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Abstract—An entropy-constrained quantizer Q is optimal if it minimizes
the expected distortionD ( Q) subject to a constraint on the output entropy
H(Q).Inthis correspondence, we use the Lagrangian formulation to show
the existence and study the structure of optimal entropy-constrained quan-
tizers that achieve a point on the lower convex hull of the operational distor-
tion-rate function D,(R) = info{D(Q) : H(Q) < R}.Ingeneral,
an optimal entropy-constrained quantizer may have a countably infinite
number of codewords. Our main results show that if the tail of the source
distribution is sufficiently light (resp., heavy) with respect to the distortion
measure, the Lagrangian-optimal entropy-constrained quantizer has a fi-
nite (resp., infinite) number of codewords. In particular, for the squared
error distortion measure, if the tail of the source distribution is lighter than
the tail of a Gaussian distribution, then the Lagrangian-optimal quantizer
has only a finite number of codewords, while if the tail is heavier than that
of the Gaussian, the Lagrangian-optimal quantizer has an infinite number
of codewords.

Index Terms—Difference distortion measures, entropy coding, infinite-
level quantizers, Lagrangian performance, optimal quantization.

|. INTRODUCTION

In the design of locally optimal entropy-constrained vector quat
tizers (ECVQs) from training data [1], it has been repeatedly observha
that the number of codewords in a locally optimal ECVQ is bounde
by a number that depends on the source and the target entropy. -ff;n
is, the number of codewords does not increase even if the ECVQ
sign algorithm is initialized with a greater number of codewords, or it
a greater number of training vectors is made available. In some serie
there is a natural number of codewords for a given source at a gi

rate.
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the distortion and the entropy 6}, respectively. IfQ* is such a La-
grangian-optimal quantizer, it is also an optimal entropy-constrained
quantizer whose distortioR (Q*) and output entropy (Q*) achieve

a point on the lower convex hull of the operational distortion-rate func-
tion

Di(R) = inf{D(Q) : H(Q) < R}.

Apart from their practical significance in quantizer design [1],
Lagrangian-optimal quantizers studied in this correspondence are also
of theoretical interest. The Lagrangian formulation of entropy-con-
strained quantization serves as a useful tool in the rigorous treatment
of the high-rate theory of entropy-constrained quantization [2], [3]
and it has important connections with the theory of fixed-slope lossy
source coding [4], [5].

Our first result, Theorem 1, shows that under some mild conditions
on the distortion measure, for any> 0 there always exists a quan-
tizer minimizing.J (A, ). We then show in Theorem 2 that if the tail
of the source distribution is sufficiently light (with respect to the dis-
tortion measure), then such a Lagrangian-optimal entropy-constrained
quantizer has only a finite number of codewords. The converse result,
Theorem 3, shows that for source distributions with slightly heavier
tail, a Lagrangian-optimal entropy-constrained quantizer must have an
infinite number of codewords.

In particular, for the squared error distortion measure these results
imply that the Gaussian distribution is a breakpoint. If the tail of the

ource distribution is lighter than the tail of a Gaussian distribution,
ien the Lagrangian-optimal entropy-constrained quantizer has only a
ite number of codewords, while for distributions with tail heavier
%{1 the Gaussian, the Lagrangian-optimal quantizer must have an in-
nite number of codewords. For the Gaussian distribution there exists
critical value of the quantizer rate such that for rates less than this
itical value, the Lagrangian-optimal quantizer has a finite number of
codewords, and for rates higher than the critical value, the Lagrangian-

ve

optimal quantizer has infinitely many codewords.

The above observation suggests that optimal entropy-constrained
quantizers may not necessarily have an infinite number of codewords.
Of course, one anticipates this for sources with bounded support. The\ vector quantizexy can be described by the following mappings
question is, do optimal entropy-constrained quantizers always hawed sets: aencodern : R* — T, whereT is a countable index set,
an infinite number of codewords when the source has an unboundgtassociated measurable partitidr= {S;; i € T} of R* such that
region of support? afz) = iif + € S, adecoder3d : Z — R, and an associated

In this correspondence, we answer this question for a large classeroductioncodebook’ = {3(i); ¢ € T}. The overall quantizer
optimal entropy-constrained quantizers. To be precise, given 0 : R* — Cis
we consider optimal ECVQ&™ that minimize the Lagrangian per-
formanceJ(\, Q) = D(Q) + AH(Q), whereD(Q) and H(Q) are Q(z) = Bla(a)).
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The entropy-constrainadte of () is the entropy of its outpu®(X') Lemma 1: Let @ = («, 3) be an arbitrary quantizer with partition
H(Q)2 H(Q(X)) = H(a(X)) geI.I probabﬂltIESpi = w(S:) = Pr{a(X) = i}, codewords:; =
3(:),1 € Z, and finite Lagrangian performandg ), )) < +oc for
= Z Pr{XeSitlogPr{X €5} some) > 0. Let the encoder’ be defined for all: € R* by
€I
wherelog denotes bas&logarithm. A vector quantizep whose rate is N N o
measured by (Q) is called arentropy-constrained vector quantizer o(x) = m%g?m (d(‘r’” ci) = A lngZ) @)
(ECVQ).
Unless otherwise stated, we always assume that the partition ¢g#s are broken arbitrarily), and 8t = (', 3). Then
probabilitiesPr{X € S;} = u(S;),7 € Z, are all positive. One can
always redefing) on a set of probability zero (by possibly reducing JAQ) < JMQ)
the number of cells) to satisfy this requirement.
ForanyR? > 0 let D, (?) denote the lowest possible distortion ofyynere equality holds only if
any quantizer with output entropy not greater tlanThis function,
which we call theoperational distortion-rate functigris formally de- ) A\ ae o o ‘
fined by d(x, B(a(x))) — Aog pa(z) = min (d(r,c,) /\logp,> )

D, (R) 2 igf{D(Q) :H(Q) < R) for p-almost all.

The lemma implies that iff (A, Q) = J*()\), then a Lagrangian-
optimal ECVQ must use the generalized nearest neighbor encoding rule
(2) with probability1. For the sake of completeness we give the proof
of the lemma below.

where the infimum is taken over all finite or infinite-level vector quan

tizers whose entropy is less than or equalolf there is no@ with

finite distortion and entropyH (@) < R, then we formally define

Dy (R) = 4+o00. Any @ that achieve®, (R) in the sense thd (@) <

R andD(Q) = D, (R) is called aroptimal ECVQ. Proof of Lemma 1:First note that the minimum in (2) exists
The Lagrangian formulation of entropy-constrained quantization déer all = even if @ is an infinite-level quantizer, and s&' is well

fines for each value of a parametet- 0 theLagrangian performance defined if a particular rule for breaking ties is set. Indeed, since

of a quantizeK) by lim; .o (—log p;) = oo for infinite-level quantizers, we have
J(NQ) 2 D(Q)+  H(Q).
) ( Q) (@ ) (Q) d(w,c1) — Alogpr < d(w,¢i) — Nlogp;
The optimum Lagrangian performance is given by

for all i large enough, and hence for amye R* the minimum
T Sinf I Q) = inf{D@Q)+AH(Q)} (1)

llliél(d(:l’, ¢i) — Alogp;)
(S
where the infimum is taken over all finite or infinite-level quan-

tizersQ. is achieved by somee 7. Therefore,
Any guantizer@ that achieves the infimum in (1) is calledLa-
grangian-optimabjuantizer. Itis easy to see thatjfis Lagrangian-op- d(x, 8(a(2))) — A log pa/(zy = min(d(z, ¢;) — Alog pi).
i €T

timal for some\ > 0, then it is also an optimal ECVQ for its rate, i.e.,
if J(X\,Q)=J"(\),thenD(Q) = D, (H(Q)).Moreover, ifQ is La-

grangian-optimal, the0H (Q), D(Q)) is a point on the lower convex
hull! of D, (R), and— X is the slope of a line that supports the lower

Hence, defining; = Pr{a’(X) = i}, we can write

convex hull and passes through this point. J(A. Q) = E{d(X.Q(X)) = Aogpacx) } “)
Conversely, if) is an optimal ECVQ such thaff (Q). D(Q)) is a = / (d(;y, ¢j) — )\log[)j) u(de)
point on the lower convex hull dP,, ( R), then there existsa > 0 such Ser s,
thatJ (X, Q) = J"()), i.e., @ is Lagrangian-optimal. Therefore, the
class of Lagrangian-optimal quantizers can be characterized asthe class > / min (d(’% ci) = Alog Pi) p(dx)
of optimal ECVQs that achieve the operational distortion-rate function €T’
Dy (R) at rates wherdD, (R) coincides with its lower convex hull. = E{d(z,3(a/(X))) = Mog par(x) }
Note that sincéDy (R) is not necessarily convex (see, e.g., [7]), in gen- , ; Phrx)
eral, not all points ofD, (R) are achievable by a Lagrangian-optimal = E{d(x,3(a(X))) = Alog plr(x) } +AE {10?; —}
. Pa’(X)
quantizer. )
=J(AQ)+A pllog 2 (5)
Ill. RESULTS ieT pi

It is well known [1] that a Lagrangian-optimal quantizer must havF . .
. o " fom which the lemma follows since
an encoder that maps an inputo its “nearest” codeword, where the
distance to the codeword is penalizedogmes the negative log prob- , Pl
ability of the partition cell associated with the codeword. This “general- Zp, log Pj 20
ized nearest neighbor” condition forms the basis of the iterative ECVQ i€z
design algorithm in [1]. The condition is formalized in the following

lemma which is crucial in our development. by the divergence inequality [8].

It is easy to see that the first inequality becomes an equality if
The lower convex hull oD, ( R) is the largest convex functioﬁh(R) such and only if (3) holds for:-almost allz, so a necessary condition for
thatD, (R) < D,(R) forall R > 0; see, e.g., [6]. J(X, Q) = J(\ Q') is that (3) holds foy:-almost allz. O
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Ourfirstresult shows the existence of Lagrangian-optimal quantizeBsit d(«;, ¢;) > 0 andp; < u(S;) < Pr{||X|| > |l«:||}, so that
for any A > 0 under mild conditions on the distortion measure. Here
and throughout the correspondenie|| denotes the usual Euclidean ~Aog Pr{||X|| > [lo:]|} < d(zi.c1) — Aog py
norm ofx € RF. - o

Theorem 1: Assume that for any € R* the nonnegative distortion Of, equivalently
measurel(z, y) is a lower semicontinuous function gfsuch that for
anyy’ € R*, d(z,y') < liminf),—. d(z,y). Then for anyx > 0 Pr{||X|| > |Jai||} > pr2~ o)/,
there is a Lagrangian-optimal quantizer, i.e., there exjsssich that
Now by the triangle inequality and the monotonicityof

D(Q)+ AH(Q) = J"()).
d(ziser) = p(llzi = erll) < pllill + lledlD)-

The proof of Theorem 1 is deferred to the Appendix . The basic ideaSupposeup,; ||:|| = +oc. Then we can picl«;|| sufficiently
is to consider a sequence of quantizers with Lagrangian performatege so that the above bound givEs::, ¢1) < p((14e€)|x;]]), which,
converging to the optimum. It is shown that there exists a subsequeircéurn, implies
of these quantizers whose codewords and cell probabilities converge,
respectively, to a set of codewords and corresponding probabilities, Pr{||X|| > ||lz:]|} > pr2~P(AFol=lb/A,
which then can by used to define a “limit” quantizer via the gener-
alized nearest neighbor rule (2). This limit quantizer is then shown Bn the other hand, iP{[| X|| > t} = O(Q,p((lﬂm/k) then forl||

be optimal. ficiently | h
Itis worth noting that/* () is finite for all A > 0 if there existy € sufficiently large we must have

R* such thatF{d(X,y)} < +oc. In particular, for the squared error (1) s/
distortion measuré(z, y) = ||« — y||* a sufficient (but not necessary) PUIX > (i} < pr27 70 700
condition for the finiteness of *(\) is that E{|| X ||*} < +oc.

The conditions of the theorem are clearly satisfied{ if, y) is a dif- a contradiction. Consequently, there must exist a filite- 0 such
ference distortion measudéz, y) = p(||z —y||), wherep(t),t > 0is that||z;|| < T forall i € Z. Thus, to show thaf) is a finite-level
anonnegative, monotone increasing, and continuous function. Next, gugntizer we only need to show that there can be only a finite number of
consider such distortion measures and show that if the tail of the dispartition cells with||z; || < T'. Suppose, to the contrary, tHat; || < T’
bution of X is sufficiently light, then the Lagrangian-optimal quantizefor all ¢ € 7 andZ is countably infinite. Then we must have for all
has only a finite number of codewords. In the theorgit) = o(g(¢)) @ = 1,2,... that
meandim, .4 f(t)/g(t) = 0.

Theorem 2: Assume a difference distortion measuter,y) = d(wi, ci) — Mogpi <d(wi, c1) = Mogps

p(lz = yl|), wherep : [0,40c) — [0,40oc) is monotone increasing <p(T + leal]) = Alog pa

and continuous. For some > 0 let ) be a Lagrangian-optimal

quantizer achieving*(\) < +oc. If for somee > 0 which is a contradiction sinckm;_ . (—log p;) = +o0. Hence,Z
must be finite, which proves the theorem. O

Pr{||X]|| >t} = 0(2_”((“‘)*)”) Note that if p(¢) converges to a finite limit a8 — oo, then
limy_ 4o 277F99/% 5 0 and so the tail condition of the theorem
is satisfied forany source distribution. Thus, for such a bounded

then@ has a finite number of codewords. distortion measure, the Lagrangian-optimal ECVQ always has a finite
Proof: Let {c;;i € 7} and{Si;i € I} be the codebook and ,,ber of codewords.

partition of ). To exclude pathological cases, we assume that the Cellrpg preceding proof also shows that regardiess of the tails of the
probabilitiesp; = (i) = Pr{X € S:} are positive forall € 7. 51ce distribution, a Lagrangian-optimal ECVQldgally finite in

(Any countable collection of cells with probability zero can be mergeghe sense that the number of partition cells that intersect any bounded
with a cell of positive probability without affecting the quantizer’s perg pset oft* is finite. To be more precise, we can claim that all La-

formance.) _ . o grangian-optimal ECVQs that satisfy the generalized nearest neighbor
First we “regularize” the partition cells. For eagfdefines; by condition of Lemma 1 for alt: are locally finite. Indeed, for such quan-
tizers,S; C 5; foralli € Z, and so the last part of the proof shows that
S ={a:d(x,c;) — Nogp; <d(x,c;) — Nog p, forall j € T}. any ball{zx : ||z|| < T'} can intersect only a finite number of celis.
The next result is a converse to Theorem 2 for convex difference
distortion measures. In the theorefiit) = Q2(g(¢)) means that there

By Lemma 1,5; containsp-almost allz’s in S;, and hencep; is a constant > 0 such thatf (t) > cg(t) for all sufficiently larget.

<
1(S5;). (In particular,S; is not empty.) Sincé(x, y) is continuousS;
is closed. Now for any € S; Theorem 3: Assume a difference distortion measuter,y) =
(||l = y|), wherep : [0, +o0) — [0, +00) is strictly increasing and
convex. For some& > 0, let ( be a Lagrangian-optimal quantizer
d(x, ;) = Mogp; < d(z.cr) = Alogpr. achievingJ*(\) < 4oc. If for some0 < e < 1
In particular, for an; € S; closest (in Euclidean distance) to the origin Pr{||X|| >t} = Q@—p((l—e)t)/k)

d(zi,ci) — Alogp: < d(xi,e1) — Alogps. then@ has infinitely many codewords.
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Proof: The basic idea of the proof is simple: Supp6s&vith N Therefore, ifK’ > 0 and0 < é < 1 are fixed, then there exists> 0
codewords minimized (\, Q) = D(Q) + AH(Q). We create a new such that for all sufficiently large and for allz € S
quantizer®)’ with N + 1 codewords by splitting a cell af into two
new cells. Splitting a cell reduces distortion, but increases entropy. The d(z,c;) — d(z, ) = K > p(t(1 = §)). (10)
tail condition implies that ifV is finite, then an appropriate split gives
D(Q) = D(Q") > MH(Q") — H(Q)). Thus,J(X, Q") < J(\.Q), The asymptotic relation (6) and an argument similar to (8) and (9) imply

so( cannot be optimal. . _thatif we choosé such thal < & < e, then there exists arbitrarily
To give a formal proof, we assume without loss of generality thg{rge such that

p(0) = 0 (adding a constant to the distortion measure does not affect

guantizer optimality). p(t(1 = 6)) > —=Alog p(S).
Giveny € Rf and0 < 6 < 7/2, let C(y,#) denote the circular )
cone with half-angl@ and vertex at the origin defined by For such/ and allz € 5, (10) gives

Cly.8) = (o (20) 2 el ol cos ) A =)+ Aos () 2 £ -

) ] ) Now let Q' be the (N + 1)-level quantizer with codebook
where(z, y) denotes the usual inner productifi. Clearly, given any - e, ¢} and partition{S! Shi1}, whereS! = §; for

¢ H ] - ro__ y per oy iV LICLILE) V Bl 7 7
0 < ¢ < w/2, there exists a finite collection dff = M((Z) VeCtors  ; _q N, j 44,5 =S, \ S, andSh 1 = S. SinceQ andq’
{y1,...,yn} such tha{ C(y1.9),..., C(ya, )} coverR*, ie.,

have N — 1 common partition cells and codewords, from (11) there

exists arbitrarily large such that
M

R = | | C(y;,6). :
Ul JQ) = T
= / (cl(.L', ¢i) — Alog ﬂ(Si))ﬂ(d;L’)
Let @ be anN -level quantizer with codeboofcy, . .., cn} and par- 7S
tition {S1,..., S~} such that/ (X, Q) = J*()\). Since the sets; N - / (d(m. ci) — Mog u(Si \ S))N(d”?)
C(y,,#) coverR", the union bound gives JS\S ’ )
_ - [ (a€.0) = Aog u(5) Yt
N s
Pr{||X| >t} < Pr{||X||>t. X € Si, X € C(y;.0)}. ;
XN >t < ;; {1X71] yj:0)} - / (d(%ci) —d(z,¢) + Alogy,(S))p,(d.r)
S

= AMu(Si) log pn(Si) + Ap(S; \ S)log (S \ S)
> p(S)K — Au(Si)log u(Si) + Au(Si \ S)log u(Si \ S)
lim sup w >0 = p(S)K — p(S)Alog u(Si)
oo 270N p(S:\ ) + p(S)
A5\ )log (—)

Since

by the tail condition, there existand; (which depend o#l) such that n(Si\'S)
> u(S) {K EVICATI P <1 CI )]
: PI{”XH >t X €S5S, Xe C(yjae)} [1(5) 11(51\5)
lim sup 5= (=) > 0. (6)
e h where the last equality holds sinSeC S;. Note that
Now define

S 0(9)/u(Si\5) =0

SE(r:||x]>tac Si,x e C(y,,0)
fr el (-6} sincelim;_. 4. ;(S) = 0. Since
(the dependence & on ¢ andt is suppressed in the notation). In the
Appendix , we prove that@ < 6 < 1isfixed, and? > 0is sufficiently
small, then we can choose= R* (which depends o# andt just asS

1in{)(1/u) log(1+u) =loge

does) such that for all sufficiently largeand allz € S if we choosel” > Alog e, then there exists a largesuch that the last
expression is positive. Thefi(\, @) > J()\,Q’), which contradicts
A(r.c) = d(.c) 2 plt(1 - 8)). (ry e opmaly ot -

Note that the conditions af{ z, y) in Theorems 2 and 3 are satisfied
for therth power distortion measurds$z, y) = ||z — y||"if » > 1. In
particular, both theorems hold for the squared error distortion measure.
In this case, we obtain that the Gaussian distribution is a breakpoint:
For distributions with tail lighter than the tail of a Gaussian distribution
(including distributions with bounded support), the optimal entropy-

) ; constrained quantizer must have only a finite number of codewords, and
d(x,ei) —d(x,¢) = K 2 p(t(1 = 6)) — p(tx) (8)  for distributions with tail heavier than that of the Gaussian, the optimal
>p(t(1—6) —tx) entropy-constrained quantizer has an infinite number of codewords.
tK The Gaussian case itself is of particular interest. For a Gaussian
=F (t <1 —6- T)) ’ ©) source, the results show that there is a critical valtie> 0 (and

Fix ' > 0 and chooseéx such thap(tx) > K (this is always pos-
sible sincdim; .4 p(t) = +o0). We havep(a) — p(b) > p(a — b)
foralla > b > 0 sincep is convex ang(0) = 0, and, hence, for all
sufficiently larget
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a corresponding critical rat®* > 0) such that the Lagrangian-op- Using (12) withk = 1, we obtain
timal quantizer)) has a finite number of codewordsif > A* (i.e.,
H(Q) < R*), and it has an infinite number of codewords\if< \*
(e, H(Q) > R").

Corollary 1: Letd(x, y) = [lz—y(|* and assume thaf is Gaussian
with covariance matri¥< having largest eigenvalue > 0. Then for
any A > 2+v1In 2, the Lagrangian-optimal ECVQ has a finite number 50
of codewords, and fok < 2+ 1n 2 the Lagrangian-optimal ECVQ has Pr{||X]| >t} = Q(?_(]_F)T/A)
an infinite number of codewords.

| -
lgﬂlj};f t—.210g Pr{|| X]| > ¢} > T 2yIn2’

If A < 2v1In2, then

The conditiony > 0 means that at least one componentiohas for somel > e > 0, and@ must have infinitely many codewords by

nonzero variance. Iff has independent Gaussian components with"€orem 3. O
common variance? > 0, theny = ¢ in the theorem.
APPENDIX

Proof: Sincek  is symmetric and nonnegative definite, there is an o .
orthogonal matrix’ that diagonalizes it/ KU = diag(71, ..., v Proof of Theorem 1:Assume/ ™ () is finite; otherwise the state-
where they;, i = 1,...,k are the (nonnegative) eigenvalues correMentis trivial. Let{Q = (an, #.) )=, be a sequence of quantizers
sponding to thé orthogonal eigenvectors & . ThenY” = X hasin- Such thatim, .. J(A, Q..) = J*(A). Assume, without loss of gen-
dependent Gaussian componéits. . . , Y with varianceVar(Y;) = erality, the common index sé& = {1,2,...} for all @,, and denote
~: for all i (some of which may be zero), 46 = \/7:Z:, whereZ =  the partition cell probabilities ap . by {pi",pi", ...} and the corre-
(Zi,...,Z4)" has independent Gaussian components with comm&Ronding codewords by, ¢{),....} (hencep(™ = Pr{a, (X) =

unit variance. Note that we can also assume without loss of generafi}yandf(;") = [ (i)). The assumption of the common index set im-
that theX; (and so thé; and theZ;) have zero mean. Sinééis or-  plies that some of the cells™ = {x : a,(x) = i} may be empty
thogonal||Y|| = |[UX]| = || X]||. Settingy £ max(y1....,7), we Wwith the corresponding.™ being zero.

have for allt > 0 The following lemma is proved in [10].

Lemma 2: For R > 0, define the set of probability vectorSr

Pr{llX|| > t} = Pr{|[Y']| > t} by the equation at the bottom of the page. Tid&nis compact under

p {i 72> tz} pointwise convergence.
=1Ir Vidi
i=1 Without loss of generality, we assume that for e&ghthe partition
k s cells and codewords are indexed so thl(é‘t) > p§+)1 forall: > 1.
< Pr Z Vi >t Sincelim, —« J(X, Q.) = J*()\), for all n large enough, we have
i=1

= Pr{\/7]|Z| > t}. H(Qn) < TN Q)N (T N+ 1)/

Thus, if we setkR = (J*(\) + 1)/, then for alln large enough
But|| Z|| has the chi distribution with degrees of freedom with asymp-

totic tail probability given by (.8, ..) € Cr.
Pzl > ¢ LetR* = R* U {co} be the usual one-point compactification ff
lim M = ay (12) (see, e.g., [11]). Then by Lemma 2 and Cantor’s diagonal method, we

. —2 ,—12 /5
(= phT2en /2 can pick a subsequence )., }, also denoted by @, } for conve-
nience, such that for somg. ¢,... € R* and a probability vector

wherea,, is a positive constant (see, e.g., [9]). Thus, ) (n)

(p1,p2,...) we havelim, o ¢;"’ = & andlim,,—. p;"*’ = p, for
. 1 . 1 alli > 1.
1112301’ ﬁlot%' Pr{|IX]|| > t} < T3y n2 Now foralli € Z, lete; = @ if & € RF, and choose; € RF
in an arbitrary manner if;, = oo. Define @ to be the quantizer with
and, hence, i > 2~1n 2, then there exists an> 0 such that codewords{c, ¢z, ...} and encodes given by
a(x) = arg min (d X, 0) — )\logpi)
Pr{||X]|| >t} = 0(27(1+c)2t2/,\)- (x) o (
(ties are broken arbitrarily). Here we use the conventionthag p; =
Then, by Theorem 2 has only a finite number of codewords. +oo if p; = 0, so thatv (and hence)) is well defined.
On the other hand, lgtbe an index such that; = ~. Then In the remainder of the proof, we show th@tis a Lagrangian-op-
timal quantizer. First observe that the conditionsion, y) imply that
i k 5 ) foranyi € 7 andx € R*, iminf, oo d(x, c“,;")) > d(x,c;). Hence,
Pr{||X|| >t} = Pra Y 2! > ¢ we obtain
=1
> Pr{\/7;1Z;| > t} = Pr{\/7|Z;| > t}. liyfgi;f(d(«vwg")) - Alogpgn)) > d(x,ci) = Mogp;

Cr = {(pl,])z,...) tpi > 0foralli,pp > pa >, Zpi =1, —Zpilogpi < R}.
=1 =1
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which implies Proof of Inequality (7): Without loss of generality, we can as-
. sume thaty, = (1,0,...,0). Let (¢i1,...,cit) denote the compo-
J(AQ) < E{mm (d(X’ ¢i) = M"gp")} nents ofc; and define: € R* by
<B{minliminf (d(X.c") - Aogp{")}  (13) ¢ = (tcos b, civs e cun)-
where the firstinequality follows from the generalized nearest neighbeor anyz = (xy,...,zx), we have|e — ¢;|| = /(1 —ca )2+ A
condition (see (4) and (5) in the proof of Lemma 1). and||x — c|| = \/(x1 — tcos8)2 + A, where
Leti*(x,n) € 7 denote an index such that
. n) n (n A — T — )2
1win (d(:v,cg 7y — )\long )) = d(x, L:y()r o)~ )\logpﬁ()ﬂ\n)) A Z(fl i)
(recall from the proof of Lemma 1 that the minimum exists) analet  opserve that ife = (z1....,21) € S, thenz € C(y;,#) and||z|| >
j=1,2,..., be anincreasing sequence of positive integers such tht",“implying;vl > teos . Alsb, if¢ is large enough, thefeos 8 > |ei].
lim inf Hgg (d(r p(n)) /\logp(“ ) Hence, for all sufficiently large and for allz € S
n d(z,ci)—d(z,c
= lim mln(d(L c( J)) )\logp( J)) (@, e0) (@)
Jizm i = vp(lle = eill) = p(lla = el
and the limiti* () £ lim, .. i*(x, n;) exists, where* () = oo is — p( 1 — ) + A) _ p(\/(l.1 tcosO) + A)
allowed. Since the!™,i = 1,2,.. .. are decreasing, we hayg"’ <
1/: for all  andn, so if i () :+oo then zp(\/(}r1 —cin)?+ A— /(a1 —tcosh)? —I—A) (16)
E“;o ném (d( ("j)) )\loﬁp(nj)) where the inequality holds singéa) — p(b) > p(a — b) for all a >
! b > 0 by the convexity ofp and the assumptiop(0) = 0. Also,
= ,hlli ((I(.L ¢ *(T ap) Alobp x(, " )) x €8 CCly;,0) impliesyr , 7 < 2% tan” 4. Therefore,
> lim Alogi*(x,n;) ko ko ' ‘
Jeo ASZZ;U%+QZ(3$[S?;L’ftanzi‘)+B

= +oc. (=2 (=2
This implies whereB = 2% ¢% is a nonnegative constant. Sing&? + u —
I.Téi;l lim inf (d(.r,cf")) _ /\logpi“:)) vb% 4 u is a monotone decreasing functionof> 0 for any fixed

a > b > 0, andp is monotone increasing, we can continue (16) as

p(\/(m —ci1)?+A-— \/(l‘l — tcos 8)? +A)

= lim inf min (d(r cgn)) )\loﬁp( )) (14)

n—oo 1€

(with both sides being equal #ec) since the right-hand side is always

less than or equal to the left-hand side. On the other hart(#) is >p \/(%1 —¢n)? + 222 tan% 6 + B
finite, then:* (x, n;) = ¢* () for all sufficiently largej, so for suchy
111161}1 (d(;r, CE,Lj)) Alog ]7( J)) :iggj?x)(d(:"’ anj)) Alog p("f)) - \/(ivl —tcost)? + 223 tan® 6 + B)
and we obtain
min lim inf (d(.r, ) )\logp( ))} 2P <\/(T1 —lein])? + 2a% tan® ¢ + B
€T n—oo

< min liminf (d(l’, an_,-)) - )\logpgn’i))

T a<if(x) Jooo

— \/(:vl —tcos6)? + 242 tan? 6 + B) a7

= liminf min (d(r c( IJ)) \logplnj))

j—oo <i*(x)

>p <\/(t cosf — |ci1])? + 2¢2 cos? f tan? 6 + B

(m) ot
= hgliloléf 12111%1 (CI(L ¢; ) — Alog ) (15)
Thus, (14) and (15) yield — V212 cos? 6 tan? § + B)
. . - (n) _ . (n)
E{Iinel?hnnilolif (d(X,ci ) — Alogp; )}
= E{hnnigif 111’1111 (d(X (n)) Alog p(n)) } =p <7‘,, <cos9 |;—1|> + 2sin? 4 + E

Combining this with (13) shows th&} is a Lagrangian-optimal quan-

tizer —t4/2sin? 6 + f'i? ) (18)

J(AQ) < E{lﬁirigf;}lln(d()g My — Alogp("))}

Here, the third inequality holds since the argumenpof (17) is a

< lgxiloxéf E{nnn (d( X, ™) = Xlog p(”))} monotone increasing function of for z; > 0, as can be checked by
differentiating with respect t@; .

<liminf J(A, Q, .

= lr?l,lori @n) Given0 < é < 1, we can choose a small > 0 such that for all

=J"(\) sufficiently larget > 0

where the second inequality follows from Fatou’s lemma [11], and the

2
third from the generalized nearest neighbor condition (see (4) and (5)). (msg _ |C;|> +2sin2 6 + g —/2¢in26 + g >1-6.
O
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Then (16) and (18) yield

d(z,c;) —d(z,c) > p(t(1 = 6))

as desired. O
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|. INTRODUCTION

The problem of detecting and isolating abrupt changes in random
signals has many important applications in signal processing and auto-
matic control. Mathematically, it is the generalization of abrupt change
detection (see results and references in [9], [19], [11], [1], [6], [7]) to
the case of multipl¢ X' > 2) hypotheses. An optimal solution to the
problem of abrupt change diagnosis (detection/isolation) and a nonre-
cursive algorithm that asymptotically attains the lower bound were ob-
tained in [13] by using a minimax approach. The character feature of
this approach is a pessimistic estimation of the detection/isolation delay
(“worst case” mean detection/isolation delay) and an optimistic estima-
tion of the probability of false isolation (it is assumed that the change
occurs at the onset time to avoid the theoretical difficulties). A mul-
tiple hypothesis Shiryayev sequential probability ratio test by adopting
a dynamic programming approach has been proposed by Malladi and
Speyer in [10]. This algorithm minimize a certain Bayesian criterion
that includes the measurement cost, the cost of a false alarm, and the
cost of miss-alarm in the dynamic programming scheme. Next, Lai [8]
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