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Abstract—An entropy-constrained quantizer is optimal if it minimizes
the expected distortion ( ) subject to a constraint on the output entropy

( ). In this correspondence, we use the Lagrangian formulation to show
the existence and study the structure of optimal entropy-constrained quan-
tizers that achieve a point on the lower convex hull of the operational distor-
tion-rate function ( ) = inf ( ) : ( ) . In general,
an optimal entropy-constrained quantizer may have a countably infinite
number of codewords. Our main results show that if the tail of the source
distribution is sufficiently light (resp., heavy) with respect to the distortion
measure, the Lagrangian-optimal entropy-constrained quantizer has a fi-
nite (resp., infinite) number of codewords. In particular, for the squared
error distortion measure, if the tail of the source distribution is lighter than
the tail of a Gaussian distribution, then the Lagrangian-optimal quantizer
has only a finite number of codewords, while if the tail is heavier than that
of the Gaussian, the Lagrangian-optimal quantizer has an infinite number
of codewords.

Index Terms—Difference distortion measures, entropy coding, infinite-
level quantizers, Lagrangian performance, optimal quantization.

I. INTRODUCTION

In the design of locally optimal entropy-constrained vector quan-
tizers (ECVQs) from training data [1], it has been repeatedly observed
that the number of codewords in a locally optimal ECVQ is bounded
by a number that depends on the source and the target entropy. That
is, the number of codewords does not increase even if the ECVQ de-
sign algorithm is initialized with a greater number of codewords, or if
a greater number of training vectors is made available. In some sense,
there is a natural number of codewords for a given source at a given
rate.

The above observation suggests that optimal entropy-constrained
quantizers may not necessarily have an infinite number of codewords.
Of course, one anticipates this for sources with bounded support. The
question is, do optimal entropy-constrained quantizers always have
an infinite number of codewords when the source has an unbounded
region of support?

In this correspondence, we answer this question for a large class of
optimal entropy-constrained quantizers. To be precise, given� > 0
we consider optimal ECVQsQ� that minimize the Lagrangian per-
formanceJ(�;Q) = D(Q) + �H(Q), whereD(Q) andH(Q) are
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the distortion and the entropy ofQ, respectively. IfQ� is such a La-
grangian-optimal quantizer, it is also an optimal entropy-constrained
quantizer whose distortionD(Q�) and output entropyH(Q�) achieve
a point on the lower convex hull of the operational distortion-rate func-
tion

Dh(R) = inf
Q
fD(Q) : H(Q) � Rg:

Apart from their practical significance in quantizer design [1],
Lagrangian-optimal quantizers studied in this correspondence are also
of theoretical interest. The Lagrangian formulation of entropy-con-
strained quantization serves as a useful tool in the rigorous treatment
of the high-rate theory of entropy-constrained quantization [2], [3]
and it has important connections with the theory of fixed-slope lossy
source coding [4], [5].

Our first result, Theorem 1, shows that under some mild conditions
on the distortion measure, for any� > 0 there always exists a quan-
tizer minimizingJ(�;Q). We then show in Theorem 2 that if the tail
of the source distribution is sufficiently light (with respect to the dis-
tortion measure), then such a Lagrangian-optimal entropy-constrained
quantizer has only a finite number of codewords. The converse result,
Theorem 3, shows that for source distributions with slightly heavier
tail, a Lagrangian-optimal entropy-constrained quantizer must have an
infinite number of codewords.

In particular, for the squared error distortion measure these results
imply that the Gaussian distribution is a breakpoint. If the tail of the
source distribution is lighter than the tail of a Gaussian distribution,
then the Lagrangian-optimal entropy-constrained quantizer has only a
finite number of codewords, while for distributions with tail heavier
than the Gaussian, the Lagrangian-optimal quantizer must have an in-
finite number of codewords. For the Gaussian distribution there exists
a critical value of the quantizer rate such that for rates less than this
critical value, the Lagrangian-optimal quantizer has a finite number of
codewords, and for rates higher than the critical value, the Lagrangian-
optimal quantizer has infinitely many codewords.

II. PRELIMINARIES

A vector quantizerQ can be described by the following mappings
and sets: anencoder� : k ! I, whereI is a countable index set,
an associated measurable partitionS = fSi; i 2 Ig of k such that
�(x) = i if x 2 Si, a decoder� : I ! k, and an associated
reproductioncodebookC = f�(i); i 2 Ig. The overall quantizer
Q : k ! C is

Q(x) = �(�(x)):

Without loss of generality, we assume that thecodewords(or codevec-
tors)�(i); i 2 I; are all distinct. IfI is finite with N elements, we
takeI = f1; . . . ; Ng and callQ anN -level quantizer. Otherwise,I
is taken to be the set of all positive integers andQ is called an infi-
nite-level quantizer. To define a quantizerQ, we will sometimes write
Q � (�; �). Note thatQ is also uniquely defined by the partitionS
and codebookC via the rule

Q(x) = �(i) if and only if x 2 Si:

We suppose a nonnegative measurabledistortion measured : k �
k ! [0;+1). For an k-valued random vectorX with distribution

�, the distortion ofQ is measured by the expectation

D(Q) Efd(X;�(�(X))g

= Efd(X;Q(X))g

= d(x;Q(x))d�(x):

0018-9448/03$17.00 © 2003 IEEE
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The entropy-constrainedrateofQ is the entropy of its outputQ(X)

H(Q) H(Q(X)) =H(�(X))

=�
i2I

PrfX2Sig log PrfX2Sig

wherelog denotes base2 logarithm. A vector quantizerQwhose rate is
measured byH(Q) is called anentropy-constrained vector quantizer
(ECVQ).

Unless otherwise stated, we always assume that the partition cell
probabilitiesPrfX 2 Sig = �(Si), i 2 I, are all positive. One can
always redefineQ on a set of probability zero (by possibly reducing
the number of cells) to satisfy this requirement.

For anyR � 0 let Dh(R) denote the lowest possible distortion of
any quantizer with output entropy not greater thanR. This function,
which we call theoperational distortion-rate function, is formally de-
fined by

Dh(R) inf
Q
fD(Q) : H(Q) � Rg

where the infimum is taken over all finite or infinite-level vector quan-
tizers whose entropy is less than or equal toR. If there is noQ with
finite distortion and entropyH(Q) � R, then we formally define
Dh(R) = +1. AnyQ that achievesDh(R) in the sense thatH(Q) �
R andD(Q) = Dh(R) is called anoptimalECVQ.

The Lagrangian formulation of entropy-constrained quantization de-
fines for each value of a parameter� > 0 theLagrangian performance
of a quantizerQ by

J(�;Q) D(Q) + �H(Q):

The optimum Lagrangian performance is given by

J
�(�) inf

Q
J(�;Q) = inf

Q
fD(Q) + �H(Q)g (1)

where the infimum is taken over all finite or infinite-level quan-
tizersQ.

Any quantizerQ that achieves the infimum in (1) is called aLa-
grangian-optimalquantizer. It is easy to see that ifQ is Lagrangian-op-
timal for some� > 0, then it is also an optimal ECVQ for its rate, i.e.,
if J(�;Q) = J�(�), thenD(Q) = Dh(H(Q)). Moreover, ifQ is La-
grangian-optimal, then(H(Q);D(Q)) is a point on the lower convex
hull1 of Dh(R), and�� is the slope of a line that supports the lower
convex hull and passes through this point.

Conversely, ifQ is an optimal ECVQ such that(H(Q);D(Q)) is a
point on the lower convex hull ofDh(R), then there exists a� > 0 such
thatJ(�;Q) = J�(�), i.e.,Q is Lagrangian-optimal. Therefore, the
class of Lagrangian-optimal quantizers can be characterized as the class
of optimal ECVQs that achieve the operational distortion-rate function
Dh(R) at rates whereDh(R) coincides with its lower convex hull.
Note that sinceDh(R) is not necessarily convex (see, e.g., [7]), in gen-
eral, not all points ofDh(R) are achievable by a Lagrangian-optimal
quantizer.

III. RESULTS

It is well known [1] that a Lagrangian-optimal quantizer must have
an encoder that maps an inputx to its “nearest” codeword, where the
distance to the codeword is penalized by� times the negative log prob-
ability of the partition cell associated with the codeword. This “general-
ized nearest neighbor” condition forms the basis of the iterative ECVQ
design algorithm in [1]. The condition is formalized in the following
lemma which is crucial in our development.

1The lower convex hull ofD (R) is the largest convex functionD (R) such
thatD (R) � D (R) for all R � 0; see, e.g., [6].

Lemma 1: LetQ � (�; �) be an arbitrary quantizer with partition
cell probabilitiespi = �(Si) = Prf�(X) = ig, codewordsci =
�(i), i 2 I, and finite Lagrangian performanceJ(�;Q) < +1 for
some� > 0. Let the encoder�0 be defined for allx 2 k by

�
0(x) = argmin

i2I

d(x; ci)� � log pi (2)

(ties are broken arbitrarily), and setQ0 � (�0; �). Then

J(�;Q0) � J(�;Q)

where equality holds only if

d(x; �(�(x)))� � log p�(x) = min
i2I

d(x; ci)� � log pi (3)

for �-almost allx.

The lemma implies that ifJ(�;Q) = J�(�), then a Lagrangian-
optimal ECVQ must use the generalized nearest neighbor encoding rule
(2) with probability1. For the sake of completeness we give the proof
of the lemma below.

Proof of Lemma 1:First note that the minimum in (2) exists
for all x even if Q is an infinite-level quantizer, and so�0 is well
defined if a particular rule for breaking ties is set. Indeed, since
limi!1(� log pi) =1 for infinite-level quantizers, we have

d(x; c1)� � log p1 < d(x; ci)� � log pi

for all i large enough, and hence for anyx 2 k the minimum

min
i2I

(d(x; ci)� � log pi)

is achieved by somei 2 I. Therefore,

d(x; �(�0(x)))� � log p� (x) = min
i2I

(d(x; ci)� � log pi):

Hence, definingp0i = Prf�0(X) = ig, we can write

J(�;Q) =Efd(X;Q(X))� � log p�(X)g (4)

=
j2I S

d(x; cj)� � log pj �(dx)

�
j2I S

min
i2I

d(x; ci)� � log pi �(dx)

=Efd(x; �(�0(X)))� � log p� (X)g

=Efd(x; �(�0(X)))�� log p0� (X)g+�E log
p0� (X)

p� (X)

=J(�;Q0) + �

i2I

p
0
i log

p0i

pi
(5)

from which the lemma follows since

i2I

p
0
i log

p0i

pi
� 0

by the divergence inequality [8].
It is easy to see that the first inequality becomes an equality if

and only if (3) holds for�-almost allx, so a necessary condition for
J(�;Q) = J(�;Q0) is that (3) holds for�-almost allx.
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Our first result shows the existence of Lagrangian-optimal quantizers
for any� > 0 under mild conditions on the distortion measure. Here
and throughout the correspondence,kxk denotes the usual Euclidean
norm ofx 2 k.

Theorem 1: Assume that for anyx 2 k the nonnegative distortion
measured(x; y) is a lower semicontinuous function ofy such that for
anyy0 2 k, d(x; y0) � lim infkyk!1 d(x; y). Then for any� > 0
there is a Lagrangian-optimal quantizer, i.e., there existsQ such that

D(Q) + �H(Q) = J�(�):

The proof of Theorem 1 is deferred to the Appendix . The basic idea
is to consider a sequence of quantizers with Lagrangian performance
converging to the optimum. It is shown that there exists a subsequence
of these quantizers whose codewords and cell probabilities converge,
respectively, to a set of codewords and corresponding probabilities,
which then can by used to define a “limit” quantizer via the gener-
alized nearest neighbor rule (2). This limit quantizer is then shown to
be optimal.

It is worth noting thatJ�(�) is finite for all� > 0 if there existsy 2
k such thatEfd(X; y)g < +1. In particular, for the squared error

distortion measured(x; y) = kx� yk2 a sufficient (but not necessary)
condition for the finiteness ofJ�(�) is thatEfkXk2g < +1.

The conditions of the theorem are clearly satisfied ifd(x; y) is a dif-
ference distortion measured(x; y) = �(kx�yk), where�(t), t � 0 is
a nonnegative, monotone increasing, and continuous function. Next, we
consider such distortion measures and show that if the tail of the distri-
bution ofX is sufficiently light, then the Lagrangian-optimal quantizer
has only a finite number of codewords. In the theoremf(t) = o(g(t))
meanslimt!+1 f(t)=g(t) = 0.

Theorem 2: Assume a difference distortion measured(x; y) =
�(kx � yk), where� : [0;+1) ! [0;+1) is monotone increasing
and continuous. For some� > 0 let Q be a Lagrangian-optimal
quantizer achievingJ�(�) < +1. If for some� > 0

PrfkXk � tg = o 2��((1+�)t)=�

thenQ has a finite number of codewords.
Proof: Let fci; i 2 Ig andfSi; i 2 Ig be the codebook and

partition ofQ. To exclude pathological cases, we assume that the cell
probabilitiespi = �(Si) = PrfX 2 Sig are positive for alli 2 I.
(Any countable collection of cells with probability zero can be merged
with a cell of positive probability without affecting the quantizer’s per-
formance.)

First we “regularize” the partition cells. For eachi, define �Si by

�Si = fx : d(x; ci)� � log pi�d(x; cj)� � log pj for all j 2 Ig:

By Lemma 1, �Si contains�-almost allx’s in Si, and hencepi �
�( �Si). (In particular,�Si is not empty.) Sinced(x; y) is continuous,�Si

is closed. Now for anyx 2 �Si

d(x; ci)� � log pi � d(x; c1)� � log p1:

In particular, for anxi 2 �Si closest (in Euclidean distance) to the origin

d(xi; ci)� � log pi � d(xi; c1)� � log p1:

But d(xi; ci) � 0 andpi � �( �Si) � PrfkXk � kxikg, so that

�� log PrfkXk � kxikg � d(xi; c1)� � log p1

or, equivalently

PrfkXk � kxikg � p12
�d(x ;c )=�:

Now by the triangle inequality and the monotonicity of�

d(xi; c1) = �(kxi � c1k) � �(kxik+ kc1k):

Supposesupi2I kxik = +1. Then we can pickkxik sufficiently
large so that the above bound givesd(xi; c1) � �((1+�)kxik), which,
in turn, implies

PrfkXk � kxikg � p12
��((1+�)kx k)=�:

On the other hand, ifPfkXk � tg = o 2��((1+�)t)=� , then forkxik
sufficiently large we must have

PfkXk � kxikg < p12
��((1+�)kx k)=�

a contradiction. Consequently, there must exist a finiteT > 0 such
that kxik � T for all i 2 I. Thus, to show thatQ is a finite-level
quantizer we only need to show that there can be only a finite number of
partition cells withkxik � T . Suppose, to the contrary, thatkxik � T
for all i 2 I andI is countably infinite. Then we must have for all
i = 1; 2; . . . that

d(xi; ci)� � log pi �d(xi; c1)� � log p1

��(T + kc1k)� � log p1

which is a contradiction sincelimi!1(� log pi) = +1. Hence,I
must be finite, which proves the theorem.

Note that if �(t) converges to a finite limit ast ! +1, then
limt!+1 2��((1+�)t)=� > 0, and so the tail condition of the theorem
is satisfied forany source distribution. Thus, for such a bounded
distortion measure, the Lagrangian-optimal ECVQ always has a finite
number of codewords.

The preceding proof also shows that regardless of the tails of the
source distribution, a Lagrangian-optimal ECVQ islocally finite in
the sense that the number of partition cells that intersect any bounded
subset of k is finite. To be more precise, we can claim that all La-
grangian-optimal ECVQs that satisfy the generalized nearest neighbor
condition of Lemma 1 for allx are locally finite. Indeed, for such quan-
tizers,Si � �Si for all i 2 I, and so the last part of the proof shows that
any ballfx : kxk � Tg can intersect only a finite number of cellsSi.

The next result is a converse to Theorem 2 for convex difference
distortion measures. In the theorem,f(t) = 
(g(t)) means that there
is a constantc > 0 such thatf(t) � cg(t) for all sufficiently larget.

Theorem 3: Assume a difference distortion measured(x; y) =
�(kx� yk), where� : [0;+1)! [0;+1) is strictly increasing and
convex. For some� > 0, let Q be a Lagrangian-optimal quantizer
achievingJ�(�) < +1. If for some0 < � < 1

PrfkXk > tg = 
 2��((1��)t)=�

thenQ has infinitely many codewords.
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Proof: The basic idea of the proof is simple: SupposeQ with N
codewords minimizesJ(�;Q) = D(Q) + �H(Q). We create a new
quantizerQ0 with N + 1 codewords by splitting a cell ofQ into two
new cells. Splitting a cell reduces distortion, but increases entropy. The
tail condition implies that ifN is finite, then an appropriate split gives
D(Q)� D(Q0) > �(H(Q0)� H(Q)). Thus,J(�;Q0) < J(�;Q),
soQ cannot be optimal.

To give a formal proof, we assume without loss of generality that
�(0) = 0 (adding a constant to the distortion measure does not affect
quantizer optimality).

Giveny 2 k and0 < � < �=2, let C(y; �) denote the circular
cone with half-angle� and vertex at the origin defined by

C(y; �) = fx : hx; yi � kxk kyk cos �g

wherehx; yi denotes the usual inner product ink. Clearly, given any
0 < � < �=2, there exists a finite collection ofM = M(�) vectors
fy1; . . . ; yMg such thatfC(y1; �); . . . ; C(yM ; �)g cover k, i.e.,

k =

M

j=1

C(yj ; �):

Let Q be anN -level quantizer with codebookfc1; . . . ; cNg and par-
tition fS1; . . . ; SNg such thatJ(�;Q) = J�(�). Since the setsSi \
C(yj ; �) cover k, the union bound gives

PrfkXk > tg �

N

i=1

M

j=1

PrfkXk > t;X 2 Si; X 2 C(yj ; �)g:

Since

lim sup
t!+1

PrfkXk > tg

2��((1��)t)=�
> 0

by the tail condition, there existi andj (which depend on�) such that

lim sup
t!+1

PrfkXk > t;X 2 Si; X 2 C(yj ; �)g

2��((1��)t)=�
> 0: (6)

Now define

S fx : kxk > t; x 2 Si; x 2 C(yj; �)g

(the dependence ofS on � andt is suppressed in the notation). In the
Appendix , we prove that if0 < � < 1 is fixed, and� > 0 is sufficiently
small, then we can choosec 2 k (which depends on� andt just asS
does) such that for all sufficiently larget and allx 2 S

d(x; ci)� d(x; c) � �(t(1� �)): (7)

Fix K > 0 and choosetK such that�(tK) � K (this is always pos-
sible sincelimt!+1 �(t) = +1). We have�(a)� �(b) � �(a� b)
for all a > b � 0 since� is convex and�(0) = 0, and, hence, for all
sufficiently larget

d(x; ci)� d(x; c)�K � �(t(1� �))� �(tK) (8)

� �(t(1� �)� tK)

= � t 1� � �
tK
t

: (9)

Therefore, ifK > 0 and0 < � < 1 are fixed, then there exists� > 0
such that for all sufficiently larget and for allx 2 S

d(x; ci)� d(x; c)�K � �(t(1� �)): (10)

The asymptotic relation (6) and an argument similar to (8) and (9) imply
that if we choose� such that0 < � < �, then there existst arbitrarily
large such that

�(t(1� �)) � �� log�(S):

For sucht and allx 2 S, (10) gives

d(x; ci)� d(x; c) + � log�(S) � K: (11)

Now let Q0 be the (N + 1)-level quantizer with codebook
fc1; . . . ; cN ; cg and partitionfS01; . . . ; S

0
N+1g, whereS0j = Sj for

j = 1; . . . ; N , j 6= i, S0i = Si n S, andS0N+1 = S. SinceQ andQ0

haveN � 1 common partition cells and codewords, from (11) there
exists arbitrarily larget such that

J(�;Q)� J(�;Q0)

=
S

d(x; ci)� � log�(Si) �(dx)

�
S nS

d(x; ci)� � log�(Si n S) �(dx)

�
S

d(x; c)� � log�(S) �(dx)

=
S

d(x; ci)� d(x; c) + � log�(S) �(dx)

� ��(Si) log�(Si) + ��(Si n S) log�(Si n S)

� �(S)K � ��(Si) log�(Si) + ��(Si n S) log�(Si n S)

= �(S)K � �(S)� log�(Si)

� ��(Si n S) log
�(Si n S) + �(S)

�(Si n S)

� �(S) K � �
�(Si n S)

�(S)
log 1 +

�(S)

�(Si n S)

where the last equality holds sinceS � Si. Note that

lim
t!+1

�(S)=�(Si n S) = 0

sincelimt!+1 �(S) = 0. Since

lim
u!0

(1=u) log(1 + u) = log e

if we chooseK > � log e, then there exists a larget such that the last
expression is positive. ThenJ(�;Q) > J(�;Q0), which contradicts
the optimality ofQ.

Note that the conditions ond(x; y) in Theorems 2 and 3 are satisfied
for therth power distortion measuresd(x; y) = kx� ykr if r � 1. In
particular, both theorems hold for the squared error distortion measure.
In this case, we obtain that the Gaussian distribution is a breakpoint:
For distributions with tail lighter than the tail of a Gaussian distribution
(including distributions with bounded support), the optimal entropy-
constrained quantizer must have only a finite number of codewords, and
for distributions with tail heavier than that of the Gaussian, the optimal
entropy-constrained quantizer has an infinite number of codewords.

The Gaussian case itself is of particular interest. For a Gaussian
source, the results show that there is a critical value�� > 0 (and
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a corresponding critical rateR� > 0) such that the Lagrangian-op-
timal quantizerQ has a finite number of codewords if� > �� (i.e.,
H(Q) < R�), and it has an infinite number of codewords if� < ��

(i.e.,H(Q) > R�).

Corollary 1: Letd(x; y) = kx�yk2 and assume thatX is Gaussian
with covariance matrixK having largest eigenvalue
 > 0. Then for
any� > 2
 ln 2, the Lagrangian-optimal ECVQ has a finite number
of codewords, and for� < 2
 ln 2 the Lagrangian-optimal ECVQ has
an infinite number of codewords.

The condition
 > 0 means that at least one component ofX has
nonzero variance. IfX has independent Gaussian components with
common variance�2 > 0, then
 = �2 in the theorem.

Proof: SinceK is symmetric and nonnegative definite, there is an
orthogonal matrixU that diagonalizes it:UKU t = diag(
1; . . . ; 
k)
where the
i, i = 1; . . . ; k are the (nonnegative) eigenvalues corre-
sponding to thek orthogonal eigenvectors ofK. ThenY = UX has in-
dependent Gaussian componentsY1; . . . ; Yk with varianceVar(Yi) =

i for all i (some of which may be zero), soYi =

p

iZi, whereZ =

(Z1; . . . ; Zk)
t has independent Gaussian components with common

unit variance. Note that we can also assume without loss of generality
that theXi (and so theYi and theZi) have zero mean. SinceU is or-
thogonal,kY k = kUXk = kXk. Setting
 max(
1; . . . ; 
k), we
have for allt > 0

PrfkXk > tg = PrfkY k > tg

= Pr

k

i=1


iZ
2
i > t2

�Pr

k

i=1


Z2
i > t2

= Prfp
kZk > tg:

ButkZk has the chi distribution withk degrees of freedom with asymp-
totic tail probability given by

lim
t!+1

PrfkZk > tg
tk�2e�t =2

= ak (12)

whereak is a positive constant (see, e.g., [9]). Thus,

lim sup
t!+1

1

t2
log PrfkXk > tg � � 1

2
 ln 2

and, hence, if� > 2
 ln 2, then there exists an� > 0 such that

PrfkXk > tg = o 2�(1+�) t =� :

Then, by Theorem 2,Q has only a finite number of codewords.
On the other hand, letj be an index such that
j = 
. Then

PrfkXk > tg = Pr

k

i=1


iZ
2
i > t2

� Prfp
j jZj j > tg = Prfp
jZj j > tg:

Using (12) withk = 1, we obtain

lim inf
t!+1

1

t2
log PrfkXk > tg � � 1

2
 ln 2
:

If � < 2
 ln 2, then

PrfkXk > tg = 
 2�(1��) t =�

for some1 > � > 0, andQ must have infinitely many codewords by
Theorem 3.

APPENDIX

Proof of Theorem 1:AssumeJ�(�) is finite; otherwise the state-
ment is trivial. LetfQn � (�n; �n)g1n=1 be a sequence of quantizers
such thatlimn!1 J(�;Qn) = J�(�). Assume, without loss of gen-
erality, the common index setI = f1; 2; . . .g for all Qn and denote
the partition cell probabilities ofQn byfp(n)1 ; p

(n)
2 ; . . .g and the corre-

sponding codewords byfc(n)1 ; c
(n)
2 ; . . .g (hence,p(n)i = Prf�n(X) =

ig andc(n)i = �n(i)). The assumption of the common index set im-
plies that some of the cellsS(n)i = fx : �n(x) = ig may be empty
with the correspondingp(n)i being zero.

The following lemma is proved in [10].

Lemma 2: For R > 0, define the set of probability vectorsCR

by the equation at the bottom of the page. ThenCR is compact under
pointwise convergence.

Without loss of generality, we assume that for eachQn the partition
cells and codewords are indexed so thatp

(n)
i � p

(n)
i+1 for all i � 1.

Sincelimn!1 J(�;Qn) = J�(�), for all n large enough, we have

H(Qn) � J(�;Qn)=� � (J�(�) + 1)=�:

Thus, if we setR = (J�(�) + 1)=�, then for alln large enough

(p
(n)
1 ; p

(n)
2 ; . . .) 2 CR:

Let k = k [ f1g be the usual one-point compactification ofk

(see, e.g., [11]). Then by Lemma 2 and Cantor’s diagonal method, we
can pick a subsequence offQng, also denoted byfQng for conve-
nience, such that for some�c1; �c2; . . . 2 k and a probability vector
(p1; p2; . . .) we havelimn!1 c

(n)
i = �ci andlimn!1 p

(n)
i = pi for

all i � 1.
Now for all i 2 I, let ci = �ci if �ci 2 k, and chooseci 2 k

in an arbitrary manner if�ci = 1. DefineQ to be the quantizer with
codewordsfc1; c2; . . .g and encoder� given by

�(x) = argmin
i2I

d(x; ci)� � log pi

(ties are broken arbitrarily). Here we use the convention that� log pi =
+1 if pi = 0, so that� (and henceQ) is well defined.

In the remainder of the proof, we show thatQ is a Lagrangian-op-
timal quantizer. First observe that the conditions ond(x; y) imply that
for anyi 2 I andx 2 k, lim infn!1 d(x; c

(n)
i ) � d(x; ci). Hence,

we obtain

lim inf
n!1

d(x; c
(n)
i )� � log p

(n)
i � d(x; ci)� � log pi

CR = (p1; p2; . . .) : pi � 0 for all i; p1 � p2 � � � �;
1

i=1

pi = 1; �
1

i=1

pi log pi � R :
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which implies

J(�;Q) �E min
i2I

d(X; ci)� � log pi

�E min
i2I

lim inf
n!1

d(X; c
(n)
i )� � log p

(n)
i (13)

where the first inequality follows from the generalized nearest neighbor
condition (see (4) and (5) in the proof of Lemma 1).

Let i�(x; n) 2 I denote an index such that

min
i2I

d(x; c
(n)
i )� � log p

(n)
i = d(x; c

(n)
i (x;n))� � log p

(n)
i (x;n)

(recall from the proof of Lemma 1 that the minimum exists) and letnj ,
j = 1; 2; . . . ; be an increasing sequence of positive integers such that

lim inf
n!1

min
i2I

d(x; c
(n)
i )� � log p

(n)
i

= lim
j!1

min
i2I

d(x; c
(n )

i )� � log p
(n )

i

and the limiti�(x) limj!1 i�(x; nj) exists, wherei�(x) = +1 is
allowed. Since thep(n)i , i = 1; 2; . . . ; are decreasing, we havep(n)i �
1=i for all i andn, so if i�(x) = +1, then

lim
j!1

min
i2I

d(x; c
(n )

i )� � log p
(n )

i

= lim
j!1

d(x; c
(n )

i (x;n ))� � log p
(n )

i (x;n )

� lim
j!1

� log i�(x; nj)

= +1:

This implies

min
i2I

lim inf
n!1

d(x; c
(n)
i )� � log p

(n)
i

= lim inf
n!1

min
i2I

d(x; c
(n)
i )� � log p

(n)
i (14)

(with both sides being equal to+1) since the right-hand side is always
less than or equal to the left-hand side. On the other hand, ifi�(x) is
finite, theni�(x; nj) = i�(x) for all sufficiently largej, so for suchj

min
i2I

d(x; c
(n )

i )� � log p
(n )

i = min
i�i (x)

d(x; c
(n )

i )� � log p
(n )

i

and we obtain

min
i2I

lim inf
n!1

d(x; c
(n)
i )� � log p

(n)
i

� min
i�i (x)

lim inf
j!1

d(x; c
(n )

i )� � log p
(n )

i

= lim inf
j!1

min
i�i (x)

d(x; c
(n )

i )� � log p
(n )

i

= lim inf
n!1

min
i2I

d(x; c
(n)
i )� � log p

(n)
i : (15)

Thus, (14) and (15) yield

E min
i2I

lim inf
n!1

d(X; c
(n)
i )� � log p

(n)
i

= E lim inf
n!1

min
i2I

d(X; c
(n)
i )� � log p

(n)
i :

Combining this with (13) shows thatQ is a Lagrangian-optimal quan-
tizer

J(�;Q) �E lim inf
n!1

min
i2I

d(X; c
(n)
i )� � log p

(n)
i

� lim inf
n!1

E min
i2I

d(X; c
(n)
i )� � log p

(n)
i

� lim inf
n!1

J(�;Qn)

=J�(�)

where the second inequality follows from Fatou’s lemma [11], and the
third from the generalized nearest neighbor condition (see (4) and (5)).

Proof of Inequality (7): Without loss of generality, we can as-
sume thatyj = (1; 0; . . . ; 0). Let (ci1; . . . ; cik) denote the compo-
nents ofci and definec 2 k by

c = (t cos �; ci2; . . . ; cik):

For anyx = (x1; . . . ; xk), we havekx � cik = (x1 � ci1)2 + A

andkx � ck = (x1 � t cos �)2 + A, where

A =

k

l=2

(xl � cil)
2:

Observe that ifx = (x1; . . . ; xk) 2 S, thenx 2 C(yj ; �) andkxk >
t, implyingx1 > t cos �. Also, if t is large enough, thent cos � > jci1j.
Hence, for all sufficiently larget and for allx 2 S

d(x; ci)� d(x; c)

= v�(kx� cik)� �(kx� ck)
= � (x1 � ci1)2 + A � � (x1 � t cos �)2 +A

� � (x1 � ci1)2 + A� (x1 � t cos �)2 + A (16)

where the inequality holds since�(a) � �(b) � �(a � b) for all a >
b � 0 by the convexity of� and the assumption�(0) = 0. Also,
x 2 S � C(yj ; �) implies k

l=2 x
2
l � x21 tan

2 �. Therefore,

A � 2

k

l=2

x2l + 2

k

l=2

c2il � 2x21 tan
2 � +B

whereB = 2 k

l=2 c
2
il is a nonnegative constant. Since

p
a2 + u �p

b2 + u is a monotone decreasing function ofu > 0 for any fixed
a > b � 0, and� is monotone increasing, we can continue (16) as

� (x1 � ci1)2 + A� (x1 � t cos �)2 + A

� � (x1 � ci1)2 + 2x21 tan
2 � +B

� (x1 � t cos �)2 + 2x21 tan
2 � +B

� � (x1 � jci1j)2 + 2x21 tan
2 � +B

� (x1 � t cos �)2 + 2x21 tan
2 � +B (17)

� � (t cos � � jci1j)2 + 2t2 cos2 � tan2 � +B

� 2t2 cos2 � tan2 � +B

= � t cos � � jci1j
t

2

+ 2 sin2 � +
B

t2

� t 2 sin2 � +
B

t2
: (18)

Here, the third inequality holds since the argument of� in (17) is a
monotone increasing function ofx1 for x1 � 0, as can be checked by
differentiating with respect tox1.

Given0 < � < 1, we can choose a small� > 0 such that for all
sufficiently larget > 0

cos � � jci1j
t

2

+ 2 sin2 � +
B

t2
� 2 sin2 � +

B

t2
� 1� �:
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Then (16) and (18) yield

d(x; ci)� d(x; c) � �(t(1� �))

as desired.
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A Lower Bound for the Detection/Isolation Delay in a Class
of Sequential Tests

Igor V. Nikiforov

Abstract—We address the problem of minimax detecting and isolating
abrupt changes in random signals. The criterion of optimality consists in
minimizing the maximum mean detection/isolation delay for a given max-
imum probability of false isolation and mean time before a false alarm. It
seems that such a criterion has many practical applications especially for
safety-critical applications, in monitoring dangerous industrial processes
and also when the decision should be done in a hostile environment. The
redundant strapdown inertial reference unit integrity monitoring problem
is discussed. An asymptotic lower bound for the mean detection/isolation
delay is given.

Index Terms—Asymptotic optimality, lower bound, minimax change de-
tection/isolation, navigation system integrity monitoring, recursive algo-
rithm.

NOMENCLATURE

t, n Current time instants (discrete time).
k + 1 Change time (fault onset time).
l, j Type of change (type of fault).
K Total number of hypotheses.

kXk2 =
n

i=1

x2
i

Norm ofX.

N , M Stopping (alarm) time.
� Final decision.
(Y ) Expectation of the random valueY .
(Y jX1; . . . ; Xt) Conditional expectation of the random value

Y givenX1; . . . ; Xt.
Pr(B) Probability of the eventB.
P; f(x) Distribution and its density.
N (�;�) Normal law with mean vector� and covari-

ance matrix�.

I. INTRODUCTION

The problem of detecting and isolating abrupt changes in random
signals has many important applications in signal processing and auto-
matic control. Mathematically, it is the generalization of abrupt change
detection (see results and references in [9], [19], [11], [1], [6], [7]) to
the case of multiple(K � 2) hypotheses. An optimal solution to the
problem of abrupt change diagnosis (detection/isolation) and a nonre-
cursive algorithm that asymptotically attains the lower bound were ob-
tained in [13] by using a minimax approach. The character feature of
this approach is a pessimistic estimation of the detection/isolation delay
(“worst case” mean detection/isolation delay) and an optimistic estima-
tion of the probability of false isolation (it is assumed that the change
occurs at the onset time to avoid the theoretical difficulties). A mul-
tiple hypothesis Shiryayev sequential probability ratio test by adopting
a dynamic programming approach has been proposed by Malladi and
Speyer in [10]. This algorithm minimize a certain Bayesian criterion
that includes the measurement cost, the cost of a false alarm, and the
cost of miss-alarm in the dynamic programming scheme. Next, Lai [8]
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