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Academy of Sciences, Lágymányosi u. 11, Budapest, Hungary, H-1111
2Department of Computer Science and Information Theory, Budapest University of Technology

and Economics, Magyar tudósok körútja 2, Budapest, Hungary, H-1117
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1. INTRODUCTION

Adaptive routing algorithms are of great importance in the

maintenance of packet-switched communication networks.

A sufficiently flexible algorithm can yield increased quality

of service (QoS), such as reduced packet loss ratio or delay,

even in case of link failures or substantially changed traffic

scenarios. These algorithms require constant monitoring of

network state, and the measured information is combined to

update the routing tables. Such combinations can be done in a

number of ways, from very simple heuristics to more compli-

cated methods, such as neural networks or reinforcement

learning or sequential decision methods. In this paper we

survey the latter.

In sequential decision (prediction) problems in general,

a decision maker has to perform a sequence of actions.

After each action, the decision maker suffers some loss,

depending on the response of the environment. Its goal is

to minimize its cumulative loss over a sufficiently long period

of time. Adaptive routing can naturally be cast as a sequential

decision problem, as for each packet the routing algorithm has

to choose a path from source to destination on which the

packet is to be sent. The loss corresponding to the decision

is the value of the service parameter we wish to minimize, such

as the delay on the path or whether the packet is lost due to

insufficient buffer size.

In this paper we consider sequential decision problems in

the adversarial setting where no probabilistic assumption is

made on how the loss of the decision maker is generated,

and the goal is to perform well relative to a set of experts

for all possible behavior of the environment. More precisely,

the aim of the decision maker is to achieve asymptotically

the same average loss as the best expert. To solve this problem,

the decision maker has access to the decisions of the experts

before making his own, and hence can combine them. How-

ever, it is impossible to know in advance the performance of

the experts. Yet, the experts’ advice can be combined such that

the average loss of the combined algorithm is asymptotically

not larger than that of the best expert over a sufficiently long

period of time.

The first theoretical results concerning sequential predic-

tion are due to Blackwell [1] and Hannan [2], but they were

re-discovered by the learning community only in the 1990’s,

see, for example, Vovk [3], Littlestone and Warmuth [4] and

Cesa-Bianchi et al. [5]. These results show that it is possible

to construct algorithms for sequential (online) prediction that

predict almost as well as the best expert. The main idea of

these algorithms is the same: after observing the past perfor-

mance of the experts, in each step the decision of a randomly

chosen expert is followed such that experts with superior past

performance are chosen with higher probability.

In the routing problem, the decisions of the experts can be

defined as paths from source to destination, and in the simplest

case, one can define one expert for each path. In that case,

competing with the best expert results in algorithms that have

at least the same asymptotic performance as the best fixed

path. Stronger results can be obtained by defining more

flexible (‘more clever’) experts, for example by allowing

the decisions of the experts to change in time. In this way

we can compete with the performance of time-varying paths.

In this paper we give an overview of expert algorithms and

describe their applications in adaptive routing. For simplicity,

we will concentrate on minimizing the average end-to-end

delay between two dedicated nodes of the network, but the

results can be extended to any other QoS parameters in a
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straightforward way. More precisely, we will consider the

application of the expert algorithms to find online the mini-

mum weight path between two dedicated nodes of a weighted

directed graph. This problem is equivalent to the problem

of optimal routing if, at each time instant, the weights of

the edges of the graph are matched to the service parameters

of the corresponding links to be minimized. The algorithms

given in this paper provide theoretically well-founded alter-

natives to other routing methods, see, e.g. [31] and the refer-

ences therein, or the related approach of [6], which is based on

algorithms that use the observed value of a given QoS metric

in order to take a routing decision.

2. SEQUENTIAL DECISION PROBLEMS

The sequential (often referred also as online) decision problem

considered in this paper is described as follows. Suppose a

decision maker has to make a sequence of actions. At each

time instant t ¼ 1, 2 , . . . , n, an action at 2 A is made, whereA
denotes the action space and n is the number of rounds the

algorithm is run for. Then, based on the state of the environ-

ment yt 2 Y, where Y is some state space, the decision maker

suffers some loss ‘(at, yt) with some bounded loss function

‘ :A · Y ! [0, 1]. The action at time t may depend on all

previous actions a1, . . . , at�1, and on all the information avail-

able to the decision maker about the past behavior of the

environment. This information, for example, may consist of

the past environment states y1, . . . , yt�1; however, the decision

maker may not be able to observe the state of the environment.

The goal of the decision maker is to minimize the average loss

of the algorithm on the long run, that is, to minimize

lim sup
n!1

1

n

Xn
t¼1

‘ðat‚ ytÞ:

Since no probabilistic assumption is made on how the

sequence {yt} is generated, it is not possible to minimize

the cumulative loss L̂Ln ¼
Pn

t¼1 ‘ðat‚ ytÞ simultaneously for all

y1, . . . , yt�1. Therefore, the performance of the decision maker

is evaluated relative to a set of experts, and its goal is to

perform asymptotically as well as the best expert. Formally,

given N experts, at each time instant t, for every i ¼ 1, . . . ,N,
expert i chooses its action fi,t 2A and suffers loss ‘(fi,t, yt). The

decision maker is allowed to make its own decision at using

the experts’ advice f1,t, . . . , fN,t, however, without knowing the
experts’ loss in advance. When the action space is finite,

without loss of generality we may assume that the decision

maker always follows the advice of one of the experts, that is,

at ¼ f It‚t for some It (this can always be achieved by intro-

ducing some extra experts). Therefore, we can assume that

the task of the decision maker is to choose an expert It and

follow its decision f It‚t. Formally, the sequential decision

problem is given in Figure 1.

Throughout the paper, unless otherwise stated explicitly, we

assume that the experts are constants (static); that is, fi,t does

not depend on t. Then each expert can be considered as an

action. For convenience we use the notations ‘i,t instead of

‘(fi,t, yt) and ‘It‚t instead of ‘ðf It‚t‚ ytÞ. Then the cumulative loss

of the decision maker up to time n is

L̂Ln ¼
Xn
t¼1

‘It‚t‚

and the cumulative loss of expert i is

Li‚n ¼
Xn
t¼1

‘i‚t:

The goal of the learning algorithm is to combine the experts

decisions such that the normalized regret, defined as

1

n

�
L̂Ln � min

i¼1‚ ...‚ N
Li‚n

�
‚

the difference between the average loss of the algorithm and

that of the best expert, be universally small for all possible

sequence {yt}. It can be shown that under general conditions

on the loss function and on the finite action space, excluding

such simple situations when, for example, the losses of the

experts are the same, no deterministic algorithm can perform

well for all possible sequence {yt}. This is because for each

deterministic algorithm one can construct a ‘bad’ sequence on

which the algorithm performs poorly, but the best expert does

not. Therefore, in the following we consider randomized algo-

rithms. That is, for each t, It is a random variable, as well as the

cumulative loss L̂Ln. In this case the goal of the algorithm is to

perform well with high probability. That is, to ensure

lim sup
n!1

1

n

�
L̂Ln � min

i¼1‚ ...‚ N
Li‚n

�
� 0

with probability 1 for every sequence {yt}. Such an algorithm

is called Hannan consistent [7].

As an example to show that deterministic algorithms does

not work in general, consider the following example. Assume

that we have two actions (experts), with loss sequences {1/2, 0,

1, 0, 1, 0, . . .} and {0, 1, 0, 1, 0, 1, . . .} and the decision maker’s

strategy is to always use the decision that has been best so far.

Parameters: number N of experts, state space Y, action
space A, loss function ‘ :A · Y ! [0, 1], number n of

rounds.

At time instants t ¼ 1, . . . , n,

(1) each expert forms its action fi,t 2 A, i ¼ 1, . . . ,N;
(2) the decision maker observes the actions of the

experts and chooses an expert It 2 {1, . . . ,N};
(3) the state of the environment yt 2 Y may or may not

be revealed;

(4) the decision maker incurs loss ‘ðf It‚t‚ ytÞ and each

expert incurs loss ‘(fi,t, yt).

FIGURE 1. Sequential decision problem using expert advice.
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This is the so-called follow the leader strategy. Then, except

for the first time instant, the first action is chosen at time t if t is

odd, and the second action is chosen if t is even, resulting in

choosing the worse action for each t. Then the average loss of

the algorithm converges to 1, while the loss of both actions are

asymptotically 1/2; thus, the performance of the algorithm is

far from optimal.

However, if the action space is convex (in this case obvi-

ously an infinite action space is required), then instead of

choosing an action at ¼ i (or It ¼ i) according to a distribution

{pi,t}, we can combine the decisions as at ¼
PN

i¼1 pi‚t f i‚t. If
the loss function ‘(·, ·) is convex in its first argument, then such

deterministic algorithms can be applied, see, e.g. Cesa-

Bianchi and Lugosi [7]. In routing, for example, this

method corresponds to time-sharing different paths from

source to destination instead of randomly choosing one path.

The performance of any expert algorithm obviously

depends on how much information is available to the decision

maker about the experts’ performance and its own perfor-

mance. As we will show in Section 4, if all the information

is available about the losses of the past actions, which is called

the full information case, then there exist algorithms such that

the normalized regret ð1=nÞðL̂Ln � mini¼1‚...‚N Li‚nÞ is of orderffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnN=n

p
, see, e.g. [3, 4, 5, 8, 9]. However, in certain types of

problems it is not possible to obtain full information on the

past performance of the experts. For example, in many

situations the decision maker has only information on the

loss of the chosen action, and no information is available

about the loss it would have suffered had it made a

different decision. This is called the multi-armed bandit

problem. Another example is when it is expensive to obtain

the losses of the experts, and therefore the decision maker has

the option to query this information. In typical cases this

corresponds to the response of the environment, also called

as outcome or label, from which it is possible to compute the

loss of each expert. This type of problem is called label

efficient prediction. In all these problems, there exist

algorithms whose average loss in n steps exceeds the

average loss of the best of N experts by a negligible

quantity converging to zero as n increases. In the full

information case the normalized regret converges to zero as

Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnN=n

p
Þ, in the multi-armed bandit problem as

Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N lnN=n

p
Þ [10], and in the label efficient prediction

problem with m queries in n rounds as Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnN=m

p
Þ [11].

A recent combination of the multi-armed bandit and label

efficient prediction problem, where the loss of the chosen

action can be queried m times in n rounds can also be solved

with normalized regret of order
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N lnN=m

p
[12]. For a good

survey on this topic, the reader is referred to, e.g. the recent

book of Cesa-Bianchi and Lugosi [7].

Concerning complexity, for a general class of experts the

algorithms typically require O(nN) computations, while the

memory requirement is O(N) (one weight has to be updated

for each expert at each time instant). While this complexity

may be prohibitive for large classes of experts, in many

situations, such as the shortest path problem in graphs, the

special structure of the experts allows to implement the algo-

rithms with significantly lower complexity, see, e.g. [9, 13, 14,

15, 16, 17, 18, 19, 20, 21].

In this paper we will mainly consider algorithms that are

optimized for a fixed time horizon n. That is, the fine tuned

parameters of the algorithms depend on n. Such algorithms

can be modified easily using standard techniques to perform

near optimally for an infinite time horizon [5]: one method

is the so-called doubling trick, where the time is partitioned

into intervals of exponentially increasing length, and a fixed-

horizon version of the algorithm is run on each interval. How-

ever, in practice it is not desirable to reset all accumulated

information about the past from time to time, so a better suited

technique is to dynamically change the parameters of the

algorithms in time.

3. THE ROUTING MODEL AND THE ONLINE

SHORTEST PATH PROBLEM

Finding the best route between two dedicated nodes of a net-

work can be considered as the problem of finding the mini-

mum weight path in a weighted directed graph G ¼ (V, E),
representing the network. Each node of the graph corresponds

to a node of the network, and the (directed) edges of the graph

represent the corresponding links. The weight ‘e,t of each

edge e 2 E concerns the service parameter of the correspond-

ing link at time t, in our case, for simplicity, the delay on the

link. Suppose we want to send packets from node u 2 V to

node v 2 V. Let P denote the set of all directed paths from

u to v, and assume that P is not empty (that is, there is a route

from u to v). At any time instant t, a packet is sent from u to

v over a (randomly) chosen path It 2 P. The transmission

delay is given by

‘It‚t ¼
X
e2It

‘e‚t‚

where e 2 It denotes that edge e 2 E belongs to path It, where

we assume that for each e and t, ‘e,t 2 [0, 1]. Similarly, the loss

a packet would suffer on any path i 2 P is given by ‘i,t ¼P
e2i ‘e,t. Note that in this setup ‘i,t 2 [0, K] instead of [0, 1],

where K denotes the length of the longest path (in the number

of hops) from u to v. Of course, the delay the packet will suffer

on any path is not known in advance, and the routing algorithm

has to make decisions based on the available information

about the past. If performance is compared to static routing,

then the goal is to have average delay close to that of the

best path matched to the entire sequence of the delays

{‘e,t : e 2 E}{t¼1,. . .,n}. That is,

1

n

Xn
t¼1

‘It‚t � min
i2P

Xn
t¼1

‘i‚t

 !

has to be as small as possible.
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Alternatively, one may want to compete with dynamic

routing strategies. More precisely, for a fixed time horizon

n, one may want to perform as well as the best time-

varying path that is allowed to change the path several

times. If s denotes the maximum number of path changes,

then such a time-varying routing method is given formally

by integers t0 ¼ 0 < t1 < t2 � � � < ts+1 ¼ n, and s + 1 paths

i0, . . . , is 2 P, such that for time instants t 2 (tk, tk+1],

k ¼ 0, . . . , s, path ik is used. Let Ps denote the set of all

time-varying paths with s switches. The delay of such an

adaptive strategy is given by

Xs
k¼0

Xtkþ1

t¼tkþ1

‘ik‚t ¼
Xs
k¼0

Xtkþ1

t¼tkþ1

X
e2ik

‘e‚t:

(In general, this type of problem is referred to as tracking the

best expert.) Clearly, both scenarios fall under the frame-

work for sequential decision problems using expert advice:

in the static case the experts can be chosen as the paths, and

in the dynamic case the experts are the time-varying paths

defined above.

Note that the number of experts N ¼ |P| is typically very

large even in the static case (usually exponential in the

number of edges), and it is extremely large in the time-

varying case even for small graphs as the number of experts

|Ps| is exponential in s. Therefore, direct application of general

expert algorithms may be computationally prohibitive, and

special algorithms utilizing the graph structure have to be

used.

It also has to be analyzed howmuch information is available

to make the routing decision. The delay of the chosen path

(or the round-trip delay) is usually available at the source

nodes in networks where acknowledgment is sent from the

recipient. This scenario can be considered as the shortest

path problem in the multi-armed bandit setting: information

is available on the chosen action, that is, on the chosen path.

Full information on the network state can be used at each

node if the measured network parameters are broadcasted

by each node. However, broadcast at each time instant is

obviously not desirable, and it may be a good decision

to broadcast only a limited number of times. This scenario

can be considered as the label efficient case. A third type of

scenario to be investigated is when the delay of the chosen

path is available only on request. This method can be con-

sidered as a combination of the multi-armed bandit and the

label efficient setting, and it is very well suited to the recent

cognitive packet network (CPN) framework introduced by

Gelenbe et al. [22, 23]. In CPN capabilities for routing and

flow control are concentrated in packets, and special, so-called

smart packets, not transporting any data, are used to explore

the network (only the chosen path). On the other hand, data

packets do not collect information about their paths. Thus,

sending a smart packet concerns to query the label of the

chosen action.

4. ALGORITHMS

In this section we provide an overview of the most well-known

algorithms in different scenarios, and show their specific

applications to the shortest path problem. Mostly two types

of algorithms are used: The, so-called, ‘follow the perturbed

leader’-type algorithms employ the principle (with some

additional randomization) that the so far best expert should

perform well in the future, too, while weighted average algo-

rithms choose experts randomly such that the ones with better

past performance are chosen with higher probability. In the

full information case both types of algorithms are given, but

in the multi-armed bandit and label efficient settings, we con-

sider only weighted average type algorithms, as for these

algorithms better regret bounds are available.

4.1. Full information

In the full information case the decision maker can observe

the performance of each expert at each time instant, and

hence can utilize all such information in its decision. First

we consider the follow the perturbed leader algorithm, then

the exponentially weighted average decision method.

4.1.1. Follow the perturbed leader

It was mentioned in Section 2 that the strategy of following

the leader (that is, the best expert so far) is not optimal. How-

ever, a simple modification suffices to achieve a significantly

improved performance, proved by Hannan [2]. The idea is to

add small random perturbations to the cumulative losses and

then follow the ‘perturbed leader’ with best ‘perturbed’ past

performance.

The following theorem gives an upper bound on the nor-

malized regret of the follow the perturbed leader algorithm

given in Figure 2.

THEOREM 4.1 (Hannan [2]). Assume n, N � 1, 0 < d < 1, and let

R ¼
ffiffiffiffiffiffi
nN

p
. Then, for any sequence y1, . . . , yn, the normalized

ALGORITHM 1. Follow the perturbed leader (Hannan [2])

Initialization: Fix R > 0, and set Li,0 ¼ 0 for i ¼ 1, . . . ,N.
At time instants t ¼ 1, 2, . . .

(1) Select the random N-vector Zt with components

Zi,t, i ¼ 1, . . . ,N, uniformly from [0, R];

(2) Select an expert

It ¼ arg min
i¼1‚ ...‚ N

ðLi‚t�1 þ Zi‚tÞ

(ties are broken in favor of the smallest index);

(3) Update the loss of each expert i

Li‚t ¼ Li‚t�1 þ ‘i‚t:

FIGURE 2. The follow the perturbed leader algorithm in the full

information case.
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regret of Algorithm 1 can be bounded with probability

at least 1 � d as

1

n

�
L̂Ln � min

i¼1‚...‚N
Li‚n

�
� 2

ffiffiffiffi
N

n

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ð1=dÞ

2n

r
:

The follow the perturbed leader algorithm can be imple-

mented efficiently for the problem of finding the shortest path

in a weighted directed graph, which is a special case of the

more general geometric expert framework considered by

Kalai and Vempala [9]. In their algorithm, one weight is

kept for each edge of the graph, showing the cumulative

loss of that edge. The perturbed best path is chosen by

finding the path with the minimum perturbed weight, where

at each time instant, the perturbed weight of each edge e is

obtained as the sum of the edge weight plus a random

perturbation Ze,t similar to the above. Choosing the optimal

path can be done efficiently using the well-known Dijkstra

algorithm. This algorithm can be implemented in O(n|E| ln |E|)
time, and has Oð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVjjEj=n

p
Þ expected normalized regret. The

performance of the algorithm can be improved slightly if the

perturbation is not uniform but it is drawn from a Laplacian

distribution. However, in this case the resulting perturbed

weights may become negative, which can result in cycles

with negative weights in which case the loss can be made

an arbitrarily large negative number.

4.1.2. Exponential weighting

In the ‘weighted average decision’-type algorithms at time

instant t an expert i is chosen with probability that increases

with the past performance of the expert. That is, PfIt ¼ ig is

proportional to r(Li,t�1), where r is a non-increasing function.

The most popular choice of r is r(x) ¼ e�hx, leading to the

exponentially weighted average decision algorithm, given in

Figure 3.

As the next theorem shows, in this case the normalized

regret of the decision maker is bounded by Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnN=n

p
Þ.

THEOREM 4.2 (Littlestone and Warmuth [4]). Let n, N � 1

and 0 < d < 1. Then, with the choice of h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 lnN=n

p
, the

normalized regret of Algorithm 2 can be bounded for any

sequence y1, . . . , yn as

1

n

�
L̂Ln � min

i¼1‚...‚N
Li‚n

�
�

ffiffiffiffiffiffiffiffiffi
lnN

2n

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ð1=dÞ

2n

r

with probability at least 1 � d.

REMARK 1. Algorithm 2 has the disadvantage that the regret

bound of Theorem 4.2 does not hold uniformly over sequences

of any length n, since the parameter h depends on n. To fix

this problem the simplest idea is the doubling trick which

appears in Cesa-Bianchi et al. [5]. The idea is to partition

the time into periods of exponentially increasing length.

In each period, the algorithm chooses the optimal h for

the length of the interval and when the periods end, reset

the whole fixed-horizon algorithm, and the new value of

h is selected optimally for the next period. This method

gives a
ffiffiffi
2

p
=ð

ffiffiffi
2

p
� 1Þ multiplicative factor to the upper

bound of the theorem. Another method is that at each time

instant t the algorithm chooses an h ¼ ht which depends on t.

It was proved by Auer et al. [24] that setting ht ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 lnN=t

p
results in a regret bound that is only twice as much as the

original (time-dependent) bound.

The above described algorithm can be specialized for

graphs with smaller computational complexity [14, 18, 19, 20].

The main idea is to select the edges of the path one by one

according to the conditional distributions generated by the

exponentially weighted average decision algorithm.

Next, following [20] and [21], we show how to implement

the algorithm to compete with paths of a fixed length K.

Then it is explained how this algorithm can be extended to

compete with all paths, and what simplifications can be made

for acyclic graphs.

For any node w 2 V, let Pk
w denote the set of paths of

length k from w to v. Let Gt�1(w, k) denote the sum of

the exponential cumulative losses in the interval [1, t � 1]

of all paths in Pk
w. That is, if Pk

w is empty then we define

Gt�1(w, k) ¼ 0, otherwise

Gt�1ðw‚ kÞ ¼
X
i2Pk

w

e
�h
P

e2i Le‚t�1 ‚

where Le‚t�1 ¼
Pt�1

s¼1 ‘e‚s. It can be shown [20] that if It is

chosen by the exponentially weighted average decision

method of Algorithm 2, and wIt‚k denotes the kth node of

the path It (with wIt‚0 ¼ u and wIt‚K ¼ v), then

PfwIt‚k ¼ wk j wIt‚0 ¼ w0‚ . . . ‚ wIt‚k�1 ¼ wk�1g
¼ e�hLðwk�1‚wk Þ‚t�1

Gt�1ðwk‚ K � kÞ
Gt�1ðwk�1‚K � k þ 1Þ

where (wk�1, wk) denotes the edge connecting wk�1 and wk,

and Gt�1(wk�1, K � k + 1) > 0; if there is no such edge or

ALGORITHM 2. Exponentially weighted average decision

(Littlestone and Warmuth [4])

Initilalization: Fix h > 0, and set wi,0 ¼ 1 and pi,1 ¼ 1/N

for i ¼ 1, . . . ,N.
At time instants t ¼ 1, 2, . . .

(1) Select an expert It 2 {1, . . . ,N} according to the

probability distribution

pt ¼ ð p1‚t‚ . . . ‚ pN‚tÞ:
(2) Update the weights wi,t ¼ wi,t�1e

�h‘i,t;

(3) Calculate the updated probability distribution

pi‚tþ1 ¼
wi‚tPN
j¼1 wj‚t

‚ i ¼ 1‚ . . . ‚ N:

FIGURE 3. Exponentially weighted average decision algorithm in

the full information case.
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Gt�1(wk�1, K � k + 1)¼ 0, then the corresponding conditional

probability is formally defined to be 0. The algorithm can

be implemented efficiently, as the function Gt(·, k) can be

computed recursively for k ¼ 2 , . . . ,K as

Gt�1ðw‚ kÞ ¼
X

ŵw:ðw‚ ŵwÞ2E
Gt�1ðŵw‚ k � 1Þe�hLðw‚ŵwÞ‚t�1

with

Gt�1ðw‚ 1Þ ¼
�
e�hLðw‚ŵwÞ‚t�1 if ðw‚ ŵwÞ 2 E;
0 otherwise:

It is easy to see that computing the function Gt(·, ·) can be

done in O(K|E|) time, hence the whole algorithm can be

implemented in O(nK|E|) time. Competing with the best

path of any length can be done by choosing K ¼ k

randomly with probabilities proportional to Gt�1(u, k) from

{1, . . . , |V |}, and then choosing randomly It from paths of

length K as above. The computational complexity of this

algorithm is O(n|V ||E|), that is typically significantly less

than the O(nN) complexity of the original method of

Algorithm 2 [21]. For acyclic graphs, there is no need for

the second variable of Gt, and a similar algorithm can be

performed in O(n|E|) time, see [14, 18, 19].

4.1.3. Tracking the best expert

So far we considered situations where the goal of the decision

maker was to perform as well as the best static expert. How-

ever, the performance of static experts is usually rather limited

compared to time-varying experts. In this subsection we con-

sider the problem of designing an algorithm that performs

as well as the best time-varying expert that can switch the

applied experts several times. This problem is usually referred

in the literature as the problem of tracking the best expert,

and was described briefly in the context of adaptive routing

in Section 3. Formally, a time-varying expert that is allowed

to change the applied static expert s times during a period

of length n is given by integers t0 ¼ 0 < t1 < � � � < ts < ts+1 ¼ n,

experts i0, . . . , is 2 {1, . . . ,N} such that at time instants t 2
(tk, tk+1], the time-varying expert follows the static expert ik.

(That is, time is divided into s + 1 intervals in an arbitrary

way, and the time-varying expert behaves as a static expert in

each of its intervals.)

To perform asymptotically as well as the best time-varying

expert with s switches, one could apply either the exponenti-

ally weighted average decision method or the follow the

perturbed leader method. However, the number of such

time-varying experts is
Ps

k¼0 ð n�1
k
ÞNðN � 1Þk, which results

in prohibitively large complexity for both algorithms; espe-

cially, since for any meaningful class, s should also tend to

infinity as n increases.

However, Herbster and Warmuth [16] provided an

‘exponentially weighted average’-type algorithm for this

problem that requires the maintenance of one weight for

each static expert only, with only slightly increased

performance bound. The algorithm given in Figure 4 is a

slightly modified version (in step (3)) of the original fixed

share algorithm of [16] that appeared in [21].

The performance of Algorithm 3 is bounded by the

following theorem.

THEOREM 4.3 (Herbster and Warmuth [16] and Vovk [25]).

Let n, N > 1, s � 1, and 0 < d < 1. Then, with the choice of

a ¼ s

n� 1
and h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 ln

 
Nsþ1

asð1� aÞn�s�1

!.
n

vuut ‚

the normalized regret of Algorithm 3 can be bounded, with

probability at least 1 � d, as

1

n

 
L̂Ln � min

1�t1 < ��� < ts < n

Xs
k¼0

min
i¼1‚ ...‚ N

Xtkþ1

t¼tkþ1

‘i‚t

!

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ 1Þ lnN þ s ln n�1

s þ s

2n

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ð1=dÞ

2n

r

for any sequence y1, . . . , yn.

Note that if the number of static experts grows with n as

N ¼ O(ng) for some g > 0, then the bound in the theorem

becomes Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs=nÞ ln n

p
Þ ¼ Oð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs=nÞ lnN

p
Þ, which is the

same (up to a constant factor) as if we competed with the

best static expert on a segment of average length.

For other variants of tracking algorithms for general

experts, see also [16] and Bousquet and Warmuth [17]. The

ALGORITHM 3. Tracking the best expert (Herbster and

Warmuth [16])

Initialization: Fix h > 0 and 0 < a < 1, and let wi,0¼ 1 and

pi,1 ¼ 1/N for i ¼ 1, . . . ,N.
At time instants t ¼ 1, 2, . . .

(1) Draw It randomly according to the distribution

P {It ¼ i} ¼ pi,t;

(2) After observing yt, for all i ¼ 1, . . . ,N, let

ŵwi‚t ¼ wi‚t�1e
�h‘It ‚t;

(3) For i ¼ 1, . . . ,N, set

wi‚t ¼
aWt

N
þ ð1� aÞŵwi‚t

where Wt ¼
PN

i¼1 ŵwi‚t;

(4) Calculate the updated probability distribution

pi‚tþ1 ¼
wi‚tPN
j¼1 wj‚t

:

FIGURE 4. Exponential weighting for tracking the best expert.
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algorithm in the latter is optimized to the case where each

time-varying expert uses only a small set of static experts.

Specializing Algorithm 3 to the shortest path problem is

much harder than the other ‘exponential weighting’-type

algorithms in this paper because of the mixing step (3).

To our knowledge the only such result is given by György

et al. [21] providing a tricky implementation of Algorithm 3

with complexity O(n2|V ||E|), which is still a factor n larger than

desirable. This implementation becomes useful if the number

N of static experts grows with n fast enough so that N/(|V ||E|) >
n; for example, if the size of the graph (that is, V and E) grows
polynomially in n, and, as usual, N (the number of paths)

grows exponentially with |E|.

4.2. Partial information

In this section we overview expert algorithms for situations

where the whole information on its own performance and on

the past performance of the experts is not available to the

decision maker. The algorithms presented here follow the

idea of estimating the performance of the experts based on

the available information, and then run the exponentially

weighted average decision algorithm using the estimated

losses. In the scenarios considered below, the normalized

regret of the algorithms can be bounded by

Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N lnN=ðnIÞ

p
Þ where I is the average number of experts

whose performances are revealed to the decision maker at each

time instant. We provide algorithms for the label efficient

decision and multi-armed bandit problems, as well as for a

combination of the preceding two.

4.2.1. Label efficient decisions

In the label efficient decision problem, after choosing its

action at time t, the decision maker has the option to query

the ‘label’ yt of the environment. The decision maker is

allowed to make, on the average, m queries in n time instants.

To make the algorithm universal, the query times have to

be randomized. Therefore, to query a label, the decision

maker uses an independent, identically distributed sequence

S1, S2, . . . , Sn of Bernoulli random variables with PfSt ¼ 1g ¼
e and asks label yt if St ¼ 1. If yt is known, the decision maker

can calculate the losses ‘i,t for all i ¼ 1, . . . ,N. If e ¼ m/n,

then the number of the revealed labels during n rounds is

approximately m for large n, and the proportion of labels

queried converges to e with probability 1 as n increases.

In order to apply the exponentially weighted average

decision method in this case, the losses have to be modified.

In Algorithm 4 shown in Figure 5, estimated losses are used

instead of the observed losses:

~‘‘i‚t ¼
(
‘i‚t
e ‚ if St ¼ 1‚

0‚ otherwise:

Note that ~‘‘i‚t is an unbiased estimate of the true loss ‘i,t, as

E½~‘‘i‚t j St�1
1 ‚ It�1

1 � ¼ ‘i‚t.

The following Oðn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ð4N=dÞ=m

p
Þ upper bound on the

normalized regret of Algorithm 4 is due to Cesa-Bianchi

et al. [10]:

THEOREM 4.4 (Cesa-Bianchi et al. [11]). Assume n, N � 1 and

0 < d < 1. If Algorithm 4 is run with parameters

e ¼ max

(
0‚

m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m ln ð4=dÞ

p
n

)
and h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e lnN

n

r
‚

then the normalized regret of the decision maker can be

bounded with probability at least 1 � d as

1

n
ðL̂Ln � min

i¼1‚...‚ N
Li‚nÞ � 2

ffiffiffiffiffiffiffiffiffi
lnN

m

r
þ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ð4N=dÞ

m

r
‚

where m is the average number of the revealed labels.

4.2.2. The multi-armed bandit problem

In the multi-armed bandit problem, the decision maker learns

its own loss ‘It‚t after choosing an action (expert) It, but not

the value ‘i,t of the other losses for i 6¼ It. Thus, the decision

maker does not have access to the losses it would have suffered

if it had chosen a different action. This means that the decision

maker observes only a piece of information at each time

instant. The lack of information implies a natural strategy:

namely, first the decision maker has to explore the losses

of the experts (exploration phase) and then it may keep choos-

ing the action with smallest estimated loss for the remaining

time (the exploitation phase).

ALGORITHM 4. Exponential weighting for label efficient

decisions (Cesa-Bianchi et al. [11])

Initialization: Fix h > 0 and 0 < « � 1, and set wi,0 ¼ 1

and pi,1 ¼ 1/N for i ¼ 1, . . . ,N.
At time instants t ¼ 1, 2, . . .

(1) Select an action It 2 {1, . . . ,N} according to the

probability distribution pt ¼ (p1,t, . . . , pN,t);

(2) Draw a Bernoulli random variable St such that

P{St ¼ 1} ¼ e;

(3) if St ¼ 1 then obtain li,t for all i and compute the

estimated loss ð~‘‘i‚tÞ

~‘‘i‚t ¼
(
‘i‚t
e ‚ if St ¼ 1‚

0‚ otherwise;

(4) Update the weights wi‚t ¼ wi‚t�1e
�h~‘‘ i‚t ;

(5) Calculate the updated probability distribution

pi‚tþ1 ¼
wi‚tPN
j¼1 wi‚t

‚ i ¼ 1‚ . . . ‚ N:

FIGURE 5. Exponentially weighted average decision algorithm in

the label efficient setting.
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In the classical formulation of multi-armed bandit problems

(see, e.g. Robbins [26]), it is assumed that, for each action,

the losses are randomly and independently drawn with respect

to a fixed but unknown distribution. This version is called the

stochastic multi-armed bandit problem (for a recent efficient

solution, see Auer et al. [27]). Here we consider a non-

stochastic (or worst-case) version of this problem where the

sequence y1, . . . , yn, describing the state of the environment,

is generated by a non-stochastic opponent (non-stochastic or

adversarial multi-armed bandit problem) [10].

There are three modifications relative to the full informa-

tion case. First, the modified method uses gains instead of

losses, defined as

gi‚t ¼ 1� ‘i‚t:

Moreover, in contrast to the label efficient case, we use biased

estimates of the gains defined as

g0i‚t ¼

gi‚t þ b

pi‚t
‚ if It ¼ i‚

b
pi‚t

‚ otherwise:

8>><
>>:

where the role of parameter b is to control the bias (for

b ¼ 0 we obtain unbiased estimates of the true gains, since

then E½g0i‚ tjIt�1
1 � ¼ gi‚t). Finally, a new parameter 0 < g < 1

is introduced that is used in the exploration phase: for It+1
action i is chosen according to the probability

pi‚tþ1 ¼ ð1� gÞ wi‚tPN
j¼1 wj‚t

þ g

N
‚ i ¼ 1‚. . . ‚ N:

The role of g is to ensure that pi,t+1 � g/N for all i ¼ 1, . . . ,N.
That is, instead of the pure probability distribution generated

by exponential weighting, the decision maker uses a mixture

of the exponentially weighted average distribution and the

uniform distribution, where the latter allows the decision

maker to constantly explore all possible actions. The resulting

algorithm is given in Figure 6. The algorithm, as well as the

following bound on its performance is due to Auer et al. [10].

THEOREM 4.5 (Auer et al. [10]) For any 0 < d < 1 and for any

n � 4N ln (N/d), if Algorithm 5 is run for the multi-armed

bandit problem with parameters

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ðN=dÞ

nN

r
‚ g ¼ bN‚ and h ¼ g

2N
‚

then, with probability at least 1 � d,

1

n

�
L̂Ln � min

i¼1‚...‚ N
Li‚n

�
� 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ln ðN=dÞ=n

p
:

Note that the bound of the theorem, unlike of the full

information and the label efficient cases, grows withffiffiffiffiffiffiffiffiffiffiffiffiffi
N lnN

p
instead of

ffiffiffiffiffiffiffiffiffi
lnN

p
. Hence, the bound is not really

useful for graphs of even moderate size. To solve this problem

and to reduce computational complexity the algorithm has

recently been specialized to the online shortest path problem

for weighted acyclic graphs by György et al. [28]. The

method of [28] is similar in spirit to the full information

case; that is, the estimated gains are calculated and stored

for the edges instead of the paths. The resulting upper

bound is also improved: the normalized regret is at most

Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2jEj ln ðN=dÞ=n

p
Þ, where K is the maximum path

length from u to v. That is, the very large
ffiffiffiffi
N

p
factor is

replaced with the much smaller factor K
ffiffiffiffiffiffi
jEj

p
. This is

achievable because when the decision maker learns the loss

of each edge of a path, then at the same time it learns

information on the losses of other paths having common

edges with the chosen path.

We note here that ‘follow the perturbed leader’-type algo-

rithms can also be applied to solve the online shortest path

problem in the multi-armed bandit setting. Indeed, Awerbuch

and Kleinberg [29] and McMahan and Blum [30] provided

such algorithms. However, the obtained bounds do not

decrease to zero at a desired Oð1= ffiffiffi
n

p Þ rate.

4.2.3. A combination of the label efficient decision and

the multi-armed bandit problems

In this subsection we introduce a recent combination of the

label efficient and the multi-armed bandit problems [12].

This combination was motivated by the routing problem in

CPNs described in Section 3. In this combined problem, the

decision maker learns its own loss only if it chooses to query it

(which is allowed only for a limited number of times), and it

cannot obtain information on the performance of any other

action.

ALGORITHM 5. Exponential weighting in the multi-armed

bandit setting (Auer et al. [10])

Initialization: Fix h > 0, 0 < b < 1 and 0 < g < 1, and set

wi,0 ¼ 1 and pi,1 ¼ 1/N for i ¼ 1, . . . ,N.
At time instants t ¼ 1, 2, . . .

(1) Select an action It 2 {1, . . . ,N} according to the

probability distribution pt ¼ (p1,t, . . . , pN,t);

(2) Calculate the estimated gains

g0i‚t ¼

gi‚t þ b

pi‚t
‚ if It ¼ i‚

b
pi‚t

‚ otherwise;

8><
>:

(3) Update the weights wi‚t ¼ wi‚t�1e
hg0i‚t ;

(4) Calculate the updated probability distribution

pi‚tþ1 ¼ ð1� gÞ wi‚tPN
j¼1 wj‚t

þ g

N
‚ i ¼ 1‚ . . . ‚ N:

FIGURE 6. Exponentially weighted average decision algorithm for

the multi-armed bandit problem.
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This problem is solved with a combination of the

algorithms for the label efficient decision problem and for

the multi-armed bandit problem. In the combined method,

shown in Figure 7, at each time instant t, the algorithm

queries the result of its action with probability e (just as in

the label efficient case), and similarly to the multi-armed

bandit case, it computes biased estimates g0i‚t of the true

gains gi,t as

g0i‚t ¼

gi‚t þ b

pi‚te
‚ if It ¼ i and St ¼ 1;

b
pi‚te

‚ if It 6¼ i and St ¼ 1;

0 otherwise:

8>>>><
>>>>:

Again, g0i‚t is an unbiased estimate of gi,t for b ¼ 0, since

then E½g0i‚tjSt�1
1 ‚ It�1

1 � ¼ gi‚t.
The performance of Algorithm 6 is analyzed in the

next theorem of [12], which is, in fact, a joint extension of

Theorem 4.4 and Theorem 4.5.

THEOREM 4.6 (Ottucsák and György [12]). Assume that

0 < d < 1, 0 < e � 1, and n � 4N ln (2N/d)/e. Then for

parameters b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð2N=dÞ=ðnNeÞ

p
, g¼bN, and h ¼

ge/(2N), the normalized regret of Algorithm 6 can be

bounded with probability at least 1 � d as

1

n

�
L̂Ln � min

i¼1‚...‚ N
Li‚n

�
� 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ln ð2N=dÞ

ne

r
þ ln ð2=dÞ

ne
:

Algorithm 6 can also be modified to suit to the online

shortest path problem, with lower computational complexity

and improved performance bound: similarly to the multi-

armed bandit setting, the regret bound of the new algorithm

depends on K2|E| instead of N [28].

5. CONCLUSION

In this paper we gave an overview of a special class of machine

learning algorithms for sequential decision problems. These

algorithms provide efficient methods to combine expert

advice in an optimal way in the sense that the algorithms

have asymptotically the same performance as the best expert.

The proposed methods are universal as they do not require

any statistical description of the system, and work for any

behavior of the system.

We showed how these sequential decision algorithms can be

applied in adaptive routing for packet switched networks to

ensure increased QoS. Different scenarios were investigated

on howmuch information is available to the routing algorithm.

In practice, applicability of these algorithms depend on how

much prior (statistical) information is available about the

traffic over the network. Expert algorithms are the most useful

when the goal is to design routing algorithms that perform well

even for rare, unexpected behaviors of the network. For exam-

ple, they are particularly well suited for routing in ad hoc

networks (usually having highly varying topology), or in cer-

tain secure networks that have to be able to handle dynamic

denial of service attacks (see, e.g. Awerbuch et al. [32]).
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