive and random caching
schemes. Reactive caching does not utilize the cache, and all
the relevant contents are downloaded at the time of user access.
In random caching, when Ut = 0, each relevant content in O
is downloaded randomly, with a constant probability pr > 0
whenever |It| < B, and pr = 0 whenever |It| = B. This
scheme exploits the cache capacity, but does not utilize any
intelligence in making the caching decisions. Note that random
caching is equivalent to reactive caching when pr = 0.

A. System Setup

The number of contents generated at each time slot, Mt, is
drawn uniformly at random from the set {1, . . . ,Mmax}, while
the lifetime Kt,i of individual contents i ∈ {1, . . . ,Mt} at the
time of generation is drawn from the set {5, 10, . . . ,Kmax},
where Kmax is a multiple of 5. We assume that the user
accesses the system independently at each time slot, with
probability pa = 0.15.

We obtain Ct using Shannon’s capacity formula, R =
W log2 (1 + Psignal/Pnoise), where R is a deterministic trans-
mission rate, W is the channel bandwidth, Pnoise is the noise
power, and Psignal is the signal power. Using parameters
consistent with the Long Term Evolution (LTE) network model
[22], on a dB scale, the noise power is given by

Pnoise = 10 log10(kT ) + 10 log10W +NF,

where kT = −174 dBm/Hz is the noise power spectral
density, and NF = 5 dB is a typical noise figure. We have

Psignal = Ct +GTX +GRX − PL(d),

where GTX and GRX are the transmit and receive antenna
gains, respectively, and PL(d) is the pathloss, which is a
function of the distance d between the user and the serving
BS. We adopt the 3GPP channel model [23], and consider an
urban micro (UMi) system, with an hexagonal cell layout in
the non-line-of-sight (NLOS) scenario, in which case

PL(d) = 36.7 log10(d) + 22.7 + 26 log 10(fc) + Xσ,

where fc = 2.5GHz is the center frequency, and Xσ is the
shadow fading parameter drawn from a zero-mean log-normal
distribution with standard deviation σ = 4 dB. Distance is in
meters (m), and the user location is assumed to be independent
across time, and uniformly distributed within a cell.

We assume that a micro BS has a radius of 250m, and the
shortest possible distance of a user from a serving BS is 50m.
Therefore, the user distance d from the serving BS in any time
slot is drawn from a uniform distribution d ∼ U(50, 250). We
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assume that the user is only served by a single BS in every
time slot. Although we focus on a single user, the savings in
energy will scale proportionally with the number of users. We
use the values GTX = 17 dBi and GRX = 0 dBi. To compute
the noise power, we assume a fixed (average) bandwidth of 10
MHz in every time slot, and for the Shannon capacity formula,
we assume a spectral efficiency of R/W = 2 bps/Hz for
each content item. The required power will be linearly scaled
with the number of contents downloaded at each time slot,
assuming they are independently encoded and transmitted over
orthogonal subbands. For all the simulations, we set the initial
state as O0 = I0 = ∅ and E0 = 0. The cache capacity B is
measured in number of contents.

For FDM, we choose the perturbation parameters ∆θ from a
uniform distribution ∆θ ∼ U(−0.08, 0.08). For each iteration,
a policy update is performed after 100 trajectories, with the
duration of a trajectory set as 200 time slots. For LRM, for the
randomized policy to closely resemble the actual deterministic
policy, the logistic function defining the policy should be as
close to a unit step function as possible. Hence, we set η = 10.
A policy update is performed after only 20 trajectories, with
the duration of a trajectory set again to 200 time slots.

For the initial parameter vector θ0 of LISO, we use the
threshold values obtained from the unlimited cache capacity
problem (as the initial θ(0, L) values for all L). Also for LFA,
we use the same parameter vector as the initial values θi(l, L),
for all l,L, and i ∈ {0, 1, . . . ,Kmax}. This provides a relatively
good initial point, thus improving the convergence speed over
a random initial parameter vector. For all the algorithms, an
average of 5 policy updates is taken as the policy update of any
iteration. In each simulation setup, we select an appropriate
step size by adjusting the step size at different runs until the
best result is obtained. Finally, to test the performance of any
policy, we use a test data of 100 trajectories, each consisting
of 5000 time slots.

B. Performance Evaluation
To simplify the presentation, we first compare LISO im-

plemented with the FDM algorithm with the benchmarks in
Fig. 2a, where we plot the average energy cost with respect to
the cache capacity. We set pr = 0.45 for the random caching
policy to download contents into the cache. We observe that
the random caching policy has the highest average cost (which
increases with pr). Naturally, the average cost of the reactive
scheme is independent of the cache capacity as it does not
utilize the cache. While the reactive scheme only downloads
contents that are actually requested, the random scheme
downloads many contents that will eventually expire before
being requested. The performance of LB-NCK decreases with
the cache capacity. This is because more contents that will
remain relevant by the user access time can be downloaded at
favorable channel conditions through proactive caching into a
larger cache. Not surprisingly, the performance of LB-NCK
meets that of the reactive scheme when B = 0.

LISO significantly improves the system’s performance with
respect to reactive caching for any nonzero cache capacity.
For a cache capacity of B = 30, LISO achieves approxi-
mately 60% reduction in energy consumption over the reactive

scheme. For relatively large cache capacities, i.e., B ≥ 40,
the performance of LISO almost meets that of LB-UC. This
is because more contents that will not expire by the next user
access can be stored in the cache, and almost no contents need
to be removed. This means that a cache capacity of B = 40
is sufficient to provide all the potential gains from proactive
caching in this setup. Interestingly, 40 is roughly the average
number of relevant contents at any point in time. Moreover,
in the low cache-capacity regime, the performance of LISO
is very close to that of LB-NCK. This is because when the
cache capacity is small, the system is relatively conservative
in proactively caching contents, and so downloaded contents
rarely expire or are swapped before the next user access.
Thus, the gain from knowing the user access times is limited.
We conclude from Fig. 2a that any improvement in the
performance of LISO implemented with FDM can occur only
for low cache capacity values (B ≤ 30).

In Fig. 2b we plot the performance of both caching schemes,
LISO and LFA, implemented with both FDM and LRM
algorithms, in the low cache capacity regime. We observe that
both the policy representation using LFA and using the LRM
algorithm for gradient estimation improve the performance
compared to LISO with FDM. At very low cache capacities,
i.e., B < 10, the performances of LISO with FDM and
LFA with FDM or LRM all closely follow the LB-NCK
bound. Meanwhile, the LFA policy has a performance gain
of up to 4.4% over the LISO policy when both schemes are
implemented with the FDM algorithm. This performance gain
can be attributed to the fact that the LFA policy considers the
remaining lifetimes of all the contents inside the cache when
making a caching decision, which is ignored by LISO. When
LFA is implemented with LRM, it achieves a performance gain
of up to 5.6% over LISO implemented with FDM. LRM also
improves the performance of LISO with FDM up to 4.2%. We
can attribute the better performance of LRM to its improved
exploration strategy.

In Fig. 3 we plot the average energy cost with respect to
the maximum lifetime of contents, Kmax. We observe that
the energy cost increases with the lifetime of contents. This
is expected: when the contents remain relevant longer, more
contents will be consumed by the user at the time of access.
We can also observe that LFA outperforms LISO for all
Kmax values considered. The performance gain of LISO with
LRM with respect to LISO with FDM increases with Kmax,
which means that a better exploration strategy becomes more
important as Kmax increases, since the cache space becomes
relatively more limited per relevant content. In Fig. 4, we
compare our schemes with the bounds. We observe that they
perform better than reactive caching for all values of Kmax,
with up to 50% performance gain at Kmax = 20, and perform
close to LB-UC at relatively small values of Kmax, and close
to LB-NCK at relatively high values of Kmax.

In Fig. 5, we compare the convergence rates of the two
PG methods. Initially, LRM performs worse than FDM, but
after about 250 trajectories, LRM starts to converge at a faster
rate, saturating at the best performance after approximately
1000 trajectories. LRM is known to have better theoretical
convergence guarantees, and its superiority over FDM has



11

10 20 30 40 50 60 70 80 90 100

4

6

8

10

12

14

16

18

(a)

10 15 20 25 30

5

6

7

8

9

10

11

12

13

14

(b)

Fig. 2: Average energy cost vs. cache capacity with Kmax = 15,Mmax = 8, pa = 0.15.
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Fig. 3: Average energy cost vs. maximum lifetime of contents
for B = 20, 30, when Mmax = 8, pa = 0.15.

Algorithm Step size Number of trajectories Runtime (secs)
LISO-FDM 0.1 18000 791.28
LFA-FDM 0.01 18000 8246.38
LISO-LRM 0.0005 1000 79.07
LFA-LRM 0.00005 1000 1556.64

TABLE I: Setup and running time of the different algorithms.

been observed in other applications as well [24]. Table I shows
the relationship between the policy representations and the
PG methods in terms of how fast they converge using the
best parametrization. Note that the runtime includes the time
it takes to run the algorithms and to test the performance
after each update to monitor convergence. We have run the
simulations on an Intel Core i7 − 7700K CPU with 4.2GHz
processor speed. We observe that, despite the fact that we use
larger values of step size for FDM, it converges at a lower
rate than LRM. We also observe that, as expected, the larger
the parameter space, the longer it takes to run the algorithm.

Fig. 6 shows the average energy cost with respect to the
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Fig. 4: Average energy cost vs. maximum lifetime of contents
for B = 20, when Mmax = 8, pa = 0.15.

maximum number of contents generated, Mmax. Similarly to
Kmax the energy cost increases with the number of contents.
The performance gain of LISO and LFA, implemented with
FDM and LRM, respectively, closely follow the LB-UC bound
when Mmax ≤ 5 for B = 20 and Mmax ≤ 8 for B = 30,
and the LB-NCK bound when Mmax > 5 for B = 20 and
Mmax > 8 for B = 30.

Fig. 7 shows the average energy cost with respect to the
probability of user access, pa. We can observe that the average
energy cost increases with pa since more contents will be
consumed by the user. Furthermore, the gap between LISO
and LB-UC diminishes as pa increases. This is because the
relative size of the cache increases as the user accesses the
system more often (e.g., no cache is needed in the extreme
case of pa = 1).

In the next section, we go beyond our modeling assumptions
to show that the performance gain of the LFA policy with
respect to LISO can be more significant if the underlying
stochastic processes have memory.
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Fig. 5: The evolution of the FDM and the LRM algorithms
with respect to the number of trajectories.

C. System with Memory

Here we introduce temporal memory in the generation of
content lifetimes and the user location, i.e., distance from the
serving BS, which is a more realistic model for a mobile user
served by micro BSs. For the lifetime process, we assume that
the content generator has two states, called “short” and “long”
content states, respectively. When it is in the short content
state, all the generated contents have an initial lifetime of 5,
whereas in the long content state, all the contents are generated
with a lifetime of 15. The content generator transitions from
one state to the other randomly. We assume that, if it is in the
short content state, it remains there with probability p1, while
it remains in the long content state with probability p2.

We assume that at each time slot the user moves either
towards or away from the serving BS. The distance from the
serving base station at time slot t+ 1 is dt+1 = dt±σ, where
σ is a positive constant, which describes how fast the user is
moving. The corresponding user location model is a Markov
process where the state transition probabilities are given by
P (dt+1 = dt+σ) = pu and P (dt+1 = dt−σ) = 1−pu, for all
t. We further impose that the distance d is bounded between
50m and 250m, so only a single direction of movement is
possible on the boundary points.

Note that the threshold structure of the optimal policy no
longer holds in this model with memory; however, we can still
evaluate the performances of the proposed caching schemes
which exploit a threshold structure. Figure 8 shows the per-
formances of the LFA and LISO policies, both implemented
with the LRM algorithm, for values of p1 ∈ {0.1, 0.5, 0.9} and
varying p2 from 0.1 to 0.9. Note that, higher p1 and p2 values
mean that the system is more likely to stay in the same state,
and continue to generate contents with the same lifetime. The
results are obtained for a cache capacity of B = 20. For the
user location process, we set σ = 5 and pu = 0.5. We observe
that the average energy cost increases with increasing p2 and
with decreasing p1, as they both lead to the generation of more
contents with lifetime 15. We observe similar trends for the
gain of LFA with respect to LISO; that is, the improvement

with respect to LISO also increases with p2 and decreases with
p1.

We observe that the performance gain of LFA over LISO
is more significant than the memoryless scenario. For similar
system parameters in the memoryless case; that is, for a cache
capacity of B = 20, and assuming that the LRM algorithm
is used, LFA policy has a performance gain of approximately
0.75% over LISO. However, when memory is introduced, LFA
can provide a performance gain of approximately 2%. We
note that, when the lifetime generation has memory, existing
contents in the system provide more information about the
future states; and hence, the LFA policy, which takes into
account the remaining lifetimes of all the contents, provides
higher gains.

VIII. CONCLUSIONS

We have considered the proactive caching problem in
wireless networks with the aim of minimizing the long term
average energy cost of delivering contents to the UE over a
time-varying wireless link under random user accesses to the
system, random content lifetime, and a time-varying library
size. We have first showed the optimality of a threshold-
based policy, which pushes contents to the cache (or may
remove contents from the cache if it is full) depending on
the relative value of the channel state with respect to preset
threshold values that depend on the time elapsed since last
user access and the remaining lifetimes of all the relevant
contents in the system. Since this leads to a prohibitively
large set of parameters to be optimized, we have proposed
two suboptimal caching schemes, LISO and LFA, that are
based on low-complexity parametrization of the system states
and policy search techniques from reinforcement learning. We
have further introduced two lower bounds on the performance,
and through numerical simulations, we have showed that the
two low-complexity proactive caching schemes perform close
to optimal, with LFA performing better than LISO in general.
Proactive caching under nonlinear cost functions, and in multi-
user scenarios are currently being considered as interesting
future extensions of this paper.

APPENDIX A
PROOF OF LEMMA 1

We start the proof by showing that our MDP (S,A, P, µ)
satisfies (9) when Pπ is ergodic for any policy π and Z is an
interval. First note that Theorems 5.1–5.3 of [25] imply that for
any MDP with a countable state space and whose action space
is a compact metric space, there exists an optimal deterministic
policy satisfying (9). Clearly, under our assumptions, S is
countable. Furthermore, since g ∈ A is Borel-measurable,
any limit point (under pointwise convergence) of a sequence
of functions from A also belongs to A (i.e., it is a Borel-
measurable function). On the other hand, the representation of
policies with functions from A is not unique, since any two
functions g, g′ ∈ A such that P [g(Z) = g′(Z)] = 1 represent
the same policy (up to a zero-measure event), and this causes
problems in establishing the compactness of A.
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Fig. 6: Average energy cost vs. maximum number of contents for B = 20 (left) and B = 30 (right), when Kmax = 15, pa =
0.15.
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Fig. 7: Average energy cost vs. probability of user access for
B = 30, when Kmax = 15,Mmax = 8.

To alleviate this problem, for any g ∈ A, define the
equivalence class Gg = {g′ ∈ G : P [g(Z) = g′(Z)] = 1},
and let G = {Gg : g ∈ A} denote the family of these classes.
For any G ∈ G, let fG ∈ G be a selected element of G. Then,
since each function fG can take values only in the finite set
ASI , with a slight modification to the proof of Theorem 3
in [26], one can show that the set Ā = {fG : G ∈ G} is a
compact metric space for the metric P [g(Z) 6= g′(Z)].

Consequently, the new MDP (S, Ā, P, µ) satisfies (9). Fur-
thermore, it is easy to see that the new MDP is equivalent to
the original one in the sense that their trajectories are equal
with probability one if any action g ∈ A in the original MDP
is replaced with fGg in the new one. Therefore, the original
MDP also satisfies (9).

Using (5) and (6), we can express (9) as

V π
∗
(s) = min

g∈A

{
E

[
µSI(s, g(Z), Z)− ρπ

∗

+
∑
s′∈S

PSI(s
′|s, g(Z))V π

∗
(s′)

]}
.

(17)
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Fig. 8: Average energy cost vs. transition probabilities p1 and
p2 for both LFA and LISO policies, with cache capacity B =
20, σ = 5 and pu = 0.5.

Since g is a mapping from Z , the above minimum can be
realized by minimizing for each value of the side information
Z independently. Indeed, for any s, the minimum in (17) is
achieved by any g satisfying

g(z) ∈ argmin
aSI∈ASI,s

{
µSI(s, aSI , z)− ρπ

∗

+
∑
s′∈S

P (s′|s, aSI)V π
∗
(s′)

}
.

(18)

Since the right hand side of (18) is a minimum of finitely
many linear functions, it follows that g(z) can be chosen
to be a piecewise constant function: a piecewise constant
function over the interval Z is defined by an interval par-
tition Z1, . . . ,Zm of Z (for some m) and some actions
a1, . . . , am ∈ ASI such that g(z) = ai if z ∈ Zi, i =
1, . . . ,m. Converting this policy back to the original MDP-
SI problem via π∗(s, z) = g(z) finishes the proof.
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