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Abstract

The Metropolis-Hastings (MH) algorithm is a
flexible method to generate samples from a target
distribution, a key problem in probabilistic infer-
ence. In this paper we propose a variation of the
MH algorithm based on group moves, where the
next state is obtained by first choosing a random
transformation of the state space and then apply-
ing this transformation to the current state. This
adds much-needed flexibility to the “textbook”
MH algorithm where all measures involved must
be given in terms of densities with respect to a
common reference measure. Under mild con-
ditions, our main result extends the acceptance
probability formula of the textbook algorithm to
MH algorithms with group moves. We work out
how the new algorithms can be used to exploit
a problem’s natural symmetries and apply the
technique to the simultaneous localization and
mapping (SLAM) problem, obtaining the first
fully rigorous justification of a previous MCMC-
based SLAM method. New experimental results
comparing our method to existing state-of-the-
art specialized methods on a standard range-only
SLAM benchmark problem validate the strength
of the approach.

1 INTRODUCTION

Probabilistic reasoning plays a major role in state-of-the-
art artificial intelligence (AI) approaches to major chal-
lenges (Korb and Nicholson, 2003; Russel and Norvig,
2009; Poole and Mackworth, 2010). In particular, proba-
bilistic graphical models are widely used in computer vi-
sion (Prince, 2012), robotics (Thrun et al., 2005a; Ferreira
and Dias, 2014), speech and natural language processing
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(Manning and Schuetze, 1999), machine learning (Bishop,
2006; Murphy, 2012) and agent research (Xiang, 2002). A
key step of working with probabilistic graphical models
is inference, that is, the computation of a posterior distri-
bution given the model and some data. As the posterior
can rarely be expressed in a closed form amenable to direct
evaluation by a computer, one often must resort to approx-
imate inference methods (Pearl, 1988; Darwiche, 2009;
Koller and Friedman, 2009), amongst which in this arti-
cle we focus on the Metropolis-Hastings (MH) algorithm,
which is a special Markov Chain Monte Carlo (MCMC)
method.

The MH algorithm takes a target distribution and trans-
forms a user-chosen Markov kernel (the “proposal kernel”)
into another one such that, under mild conditions on the
proposal kernel, a Markov chain based on the new ker-
nel will have a limiting distribution equal to the target
(Metropolis et al., 1953; Hastings, 1970). While the MH
algorithm gives substantial flexibility in choosing the pro-
posal kernel, the calculations needed to implement the MH
algorithm are simple only for special forms of the proposal
kernel such as the textbook case when all measures in-
volved have a density with respect to a common reference
measure1 (Tierney, 1994). In this paper we describe two
new classes of proposal kernels, based on group transfor-
mations of the state space and give the corresponding MH
algorithms in closed form. The algorithms require basi-
cally the same amount of computation as the textbook MH
algorithm, while we will argue that they significantly ex-
pand the scope of the MH algorithm. We will illustrate
the results by specializing the algorithm to the simultane-
ous localization and mapping (SLAM) problem in robotics
(Thrun et al., 2005b) and argue that the algorithm essen-
tially recovers the MCMC-SLAM method of Torma et al.
(2010), providing much needed insight into the behavior of

1This restriction disallows even Gibbs sampling, since the
target distribution typically has a density with respect to the
Lebesgue measure on Rn , which however is zero on the one-
dimensional subspaces on which proposals are made (see Sec-
tion 3.2). The target distribution must therefore be conditioned
on the space of proposals, which is straightforward for Lebesgue
measures and linear subspaces but requires the machinery of mea-
sure theory to be correct in general (Chang and Pollard, 1997).
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Figure 1: A probability density on R2 (center) having two
factors (left and right).

this method as well as the first fully rigorous proof of its
correctness2. In fact, it was this method that served as the
inspiration for the present paper. In a new set of experi-
ments, we demonstrate that this algorithm is competitive
with state-of-the-art methods of robotics.

The paper is organized as follows: In Section 2 we use an
example to motivate our approach, which is described in
Section 3. Section 4 expands upon the example to illus-
trate how our approach can exploit symmetries. Section 5
is devoted to describing the SLAM problem, its symme-
tries, and how the general construction of Section 3 can be
instantiated in this setting. We close the paper by provid-
ing experimental results on range-only SLAM (Section 6)
followed by our conclusions (Section 7).

2 MOTIVATION AND PROBLEM
STATEMENT

Suppose we want to draw samples from the simple two-
dimensional probability distribution P of Fig. 1. Its den-
sity p(x, y) has two factors: p1(x, y) and p2(x, y), which
need not be probability densities themselves (i.e., p(x, y) =

cp1(x, y)p2(x, y) for some constant c > 0). The MCMC
approach is to construct a transition probability distribu-
tion that induces a random walk over R2, the distribution of
which converges to P in the steady state. The Metropolis-
Hastings (MH) algorithm allows us to specify a proposal
distribution, and under mild conditions, constructs a suit-
able MCMC transition kernel by proposing a new state but
rejecting it with some probability. With some no-reject
proposal kernels the rejection probability is zero, which
means the proposal kernel is itself suitable as a transition
kernel. The MCMC algorithm will be efficient if the pro-
posal kernel does not often propose low-probability states
(which would increase the rejection rate) and quickly ex-
plores the high-probability states (speeding up convergence
to the steady state).

Often, a proposal kernel updates the state by modifying one
variable at a time (the canonical example is Gibbs sam-
pling; some multivariate “slice sampling” kernels also do

2Theorem 2 of Torma et al. (2010) is not correct when, in the
notation of Section 3.1, ∆Gr , 1 or χ , 1. However, this does not
affect the special case of SLAM.

this). However, it is immediately apparent that such an up-
date would be problematic for our example: it would be
impossible to move between the ±X and ±Y modes of the
distribution without transiting through a low-probability re-
gion. Another common approach is to change all the vari-
ables by a small delta, perhaps drawn from a multivariate
normal distribution. However, the variance of this proposal
kernel must be carefully tuned for each variable: too small
and it will be confined to one mode in a multimodal distri-
bution like ours; too large and it will often propose points
in the low-probability regions. In general, this idea does
not work well with multi-modal distributions.

One might argue that we have overstated the difficulty of
the problem. One sees at a glance that p1 is radially sym-
metric and p2 is scale invariant: we can make sampling
much easier simply by reparameterizing the state space us-
ing polar coordinates (r, θ) instead of Cartesian coordinates
(x, y). Updating one variable at a time is then very effec-
tive: one can draw an independent sample from P just by
sampling r according to p1 and θ according to p2. Indeed,
our difficulties were simply because the Cartesian repre-
sentation of the state space is mismatched with the inde-
pendence and symmetry structure of the problem, whereas
in the polar representation the r and θ variables are inde-
pendent with distributions derived from p1 and p2, respec-
tively.

In general, however, it is not always possible to come up
with a parameterization that reflects so cleanly the symme-
tries of the factors. Instead, since the symmetries are more
readily apparent than a suitable parameterization, we can
sidestep the problem of re-parameterizing the state space
and instead work directly with the known symmetries. To
do this, we will use the mathematical tools of topologi-
cal group theory, which have been extremely fertile in the
study of continuous symmetries. As an ancillary advan-
tage, the family of algorithms we describe will be indepen-
dent of the representation of the state space, by construc-
tion. This avoids the problems noted above with algorithms
that depend crucially on a favorable choice of parameteri-
sation.

The idea of using groups has been intensely studied in
statistics (Eaton, 1989; Wijsman, 1990; Diaconis, 1988)
and groups have also found their way to machine learning
(Smola and Kondor, 2003; Kondor et al., 2007; Kondor and
Dempsey, 2012). Model symmetries are also exploited in
the body of work on “lifted” probabilistic inference; these
symmetries can be encoded by groups (Niepert, 2012a) and
the problem has been approached with MCMC techniques
(Niepert, 2012b). The focus of that work is on perform-
ing inference on a reduced space that collapses equivalence
classes. Thus “lifting” is not applicable when the symme-
tries are approximate or when different symmetries apply
to each subproblem: then the representation cannot be re-
duced and states must be explored that are symmetric for
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one subproblem but not for another. To the best of our
knowledge the closest work to ours is that of Liu and col-
leagues (Liu and Wu, 1999; Liu and Sabatti, 2000; Liu,
2004), where the primary concern is generalizing Gibbs
sampling so that it can work with group transformations
(the main problem being the derivation of the right “condi-
tional” distribution over the set of transformations consid-
ered). However, as in general in Gibbs sampling, it is left to
the user to implement sampling from the derived distribu-
tion. In the present paper, however, we start from the MH
algorithm, giving the user the freedom to choose an easy to
sample distribution over the transformations.

3 METROPOLIS-HASTINGS WITH
GROUP TRANSFORMATIONS

A Markov Chain Monte Carlo (MCMC) algorithm to sam-
ple from a probability distribution P over a state space W
is specified by a transition kernel Q(dw′ | w), which gives
rise to a Markov chain U0,U1,U2, . . . where U0 is sampled
according to some initial distribution P0 and each Ui after
that is sampled according to Q( · |Ui−1). Under appropri-
ate conditions on Q, the random variables Un converge in
distribution to P as n → ∞; P is then called a steady state
distribution of the Markov chain. A convenient condition
to force P to be a steady state distribution of Q is that P
and Q should satisfy detailed balance:

P(du)Q(dv | u) = P(dv)Q(du | v); (1)

the Markov chain is then said to be reversible. Indeed, the
meaning of (1) is that if (U,V ) is sampled from the joint
in (1) then we cannot tell whether (U,V ) was generated by
first choosing U from P and then following Q to generate
V , or whether it was generated by first choosing V from
P and then following Q to generate U. Under additional
conditions on Q, such as Q being φ-irreducible and aperi-
odic, P is the unique steady state distribution of Q and the
Markov chain (Ui) sampled from Q will indeed converge
in distribution to P regardless of P0 (see, e.g., Roberts and
Rosenthal, 2004, Theorem 4).

The MH algorithm is one way to construct reversible tran-
sition kernels: given a proposal kernel Q′(dw′ | w), the MH
kernel first samples U ′

n+1 according to Q′( · |Un) and then
accepts U ′

n+1 as Un+1 with probability α(Un ,U ′n+1); other-
wise Un+1 is taken to be Un . With an appropriate choice of
the acceptance probability function α : W × W → [0,1],
the MH transition kernel satisfies detailed balance (Tierney,
1998). However, we will call any transition kernel obtained
via the above procedure an MH transition kernel regardless
of whether it satisfies detailed balance or whether its sta-
tionary distribution matches the target distribution.

We assume that W is a topological space so that we can
reason about continuous transformations of the state space.

Our MH proposal kernel Q′ will select a continuous trans-
formation of W and apply it to the current state of the chain.
Take G to be a set of such transformations: for any g ∈ G
and w ∈ W we will write gw for the state resulting from ap-
plying g to w. The composition of any two g1,g2 ∈ G, writ-
ten as g1g2 and defined by (g1g2)w B g1(g2w), is certainly
a continuous transformation of W . Hence, without loss of
generality, we require that g1g2 ∈ G for any g1,g2 ∈ G.
Finally, since we would like our Markov chain to be re-
versible, every transformation in G should be invertible:
for every g ∈ G there should be some g−1 ∈ G such that
g−1(gw) = g(g−1w) = w for any w ∈ W .

It follows that G contains a unit e that is the identity trans-
formation on W : ew = w for any w ∈ W ; e is sim-
ply the composition of any g and g−1. As we would
like the composition operation to be associative (for any
g1,g2,g3 ∈ G, (g1g2)g3 = g1(g2g3)), our previous condi-
tions together mean that G is a group that acts on W via the
action (g,w) 7→ gw, with group multiplication being the
aforementioned composition operation. To capture the no-
tion of transformations that are “similar” to each other, as-
sume that G is endowed with a topology and that inversion
and multiplication are continuous operations with respect
to this topology; this makes G a topological group. Finally,
assume that the topology of G is such that the group acts
continuously on the state space: the group action is a con-
tinuous G ×W → W map.

Working in this general setting will allow our algorithm and
its correctness results to rely only on the operational notion
of transforming the state space in certain ways, and the re-
sulting algorithms will remain unchanged under different
parameterizations of the state space. The state representa-
tion can be chosen freely, guided only by practical imple-
mentation concerns. However, as a guide to intuition, the
reader can imagine the state space W to be a subset of the
Euclidean space Rn using an arbitrary choice of parameter-
isation. The group G can be taken to be the invertible con-
tinuous maps, or even just the invertible affine transforma-
tions. One must only keep in mind that an algorithm con-
structed under these restrictions must be explicitly proven
to be invariant under reparameterization; it is not automat-
ically invariant by construction as in the general setting we
adopt.

3.1 Metropolis-Hastings Based on Group Moves

The proposal kernel can be defined in terms of a condi-
tional distribution QG(dg | w) over the group G; it samples
g ∼ QG( · | w) and proposes the new state gw. Further, un-
der certain technical conditions on the action of G on W
and their respective topologies, there will be natural (rel-
atively) invariant measures on W and G (analogous to the
Lebesgue measure on Rn). In particular, our conditions
will allow us a (left) Haar measure µ on G, which is in-
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variant under translation on the left and relatively invariant
under translation on the right: if g ∈ G and H ⊂ G then

µ(gH) B µ({gh | h ∈ H}) = µ(H)
and

µ(Hg) B µ({hg | h ∈ H}) = ∆Gr (g)µ(H) ,
where ∆Gr : G → R×+ is called the (right) modular char-
acter of G and is an inherent property of the group itself,
where R×+ denotes the group of positive real numbers un-
der multiplication (i.e., composition of scaling factors). It
is a continuous group homomorphism from G to the mul-
tiplicative group of positive real numbers.3 In many cases
∆Gr = 1 identically: if the group is discrete, or commutative
(abelian), or its topology is compact, for example. We will
also have a relatively invariant measure λ on W : if g ∈ G
and V ⊂ W then

λ(gV ) B λ({gv | v ∈ V }) = χ(g)λ(V ).
χ : G → R×+ is also a continuous group homomorphism.
In practice we will often be able to construct an invariant
λ, so that χ = 1 identically.

We will assume that the target distribution P and proposal
QG are absolutely continuous with respect to λ and µ, re-
spectively, with densities p and q:

P(dw) = p(w) λ(dw), Q(dg | w) = q(g | w) µ(dg).
We will also assume that the initial state of the Markov
chain lies within the support of P. Our MH transition ker-
nel based on QG is defined by the following procedure:

Procedure 1. Given the current state w ∈ W , sample the
new state w′ as follows:

1. Sample g ∼ QG( · | w).

2. Calculate α B
χ(g) p(gw) q′(g−1 | gw)
∆Gr (g) p(w) q′(g | w) .

3. Accept w′ = gw with probability min{1,α}.

In the procedure we use the function q′ (derived from q) to
account for the possibility that many different moves g ∈ G
may result in the same w′. In particular, q′ is defined as
follows: For w ∈ W , let Gw B {g ∈ G | gw = w} be the
isotropy subgroup of G at w; it measures the injectivity of
the map g 7→ gw: for any g ∈ G, the set of all g′ that also
satisfy g′w = gw is exactly gGw . Under mild conditions
on G and W , Gw will be seen to be compact, implying
that there exists a unique Haar measure βw on Gw with
βw(Gw) = 1. Then

q′(g | w) =

∫
Gw

q(gh | w) βw(dh) .
3For any g,h ∈ G, it satisfies ∆Gr (gh) = ∆Gr (g)∆Gr (h) and

∆Gr (g−1) = (∆Gr (g))−1 (and hence ∆Gr (e) = 1).

Remark 1. It follows from this definition that q′( · | w) is
constant on each gGw . Moreover, if q itself has this prop-
erty then q′ = q.

That Procedure 1 is “correct” (in the sense that the MH
kernel it defines is in detailed balance with P) will be the
subject of Theorem 1.

We note, in closing, that Procedure 1 encompasses the stan-
dard MH algorithm defined for Euclidean spaces. Indeed, if
the state space W and group G are both Rn with gw = g+w,
without loss of generality one can rewrite the proposal in
terms of the move g = w′−w. Then the Lebesgue measure
m serves as both λ and µ. Since m is invariant, χ = 1. Fur-
thermore, since vector addition is commutative, ∆G = 1.
Finally, for any x, y ∈ Rn there is a unique g = y − x such
that x + g = y, so q′ = q and

α =
p(w′)q(w − w′|w′)
p(w)q(w′ − w|w) .

3.2 Mixtures of Group Moves

The proposal kernel described above is often too restrictive,
in that QG may not have a density with respect to the Haar
measure µ on G. For example, the Gibbs sampler on Rn

updates the state space by modifying one coordinate at a
time. Its proposal distribution is therefore concentrated on
the coordinate axes (which have zero Lebesgue measure
on Rn) and so does not have a density with respect to that
measure.

One way to increase flexibility is to allow several differ-
ent groups G1,G2, . . . ,Gn to act on the state space W , each
associated with a kernel Qi(dgi | w) (i = 1, . . . ,n). Each
Qi will be assumed to have a density qi w.r.t. the Haar
measure µi on Gi . We will choose λ to be a measure on
W that is simultaneously relatively invariant under all the
groups: χi-relatively invariant under each Gi , respectively.
The proposal kernel Q′ will be a mixture of the Qi with co-
efficients a(i | w) > 0, i = 1, . . . ,n, with

∑n
i=1 a(i | w) = 1

for all w ∈ W . The MH transition kernel based on Q′ is
defined by the following procedure:

Procedure 2. Given the current state w ∈ W , sample the
new state w′ as follows:

1. Sample i ∼ a( · | w) and g ∼ Qi( · | w).
2. Calculate

α B
χi(g) a(i | gw) p(gw) q′i (g−1 | gw)
∆
Gi
r (g) a(i | w) p(w) q′i (g | w)

.

3. Accept w′ = gw with probability min{1,α}.

That P and this kernel are in detailed balance will be the
subject of Theorem 2.
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3.3 Correctness

We will assume that the proposals are chosen in such a way
that φ-irreducibility holds: in particular, this is easy to ver-
ify in the case of SLAM below. To prove that the MCMC
transition kernels described in Procedures 1 and 2 satisfy
detailed balance, we will require some technical conditions
on the space W and the groups G or Gi .

Assumption 1. The state space W and the groups G and
Gi are locally compact and Hausdorff.4

The local compactness condition on the groups G and Gi

guarantees the existence of the Haar measures on them.
The Hausdorff property implies that every compact set in a
space is also closed, and thus singleton sets are also closed.

The second assumption is designed to exclude certain
pathological examples of group actions:

Assumption 2. The action of each group G, Gi on the state
space W is proper: the map θ : (w,g) 7→ (w,gw) preserves
compactness of pre-images (i.e., θ−1(K) is compact in W ×
G for every compact K ⊂ W ×W).

A group G acting properly on the space W has several de-
sirable properties. Most importantly for our immediate pur-
poses, the isotropy subgroup Gw of G at w ∈ W , defined by
Gw B {g ∈ G | gw = w}, is compact and thus also locally
compact. Thus there is a finite Haar measure βw on each
isotropy subgroup Gw which, without loss of generality, is
normalized: βw(Gw) = 1.

As noted earlier, for any g ∈ G, the set of all g′ that also
satisfy g′w = gw is exactly gGw . Thus, if the action of
G on W is proper, we are assured that the structure of G
is not too rich in relation to the space it acts upon: gGw is
compact and thus not too “large”. With this, we can state
our first main result:

Theorem 1. If the state space W and group G satisfy As-
sumptions 1 and 2, then the Markov transition kernel de-
fined by Procedure 1 satisfies detailed balance (1).

To show the correctness of Procedure 2, we will need to
assume that the image of w under any two Gi ,G j overlap
only negligibly. To do this, we will assume that all the Gi

are, in fact, subgroups of some overarching group K , so
that we can define intersections of the Gi :

Assumption 3. Define Gi, j B Gi ∩ G j for 1 ≤ i, j ≤ n.
Then for each i , j the condition

p(w)
∫

1{g ∈ Gi, jGk,w} q′(g | w) µk (dg) = 0, w ∈ W

is satisfied with either k = i or k = j, where Gk,w is the
isotropy subgroup of Gk at w ∈ W.

4A topological space is locally compact if every point has a
compact neighbourhood; it is Hausdorff if for every pair of dis-
tinct points, there are disjoint neighbourhoods containing each
point.

Theorem 2. If the state space W and each Gi (1 ≤ i ≤
n) satisfy Assumptions 1 to 3, then the Markov transition
kernel defined by Procedure 2 satisfies detailed balance (1).

4 EXPLOITING SYMMETRIES

Judiciously choosing the groups Gi and proposal kernels
Qi allows the MH kernel with group transformations (Pro-
cedure 2) to take advantage of symmetries of the target dis-
tribution. Consider a distribution P with a density that can
be factored as follows:

p(w) =

m∏
i=1

pi(w), where pi(hw) = pi(w) for all h ∈ Hi ;

we say that each group Hi is a symmetry of the factor pi ,
or that pi is invariant under the action of Hi . For concrete-
ness, we present a variation on the example of Section 2:
p is a density with respect to the Lebesgue measure λ on
W = R2 \ {(0,0)} with m = 3 factors, p1 and p2 are as de-
scribed earlier, and we add another factor p3 with no useful
symmetries; thus H1 and H2 are, respectively, the groups
that rotate and scale R2 around its origin, and H3 is the
trivial group (containing only the identity transformation).

To apply Procedure 2 to this example, take n = 2, G1 = H2,
G2 = H1, and a(i | w) = 1/2 for i = 1,2 and all w. In
this example, for i = 1,2, ∆Gi

r = 1 identically (since both
groups are commutative) and q′i = qi (by Remark 1, since
the isotropy subgroups are trivial). The proposed state is
w′ = gw for some g ∈ Gi , so we see immediately that
pj (w′) , pj (w) is only possible for j ∈ {i,3}. Thus, in
the i = 1 case, the p2 factor cancels out of the acceptance
probability:

α|i=1 =
χ1(g) p1(gw)����p2(gw) p3(gw) q1(g−1 | gw)

p1(w)���p2(w) p3(w) q1(g | w) . (2)

Next we choose q1, attempting to cancel the χ1 and p1 fac-
tors as well. Since G1 acts by scaling R2, we can identify it
with R×+: the group of positive real numbers under multipli-
cation (i.e., composition of scaling factors). Then g ∈ R×+
acts on R2 by (x, y) 7→ (gx,gy), the corresponding effect on
the Lebesgue measure (area) on the plane is described by
χ1(g) = g2, and µ1(dg) = g−1dg is a Haar measure on R×+.
The obvious choice is to set q1(g | w) ∝ χ1(g) p1(gw) with
a normalizing constant c1(w); then for any w ∈ W , since q1
must be a probability kernel, we use the definitions of µ1
and χ1 to get∫ ∞

0
q1(g | w) g−1dg = c1(w)

∫ ∞

0
p1(gw) g dg = 1. (3)

A simple calculation using (3) yields c1(gw) = g2c1(w) =

χ1(g) c1(w), which we substitute into (2):

α|i=1 =
���χ1(g)����p1(gw) p3(gw)���χ1(g)���c1(w)����χ1(g−1)���p1(w)

���p1(w) p3(w)���c1(w)���χ1(g)����p1(gw) .
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An analogous derivation can be carried out for the i = 2
case, identifying G2 with [0,2π) as the set of rotation angles
under the operation of addition (mod 2π). Then χ2 = 1
and µ2 is just the Lebesgue measure on G2; again we get
α|i=2 = p3(gw)/p3(w). In fact, the same technique works
in general for any target distribution P, even if ∆Gi

r , 1, as
long as χi(g) pi(gw) is µi-integrable:
Proposition 1. Suppose qi(g | w) B ci(w) χi(g) pi(gw)
(g ∈ Gi , w ∈ W) is a probability kernel density for some
appropriately chosen normalizer ci . Then q′i = qi and

χi(g) pi(gw) qi(g−1 | gw)
∆
Gi
r (g) pi(w) qi(g | w)

= 1.

We conclude that when Procedure 2 is applied to a tar-
get distribution having factors pi invariant under Hi ,
the proposals in the mixture should be chosen so that
(a) Gi ⊂ H j for as many j , i as possible, elimi-
nating the pj terms from the acceptance probability, and
(b) qi(g | w) ∝ χi(g) pi(gw) to eliminate the χi , ∆

Gi
r , and

pi terms; the constraint is that the Gi transformations sam-
pled according to Qi must collectively be able to explore
the support of P. Indeed, ideally only the non-symmetric
factors of p appear in the acceptance probability, as we saw
in the example. If we had p3 = 1 as in Section 2, we would
recover the no-reject algorithm that produces independent
samples every time it performs a rotation and a scaling.
The simpler acceptance probability also means that only
the non-symmetric factors contribute to the time required
to compute it.

5 THE SLAM PROBLEM

The SLAM problem is concerned with a robot navigating
an unknown environment under the effect of sensor and
control noise. The goal is to determine the robot’s tra-
jectory as well as the map of the environment based on
the robot’s observations. The environment comprises N
landmarks; the position of each is denoted by a variable
Yi (i = 1, . . . ,N) taking values in a space Y. Let Xt

(t = 0, . . . ,T) denote the pose (typically, position and ori-
entation) of the robot at time step t and take values in space
X. At every time step the robot can observe the landmarks,
and at time step t the observation of landmark i is denoted
by Z i

t taking values in Z. For simplicity, we assume that
all landmarks can always be observed and the robot can
distinguish the landmarks. The goal of the SLAM prob-
lem is to estimate the trajectory X = (X0, . . . ,XT ) and the
landmark positions Y = (Y1, . . . ,YN ) based on the obser-
vations Z = (Z i

t )0≤t≤T ,1≤i≤N (our notation consistently
refers to time steps and landmarks with subscripted and su-
perscripted indices, respectively).

We use the Bayesian formulation of SLAM, in which the
robot’s trajectory, environment, and observations are ran-
dom variables and are assumed to evolve according to

the following dynamical system: (a) X0 and Y are in-
dependent with known densities; (b) at each time step
t = 0,1,2, . . . , each observation Z i

t depends only on Xt and
Yi via the conditional density pZ i

t |Xt ,Yi
, and (c) the pose of

the robot Xt depends only on Xt−1 and the previous obser-
vations Z<t B (Z0, . . . , Zt−1) via the conditional density
pXt |Xt−1,Z<t

(where Zt = (Z1
t , . . . , Z

N
t )). That is, we make

the following Markov assumptions: (a) Z i
t is conditionally

independent of X<t and Yj ( j , i) given Xt and Yi , and
(b) Xt is conditionally independent of X<t−1 and Y given
Xt−1 and Z<t . Also, we assume throughout that conditional
densities exist relative to some dominating measure, usu-
ally an appropriate Lebesgue or Haar measure.

The SLAM posterior is the conditional density
pX,Y |Z ( · | z) over trajectories and environments given
observations Z = z. We first factor the joint density pX,Y,Z

as pY (y) pX,Z |Y (x, z | y). Then, under the above Markov
assumptions, we obtain

pX,Z |Y (x, z | y) =

T∏
t=0

pXt |Xt−1,Z<t
(xt | xt−1, z<t )

· pZt |Xt ,Y (zt | xt , y)

pX,Y |Z (x, y | z) =
pY (y)pX,Z |Y (x, z | y)

pZ (z) .

(4)

We consider the SLAM problem in which the robot moves
on a two-dimensional plane. Then its position and ori-
entation are fully specified by the rigid (i.e., distance-
preserving and non-reflecting) transformation of R2 from
the robot’s body-local coordinate system to the global co-
ordinates. Any rigid transformation can be decomposed
into a rotation around the origin followed by a translation;
the set of such transformations under composition forms
the special Euclidean group SE(2). The space of poses is
therefore X B SE(2). The landmarks are specified by their
positions on the plane, so Y B R2.

5.1 Symmetries of SLAM

We assume that, apart from the landmarks, the environment
is essentially homogeneous (we will elaborate upon what
this means), giving rise to certain symmetries in the fac-
tors of the SLAM posterior distribution. If a robot has pose
x ∈ X, in its body-local frame the coordinates of another
pose x ′ ∈ X are x−1x ′ and those of a landmark y ∈ Y

are x−1y. One can verify that these local coordinates do
not change if x, x ′, and y are all transformed by some
g ∈ G B SE(2) to gx, gx ′, and gy, respectively. The
assumption that the environment is homogeneous means,
firstly, that the motion of the robot is not affected by its lo-
cation in a way undetectable to its sensors. In particular,
for a given value of Z<t , the motion model pXt |Xt−1,Z<t

de-
pends only on the relative movement X−1

t−1Xt and not on the
global coordinates. Secondly, since the sensors are fixed to
the robot’s body, the observation of a landmark depends
only on its local coordinates in the robot’s frame: pZ i

t |Xt ,Yi
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depends only on Z i
t and X−1

t Yi . Thirdly, the landmarks and
the robot’s initial pose are a priori equally likely to be any-
where in the environment: pYi and pX0 are invariant un-
der G. The homogeneity of the environment thus implies
that no reference frame is privileged, and that being trans-
formed by G does not affect the likelihood of a SLAM so-
lution. To resolve the resulting ambiguity, without loss of
generality we work in the coordinate system whose origin
is the robot’s initial pose (i.e., X0 is the identity transfor-
mation).

Thus, for our purposes, the SLAM posterior is a distribu-
tion over the state space W B XT × YN of all possible
trajectories (that start at the origin) and environments. The
group K B GT × GN acts on W , with the gt ,g

i ∈ G com-
ponents acting on wt ∈ X and wi ∈ Y, respectively (by our
convention, the subscripts and superscripts refer to the pose
and landmark components, respectively). Using the termi-
nology of Section 4, the pXt |Xt−1,Z<t

factors are invariant
under the subgroups Ht B {g ∈ K | gt−1 = gt } and the
pZ i

t |Xt ,Yi
factors under H i

t B {g ∈ K | gt = gi}.

5.2 The MCMC-SLAM Algorithm

We now specify how Procedure 2 may be applied to the
problem of sampling from the SLAM posterior. First, we
select a function b : {1, . . . ,N} → {1, . . . ,T}, which “an-
chors” each landmark to one of the time steps at which it
was observed. The proposal is a mixture of T + N kernels,
indexed with subscripts or superscripts as before. The mix-
ture component corresponding to time step t transforms W
by an element of Gt B

�⋂
s,t Hs

�
∩

�⋂
i H i

b(i)
�
, which is

a symmetry of the pXs |Xs−1,Z<s
factors for s , t and of the

pZ i
s |Xs,Yi

factors for (s, i) < Vt , where

Vt B {(s, i) | s < t ≤ b(i) or b(i) < t ≤ s}.
Indeed, this is a maximal set of factors for which Gt can
be a symmetry without being reduced to triviality. One can
verify that an element of Gt is determined by g ∈ G that
acts on ws if s ≥ t and on wi if b(i) ≥ t; other components
of w ∈ W are left unchanged. The mixture components cor-
responding to landmark i use Gi B

⋂
t

�
Ht ∩

�⋂
j,i H j

t

��
,

which is a symmetry of all the pXt |Xt−1,Z<t
factors and

those p
Z

j
t |Xt ,Yj

factors with j , i; again, this is a maxi-
mal invariant set. The corresponding proposal kernel den-
sities qt and qi are chosen to be proportional to pXt |Xt−1,Z<t

and pZ i
b(i) |Xb(i),Yi

, respectively, following Section 4. Proce-
dure 3 lists the resulting algorithm5. Note that if the tra-
jectory is stored in the tree structure of Fenwick (1994),
modified to support non-commutative operations, the state
update can be carried out in O(log T) time; the calculation
of the acceptance probability then dominates, thus scaling
with the number of factors whose values have changed.

5We use the notation x ∼ p( · ) with the assumption that p is
integrable and implying an appropriate normalizing constant.

Procedure 3. Given w ∈ W consisting of a trajectory
x1, . . . , xT and landmarks y1, . . . , yN , propose w′:

(i) Sample either a time step t or a landmark i
from a given discrete distribution with probabili-
ties at (w) and ai(w), respectively (i.e.,

∑T
t=1 at (w)+∑N

i=1 ai(w) = 1).

(ii) If the previous step sampled time step t:

1. Set x ′t ∼ pXt |Xt−1,Z<t
( · | xt−1, z<t ).

2. Set x ′s B x ′t xt−1xs for s > t.
3. Set y′i B x ′t xt−1yi for m(i) ≥ t.
4. Calculate

α B
at (w′)
at (w)

∏
(s, i)∈Vt

pZ i
s |Xs,Yi

(zis | x ′s , y
′
i )

pZ i
s |Xs,Yi

(zis | xs , yi) .

(iii) Otherwise, if it sampled landmark i:

1. Set y′i ∼ pZ i
b(i) |Xb(i),Yi

(zi
b(i) | xb(i), · ).

2. Calculate

α B
ai(w′)
ai(w)

∏
t,b(i)

pZ i
t |Xt ,Yi

(zit | xt , y′i )
pZ i

t |Xt ,Yi
(zit | xt , yi) .

(iv) Accept new state w′ with probability min{1,α}. All
unmodified variables keep their original values.

6 EXPERIMENTS

We applied the MCMC-SLAM algorithm to two publicly
available datasets (Djugash, 2010) from an autonomous
robot with sensors that measure range to radio beacons. In
the Plaza 1 data set, the robot traveled 1.9 km over 9,657
time steps and received 3,529 range observations of four
landmarks. In the Plaza 2 data set, the robot traveled 1.3
km over 4,091 time steps and received 1,816 range mea-
surements, also of four landmarks. Highly accurate ground
truth trajectories were also recorded. We compare the algo-
rithm to the Spectral SLAM algorithm (Boots and Gordon,
2013). We found that exploiting symmetries as outlined in
Section 4 was crucial: the naive MCMC kernel that updated
individual components of the trajectory or environment did
not make any progress in a reasonable amount of time.

Table 1 shows the RMS distance of each robot pose from
the ground truth for each data set. It is averaged over 50 in-
dependent runs of the MCMC algorithm, with the interval
indicating one standard deviation. Since any SLAM solu-
tion is only specified up to the choice of origin, we apply
the best-fit rigid transformation between the estimated and
known maps (Boots and Gordon do the same).

The MCMC (r + s) algorithms incrementally extend the
SLAM posterior by introducing the factors coming from
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Figure 2: An MCMC sampled trajectory and map (black) overlaid over the ground truth (red) for the Plaza 1 (left) and
Plaza 2 (right) data sets.

each time step, in turn. They use b(i) = arg mint Z i
t . The

chain takes r steps after each extension, and s steps at the
end. At each time step, newly introduced variables are ini-
tialized by sampling from the corresponding proposal ker-
nel. MCMC (10+1000) took approximately 13.8 s on Plaza
1 and 2.8 s on Plaza 2; MCMC (100+10000) took 131.1 s
and 28.1 s, respectively. The larger number of steps is re-
quired to achieve good accuracy on Plaza 2 because it is
more challenging: the robot consistently turns in one di-
rection, making the control noise biased. In comparison,
Spectral SLAM took 0.73 s and 0.51 s on a similar com-
puter. The “Spectral + Opt.” algorithm runs a final batch
optimisation pass and takes several thousands of seconds.

Thus, even though the MCMC algorithm is computation-
ally somewhat more expensive, we see that it performs
competitively with Spectral SLAM and all the other meth-
ods tested by Boots and Gordon (2013). In addition, it
has the advantage of easily handling missing observations,
without a process of imputing them as is done by Spectral
SLAM. Finally, being a Bayesian algorithm, it produces
the SLAM posterior distribution rather than just a solution;
indeed, we expect it to perform better if the robot noise
characteristics were faithfully modelled.

7 CONCLUSIONS AND FUTURE WORK

The Metropolis-Hastings (MH) algorithm is a widely used
technique to implement approximate probabilistic infer-
ence, but its “textbook version” is quite limited. To build
potentially faster mixing chains, in this paper we explore
the possibility of proposals where the next state is based
on transforming the current one using a randomly chosen

transformation. The main contribution of the paper is a for-
mula that shows how the acceptance function can be cal-
culated in closed form in this case. This is shown both for
a single kernel, and when a mixture kernel is used. The
strength of the approach is its generality: We derive the
results without any differentiability requirements, making
them applicable to both continuous and discrete domains.
While the increased generality made the paper more tech-
nical, to enhance clarity, we used the SLAM problem to
illustrate the ideas. On a challenging domain, we obtained
strong experimental evidence in favor of our new approach.
While it remains for future work to demonstrate the ap-
proach on a wider range of problems, we believe that the
approach proposed in the paper, due to its generality and
flexibility, will have a profound impact on how AI systems
perform approximate inference.
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Table 1: Comparison of Trajectory RMS Errors.

Algorithm Plaza 1 Plaza 2

Spectral 0.79 m 0.35 m
Spectral + Opt. 0.69 m 0.30 m

MCMC (10+1000) 0.32 ± 0.02 m 0.54 ± 0.06 m
MCMC (100+10000) 0.33 ± 0.04 m 0.36 ± 0.03 m
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SUPPLEMENTARY MATERIAL — PROOFS

For any topological space X , let K (X) be the class of con-
tinuous real-valued functions from X having compact sup-
port: for any f ∈ K (X) there is some compact K ⊂ X such
that f is zero outside K . Any measure on X is always finite
for any function on K (X) and to show that two measures
are the same, it is sufficient that they agree for all functions
in K (X).
Suppose from now on that Assumptions 1 and 2 hold: X
is a topological space and G is a topological group act-
ing continuously and properly on X , with both X and G
Hausdorff and locally compact. Recall that the require-
ment that the action is proper means that the continuous
function θ : X × G → X × X defined by (x,g) 7→ (x,gx)
is such that for any compact set K ⊂ X × X , the pre-image
θ−1(K) of K is compact in X × G.6 For any x ∈ X , let
Gx B {g ∈ G | gx = x} be the isotropy subgroup of G at x
and let πx : G → G/Gx be the natural quotient map from
G to the coset space G/Gx . Because G acts properly on X ,
each Gx is compact.

The image of X × G under θ is the set E B
{(x,gx) | x ∈ X,g ∈ G}, which is closed in X × X because
θ is a proper (hence closed) map and X × G is closed. If
we restrict the codomain of θ to E, it becomes a surjec-
tive, continuous, and closed map: it is a quotient map. In
other words, any set U ⊂ E is open in the subspace topol-
ogy inherited by E from X × X if and only if θ−1(U) is
open in X ×G. Further, θ has the following universal prop-
erty: if Z is any topological space and f : X × G → Z is
a continuous function satisfying f (x,g) = f (x ′,g′) when-
ever θ(x,g) = θ(x ′,g′), then there is a unique continuous
function f̄ : E → Z such that f = f̄ ◦ θ. We see that
θ(x,g) = θ(x ′,g′) if and only if x = x ′ and g′ ∈ gGx (i.e.,
gx = g′x). The equivalence classes under θ are therefore
sets of the form {x} × gGx .

Let λ be a χ-invariant measure on X under the action of
G, where χ : G → R×+ is a continuous group homomor-
phism from G to the multiplicative group of the positive
real numbers: for any measurable F ⊂ X and g ∈ G,
λ(gF) = χ(g)λ(F). Note that as a corollary we get that
for any f ∈ K (X),∫

f (gx) λ(dx) = χ(g−1)
∫

f (x) λ(dx) . (5)

Indeed, when f = χU , U ⊂ X measurable,∫
f (gx)λ(dx) =

∫
1{gx ∈ U}λ(dx) =

∫
1{x ∈

g−1U}λ(dx) = λ(g−1U) = χ(g−1)λ(U) = χ(g−1) ∫ 1{x ∈
U}λ(dx) = χ(g−1) ∫ f (x)λ(dx), from which the result fol-
lows.

6More generally, f : X → Y is said to be proper if f ⊗ idZ :
X × Z → Y × Z is closed for every topological space Z , and
a group is said to act properly if θ (as defined above) is proper.
Our definition coincides with this one because the domain and
codomain of θ are both locally compact.

Let µ be a left Haar measure on G. Recall that this means
that µ(H) = µ(gH) for any measurable H ⊂ G and g ∈ G.
We will also need the right modular character ∆Gr of G.
Recall that ∆Gr is the unique function from G to the positive
reals such that µ(Hg) = ∆Gr (g)µ(H) for any measurable
H ⊂ G. (The existence of ∆Gr follows since H 7→ µ(Hg)
can be seen to be a left Haar measure on G and by the
uniqueness of Haar measures up to a normalizing constant.)
A well known fact, that we will need later, is that for any
f ∈ K (G),

∫
f (g−1) µ(dg) =

∫
f (g)∆Gr (g−1) µ(dg) . (6)

Finally, let βx be a left Haar measure on Gx ; by the com-
pactness of Gx , βx is also a right Haar measure and it is
finite, and without loss of generality we can take it to be
normalized.

For any x ∈ X and f ∈ K (G), we will make use of
the following construction: define f ′x ∈ K (G) by g 7→∫
Gx

f (gh) βx (dh). For any g′ ∈ gGx , we have f ′x (g′) =∫
Gx

f (gg−1g′h) βx (dh) = f ′x (g) since βx is invariant un-
der a translation by g−1g′ ∈ Gx . Thus f ′x is constant on
each coset gGx and there is some f x ∈ K (G/Gx ) such
that f ′x = f x ◦ πx . Because Gx is compact, there is a
quotient measure νx B µ/βx on G/Gx which satisfies
µ( f ) = νx ( f x ) for any f : K (G). Furthermore, because
βx is normalized, νx = πx (µ).
Let M,N be measurable spaces, α : M → N measurable,
ρ a measure on M . The push-forward measure α(ρ) on N
is defined by

∫
f dα(ρ) =

∫
f ◦ α dρ for any f ∈ K (M)

or by α(ρ)(F) = ρ(α−1(F)) for any measurable F ⊂ N .
From now on, α(ρ) for α an M → N map, ρ a measure
on M always means the push-forward of ρ under α. In
particular, the parentheses in a setting like this will never
be used for grouping. To help parsing the formulae, we
will also occasionally write f · ρ to denote the measure
whose density w.r.t. ρ is f , where ρ is a measure on M and
f : M → [0,∞) is ρ-integrable.

Now consider a measure Γ on X×G defined by Γ(dx,dg) B
γ(x,g) λ(dx) µ(dg), having density γ with respect to λ ⊗ µ.
Our goal is to construct the Radon-Nikodym derivative of
the push-forward measure θ(Γ) on E w.r.t. the push-forward
measure θ(λ ⊗ µ). For this, take any f ∈ K (X ×G) so that

∫
f dθ(Γ) =

∫
f ◦ θ dΓ

=

∫
X

λ(dx)
∫
G

µ(dg) γ(x,g) f (θ(x,g))

=

∫
X

λ(dx)
∫
G/Gx

νx (dg)
∫
Gx

βx (dh) γ(x,gh) f (θ(x,gh))
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=

∫
X

λ(dx)
∫
G/Gx

νx (dg) f (θ(x,g))
∫
Gx

βx (dh) γ(x,gh).

In the last equality, f ◦θ can be taken outside the innermost
integral because θ(x,gh) = θ(x,g) for any h ∈ Gx . Now
define γ′(x,g) B ∫

Gx
βx (dh) γ(x,gh), so that γ′(x, · ) is

constant on each coset gGx and there is some γ̃ : E → R

such that γ′ = γ̃ ◦ θ:∫
f dθ(Γ) =

∫
X

λ(dx)
∫
G/Gx

νx (dg) f (θ(x,g)) γ̃(θ(x,g)) .

The integrand of νx is well-defined because it depends on
g only through its coset πx (g) = gGx . Using the fact that
νx = πx (µ), we can replace νx by µ in the above integral to
get ∫

f dθ(Γ) =

∫
f (θ(x,g)) γ̃(θ(x,g)) λ(dx) µ(dg)

=

∫
f γ̃ dθ(λ ⊗ µ) .

Thus we have shown that θ(γ ·(λ⊗ µ)) = γ̃ ·θ(λ⊗ µ), where
γ̃(θ(x,g)) B ∫

Gx
γ(x,gh) βx (dh).

We will be concerned with the operation of transposition
on X × X , defined by the map (x, x ′)T B T(x, x ′) = (x ′, x).
We note that T is continuous and is its own inverse. Fur-
ther, T maps the set E to itself: for any (x,gx) ∈ E we have
T(x,gx) = (gx, x) = (gx,g−1gx) ∈ E. Mirroring this defi-
nition of T restricted to E, we will define t : X×G → X×G
by (x,g) 7→ (gx,g−1), so that t is continuous and also
its own inverse: t(t(x,g)) = t(gx,g−1) = (g−1gx,g) =

(x,g). Now note that if θ(x,g) = θ(x,g′) (i.e., gx = g′x)
then t(x,g) = (gx,g−1) and t(x,g′) = (g′x,g′−1), where
g′−1g′x = x = g−1gx and thus θ(t(x,g′)) = θ(t(x,g)).
Conversely, if θ(t(x,g)) = θ(t(x ′,g′)) then by the previous
result θ(t(t(x,g))) = θ(t(t(x ′,g′))), and since t is its own
inverse, we have shown that θ(t(x,g)) = θ(t(x ′,g′)) ⇐⇒
θ(x,g) = θ(x ′,g′). In other words, θ ◦ t : X × G → E is
constant on the equivalence classes of θ, so there is some
continuous τ : E → E such that θ ◦ t = τ ◦ θ; we can
verify that τ is simply T restricted to E, i.e., the following
diagram is commutative:

X × G E X × X

X × G E X × X

t

θ

T |E T

θ

Let us again take Γ = γ (λ ⊗ µ) and find the push-forward
measure t(Γ). Take f ∈ K (X × G). Then,∫

f dt(Γ) =

∫
f ◦ t dΓ

=

∫
f (gx,g−1) γ(x,g) λ(dx) µ(dg)

changing x to g−1x using Eq. (5)

=

∫
χ(g−1) f (x,g−1) γ(g−1x,g) λ(dx) µ(dg)

changing g to g−1 using Eq. (6)

=

∫
∆
G
r (g−1) χ(g) f (x,g) γ(gx,g−1) λ(dx) µ(dg) .

Thus t(Γ) = t(γ(λ ⊗ µ)) = γt (λ ⊗ µ) where γt (x,g) B
ϕ(g)γ(t(x,g)) and ϕ(g) = χ(g)∆Gr (g−1) for g ∈ G. Thus γt
is a density for t(Γ) with respect to λ ⊗ µ, so we can apply
our previous result to this distribution to get a density for
θ(t(Γ)) with respect to θ(λ ⊗ µ): we get

θ(t(Γ)) = θ(γt (λ ⊗ µ)) = γ̃t · θ(λ ⊗ µ) ,
where

γ̃t (θ(x,g)) B
∫
Gx

γt (x,gh) βx (dh)
(a)
=

∫
Gx

ϕ(gh)γ(t(x,gh)) βx (dh)
(b)
= ϕ(g)

∫
Gx

γ(ghx,h−1g−1) βx (dh)
(c)
= ϕ(g)

∫
Gx

γ(gx,g−1gh−1g−1) βx (dh)
(d)
= ϕ(g)

∫
Ggx

γ(gx,g−1h−1) βgx (dh)
(e)
= ϕ(g)

∫
Ggx

γ(gx,g−1h) βgx (dh)
(f)
= ϕ(g)γ̃(θ(gx,g−1)) = ϕ(g)γ̃(T(θ(x,g))) .

Here, the various equalities hold for the following reasons:
(a) Definition of γt ; (b) Since ϕ is a group homomorphism,
ϕ(gh) = ϕ(g)ϕ(h) and since Gx is compact, ϕ(h) = 1 for
any h ∈ Gx ; (c) By the definition of Gx , hx = x; (d) βgx is
the push-forward of βx under the map cg : h 7→ ghg−1. In-
deed, if β̂ B cg(βx ) then β̂(U) = βx (g−1Ug) for U ⊂ Ggx

measurable. Now, for any h ∈ Ggx , hU = U, hence
β̂(hU) = βx (g−1hUg) = βx (g−1Ug) = β̂(U) and thus
β̂ = cg(βx ) is a Haar-measure on Ggx . Thanks to the
uniqueness of normalized Haar measures, we then have
cg(βx ) = βgx ; (e) Since Ggx is compact, βgx remains
unchanged under the change of variables h 7→ h−1; (f) Def-
inition of γ̃.
Theorem 3. Let X, G, λ, µ, (Gx )x∈X , (βx )x∈X be as stated
in this section. Then, for any Γ measure on X × G that is
absolute continuous w.r.t. λ ⊗ µ, with density γ, it holds
that

dθ(Γ)
dT(θ(Γ)) (x,gx) =

∆Gr (g) γ̃(x,gx)
χ(g) γ̃(gx, x) where x ∈ X,g ∈ G ,

where θ(x,g) = (x,gx) and T(x, x ′) = (x ′, x) for any x, x ′ ∈
X, g ∈ G and

γ̃(x,gx) =

∫
Gx

γ(x,gh) βx (dh) where x ∈ X,g ∈ G .
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Proof. ϕ (γ̃ ◦ T) is a density for θ(t(Γ)) (and hence for
T(θ(Γ)) with respect to θ(λ ⊗ µ)). Since the density
for θ(Γ) with respect to the same measure is γ̃, we
see that the Radon-Nikodym derivative dθ(Γ)/dT(θ(Γ)) is
γ̃(x,gx)/ϕ(g)γ̃(gx, x) at (x,gx) ∈ E. �

We will now restate some results of Tierney (1998) for use
in the following proofs.

Proposition 2 (Tierney, 1998, Proposition 1). Let
µ(dx,dy) be a sigma-finite measure on the product space
(E × E,E ⊗ E ) and let µT (dx,dy) = µ(dy,dx). Then there
exists a symmetric set R ∈ E ⊗ E such that µ and µT are
mutually absolutely continuous on R and mutually singu-
lar on the complement of R, RC . The set R is unique up to
sets that are null for both µ and µT . Let µR and µTT be the
restrictions of µ and µT to R. Then there exists a version
of the density

r(x, y) =
µR(dx,dy)
µTR(dx,dy)

such that 0 < r(x, y) < ∞ and r(x, y) = 1/r(y, x) for all
x, y ∈ E.

Proposition 3 (Tierney, 1998, Theorem 2). A Metropolis-
Hastings transition kernel satisfies the detailed balance
condition Eq. (1) if and only if the following two conditions
hold.

(i) The function α is µ-almost everywhere zero on RC .

(ii) The function α satisfies α(x, y)r(x, y) = α(y, x)
µ-almost everywhere on R.

The Metropolis-Hastings acceptance probability

α(x, y) =



min{1,r(y, x)}, if (x, y) ∈ R,
0, if (x, y) < R.

satisfies these conditions by construction.

Proofs of Theorems 1 and 2

Proof of Theorem 1. Procedure 1 describes an MH kernel
based on the proposal Q′(dw′ | w) that, given a state w,
samples g ∼ QG( · | w) and proposes gw. In other words,
Q′( · | w) is the push-forward of QG( · | w) under the map
g 7→ gw, making P(dw)Q′(dw′ | w) the push-forward
of P(dw)QG(dg | w) under the map θ(w,g) = (w,gw).
We can now apply Theorem 3 by taking Γ(dw,dg) B
P(dw)QG(dg | w) with density γ(w,g) = p(w) q(g | w), so
that P(dw)Q′(dw′ | w) = θ(Γ) and

r(w,gw) B dθ(P(dw)QG(dg | w))
dT(θ(P(dw)QG(dg | w))) (w,gw)

=
∆Gr (g) γ̃(w,gw)
χ(g) γ̃(gw,w) where w ∈ W,g ∈ G

where

γ̃(w,gw) =

∫
Gx

p(w) q(gh | w) βx (dh)

= p(w)
∫
Gx

q(gh | w) βx (dh)
= p(w) q′(g | w).

Define

R B
�(w,gw) ∈ E

�
p(w) q′(g | w) > 0 and

p(gw) q′(g−1 | gw) > 0
	
.

Now the image of θ is E, so both θ(Γ) and T(θ(Γ)) are zero
outside E. Thus they are mutually singular outside R ⊂ E
and mutually absolutely continuous on R. We can define
r(w,w′) = 1 outside R, and by inspection we can verify that
r(w′,w) = 1/r(w,w′). Thus we have satisfied all the condi-
tions for Proposition 2 and by Proposition 3 the MH kernel
with acceptance probability α(w,w′) B min{1,r(w′,w)}
on R satisfies detailed balance. Since we assume that the
initial state is within the support of P, and the acceptance
probability is always zero for proposals outside the support,
α will never be evaluated outside the set R. �

Proof of Theorem 2. Procedure 2 describes an MH
kernel based on a proposal Q′ which is a mix-
ture of the types of proposals seen in Proce-
dure 1: Q′(dw′ | w) =

∑n
i=1 a(i | w)Q′i(dw′ | w) and

P(dw)Q′(dw′ | w) =
∑n

i=1 a(i | w) P(dw)Q′i(dw′ | w).
Now define Γi(dw,dg) = a(i | w) P(dw)Qi(dg | w). By
a similar argument to the previous proof it follows that
P(dw)Q′(dw′ | w) =

∑n
i=1 θ(Γi). As before, we can

define a function ri that is a Radon-Nikodym derivative
for dθ(Γi)/dT(θ(Γi)) restricted to a set Ri where both
those measures are mutually absolutely continuous, and
mutually singular outside it. Since θ(Γi) is zero outside
the set Ei B θ(W,Gi), we see that Ri ⊂ Ei . The problem
arises because the Ei may not be disjoint. However, we
will show that we can take the Ri to be disjoint without
loss of generality.

For each 1 ≤ i ≤ n, define Vi to contain all the 1 ≤ j ≤ n
such that Assumption 3 is satisfied for i and j with k = i.
Now for any j ∈ Vi the pre-image of Ei ∩ E j under θ is�(w,g) �

w ∈ W,g ∈ Gi, jGi ,w
	
. Applying the assumption,

this set has zero measure under Γi so Ei ∩E j has zero mea-
sure under θ(Γi). Then

⋃
j ∈Vi

Ei ∩ E j has zero measure
under θ(Γi) and is symmetric, so it has zero measure un-
der T(θ(Γi)) as well. Thus, without loss of generality, we
can take Ri to be a subset of Ei \

⋃
j ∈Vi

E j since it is only
unique up to θ(Γi)-null sets. By the assumption, for any
i , j either i ∈ Vj or j ∈ Vi , so the Ri are disjoint. We have
found a collection of disjoint sets Ri such that each θ(Γi)
is mutually absolutely continuous on Ri and mutually sin-
gular outside Ri , with dθ(Γi)/d(T(θ(Γi))) = ri restricted to
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Ri . We can now define r so that it takes on the value ri
on Ei , with R B

⋃n
i=1 Ri . This r is the Radon-Nikodym

derivative for Tierney’s Proposition 1.

It only remains to note that by Assumption 3 for any w

in the support of P and w′ = gw sampled according to
Qi( · | w), (w,gw) ∈ Ri with probability 1. Thus if the
algorithm samples from some Qi then r is evaluated on Ei

with probability 1. �


