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Abstract

We present a unified, black-box-style method for developing
and analyzing online convex optimization (OCO) algorithms
for full-information online learning in delayed-feedback en-
vironments. Our new, simplified analysis enables us to sub-
stantially improve upon previous work and to solve a num-
ber of open problems from the literature. Specifically, we de-
velop and analyze asynchronous AdaGrad-style algorithms
from the Follow-the-Regularized-Leader (FTRL) and Mirror-
Descent family that, unlike previous works, can handle pro-
jections and adapt both to the gradients and the delays, with-
out relying on either strong convexity or smoothness of the
objective function, or data sparsity. Our unified framework
builds on a natural reduction from delayed-feedback to stan-
dard (non-delayed) online learning. This reduction, together
with recent unification results for OCO algorithms, allows us
to analyze the regret of generic FTRL and Mirror-Descent al-
gorithms in the delayed-feedback setting in a unified manner
using standard proof techniques. In addition, the reduction is
exact and can be used to obtain both upper and lower bounds
on the regret in the delayed-feedback setting.

1 Introduction
Online learning algorithms are at the heart of modern ma-
chine learning algorithms. The sequential nature of these
algorithms makes them ideal for learning from data that is
too large to be processed in a batch mode. However, their
very sequential nature also predicts that they may be unfit to
be used in parallel and distributed processing environments.
To address this potential issue, several papers have studied
asynchronous and distributed versions of online learning and
stochastic optimization algorithms in recent years (see Sec-
tion 3). These papers have shown that the ability to toler-
ate delays in receiving feedback is a key for obtaining asyn-
chronous online learning algorithms.

Depending on the specifics of a machine learning task,
a user can choose from several online learning algorithms
(see, e.g., the book of Cesa-Bianchi and Lugosi, 2006). Pre-
vious work has typically focused on extending these al-
gorithms to various delayed-feedback scenarios on a case-
by-case basis, and usually under the stochastic optimiza-
tion setting. However, many ideas and core challenges of
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delay-tolerant online learning are common across different
domains and algorithms. In this paper, we take a different
approach: we propose a unified theoretical framework for
analyzing full-information online learning algorithms under
delayed feedback. This unified approach enables us to si-
multaneously analyze various online convex optimization
(OCO) methods (with linear losses or implicit updates) in
the delayed-feedback setting, without the need to resort to
ad-hoc analysis techniques.

The framework that we present is based on a natural re-
duction from the delayed-feedback online learning problem
to standard, non-delayed online learning, as well as on re-
cent unified analyses of OCO algorithms (McMahan 2014;
Duchi, Hazan, and Singer 2011). In particular, our first main
result gives an easy-to-interpret identity relating the regret
of an algorithm operated in a delayed environment to the
regret of the algorithm when operated in a non-delayed en-
vironment. All of our subsequent results are then derived
from this general identity. We demonstrate the flexibility and
power of our framework by solving several open problems
from the literature. In particular, we analyze general delay-
adaptive ADAGRAD-style algorithms, both with and with-
out projection, without relying on either strong convexity or
smoothness of the loss function, or data sparsity.

The rest of this paper is organized as follows. We start
with the formal definition of the learning setting we consider
(Section 2), followed by a summary of our results and their
connection to the previous work (Section 3). We present our
general reduction in Section 4 and the unified analysis of
OCO algorithms in Section 5. Section 6 demonstrates the
application of our framework in solving the aforementioned
open problems. We conclude the paper in Section 7 and dis-
cuss some potential future work.

1.1 Notation and definitions
We will work with a closed, convex, non-empty subset X
of a Hilbert space X over the reals. That is, X is a real vec-
tor space equipped with an inner product 〈·, ·〉 that is com-
plete with respect to (w.r.t.) the norm induced by 〈·, ·〉. For
example, we might have X = Rd where 〈·, ·〉 is the dot-
product, or X = Rm×n, the set of m × n real matrices,
where 〈A,B〉 = tr

(
A>B

)
. Let R : S → R be a strictly

convex, differentiable function over a convex closed domain
S ⊂ X with a non-empty interior S◦. Then, the R-induced



Bregman divergence between the points x ∈ S, y ∈ S◦ is
defined as BR(x, y) = R(x)−R(y)−〈∇R(y), x−y〉 . The
functionR is α-strongly convex with respect to a norm ‖ · ‖
on S if BR(x, y) ≥ (α/2)‖x − y‖2 for all x ∈ S, y ∈ S◦.
The indicator of an event E is denoted by I{E}. For any se-
quence ci, ci+1, . . . , cj , we use ci:j to denote its sum, and
we define ci:j = 0 when i > j. For any function f , we de-
note the set of all sub-gradients of f at x by ∂f(x), and use
f ′(x) to denote any member of ∂f(x).

2 Problem setting
We consider prediction under delayed feedback in an on-
line convex optimization setting, building on the delayed-
feedback online learning framework of Joulani, György, and
Szepesvári (2013).1 Let F ⊂ {f : X → R} be a set of con-
vex functions.The pair (X ,F) defines the sequential predic-
tion game shown in Figure 1. The game consists of a fore-
caster making predictions against a fixed (but unknown) se-
quence of loss function f1, f2, . . . , fn ∈ F , possibly chosen
in an adversarial manner before the game starts. In every
round t = 1, 2, . . . , n of the game, the forecaster makes a
prediction xt ∈ X based on the feedback (specified below)
that it has observed in rounds 1, . . . , t − 1, and suffers the
loss ft(xt). The goal of the forecaster is to minimize its to-
tal loss compared to the loss of the best constant prediction
x∗ ∈ X . More precisely, with the regret against an arbitrary
prediction x ∈ X defined as

Rn(x) =

n∑
t=1

ft(xt)− ft(x) ,

the goal of the forecaster is to minimize its regret Rn(x∗),
where x∗ = argminx∈X

∑n
t=1 ft(x) is the best prediction

in hindsight.
The feedback based on which the forecaster can make pre-

diction xt is a subset of the loss functions from the previous
rounds, f1, f2, . . . , ft−1. In particular, in a non-delayed set-
ting, in each round s = 1, . . . , n, the forecaster always ob-
serves fs before the end of the round; thus, the forecaster
can make the prediction xt based on f1, f2, . . . , ft−1 (we
will call an algorithm non-delayed if it is designed for this
setting). On the other hand, in the delayed-feedback setting
that we consider in this paper, the forecaster observes ft only
after a delay of (say) τt time steps, at the end of round t+τt,
where we assume that the delays τ1, τ2, . . . , τn are fixed (but
unknown) non-negative integers. Hence, after predicting xt
in time step t, the forecaster in a delayed-feedback setting
observesHt = {fs : 1 ≤ s ≤ t, s+τs = t}, the multi-set of
loss functions from rounds 1, 2, . . . , t that arrive at the end of
time step t. As such, the prediction xt can be based only on
the observed loss functions∪t−1s=1Hs, i.e., based on the subset
{fs : 1 ≤ s ≤ t−1, s+τs < t} ⊂ {f1, f2, . . . , ft−1} of the
loss functions from rounds 1, 2, . . . , t−1. Note that the non-
delayed setting corresponds to the special case when τt = 0
and Ht = {ft} for all t = 1, 2, . . . , n. Finally, note that
the delays can reorder the feedbacks, so that the feedback

1Note, however, that the reduction in Section 4 applies more
generally to full-information online learning, not just OCO.

The environment chooses a sequence of convex loss func-
tions f1, . . . , fn ∈ F .
Repeat: for each time step t = 1, 2, . . . , n:

1. The forecaster makes a prediction xt ∈ X .
2. The forecaster incurs loss ft(xt) and receives the set of

feedbacks Ht = {fs : s+ τs = t}.
Goal: minimize supx∈X Rn(x).

Figure 1: Delayed-feedback Online Convex Optimization

ft of the interaction at time step t < t′ might arrive after
feedback ft′ ; this can happen when t + τt ≥ t′ + τt′ . Note
that the feedback does not include the index of the round the
loss function corresponds to, i.e., the feedback is not time-
stamped.

3 Contributions and related work
Our first contribution is providing a unified framework for
analyzing the regret of OCO algorithms under delayed feed-
back. Our proof-technique has two main steps:
1- Black-box reduction: First, we show (Theorem 1) that
when any deterministic non-delayed full-information on-
line learning algorithm is used (without modification) in a
delayed-feedback environment, the additional regret the al-
gorithm suffers compared to running in a non-delayed en-
vironment depends on its “prediction drift”, a quantity that
roughly captures how fast the algorithm changes its predic-
tions (Definition 1).
2- Unified bounds on the prediction drift: Next, we derive
upper bounds (Propositions 1 and 2) on the prediction drift
of two generic non-delayed OCO algorithms, which we call
FTRL-PROX and ADA-MD, and obtain general delayed-
feedback regret bounds (Theorem 4) for these algorithms
by combining their drift bounds with the reduction result of
Theorem 1. These two algorithms generalize, respectively,
the Follow-The-Regularized-Leader and the Mirror-Descent
classes of OCO algorithms and include various ADAGRAD-
style algorithms as special cases.

Our second contribution is to develop, using the new
framework mentioned above, FTRL- and Mirror-Descent-
based ADAGRAD-style OCO methods (Section 6) that can
adapt both to the observed gradients and the observed de-
lays and can handle projection. These contributions solve a
number of open problems in the literature, as follows:
Problem posed by McMahan and Streeter (2014):
In a recent paper, McMahan and Streeter (2014) pro-
vide a delay-adaptive ADAGRAD-style extension of un-
constrained single-coordinate Online Gradient Descent
(OGD) for linear losses, through an indirect method called
AdaptiveRevision. Their analysis is specific to OGD,
relies crucially on the absence of projection, and assumes
that the delays do not change the order the feedback is re-
ceived (i.e., fs is received before ft for all s < t; the so-
called InOrder assumption). The authors pose the ques-
tion whether there exits a general analysis for algorithms of
this type that is less indirect, avoids the InOrder assump-
tion, and allows to analyze algorithms with projection and



Dual Averaging methods. With the exception of Dual Aver-
aging , the current paper solves this open problem, and ob-
tains simpler algorithms even in the special case considered
by McMahan and Streeter (2014).
Some problems posed by Mania et al. (2015): The re-
cent paper by Mania et al. (2015) casts the effect of de-
lays as noise on the gradients, and uses this “perturbed it-
erate” framework to analyze the convergence rate of the se-
quence of iterates generated by asynchronous unconstrained
Stochastic Gradient Descent (SGD). Their analysis relies
on strong convexity of the objective function. If the objec-
tive function is also smooth and the gradients are sparse
and/or the delays satisfy specific bounds, they show that
the effect of delays on the rate of convergence of these it-
erates is asymptotically negligible. The authors pose the
question whether it is possible to obtain tight bounds for
the function values (rather than the iterates), and whether
their framework can be generalized beyond the strong con-
vexity assumption to other learning settings, or to the anal-
ysis of ADAGRAD-style algorithms. The current paper an-
swers these questions: our framework applies to online con-
vex optimization with linear losses or implicit updates and
to function values rather than iterates, and our main reduc-
tion result provides an identity, not just an upper bound,
for the delayed-feedback regret. Furthermore our framework
applies to algorithms with projection, does not rely on strong
convexity or smoothness of the loss functions,2 and, as men-
tioned above, allows us to analyze delay-adaptive ADA-
GRAD-style algorithms.

To our knowledge, Mesterharm (2007) was the first to ob-
serve, in a special, restricted adversarial classification set-
ting, that the additional regret due to delays depends on how
frequently an algorithm changes its predictions. The reduc-
tion we present can be considered as a refined and gener-
alized version of his reduction (Mesterharm 2007, Chapter
8, Algorithm ODB-2). An advantage of this type of reduc-
tion to those in previous works (Weinberger and Ordentlich
2002; Joulani, György, and Szepesvári 2013) is its resource-
efficiency: we use only one instance of a non-delayed on-
line learning algorithm, while previous work created multi-
ple instances, potentially wasting storage and computational
resources.3

Several recent papers have studied delay-tolerant stochas-
tic optimization (Recht et al. 2011; Agarwal and Duchi
2011; Nesterov 2012; Liu et al. 2013; Liu and Wright 2015);
see also the references in the paper of Mania et al. (2015).
These works typically show that for a specific non-delayed
algorithm, for separable objective functions and under data
sparsity (and usually assuming smoothness and strong con-
vexity of the loss function), the effect of delays on the excess
risk is asymptotically negligible, i.e., the rate of convergence
is nearly the same as for the corresponding non-delayed al-

2Note, however, that our reduction is for full-information online
learning, and to be applied with gradient-only information, we have
to first linearize the losses. Hence, without full information, our
regret bounds apply to the linearized loss, which might not give a
regret bound as tight as the original smooth or strongly convex loss.

3Joulani, György, and Szepesvári (2013) also provide another
reduction using only a single instance under stochastic feedback.

gorithms, and hence linear speed ups are possible in parallel
processing. We are instead interested in a more basic, uni-
fied analysis of the full-information online learning setting
to uncover the exact regret penalty due to delays. In addi-
tion, assumptions such as data sparsity can be applied to our
generic regret bounds to recover some of these results, with-
out the need for smoothness or strong convexity.4

An interesting work is the recent paper of Sra et al. (2015),
who consider adapting a 2-norm-regularized Mirror-Descent
algorithm to the observed delays in the stochastic optimiza-
tion setting with specific delay distributions. Compared to
their work, we consider a more general version of Mirror-
Descent and support FTRL algorithms as well, in the more
general online learning setting. However, we would like to
emphasize that currently our framework does not contain
their work as a special case, since their algorithm does not
maintain a non-decreasing regularizer.

Finally, the effect of delayed feedback has also been
analyzed beyond the full-information model we consider
here. For this, we refer the readers to Joulani, György, and
Szepesvári (2013) and the references therein.

4 Single-instance black-box reduction
Consider any deterministic non-delayed online learning al-
gorithm (call it BASE). Suppose that we use BASE, without
modification, in a delayed-feedback environment: we feed
BASE with only the feedback that has arrived, and at each
time step, we use the prediction that BASE has made af-
ter receiving the most recent feedback. This scheme, which
we call SOLID (for “Single-instance Online Learning In De-
layed environments”), is shown in Algorithm 1. In this sec-
tion, we analyze the regret of SOLID in the delayed-feedback
setting.

Algorithm 1 Single-instance Online Learning In Delayed
environments (SOLID)

Set x← first prediction of BASE.
for each time step t = 1, 2, . . . do

Set xt ← x as the prediction for the current time step.
Receive the set of feedbacks Ht that arrive at the end

of time step t.
for each fs ∈ Ht do

Update BASE with fs.
x← the next prediction of BASE.

end for
end for

SOLID reduces delayed-feedback online learning back to
the standard (non-delayed) online learning problem. As we
show below, we can express the regret of SOLID under de-
layed feedback in terms of the regret of BASE in a non-
delayed setting and what we call the prediction drift of
BASE. We start with the definition of the latter.
Definition 1 (Prediction drift). Consider a non-delayed al-
gorithm BASE that is run with a sequence of loss func-
tions f1, f2, . . . , fn in a non-delayed setting, and let xs, s =

4See, e.g., the comparison with ASYNCADAGRAD (Duchi, Jor-
dan, and McMahan 2013) made by McMahan and Streeter (2014).



1, 2, . . . , n, denote the s-th prediction of BASE. For every
s = 1, 2, . . . , n and τ = 1, 2, . . . , s− 1, the prediction drift
of BASE on fs from the previous τ time steps is defined as

Ds,τ = fs(xs−τ )− fs(xs) ,

the difference of the loss fs of predictions xs−τ and xs.

Next, we introduce some further notation that is needed
for our regret bound. For 1 ≤ s ≤ n, let ρ(s) denote the
time step whose feedback fρ(s) is the s-th feedback that
SOLID gives to BASE, and let f̃s = fρ(s). Let x̃1 be the
first prediction of BASE and x̃s+1, s = 1, 2, . . . , n, denote
the prediction that BASE makes after receving the s-th feed-
back f̃s. Note that not all predictions of BASE become pre-
dictions of SOLID. Also note that BASE makes predictions
against the losses f̃1, f̃2, . . . , f̃n sequentially without de-
lays, that is, x̃1, x̃2, . . . , x̃n are the predictions of BASE in
a non-delayed environment. For t = 1, 2, . . . , n, let S(t) =∑t−1
i=1 I{i+ τi < t} denote the number of feedbacks that

SOLID has observed (and has given to BASE) before making
its t-th prediction xt. Let τ̃s = s−1−S(ρ(s)) be the number
of feedbacks that SOLID gives to BASE while the s-th feed-
back f̃s is outstanding, i.e., the number of feedbacks that
BASE receives between the time ρ(s) when SOLID makes
the prediction xρ(s) and the time when the loss function
f̃s = fρ(s) is given to BASE. For the analysis below, without
loss of generality, we will assume that for any 1 ≤ t ≤ n,
t + τt ≤ n, i.e., all feedbacks are received by the end of
round n. This does not restrict generality because the feed-
backs that arrive in round n are not used to make any predic-
tions and hence cannot influence the regret of SOLID. Note
that under this assumption

∑n
s=1 τ̃s =

∑n
t=1 τt (both count

over time the total number of outstanding feedbacks), and
(ρ(s))1≤s≤n is a permutation of the integers {1, . . . , n}.
Theorem 1. Let BASE be any deterministic non-delayed
forecaster. For every x ∈ X , the regret of SOLID using
BASE satisfies

Rn(x) = R̃BASE
n (x) +

n∑
s=1

D̃s,τ̃s , (1)

where R̃BASE
n (x) =

∑n
s=1 f̃s(x̃s)−

∑n
s=1 f̃s(x) is the (non-

delayed) regret of BASE relative to any x ∈ X for the se-
quence of losses f̃1, f̃2, . . . , f̃n, and D̃s,τ̃s = f̃s(x̃s−τ̃s) −
f̃s(x̃s) is the prediction drift of BASE while feedback f̃s is
outstanding.

Proof. By construction, for all time steps t = 1, 2, . . . , n,
the prediction xt of SOLID is the latest prediction of BASE,
so we have xt = x̃S(t)+1, or, equivalently, xρ(s) = x̃s−τ̃s
for s = 1, 2, . . . , n. Furthermore, by definition, f̃s = fρ(s),
so we have fρ(s)(xρ(s)) − f̃s(x̃s) = f̃s(x̃s−τ̃s) − f̃s(x̃s) =
D̃s,τ̃s . Hence,

Rn(x) =

n∑
t=1

ft(xt)−
n∑
t=1

ft(x)

=

n∑
s=1

fρ(s)(xρ(s))−
n∑
s=1

fρ(s)(x)

=

n∑
s=1

D̃s,τ̃s +

n∑
s=1

f̃s(x̃s)−
n∑
s=1

f̃s(x)

=

n∑
s=1

D̃s,τ̃s + R̃BASE
n (x).

Note that this result is an identity: upper and lower bounds
on the (worst-case) regret and prediction drift of any algo-
rithm BASE can be used to obtain upper and lower bounds
on the delayed-feedback regret of SOLID.

Theorem 1 shows, in particular, that stable algorithms,
i.e., algorithms with small prediction drifts, are likely to suf-
fer a small additional regret in delayed environments. While
in general changing the predictions too slowly might reduce
adaptivity and result in a larger regret, Theorem 1 shows that
in delayed environments the extra regret might be worth the
trade-off against the extra penalty from the prediction drift.
This formalizes the intuition that in delayed environments
one should reduce the learning rate of the algorithms, and
helps us characterize the amount by which the learning rate
should be decreased.

5 Stability of OCO algorithms
In this section, we prove upper-bounds on the prediction
drift of a family of online convex optimization algorithms
including Follow-The-Regularized-Leader (FTRL), Mirror
Descent, and their adaptive variants such as the ADA-
GRAD-style algorithms of McMahan and Streeter (2010)
and Duchi, Hazan, and Singer (2011), both with and without
projection. In particular, we study FTRL-PROX and ADA-
MD,5 which are defined as follows. Both of these algorithms
use a sequence of “regularizer functions” r0, . . . , rn : S →
R, chosen by the algorithm sequentially (possibly based on
previous observations). We assume that S ⊂ X is convex
and X ⊂ S◦.6 The first prediction of both algorithms is

x1 = argminx∈X r0(x). (2)

Then, for s > 1, FTRL-PROX predicts

xs = argminx∈X f1:s−1(x) + r0:s−1(x), (3)

while the predictions of ADA-MD are given by

xs = argminx∈X fs−1(x) + Br0:s−1(x, xs−1), (4)

where Br0:s−1(., .) is the Bregman-divergence induced by
r0:s−1. For FTRL-PROX, we assume that the regularizers
rs are selected such that xs minimizes rs on X .

Note that these algorithms have been studied previously in
the literature, e.g., by McMahan and Streeter (2010), McMa-
han (2014), and Duchi, Hazan, and Singer (2011). To put our

5The nomenclature here is somewhat inconsistent. Here we use
ADA-MD to mean adaptive mirror descent with implicit update
(Kulis and Bartlett 2010) which contains the normal, linear mirror
descent as a special case.

6By making more assumptions on ri, i.e., assuming that they
are Legendre functions (see, e.g., Cesa-Bianchi and Lugosi 2006),
this assumption on the domain of ri could be relaxed.



analysis into context, first we state the existing non-delayed
regret bounds for these algorithms. In what follows, f ′s(xs)
denotes any sub-gradient of fs at xs.
Assumption 1. The loss functions fs, s = 1, 2, . . . , n, are
convex, and for all s = 0, 1, 2, . . . , n, the regularizer rs is
convex and non-negative. Furthermore, for FTRL-PROX we
assume that xs minimizes rs on X .

For FTRL-PROX, we have the following regret bound in
the non-delayed setting (Theorem 1 of McMahan 2014).
Theorem 2 (Regret of FTRL-PROX). Suppose that As-
sumption 1 holds and that f1:s + r0:s is 1-strongly convex
on X w.r.t. some norm ‖.‖(s) for all s = 0, . . . , n. Then the
regret of FTRL-PROX is upper-bounded as

RFTRL-PROX
n (x∗) ≤ r0:n(x∗) +

1

2

n∑
s=1

‖f ′s(xs)‖2(s),∗, (5)

where ‖.‖(s),∗ is the dual norm of ‖.‖(s).
We also have the next regret bound for ADA-MD (follow-

ing Proposition 3 of Duchi, Hazan, and Singer 2011):
Theorem 3 (Regret of ADA-MD). Suppose that Assump-
tion 1 holds, and for all s = 0, . . . , n, r0:s is differentiable
and 1-strongly convex on X w.r.t. some norm ‖.‖(s). Then,
the regret of ADA-MD is upper-bounded as

RADA-MD
n (x∗) ≤

n∑
s=1

Brs(x∗, xs) +
1

2

n∑
s=1

‖f ′s(xs)‖2(s),∗ .

(6)

The next propositions bound the prediction drifts of
FTRL-PROX and ADA-MD. The proofs are short and use
standard FTRL and Mirror-Descent techniques. Note that
since fs is convex for s = 1, 2, . . . , n, for any sequence of
norms ‖.‖(j), j = 1, 2, . . . , n, and any 1 ≤ τ < s ≤ n,

Ds,τ =

s−1∑
j=s−τ

fs(xj)− fs(xj+1)

≤
s−1∑
j=s−τ

〈f ′s(xj), xj − xj+1〉

≤
s−1∑
j=s−τ

‖f ′s(xj)‖(j),∗ ‖xj − xj+1‖(j) , (7)

where the last step follows by Hölder’s inequality. We will
use this inequality in our proofs below.
Proposition 1 (Prediction drift of FTRL-PROX). Under the
conditions of Theorem 2, for every 1 ≤ τ < s ≤ n,

Ds,τ ≤
s−1∑
j=s−τ

‖f ′s(xj)‖(j),∗‖f ′j(xj)‖(j),∗ . (8)

Proof. Starting from (7), it remains to bound ‖xj−xj+1‖(j).
Define h0 = r0 and hs = fs + rs for s = 1, 2, . . . , n. Then,
by our assumptions, xs minimizes h0:s−1 overX , and h0:j is
1-strongly convex w.r.t. ‖.‖(j). Note that since xj minimizes

rj over X , it also minimizes φ1 = h0:j−1 + rj . Then, since
xj+1 minimizes h0:j = h0:j−1 + rj + fj , Lemma 2 (see the
extend version (Joulani, György, and Szepesvári 2015)) with
φ1 above and δ = fj gives

‖xj − xj+1‖(j) ≤ ‖f ′j(xj)‖(j),∗.
Proposition 2 (Prediction drift of ADA-MD). Under the
conditions of Theorem 3, for every 1 ≤ τ < s ≤ n,

Ds,τ ≤
s−1∑
j=s−τ

‖f ′s(xj)‖(j),∗‖f ′j(xj+1)‖(j),∗ . (9)

Proof. As above, we start from (7) and bound ‖xj −
xj+1‖(j). Recall that r0:j is differentiable by assumption.
By the strong convexity of r0:j ,

‖xj − xj+1‖2(j) ≤ Br0:j (xj+1, xj) + Br0:j (xj , xj+1)

= 〈r′0:j(xj+1)− r′0:j(xj), xj+1 − xj〉.
Also, by the first-order optimality condition on xj+1,

〈f ′j(xj+1) + r′0:j(xj+1)− r′0:j(xj), xj − xj+1〉 ≥ 0.

Combining the above,

‖xj − xj+1‖2(j) ≤ 〈f
′
j(xj+1), xj − xj+1〉

≤ ‖f ′j(xj+1)‖(j),∗‖xj − xj+1‖(j).
The proposition follows by the non-negativity of norms.

Note that the proofs use only the standard FTRL-PROX
and ADA-MD analysis techniques. Combining the above
bounds with Theorem 1, it is straightforward to obtain re-
gret guarantees for FTRL-PROX and ADA-MD in delayed-
feedback environments. Consider an algorithm BASE which
is used inside SOLID in a delayed-feedback game. Re-
call that BASE receives the sequence of loss functions
f̃1, f̃2, . . . , f̃n and makes predictions x̃1, x̃2, . . . , x̃n. Also
recall that τ̃n denoted the update delay, i.e., the number of
updates that BASE performs from the time SOLID selects xt
in time step t until the time when BASE receives the corre-
sponding loss function ft.
Theorem 4. Suppose Assumption 1 holds, and we run
SOLID in a delayed-feedback environment. Let r̃s, s =
0, 1, . . . , n, denote the regularizers that BASE uses in its
simulated non-delayed run inside SOLID, and let ‖.‖(s) de-
note the associated strong-convexity norms. Let Rn denote
the regret of SOLID in its delayed-feedback environment.

(i) If BASE is an FTRL-PROX algorithm and the condi-
tions of Theorem 2 hold, then

Rn ≤ r̃0:n(x∗) +
1

2

n∑
s=1

‖f̃ ′s(x̃s)‖2(s),∗+

n∑
s=1

s−1∑
j=s−τ̃s

‖f̃ ′s(x̃j)‖(j),∗‖f̃ ′j(x̃j)‖(j),∗ .

(ii) If BASE is an ADA-MD algorithm and the conditions
in Theorem 3 hold, then

Rn ≤
n∑
s=1

Br̃s(x∗, x̃s) +
1

2

n∑
s=1

‖f̃ ′s(x̃s)‖2(s),∗



n∑
s=1

s−1∑
j=s−τ̃s

‖f̃ ′s(x̃j)‖(j),∗‖f̃ ′j(x̃j+1)‖(j),∗.

These bounds are still somewhat unwieldy. To get a
more indicative result, suppose that there exists a norm
‖.‖ such that for all s = 1, 2, . . . , n, we have ‖.‖(s) =
1√
ηs
‖.‖ for some non-negative constant ηs (e.g., consider a

single-coordinate ADAGRAD algorithm). Note that by the
non-negativity of Bregman divergences, this condition im-
plies that the sequence (ηs) is non-increasing. Further sup-
pose that there exists a constant G such that ‖f ′s(x)‖ ≤
G for all s = 1, 2, . . . , n and x ∈ X , and a con-
stant R such that ηnr̃0:n(x∗) ≤ 2R2 for FTRL-PROX
or η̃n

∑n
s=1 Br̃s(x∗, xs) ≤ 2R2 for ADA-MD. Let τ∗ =

max1≤s≤n τ̃s be the maximum delay. Theorems 2 and 3 give

Rn ≤
2R2

ηn
+
G2

2

n∑
s=1

ηs,

for FTRL-PROX and ADA-MD in the non-delayed setting,
whereas Theorem 4 gives

Rn ≤
2R2

η̃n
+
G2

2

n∑
s=1

η̃s(1 + 2τ̃s),

for SOLID in the delayed-feedback setting, where η̃s, s =
1, 2, . . . , n, denote the learning rates used by BASE inside
SOLID. Using a constant learning rate ηs set as a function of
the cumulative delay T =

∑n
s=1 τ̃s =

∑n
s=1 τs (if available

in advance), the regret becomesO(
√
T + 2T ), while scaling

down the non-delayed learning rates ηs by
√
1 + 2τ∗, we get

a multiplicative regret penalty of
√
1 + 2τ∗ compared to the

non-delayed case.
While the above regret penalty matches (up to a con-

stant factor) the worst-case lower bound for delayed environ-
ments (Weinberger and Ordentlich 2002; Mesterharm 2007),
McMahan and Streeter (2014) show that one can tune the
learning rates to adapt to the actual observed delays and past
gradients. In the next section, we considerably generalize
their results and solve the open problems they have posed.

6 Adaptive learning-rate tuning for linear
loss functions

In this section we restrict our attention to linear loss func-
tions ft = 〈gt, ·〉. Consider the setting of Theorem 4, and
let g̃s denote the gradient of f̃s. Consider a norm ‖.‖, and
for s = 1, 2, . . . , n, define ĝs = ‖g̃s‖∗. The following re-
sult is a corollary of Theorem 4 that generalizes the bound
in Lemma 1 of McMahan and Streeter (2014) to FTRL-
PROX and ADA-MD, either with or without projection. The
proof is given in the extend version (Joulani, György, and
Szepesvári 2015).
Corollary 1. Consider the case of linear losses and sup-
pose that the conditions of Theorem 4 hold. Suppose that
r̃0:s, s = 0, 1, . . . , n, is (1/η̃s)-strongly convex w.r.t. the
norm ‖.‖. Then, the regret of SOLID satisfies

Rn ≤
2R2

η̃n
+

1

2

n∑
j=1

η̃jĜ
fwd
j , (10)

where for j = 1, 2, . . . , n,

Ĝfwd
j = ĝ2j + 2ĝj

n∑
s=j+1

ĝsI{s− τ̃s ≤ j},

andR > 0 is such that η̃nr̃0:n(x∗) ≤ 2R2 for FTRL-PROX,
or η̃n

∑n
t=1 Brt(x∗, xt) ≤ 2R2 for ADA-MD.

Note that in a non-delayed setting, the regret bound of
these adaptive algorithms is of the form

Rn ≤
2R2

ηn
+

1

2

n∑
s=1

ηs‖gs‖2∗.

In such a case we would let ηs = O(1/
√∑s

j=1 ĝ
2
j ) and then

use Lemma 3 (see the extended version (Joulani, György,
and Szepesvári 2015)) to get a regret bound of the form

Rn ≤ 2
√
2R2

√√√√ n∑
s=1

‖gs‖2∗ .

Similarly, with η̃s = O(1/
√
Ĝfwd

1:s ), in a delayed-feedback
setting we would achieve a regret of the form

Rn ≤ 2
√
2R2

√
Ĝfwd

1:n . (11)

Unfortunately, this is not possible since Ĝfwd
s depends on fu-

ture, unobserved gradients, and hence the η̃s given above
cannot be computed at time step s.

To work around this problem, McMahan and
Streeter (2014) define a quantity Ĝbck

s that depends only
on the observed gradients. The goal is to bound Ĝfwd

1:s from
above and below by a function of Ĝbck

j , j = 1, 2, . . . , s− 1,
plus an additive term independent of s; then, setting the
learning rate based on that quantity results in a regret bound
that is only an additive term (independent of n) larger than
the bound of (11). Similarly, in our setting we define

Ĝbck
s = ĝ2s + 2ĝs

s−1∑
j=s−τ̃s

ĝj .

The next lemma bounds Ĝfwd
1:s from above and below using

Ĝbck
1:s.

Lemma 1. Let G∗ = max1≤j≤n ĝj and τ∗ =
max1≤s≤n τ̃s. For all t = 1, 2, . . . , n,

Ĝbck
1:t ≤ Ĝfwd

1:t ≤ Ĝbck
1:t + (τ2∗ + τ∗)G

2
∗. (12)

In addition,

Ĝfwd
1:n = Ĝbck

1:n. (13)

Instead of using Ĝbck
1:s directly as in our Lemma 1, McMa-

han and Streeter (2014) use Ĝbck
1:o(s) for their bounds, where

o(s) is the index of the largest outstanding gradient at the
time of update s. Their bounds need an extra In-Order
assumption on the delays, i.e, that the delays do not change



the order of the updates. In addition, Ĝbck
1:o(s) is not effi-

ciently computable in an online fashion (it requires keep-
ing track of the outstanding updates), and they use an in-
direct algorithm (called AdaptiveRevision) on top of
this learning rate schedule that “revises” the previous gra-
dients and can be implemented in practice. We do not re-
quire this indirect approach, since Ĝbck

s can be efficiently
computed in an online fashion (in fact, this is the quantity z
that the AdaptiveRevision algorithm of McMahan and
Streeter (2014) also needs and maintains, using the network
as storage).

Based on Lemma 1, we can show that setting the learning
rate, for some α > 0, as

η̃j = α

(√
Ĝbck

1:j + (τ2∗ + τ∗)G2
∗

)−1
, (14)

results in only a constant additional regret compared to using

the learning rate η̃j = O

(
1/
√
Ĝfwd

1:j

)
. We prove this in the

following theorem.
Theorem 5. Consider the conditions of Corollary 1. If α =√
2R and η̃t is given by (14), then the regret of SOLID with

FTRL-PROX or ADA-MD can be bounded as

Rn(x
∗) ≤ 2

√
2R

√
Ĝfwd

1:n +
√
2(τ2∗ + τ∗)RG∗ .

This generalizes the bound

Rn(x
∗) ≤ 2

√
2R

√
max
1≤s≤n

Ĝfwd
1:s +O(τ∗RG∗) (15)

obtained in Theorem 3 of McMahan (2014) for
AdaptiveRevision. Note, however, that in the
case of AdaptiveRevision, the algorithm is applied to
a single coordinate, and the ĝ values are the actual (possibly
negative) gradients, not their norms. To refine our bound
to the one-dimensional setting, one can define the step-size
η̃j based on the maximum Ĝbck

1:i for 1 ≤ i ≤ j (this is still
efficiently computable at time j, and corresponds to the
quantity z′ in AdaptiveRevision). Then, a modified
Lemma 1 together with Corollary 10 of McMahan and
Streeter (2014) gives a regret bound similar to (15).

7 Conclusion and future work
We provided a unified framework for developing and an-
alyzing online convex optimization algorithms under de-
layed feedback. Based on a general reduction, we extended
two generic adaptive online learning algorithms (an adaptive
FTRL and an adaptive Mirror-Descent algorithm) to the de-
layed feedback setting. Our analysis resulted in generalized
delay-tolerant ADAGRAD-style algorithms that adapt both
to the gradients and the delays, solving a number of open
problems posed by McMahan and Streeter (2014) and Ma-
nia et al. (2015).

An interesting problem for future research is analyzing
delay-tolerant adaptive Dual Averaging algorithms using
this framework. Deriving lower bounds for asynchronous
optimization using Theorem 1 is also of natural interest. Fi-
nally, it seems to be possible to extend our framework to use
gradients or higher-order information only, using a shifting
argument; this is also left for future work.
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A Technical lemmas
A more general version of the following lemma has appeared before (McMahan 2014, Lemma 8). Here we provide a simpler
version that is sufficient for our needs. The proof only uses basic techniques. Another slight difference to the presentation of
McMahan (2014) is that we make the optimization domain explicit.

Lemma 2. Let φ1, δ : X → R be convex functions, φ2 = φ1 + δ, x1 = argminx∈X φ1(x) and x2 = argminx∈X φ2(x).
Assume further that φ2 is 1-strongly convex w.r.t. some norm ‖.‖, and let ‖.‖∗ denote its associated dual norm. Then, for any
b ∈ ∂δ(x1), we have

‖x1 − x2‖ ≤ ‖b‖∗ . (16)

Proof. Define φ0(x) = φ1(x) + δ(x) − 〈b, x〉, and note that since x1 ∈ X , δ is convex, and b is its sub-gradient at x1, x1
minimizes δ(x) − 〈b, x〉 over X . Hence, x1 also minimizes φ0(x) over X . In addition, φ0 is 1-strongly convex w.r.t. the norm
‖.‖, since by definition φ0(x) = φ2(x)−〈b, x〉. Then, if b2 denotes any sub-gradient of φ2 at x2 and b0 denotes any sub-gradient
of φ0 at x1, the first order optimality conditions on φ2 and φ0 at x2 and x1, respectively, imply that

〈b0 − b2, x1 − x2〉 ≤ 0. (17)

In addition, strong convexity of φ0 and φ2 implies:

φ2(x1)− φ2(x2)− 〈b2, x1 − x2〉 ≥
1

2
‖x1 − x2‖2,

and

φ0(x2)− φo(x1)− 〈b0, x2 − x1〉 ≥
1

2
‖x1 − x2‖2.

Adding the two sides together and using (17),

‖x1 − x2‖2 ≤ 〈b0 − b2, x1 − x2〉+
φ2(x1)− φo(x1)+
φ0(x2)− φ2(x2)

≤ 〈b, x1〉 − 〈b, x2〉
≤ ‖b‖∗‖x1 − x2‖,

using Hölder’s inequality in the last step. Non-negativity of the norms completes the proof.

The next lemma is due to McMahan and Streeter (2014).

Lemma 3 (McMahan and Streeter (2014, Lemma 9)). For any sequence of real numbers x1, x2, . . . , xn such that x1:t > 0 for
all t = 1, 2, . . . , n, we have

n∑
t=1

xt√
x1:t
≤ 2
√
x1:n .

B Missing proofs
Proof of Corollary 1. Note that r̃0:s is 1-strongly convex w.r.t. the norm

√
(1/η̃s)‖.‖, the dual of which is given by

√
η̃s‖.‖∗.

Hence, from Theorem 4,

Rn ≤
2R2

η̃n
+

1

2

n∑
s=1

η̃sĝ
2
s +

n∑
s=1

s−1∑
j=s−τ̃s

η̃j ĝsĝj

=
2R2

η̃n
+

1

2

n∑
j=1

η̃j ĝ
2
j +

n∑
j=1

n∑
s=j+1

η̃j ĝsĝj I{s− τ̃s ≤ j}

=
2R2

η̃n
+

1

2

n∑
j=1

η̃j

ĝ2j + 2ĝj

n∑
s=j+1

ĝsI{s− τ̃s ≤ j}

 ,

finishing the proof.



Proof of Lemma 1. From the definition,

Ĝbck
1:t =

t∑
s=1

Ĝbck
s =

t∑
s=1

ĝ2s + 2

t∑
s=1

s−1∑
j=s−τ̃s

ĝsĝj

=

t∑
s=1

ĝ2s + 2

t∑
j=1

t∑
s=j+1

ĝsĝjI{s− τ̃s ≤ j}

=

t∑
j=1

ĝ2j + 2

t∑
j=1

ĝj

n∑
s=j+1

ĝsI{s− τ̃s ≤ j}

− 2

t∑
j=1

ĝj

n∑
s=t+1

ĝsI{s− τ̃s ≤ j}

=

t∑
j=1

Ĝfwd
j − 2

t∑
j=1

ĝj

n∑
s=t+1

ĝsI{s− τ̃s ≤ j}.

Given that the subtracted term is non-negative, we have Ĝbck
1:t ≤ Ĝfwd

1:t . Also, for t = n, the subtracted term is zero, proving
the last part of the lemma. Therefore, it remains to bound the subtracted term by (τ2∗ + τ∗)G

2
∗, or, equivalently, to bound∑t

j=1

∑n
s=t+1 I{s− τ̃s ≤ j} by 1

2 (τ
2
∗ + τ∗). To that end, note that for j ≤ t − τ∗ and s > t, the indicator I{s− τ̃s ≤ j} is

always zero. Also, note that I{s− τ̃s ≤ j} = 0 for s > j + τ∗. Hence,

t∑
j=1

n∑
s=t+1

I{s− τ̃s ≤ j} =
t∑

j=t−τ∗+1

j+τ∗∑
s=t+1

I{s− τ̃s ≤ j}

≤
t∑

j=t−τ∗+1

(j + τ∗ − t)

=

τ∗∑
i=1

i =
1

2
τ∗(τ∗ + 1) ,

concluding the proof.

Proof of Theorem 5. By Corollary 1, it suffices to bound the two terms on the r.h.s. of (10). Since
√
a+ b ≤

√
a+
√
b for any

nonnegative numbers a and b,

2R2

η̃n
=
√
2R

√
Ĝbck

1:n + (τ2∗ + τ∗)G2
∗

≤
√
2R

√
Ĝbck

1:n +
√

2(τ2∗ + τ∗)RG∗

=
√
2R

√
Ĝfwd

1:n +
√

2(τ2∗ + τ∗)RG∗,

using (13) in the last step. Also, from (12),

η̃j =
α√

Ĝbck
1:j + (τ2∗ + τ∗)G2

∗

≤ α√
Ĝfwd

1:j

.

Therefore, by Lemma 3,

1

2

n∑
j=1

η̃jĜ
fwd
j ≤ 1

2

n∑
j=1

α√
Ĝfwd

1:j

Ĝfwd
j

≤
√
2R

√
Ĝfwd

1:n.

Combining with (10) completes the proof.


