
Reinforcement Learning for Proactive Caching of
Contents with Different Demand Probabilities

Samuel O. Somuyiwa, Deniz Gündüz and András György
Department of Electrical and Electronic Engineering,

Imperial College London, UK

Abstract—A mobile user randomly accessing a dynamic con-
tent library over a wireless channel is considered. At each time
instant, a random number of contents are added to the library
and each content remains relevant to the user for a random
period of time. Contents are classified into finitely many classes
such that whenever the user accesses the system, he requests
each content randomly with a class-specific demand probability.
Contents are downloaded to the user equipment (UE) through
a wireless link whose quality also varies randomly with time.
The UE has a cache memory of finite capacity, which can be
used to proactively store contents before they are requested by
the user. Any time contents are downloaded, the system incurs a
cost (energy, bandwidth, etc.) that depends on the channel state
at the time of download, and scales linearly with the number
of contents downloaded. Our goal is to minimize the expected
long-term average cost. The problem is modeled as a Markov
decision process, and the optimal policy is shown to exhibit a
threshold structure; however, since finding the optimal policy
is computationally infeasible, parametric approximations to the
optimal policy are considered, whose parameters are optimized
using the policy gradient method. Numerical simulations show
that the performance gain of the resulting scheme over tradi-
tional reactive content delivery is significant, and increases with
the cache capacity. Comparisons with two performance lower
bounds, one computed based on infinite cache capacity and
another based on non-casual knowledge of the user access times
and content requests, demonstrate that our scheme can perform
close to the theoretical optimum.

I. INTRODUCTION

In traditional wireless networks, content delivery takes place
only after a user requests a content. This method, which is
referred to as reactive content delivery, is very sensitive to
the actual quality of the channel at the time of request. On
the other hand, proactive content delivery, in which contents
are delivered in advance of a user request by leveraging the
available storage at the user equipment (UE), can be used to
improve the performance, particularly in wireless networks in
which the network utilization (and hence the quality of the
available wireless channel) is highly varying across time and
space [1], [2]. However, to achieve performance gain with
proactive content delivery, cache decision, that is, what to
cache and when, must be made intelligently. Reinforcement
learning [3] has been considered as a viable technique of
making intelligent cache decisions at the edge of the wireless

This work received support from the European Research Council (ERC)
through the Starting Grant BEACON (grant agreement no. 725731) and the
Petroleum Technology Development Fund (PTDF).

network to reduce service delay [4], to reduce congestion
in back-haul links [5]–[7], to improve throughput [8], and
to improve cache hit-rate (or reduce cache miss-rate) [9],
[10]. However, most existing works do not consider dynamic
generation and lifetime of contents; particularly in an online
social network (OSN) context, where contents are continu-
ously generated, but remain popular for only a limited time
duration, e.g., average lifespan of a content on Twitter is 18
minutes [11], [12].

In this paper, we consider a mobile user randomly request-
ing contents from a library, which are generated by the user’s
social connections in an OSN, through a wireless link. The
OSN consists of a remote server in which the content library
is located, and a mobile application (app) that runs on the
UE through which the user accesses the library. The UE is
equipped with a cache memory of finite capacity, so that
contents in the library can be replicated from the server into
the UE in advance of user requests. At every time period, a
random number of contents are generated and added to the
library, and each content remains in the library for a random
period of time, called the lifetime, after which it is considered
to have expired and irrelevant to the user in the sense that it
will no longer be requested. Without loss of generality, we
assume that the user is interested in consuming a content only
once. Therefore, any content that is consumed by the user
becomes irrelevant afterwards, and is removed from the library.
The relevance of contents to the user may be different, that is,
the user may be interested in some contents more than others.
Hence, contents are classified based on their relevance, and
we assume that whenever the user accesses the OSN, each
content is consumed with a class-specific request probability.
In the extreme case, each content may have a different request
probability, but we expect that in most practical situations,
contents can be grouped into a few relevance categories.

The state of the wireless link through which contents are
transmitted to the UE varies with time as it depends on
several factors, such as, user location, channel conditions,
network load, coverage, bandwidth, etc. Every time contents
are transmitted to the UE, the serving base station (BS) incurs
a cost that depends on the number of bits downloaded and the
state of the wireless link at that time period. We consider
the energy cost of transmission in this paper, but the cost
can also be the receiver’s energy cost, channel bandwidth,
or other resources required for content delivery. Without loss
of generality, we assume homogeneity in the size of contents

(larger contents can be split into smaller chunks of equal size).
Hence, each content transmitted to the UE in the same time
period incurs the same energy cost. A content manager (CM)
“refreshes” the cache by downloading contents into the cache,
prior to a user request, and removing contents from the cache
as necessary. If the user requests a content that is already in
the cache, the CM delivers it from the cache to the mobile
app without any additional cost. However, if the requested
content is not in the cache, the CM downloads it from the
remote server at a transmission energy cost that depends on
the current channel state, and delivers it directly to the user
through the mobile app. The goal of the CM is to minimize
the average energy cost of content delivery in the long term.

Previously, we studied a similar problem with a single
content class in [13], where the request probability of all the
contents were assumed to be 1; that is, the user downloads
and consumes all the relevant contents whenever it accesses
the mobile app. In [13] we formulated this problem as a
Markov decision process with side information (MDP-SI), a
modification of standard Markov decision process (MDP) [14]
that treats the uncontrollable part of the state space as side
information, which allowed us to easily handle the continuous
state space for the channel, and show that the optimal cache
management policy has a threshold structure. In this paper,
we extend this result to the case of multiple content classes
and show that the optimal policy still has a threshold structure
in this more complicated scenario. However, due to the large
number of threshold values that need to be computed because
of the dependence of the threshold values on the prohibitively
large state space of the system, computing and applying the
optimal policy is computationally infeasible. Therefore, sim-
ilarly to [13], we introduce parametric policy representations
with reduced policy spaces to approximate the optimal policy,
and employ reinforcement learning (more specifically, the
policy gradient method) to optimize the parameters. Finally,
we compare the performance of the resulting policy with
two lower bounds and the traditional reactive content delivery
scheme. The first lower bound, called LB-UC, is computed as
the performance of an optimal policy that is allowed to use an
infinite cache, while the second lower bound, called LB-NCK,
is obtained as the performance of an optimal policy that has
non-causal knowledge of the contents that are requested by
the user and the user access times. It is shown that LB-NCK
provides a tight bound for smaller cache capacities, whereas
LB-UC becomes tighter as the cache capacity increases. The
experimental results demonstrate that our method can provide
near-optimal performance while keeping the computational
costs at an affordable level.

II. SYSTEM MODEL

We consider a slotted time system model. At the beginning
of slot t, a set Nt consisting of a random number of new
contents, each having a random lifetime, is generated and
added to a library located in a remote server. The number
of generated contents is denoted by Mt ∈ {0, . . . ,Mmax},
and the lifetime of the mth content in Nt is denoted by

Kt,m ∈ {1, . . . ,Kmax}. That is, a content generated with
lifetime Kt,m expires by the end of slot t+Kt,m−1, and it is
automatically removed from the library. All the contents are
assumed to be of equal size, and the UE is equipped with a
cache memory of capacity B; that is, B files can be proactively
stored in the cache memory. We denote the set of contents
in the user’s cache at the beginning of slot t by It, where
|It| ≤ B. We denote the set of contents that are in the library
but not in the cache at the beginning of slot t by Ot. Note
that Ot ⊇ Nt, that is, contents generated at the beginning of
slot t are already included in Ot.

The user randomly accesses the library in order to consume
contents. We denote the user access behavior in slot t by
Ut, which takes a binary value, where Ut = 0 implies that
the user does not access the library in slot t, and thus, does
not request any content, and Ut = 1 implies that the user
accesses the library. We assume that the user access behavior is
an independent and identically distributed (i.i.d) process with
P (Ut = 1) = pa. Each content in the library belongs to one
of Q classes. We assume that if the user accesses the library, a
content belonging to class q will be requested with probability
pq , independently for each content in the library.

We denote the set of contents requested by the user in slot
t by Rt = (R

(1)
t , R

(2)
t), where R

(1)
t ⊆ Ot and R

(2)
t ⊆ It.

Note that Rt = ∅ when Ut = 0. In slot t, when Ut = 1, the
CM downloads all the requested contents that are not in the
cache, (R

(1)
t), from the server, and moves them together with

the requested contents that are already in the cache, (R
(2)
t),

to the application layer. In any slot t, the CM may download
additional contents that have not been requested, to be stored
in the cache, and may also discard already prefetched contents
from the cache if necessary. We denote the set of all contents
downloaded to the UE in slot t by A(1)

t ⊆ Ot, and the set of
all contents discarded from the cache in slot t by A(2)

t ⊆ It.
Since all the contents are of equal size, we can represent

each content by its remaining lifetime L and the class q
it belongs to, which will be denoted by L[q]. Any arith-
metic operation involving L[q] will be applied to L, e.g.,
L[q] − 1 = (L − 1)[q]. Given this representation, all the sets
of contents introduced so far, Nt, Ot, It, R(1)

t , R(2)
t , A(1)

t

and A
(2)
t , can be represented as multisets of pairs consisting

of remaining lifetimes and classes (with the set of all tuples
of pairs denoted by N∗). For simplicity, we will refer to
multisets of pairs simply as multisets. For a multiset Y , we
let Y − 1 = {y[j] > 0 : y[j] + 1 ∈ Y} denote the multiset
obtained by reducing the lifetime of each element in Y by 1,
and removing the elements whose lifetimes become 0. Given
these definitions, the system evolves according to the following
equations:

Ot+1 =

(((
Ot \A(1)

t

)
∪
(
A

(2)
t \R

(2)
t

))
− 1

)
∪Nt+1,

It+1 =

((
It \A(2)

t

)
∪
(
A

(1)
t \R

(1)
t

))
− 1.

(1)

We denote the wireless link quality, which is the instan-
taneous cost of downloading a content to the UE in slot
t by Ct ∈ R+, which is an independent realization of a
continuous random variable C with cumulative distribution
function (cdf) FC(c), and bounded by Cmax. Given these, the
total instantaneous cost incurred in slot t is |A(1)

t | ·Ct, and the
average cost incurred after T slots is JT = 1

T

∑T
t=1 |A

(1)
t |·Ct.

The goal of the CM is to minimize the long-term expected
average cost defined as

ρ , lim sup
T→∞

E [JT] = lim sup
T→∞

E

[
1

T

T∑
t=1

|A(1)
t | · Ct

]
. (2)

We assume that the sequences {Mt}, {Kt,m}, {Ut}, {Rt}
and {Ct} are independent of each other. In the next section,
we first show that this problem can be modeled as a MDP-SI
[13], and then derive the structure of the optimal policy.

III. OPTIMAL POLICY OF THE CACHE MANAGER

A. The MDP-SI Model

In a standard discrete-time MDP with finite-state and action
spaces, there exists a state space S, an action space A, a
probability kernel P : S × A × S → [0, 1], and a cost
function µ : S × A → [0, µmax > 0] ∪ {∞}, such that,
in order to avoid an infinite cost, a different action set is
allowed in every state. That is, for every state s ∈ S , the
set As = {a ∈ A : µ(s, a) < ∞} denotes the set of feasible
actions, and we assume that As 6= ∅, for all s ∈ S. Thus, a
standard MDP is characterized by the tuple (S,A, P, µ).

With the objective of minimizing the infinite-horizon aver-
age cost ρ = limT→∞ E

[
1
T

∑T
t=1 µ(St, At)

∣∣S1

]
, a Markov

chain controller takes action a ∈ As at every slot t, and the
system transitions from state s ∈ S to state s′ ∈ S with
probability P (s′|s, a) , P [St+1 = s′|St = s,At = a], where∑
s′∈S P (s′|s, a) = 1, for all s ∈ S, a ∈ A. The actions of the

controller are governed by a deterministic policy π : S → A.
Let Π denote the set of all deterministic policies.

In a discrete-time MDP-SI, the state space is separated into a
controllable and an uncontrollable part. Thus, S is considered
a controllable state space, and there is an additional state space
Z ⊂ R, where Zt ∈ Z is an i.i.d sequence with cdf FZ , which
is uncontrollable but affects the cost function µSI : S×ASI×
Z → [0, µmax] ∪ {∞}, where S and ASI are countable state
and action spaces, while Z may not be a finite state space.
If the controller takes action a ∈ ASI in states s ∈ S and
z ∈ Z at any slot, the system transitions to states s′ ∈ S
and z′ ∈ Z with probability PSI(s

′, z′|s, a, z). Since Zt is
not controlled by the strategies of the controller, it is regarded
as a side information, and the MDP-SI can be characterized
by (S,ASI , PSI , µSI ,Z, FZ). The actions of the controller in
MDP-SI is governed by a deterministic policy πSI : S×Z →
ASI . It is shown in [13] that the policy πSI of the MDP-SI
can be turned into policy π ∈ Π of the MDP, and vice versa,
and that the expected average cost of the two models are the
same for the corresponding policies. Therefore, it is enough

to consider the MDP (S,A, P, µ), where the controllable and
uncontrollable state spaces are not separated.

B. The Optimal Policy of the MDP-SI

Considering a finite MDP (S,A, P, µ), let ρπ denote the
infinite-horizon average cost ρ when At = π(St), that is,

ρπ = lim
T→∞

E

[
1

T

T∑
t=1

µ(St, π(St))

∣∣∣∣S1

]
. (3)

The limit exists as µ(s, a) > 0 and the initial state S1 does
not matter assuming that the policy π ∈ Π of the MDP
(S,A, P, µ) is defined by an irreducible and aperiodic transi-
tion kernel Pπ : S × S → [0, 1]. There exists a deterministic
policy π∗ [14] that minimizes ρπ over all, possibly non-
stationary and non-deterministic causal control policies. The
differential value function for any state s ∈ S is defined as

V π(s) = E

[∞∑
t=1

(µ(St, π(St))− ρπ)

∣∣∣∣∣S1 = s

]
. (4)

Furthermore, the optimal policy π∗ that minimizes ρπ in (3)
satisfies

V π
∗
(s) = min

a∈A

{
µ(s, a)− ρπ∗ +

∑
s′∈S

P (s′|s, a)V π
∗
(s′)

}
,

(5)
and a = π∗(s) minimizes the right hand side.

We show in [13] that an optimal policy π∗SI(s, ·) = π∗ of
the MDP-SI exists even if the uncontrollable state space Z is
not finite but is an interval.

C. Behavior of the Optimal Policy of the Cache Manager

The cache management problem is indeed an MDP-SI: The
state s ∈ S of the system in slot t is St = (Ot, It), that is,
the state space S ⊂ N∗ ×N∗. The states Ot and It transition
according to (1). The i.i.d. side information z ∈ Z in slot
t is the channel state Ct and user requests Rt, which are
governed by the cdf FC and by the probabilities pa and pq ,
q = 1, 2, . . . , Q, respectively. The action of the CM in slot t is
At = (A

(1)
t , A

(2)
t). The decision of the CM depends on Zt and

St, as the cost of taking action At is µ(St, At, Zt) = |A(1)
t |·Ct.

Note that, the user request (Rt) in slot t limits the set of
possible actions as the requested contents must be delivered
to the user in that slot. Hence, we only need to characterize
the optimal policy for the relevant contents that have not
been requested by the user. We can think of downloading
these contents in the intermediate state (O′t, I ′t) obtained after
satisfying the user request, that is, O′t = Ot \ R(1)

t and
I ′t = It \ R(2)

t , and given an intermediate side information,
which excludes the user requests, that is, it is the channel
state Ct only. Therefore, the decision At ∈ As of the optimal
policy of the CM in slot t is a piecewise constant function of
the channel state Ct [13].

We denote the decision of the CM to download content
L[j] ∈ O into the cache while removing content l[i] ∈ I by
ad = (l[i]|L[j]), and call this decision a simple action. Recall

that L and l are the remaining lifetimes of the contents while
i and j are their classes, respectively. For the simple action
ad, l = 0 implies that a content with remaining lifetime L >
0 is downloaded into an empty space in the cache memory.
Since the number of contents that can be downloaded into the
cache is constrained by the cache capacity, no more than B
simple actions can be taken in any slot. Let adn denote the
nth simple action. The proactive caching action of the CM
can be represented as a sequence of b ≤ B simple actions as
At \ Rt = {ad1, ad2, · · · adb}. This representation will help us
characterize the optimal policy.

First, we denote the value of a content L[q], for any
remaining lifetime L and any class q, as VL[q] , such that, the
optimal policy which satisfies (5) places contents with higher
values in the cache. It is easy to see that the optimal policy
may take a simple action ad = (l[i]|L[j]) only for L > l if
i = j, and for L = l for which pj > pi. The value of a content
is the expected future cost associated with the content given
its remaining lifetime and class, when the optimal policy is
followed. We can estimate VL[q] for all L and q if we assume
that L[q] is the only content inO and there is space in the cache
memory to proactively cache L[q]. Given this assumption, the
problem can be modeled as a finite-horizon MDP, where the
horizon equals the remaining lifetime L. Thus, we can apply
dynamic programming to determine the optimal values using
backward induction, such that, V1[q] = 0 for any q since a
content with remaining lifetime 1 expires at the end of a slot,
so there is no reason to proactively cache it. Assuming optimal
decisions are made for remaining lifetimes up to L− 1, then
the value of content L[q] can be obtained as

VL[q] = papq · E [C] + (1− papq)E
[
min{C,VL[q]−1}

]
. (6)

The behavior of the optimal policy is described in the follow-
ing theorem.

Theorem 1. Consider an intermediate state s′ = (O′, I ′) ∈ S
in a time slot with channel cost C. Let f1, . . . , fB denote
the ordered contents (i.e., lifetime-class pairs) in the cache
satisfying Vf1 ≤ · · · ≤ VfB , and let F1, . . . , FB denote the
contents not in the cache with the B largest values, that is,
VF1 ≥ · · · ≥ VFB

. Then there exists b ≤ B and corresponding
threshold values T (adb) ≤ T (adb−1) ≤ · · · ≤ T (ad1) ≤ Cmax,
depending on s′, such that there is an optimal cache manage-
ment policy that performs simple actions adn = (fn|Fn) for
all n for which C ≤ T (adn).

The proof follows similarly to the one in [13] given for
a single class of files, and is omitted here due to space
constraints.

The threshold values of the optimal policy depends gener-
ally on the remaining lifetimes of all the relevant contents, i.e.,
the optimal threshold value of each simple action depends on
the state. Therefore, the number of optimal threshold values
scales with the size of the state space S, which is extremely
large. Hence, computing and even storing the optimal thresh-
old values is infeasible. In the next section, we describe two

different parametric approximations to the optimal policy with
reduced policy spaces.

IV. POLICY APPROXIMATION

We consider two different parametrized suboptimal poli-
cies. The first policy representation takes a simple action
ad = (l[i]|L[j]) corresponding to the content with the lowest
value, Vl[i] , inside the cache, and the content with the high-
est estimated value, VL[j] , outside the cache. This is called
the value-based policy (VBP), and it has a single threshold
for each simple action irrespective of other available simple
actions. The second policy representation employs, for each
simple action, a threshold value that is a linear function of the
state. This is called the linear function approximation (LFA)
policy.

To overcome the complexity associated with the dependence
of the optimal policy on the state space, we consider a
parameterized policy πθ, where the parameter θ operates over
a reduced parameter space Θ. Then, we use a policy gradient
reinforcement learning method called likelihood-ratio method
(LRM) [15] to optimize the parameters of these two policy
representations.

A. Value-Based Policy (VBP)

VBP has a simple structure, such that there is a single
threshold value for each simple action, independently of the in-
termediate state. The policy replaces the content with the low-
est estimated value inside the cache with the content with the
highest estimated value outside the cache, if the channel cost is
below the corresponding threshold. VBP is parameterized by
its threshold values, that is, T ((l[i]|L[j])) = θ(l[i], L[j]), where
θ(l[i], L[j]) ∈ [0, Cmax] for all l, L ∈ {0, . . . ,Kmax} and
i, j ∈ {1, . . . , Q}. This representation results in a parameter
set of dimension (QKmax+1)2, which can be further reduced
by ignoring all θ(l[i], L[j]) for which Vl[i] ≥ VL[j] , that is, the
policy does not replace a content in the cache with a content
outside the cache with a lower expected value. We also ensure
the following natural monotonicity rules that for any contents
f1, f2 ∈ I and F1, F2 ∈ O, T ((f1|F1)) ≤ T ((f2|F2)) if
either VF1 ≤ VF2 or Vf1 ≥ Vf2 .

B. LFA Policy

We represent the cache state in every slot by the numbers of
“similar” contents, that is, contents having the same remaining
lifetime and belonging to the same class that are in the cache
at that time slot. To do this, we introduce the vector Φt where,
Φt(0) denotes the ratio of the number of empty spaces in the
cache in slot t, and Φt((q−1)Kmax +k), denotes the ratio of
the number of contents in the cache in slot t having lifetime k
and belonging to class q, for k = 1, · · · ,Kmax, q = 1, · · · , Q;
that is, we have

φt((q − 1)Kmax + k) ,

∑
l[i]∈I I{l=k} · I{i=q}

B
,

where I{·} denotes the indicator function. The threshold value
for each simple action ad = (l[i]|L[j]) for which Vl[i] ≤ VL[j] ,

l, L ∈ {0, . . . ,Kmax}, i, j ∈ {1, . . . , Q} is a linear function
of the vector Φt representing the cache state as

T (ad) = Φt(0)θ0(l[i], L[j])

+

Q∑
q=1

Kmax∑
k=1

Φt((q − 1)Kmax + k)θ(q−1)Kmax+k(l[i], L[j])

= Φ>t θ(l
[i], L[j]),

where θ(q−1)Kmax+k(l[i], L[j]) ∈ R for k = 1, · · · ,Kmax and
q ∈ {1, . . . , Q}.

To optimize the parameters of each policy considered, we
use the policy gradient algorithm described in Section IV-C.

C. Likelihood-ratio method (LRM)

We employ policy gradient, a model-free reinforcement
learning method, to optimize the parameters of the specified
policies. Policy gradient uses stochastic gradient descent,
following sampled trajectories obtained using a parameterized
policy πθ, to minimize the expected average cost ρπθ . The
estimated gradient ∇θρ

πθ of πθ is used to update θj at the
end of step j as

θj+1 = θj − λ∇θρ
πθj , (7)

where λ is some positive step size. Given an infinite
trajectory τ = (S1, A1), (S2, A2), . . . obtained using the
distribution Pθ by following policy πθ, we let J(τ) =
lim supT→∞

1
T

∑T
t=1 µ(St, At). Then the gradient estimate

can be obtained as

∇θρ
πθ =

∫
∇θPθ(τ)Jπθ

(τ)dτ,

= E[∇θ logPθ(τ)J(τ)],

where the expectation with respect to Pθ can be approximated
over sampled trajectories of finite length. Since Pθ(τ) =
P (S1)

∏T
t=1 P (St+1|St, At)πθ(At|St), the gradient estimate

can be taken without the knowledge of Pθ as

∇θρ
πθ = E

[
T∑
t=1

∇θ log πθ(At|St)J(τ)

]
.

The LRM algorithm takes a simple action ad in state S with
probability πθ(ad|S) ∈ [0, 1]. This allows for exploration,
which is essential for learning new sampled trajectories. We
define a randomized policy πθ(ad|S) as a sigmoid function
with negative slope parameter η:

πθ(ad|S) =
1

1 + e−η(T (ad)−C)
.

For b ≤ B simple actions taken with respect to the structure of
the optimal policy in Theorem 1, and noting that any requested
content is always delivered –with probability 1, we can express
the policy taking action A in state S as

πθ(A|S) =

b∏
n=1

πθ(adn|S).

In the next section we present performance results of the
reduced complexity schemes optimized with LRM.

V. NUMERICAL RESULTS

We compare the performances of the proposed proactive
caching schemes with reactive content delivery and two lower
bounds described below.

A. Lower Bounds

The first lower bound, called LB-UC, is obtained by con-
sidering an unlimited cache capacity. This implies that each
content can be downloaded into the cache individually and
independently of other contents inside and outside the cache.
An optimal policy of the CM will download each content L[j]

with respect to its value VL[j] , that is, its expected future cost,
which can be obtained using (6). The optimal policy of the
CM downloads a content to the cache if the instantaneous cost
of downloading it at that time is less than or equal to its value,
otherwise it does not download the content.

The second lower bound, called LB-NCK, considers that
the user access times and requested contents are known non-
causally. This implies that contents that will never be requested
by the user can be removed from the system. The remaining
system can be solved through dynamic programming for any
finite time horizon that spans several user access instants. The
state of the system can be characterized by the number of
contents that are not in the cache and the number of empty
spaces in the cache. An optimal policy of the CM takes into
consideration the time to user request of each content that is
not in the cache, and finds the number of contents to download
into empty spaces in the cache.

B. Simulation Setup

For simulations, we consider Q = 2 classes of contents,
with request probabilities p1 = 0.9 for class q = 1 and
p2 = 0.3 for class q = 2. Each newly generated content in
Nt is allocated to either of the class uniformly at random.
User access probability pa = 0.15, Mt is drawn uniformly
at random from the set {1, 2, . . . 8}, and the lifetime Kt,m of
individual content m ∈ {1, 2, . . .Mt} is drawn uniformly at
random from the set {5, 10, 15}.

The channel cost Ct is obtained using Shannon’s capacity
formula, R = W log2 (1 + Psignal/Pnoise), where R is a
deterministic transmission rate, W is the channel bandwidth,
Pnoise is the noise power, and Psignal is the signal power. We
use parameters consistent with the LTE network model and
3GPP channel model [16].

For the randomized policy of LRM, we set η = 10. A policy
update is performed after 20 trajectories, with the duration of a
trajectory set to 200 slots. In each simulation setup, we adjust
the step size at different runs, and select the one that gives
the best result. Finally, to test the performance of any policy,
we use a test data of 100 trajectories, each consisting of 5000
time slots.

In Figure 1 we plot the average energy cost with respect
to the cache capacity. As expected, the performances of the
reactive scheme and LB-UC do not change with cache capacity
since the reactive scheme does not utilize the cache and LB-
UC considers an unlimited cache capacity. The performances

5 10 15 20 25 30 35 40 45 50 55 60

3

4

5

6

7

8

9

10

Fig. 1: Average energy cost vs. cache capacity.

of the proposed schemes, VBP and LFA, improve with increas-
ing cache capacity before saturating at around B = 40, which
is approximately the expected size of the library. VBP and
LFA outperform the reactive scheme by approximately 17%
at B = 5, where they perform very close to LB-NCK, and by
approximately 56% at B = 40, where they perform very close
to LB-UC. The two schemes perform close to each other for
the system settings considered. In Figure 2, we plot the average
energy cost with respect to the maximum lifetime of contents.
The average energy cost increases with the increase in the
maximum lifetime of contents. This is because contents remain
relevant longer, thus, more contents are consumed by the user
before their expiry. The proposed scheme outperforms reactive
content delivery, with a performance gain that increases with
increasing Kmax, and perform close to the two lower bounds
within the cache capacity regime considered.

VI. CONCLUSIONS

We considered the problem of proactively caching contents
into a limited capacity cache memory of a mobile device in or-
der to minimize the long term average energy cost in a wireless
network with a time-varying channel state. The mobile user
randomly demands contents from a dynamic content library to
which a random number of contents with random lifetimes are
added at each time slot. We showed that a threshold policy that
downloads contents into, and may remove contents from, the
cache depending on the relative value of the contents compared
to a threshold value, which depends on the remaining lifetimes
and request probabilities of all active contents, is optimal.
To address the computational complexity associated with the
huge space of the optimal policy, we proposed low complexity
parameterized policy representations and used policy gradient
reinforcement learning to optimize the parameters. We showed
that the proposed low-complexity schemes outperform the
traditional reactive content delivery, and perform close to two
lower bounds obtained by considering an unlimited cache

5 10 15 20

3

4

5

6

7

8

9

10

11

Fig. 2: Average energy cost vs. maximum lifetime of contents
for B = 5 and B = 30.

capacity and a non-causal knowledge of user access times and
content requests.

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inform. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[2] M. Gregori, J. Gomez-Vilardebo, J. Matamoros, and D. Gündüz, “Wire-
less content caching for small cell and D2D networks,” IEEE Journal
on Sel. Areas in Comms., vol. 34, no. 5, pp. 1222–1234, May 2016.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[4] M. S. ElBamby, M. Bennis, W. Saad, and M. Latva-aho, “Content-aware
user clustering and caching in wireless small cell networks,” in Int’l
Symp. on Wireless Comms. Systems (ISWCS), Aug 2014, pp. 945–949.

[5] P. Blasco and D. Gündüz, “Learning-based optimization of cache content
in a small cell base station,” in IEEE Int’l Conf. Comms. (ICC), Jun.
2014, pp. 1897–1903.

[6] P. Blasco and D. Gündüz, “Content-level selective offloading
in heterogeneous networks: Multi-armed bandit optimization
and regret bounds,” abs/1407.6154, 2014. [Online]. Available:
http://arxiv.org/abs/1407.6154

[7] S. Muller, O. Atan, M. van der Schaar, and A. Klein, “Context-
aware proactive content caching with service differentiation in wireless
networks,” IEEE Trans. on Wireless Comms., vol. 16, no. 2, Feb 2017.

[8] S. T. ul Hassan, S. Samarakoon, M. Bennis, M. Latva-aho, and C. S.
Hong, “Learning-based caching in cloud-aided wireless networks,” IEEE
Communications Letters, vol. 22, no. 1, pp. 137–140, Jan 2018.

[9] C. Zhong, C. Gursoy, and S. Velipasalar, “A deep reinforcement
learning-based framework for content caching,” ArXiv, Dec. 2017.

[10] A. Sadeghi, F. Sheikholeslami, and G. Giannakis, “Optimal and scalable
caching for 5g using reinforcement learning of space-time popularities,”
IEEE Journal of Sel. Topics in Signal Proc., vol. 12, no. 1, Feb 2018.

[11] A. Lobzhanidze, W. Zeng, P. Gentry, and A. Taylor, “Mainstream media
vs. social media for trending topic prediction - an experimental study,”
in IEEE Consumer Comms. and Netw. Conf., Jan 2013, pp. 729–732.

[12] D. Wells. (2016) The lifespan of a social media post. [Online].
Available: http://bit.ly/29Byg3Q

[13] S. O. Somuyiwa, A. György, and D. Gündüz, “A reinforcement-learning
approach to proactive caching in wireless networks,” IEEE Journal on
Selected Areas in Communications, vol. 36, no. 7, pp. 1–14, July 2018.

[14] M. L. Puterman, Markov Decision Processes: Discrete Time Stochastic
Control. John Wiley and Sons, 2005.

[15] M. Deisenroth, G. Neumann, and J. Peters, “A survey on policy search
for robotics,” Found. Trends Robot, vol. 2, pp. 1–142, Aug. 2013.

[16] T36.814 V9.0.0, “Further advancements for E-UTRA physical layer
aspects (release 9),” 3GPP, Mar. 2010.

