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where all quantities are finite sindg X;V) < oo, and the third
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Now the lower semicontinuity of the mutual information [17] and thés studied for a wide class of difference distortion measures including

L . i S rth-power distortions with » > 0. It is proved that if the source is

condition thatf(Y, Zn) — X in probability imply that uniformly distributed over an interval, then for any entropy constraint
- - - B

lminf I(F(Y, Zp):V|Y =y) > [(X:;V|Y = a.e.Py R (in nats), an optimal quantizer hasIN = [e™] interval cells such
1]1%:11& (fV.Zp) V] y) 2 I( | y) [Pv] that N — 1 cells have equal lengthd and one cell has lengthe < d.

The cell lengths are uniquely determined by the requirement that the

entropy constraint is satisfied with equality. Based on this result, a
Y). parametric representation of the minimum achievable distortion.D;, (R)

‘ as a function of the entropy constraint R is obtained for a uniform source.

and therefore by Fatou’s lemma [15] we have
liminf 7(f(Y. Zp): V' |¥) > I(X:V

The lemma now follows by (C.1) and (C.2). 0  The D,(R) curve turns out to be nonconvex in general. Moreover, for the
squared-error distortion it is shown that D, (R) is a piecewise-concave
function, and that a scalar quantizer achieving the lower convex hull of
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The two main quantities characterizing a scalar quantizare its hull of D, (R) is the minimum achievable distortion in causal lossy
distortion and rate. The distortioaR((Q) is the average distortion be- coding of a memoryless source [6]. Also, Lloyd—Max type necessary
tween the source and the quantizer outputllis followed by en- conditions of optimality are known only for an optimal ECSQ which
tropy coding, the rate is usually defined as the entréffy?) of the achieves the lower convex hull 6f, ( R) [7]. Now for a discrete source,
output of@. (For a stationary and memoryless souié()) isindeed Dy (R) is never convex since it is decreasing and piecewise-constant.
the smallest rate asymptotically achievable by variable-length lossl€xs the other hand, it can be shown (using the analytical expression of
coding of blocks of quantizer outputs.) One would like to make botBerger [1]) that for an exponentially distributed source and the squared-
H(Q)andD(Q) as small as possible, but these quantities are inversegror distortion,D;, ( R) is convex. It has also been conjectured [6] that
related. A natural design problem is then to minimi26R) subjectto D (R) is convex for a wide variety of source distributions and dis-
an entropy constrainf (@) < R. Let D,(R) denote the lowest pos- tortion measures. Our results for the uniform source demonstrate that
sible distortion of any scalar quantizer with output entropy not greaté¥, ( R) can be nonconvex even for “nice” continuous source distribu-
thanRR. A quantizer achieving this minimum is called an ECSQ. Itis dfions.
interest to determin®,, (R) either analytically or numerically, as well
as to find the optimal ECSQ achieving the minimum distortion. II. PRELIMINARIES

It appears that very few concrete examples for an optimal ECSQ are, . . .
knowEFi)n analyticforr)r/L In general, efforts Eave focusegonfinding nec- An N-level scalar quantize@) is a measurable mapping of the

essary conditions for the optimality of an ECSQ witffixed number rrzal I|neF in?aligrllrt]ic%rdggggg?% m(fllzltsa:t tﬁ; ?;'jct;ggto;if
f intsn [1]-[3]. Th nditions give ri ractical al-\/!’ -0 YV ! : o
of output pointsn [1]-{3] ese conditions give rise to practical a ot finite, we formally defineN = oc and call@ an infinite-level

gorithms for designing an ECSQ with a fixed number of output poinps . . ) o
[1], 41, [2], [3], [5]. To determine the overall optimal ECSQ and thquaftlzrgr'? Theco<j_fqu|nt§yi_and theVassomatequannzanon pells
corresponding optimal performance cutde (R), one must find the S = {z: Q) = y’.}.’ i = 1,....,N completely characteriz
optimum performance over all Unfortunately, this step is rather hard,SInce theS; form a partition oft and

even for the most common continuous source distributions. A notable Qz) = yi. if x €S,

exception is the case of an exponentially distributed source and mean-

squared distortion considered by Berger [1]. He derived an analytic &e distortion ofy in quantizing a real random variahke with distri-
pression forDy ( R) based on the observation that for the exponentislution i x is measured by the expectation

distribution, the necessary conditions for optimality at any positive rate o

are satisfied by an infinite-level uniform quantizer. To our knowledge, D(Q)=E[d(X,Q(X))] = / d(z,Q(x))ux (dz)

this is the only case where a correenalytic formula forDy, (R) is

known. ) ) _ where thedistortion measuré(-, -) is a nonnegative measurable func-
In this correspondence we determine analytically the optimal ECSfdn of two real variables. The entropy-constrainmete of () is the
for a source which is uniformly distributed over a finite interval. Wesntropy of the discrete random variatshé X )

allow a rather wide class of difference distortion measures including
rth-power distortiongl(x,y) = |z — y|” with » > 0, and distortion
measures of the formi(z,y) = p(|lz — y|), wherep is a nonnega-
tive, strictly increasing, and convex function. Our main result proves
that an optimal ECSQ for any ra®® > 0 (measured in nats) is an wherelog denotes the natural logarithf () is measured in nats). A
N = [ef]-level quantizer (hergz] denotes the smallest integer notscalar quantizer whose rate is measuredityy)) is called arentropy-
less thane). This quantizer hasv — 1 cells of equal lengthl and constrained scalar quantiz€d ECSQ).

one cell of length- < d, whered andc are uniquely determined by  For anyR > 0 let Dx(R) denote the lowest possible distortion of
the requirement that the entropy constraint is satisfied with equaliyy quantizer with output entropy not greater tlfanThis function is
(the optimal quantizer is uniform if* = N, as expected). Special- formally defined by

ized to the squared-error distortion, our result rigorously proves that )

the ECSQs found for the uniform distribution by Farvardin and Mod- Dp(R) =inf{D(Q): H(Q) < R}

estino [2] (using a numerical approach) are indeed optimal. In case ;r;ere the infimum is taken over all finite- or infinite-level scalar quan-

the absolute-error distortion our result also agrees with a result inqlv ers whose entropy is less than or equaltoAny ¢ that achieves
pendently obtained by Topsoe [14] in a prediction context. Based . < — .
the analytic description of an optimal finite-level ECSQ, we then ol??h(m in the sense thali () < FFandD(Q) = D (F) is called an

tain a parametric expression for th&, (R) curve and investigate its optimal ECSQ.
properties. In general),, (R) is piecewise-smooth (differentiable ev-
erywhere except at the poinis = log V). For the squared-error dis-
tortion (and more generally fotth-power distortions witld < » < 3) A scalar quantizer is calleggularif each cellS; is an interval and
we prove thatD ( R) is concave in each intervibg(N — 1),log N], each code poing; lies insideS;. Assume that the distortion measure
whereN > 2 is an integer. Thus for such distortion measuieg(R) is of the form

is not convex over any interval. It also follows that in this case an op-

timal ECSQ achieving the lower convex hull %, (R) exists only at d(z.y) = p(lx —y) @
ratesk = log N, whereN is a positive integer.

—oo

N
H(Q)=- ZP[X € Si]log P[X € Si]

=1

I1l. OPTIMAL ECSQFOR A UNIFORM SOURCE

wherep : [0, 00) — [0, o0) is a strictly increasing function. For such

tic-urlgler %ﬂ:ﬁ;gnbggzszzagf(ﬁ)efgr :cgi];errc])Izoctjfrfﬁelslow::/iérllig ?}ir" dFtortion measures, nearest neighbor quantizers (i.e., quantizers which
P atisfy d(x, Q(x)) = mini<;<n d(x,y;) for all «) are regular, and

Dy (1) in variable-length lossy coding. For example, the lower CONVEKus an optimal fixed-rat® -level quantizer (i.e., a quantizer which has

IAlthough a complete proof that infinite-level uniform quantizers are inded@inimum distortion among alV -level quantizers) can be assumed to
optimal is missing, the result is widely believed to be correct. be regular.
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Unfortunately, an optimal ECSQ is not necessarily a neardsta strictly increasing continuous function such thét') is strictly
neighbor quantizer, and thus in general it is incorrect to restriconvex. Thery is an optimal ECSQ for a rate constrait> 0 if and
attention to regular quantizers (or quantizers with interval cells) whemly if () hasN = [¢”] cells; one cell of lengtlh and NV — 1 cells of
searching for an optimal ECSQ. Indeed, it is not hard to construclength(1 — ¢)/(N — 1), wherec is the unique solution of the equation
discrete source with three real-valued outputs for which the unique 1—¢
optimal ECSQ is not regular at certain rates. We note here that a —cloge = (1 = c)log <ﬁ> =R
negrest ngighbor type condition does hold.for an optimal ECSQhe interval(0, 1/N').
which achieves the lower convex hull 8%, (R), implying that such a
quantizer can be assumed to be regular [7]. However, as Corollarxl . i T i
later shows, an ECSQ achieving the lower convex huDaf k) may nlqug optimal ECSQ for the uniform sourcer tNelevel uniform
not exist for most rate constraints. More recently, it has been shoffi2ntizer- It < log N, thenc < (1 — ¢)/(N — 1), and the op-

[8] for continuous source distributions and distortion measures in tH@aI E(?SQ IS no Iong_er unique; there are exac¥lysuch guanuzers.
form d(z, y) = p(| — y|), wherep is an increasing convex function, Farvart_jln ar_wd Modestlno [2]_reached the same conclusion for squared-
that if an optimal finite-level ECSQ exists for a given rate constraint ™" distortion using numerical methods.

then there is an optimal ECSQ for the same rate constraint which i_?;rheorem 1 remains valid (after rescaling)¥f is uniformly dis-
regular. tributed over an arbitrary intervak, b). To see this, let

2'I'heorem 1 implies the intuitive result thati = log IV, then the

The question of ECSQ regularity is much simpler if the source is X = X —a
uniformly distributed. LefX" have a uniform distribution on the unit in- b—a
terval(0, 1) and assume that the distortion measure is in the form of (ﬂ‘
LetQ be any finite- or infinite-level quantizer with celfsS:, ..., Sx'} pla) = p < r ) ]
and code point§yi,...,y~ }, and definep; = A(S; N (0,1)) for b—a
i =1,...,N,whereX denotes the Lebesgue measure. Then we cahenX andp satisfy the conditions of the theorem, and a quantizer
define a new quantize) over (0, 1) which hasN interval cells of is optimal forX andp if and only if
lengthp;,i = 1,..., N, andN code points which are located at the A Qz(b—a)+a)—a
midpoints of these cells (the definition of outside(0, 1) is immate- Qx) = b—a
rial). The distortion ofQ is is optimal for X and.
. N The proof of the theorem, given in the next section, has two main
D(@) = Z(I)(pi) @) parts. First, similarly to [1] and [2], the usual Kuhn—Tucker conditions

=1

. ) of constrained optimization are used to identify necessary conditions
where®(p) is defined for allp > 0 by

for the optimality of ann-level ECSQ for a fixed positive integer.

B(p) = 2 /"’/2 o) da. 3) After eliminating all quantizers not satisfying these conditions, we are
o left with the family of.-level quantizers ovej0, 1) which satisfy the
Sincep is increasing, it is easy to see that fora# 1,..., N entropy constraint with equality and whose cell lengths can take only
. -p; /2 two distinct values (these quantizers were also identified in [2]). The
/ plle = yi|) da > / o(|x|) da second, harder part of the proof consists of identifying, for a fixed
. —pi/2 the quantizers which have minimal distortion in this family, and then
and soD(Q) < D(Q). On the other hand, finding the optimal choice of.
. N Using (2) and (4), the distortion and entropy of/siAlevel quantizer
HQ)=- Z])i log p; (4) Q@ withcelllengthsp1 = candp;, = (1 —¢)/(N—-1),i=2,....N
i=1 are given, respectively, by

so thatH () = H(Q). Consequently, when searching for an optimal
ECSQ for the uniform distribution oveb, 1), it suffices to consider
interval partitions of(0, 1) and the associated regular quantizers witgng
code points at the midpoints of the intervals. All quantizers in the re- 1—c¢c

mainder of this correspondence will be assumed to be of this type. The H(Q) = —cloge = (1=c)log <m) :

distortion and rate of any such quantizer are uniquely determined py. easy to see thal[(Q) is a strictly increasing function of €

the_ cgll_lengthqm; i =1,...,N} through (2) a_nd (4). the that if [0,1/N]. Also, H(Q) = log(N — 1) if ¢ = 0, H(Q) = log N if

N is finite gndpi = 1/1.V,z =1...., N, the resulting quantizer is the . _ 1/N, and the corresponding quantizers are(tNe— 1)-level and
N-level uniform quantizer ove(0, 1). N-level uniform quantizers, respectively. Thus Theorem 1 yields the

In what follows we will consider distortion measures in the formyio\ing parametric description ab, (R) for the uniform distribu-
d(x,y) = p(|lx—yl), wherep : [0, 00) — [0, o) is strictly increasing, tion.

continuous, angd(e'), t € Ris strictly convex. Examples for such dis-
tortion measures includeh-power distortiong (z, y) = |« —y|" with Corollary 1. For X andd(z,y) as in Theorem 1, and for any pos-
r > 0 (in this casep(e?) = ¢™), and distortion measure§z, y) = itive integerN > 2, the parametric representation bf, (1) in the
p(|lz—y|), wherep is strictly increasing and convex @ oo ). Another  interval[log(N — 1),log N is given by
distortion measure which does not fall into either of these categories but 1-¢

R. = —cloge— (1—c)log< )

. 1-c¢
D(Q)=®(c)+ (N -1)P <N — 1).

satisfies the requirementsd$r, y) = log(1 + |z — y|). N -1
If R = 0, the optimal ECSQ for any source distribution has only 1—e¢

one code point. The next result shows that if the source has a uniform Dr(Re) = @(c) + (N - 1)@ <N — 1)

distribution, then for any rat& > 0 there exists an optimal finite-level AT

ECSQ with a very simple structure. wherec € [0,1/N].
Theorem 1: Let the sourceX have uniform distribution ove(0, 1) From the parametric representation we can deduce some important

and assume thak(x,y) = p(|z — y|), wherep : [0,00) — [0,00) properties ofD,, (R). For example, it immediately follows thél, (R)
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Fig. 1. D, (R) for the uniform source and squared error distortion.

is everywhere continuous. Moreover, plottifig, ( R) for the squared Let ¥ be the Gish—Pierce function [9], [10] defined by
error distortiond(z, y) = (x —y)* (see Fig. 1) suggests that the graph
. . o . D(p) .
of D (R) consists of smooth, concave pieces joined in a nonsmooth Yp)={ p ifp>0
manner at rate® = log V. The next result proves these properties of 0. ifp=0
Dy, (R) under more general conditions. ’
where®(p) = 2 [*/* p(x) d. Notice that¥ (p) = E[p(pY)] for all
p > 0, whereY is a random variable that is uniformly distributed over
the interval(0, 1/2). Then the strict convexity gf(e*) implies that for
i) Dn(R) is continuously differentiable on each open intervadll ¢;,¢> € R such that; # ¢»,and0 < o < 1
(log(N — 1),log N), whereN > 2 is a positive integer. At
R = log N, the right derivative oD, (R) is zero forallN > 1, ¥ (e‘”l“l*“)tz) =F [p (ea'”(l*“ﬂZY’)]
and the left derivative oD, (R) is negative for allV > 2. Thus _ a(t1 108 Y)+(1—0)(ts+log ¥)
D, (R) is not differentiable at the point® = log N for N > 2. =E [f) (e )]
ii) Letd(x,y) = |z —y|" be therth-power distortion witl) < » < <FE [ap (e“““gy) +(1—a)p (efQ'H”g V)]
3. ThenD,(R) is strictly concave on each intervgbg(N —
1),log N] for N > 2.

Corollary 2: With the conditions of Theorem 1., ( R) has the fol-
lowing properties.

=a¥(e") 4 (1 — a)T(e™).

The proof of the corollary is given in the next section. The proof alsbhus ¥ (¢") is strictly convex. Sincel (0) = 0 and ¥(p) > 0 for
shows that part ii) cannot be improved in the sense thétify) = » > 0, the convexity of (¢’) implies that¥(p) is strictly increasing.
| — y|” with » > 3, thenD;,(R) is no longer concave di, log 2]. By the discussion preceding Theorem 1, we need to find nonnegative
Part i) of the preceding corollary implies thA, (R) is not convex. cell lengths{p,; i = 1,2,...} satisfying}_, p; = 1, which minimize

Moreover, part ii) shows that for the squared-error distortion an ECSQ; ®(p:) subjectto— 3, pilogp; < R. For all {p;} satisfying this
achieving the lower convex hull dD;,(R) exists only at the discrete entropy constraint we have
rate valueskR = log N. This fact suggests that an ECSQ which

logp;
achieves the lower convex hull @ (R) is the exception rather than Z‘I)(Pi) = Z pi¥(e™r)
the rule. : b pi>0
> U ((,2:7 P 105—’;197') (5)
IV. PROOFS > T(e™") (6)

Proof of Theorem 1:Without loss of generality we will assume where (5) follows from Jensen’s inequality and the convexity 6f'),
thatp(0) = 0 (otherwise, we can replagéx) by 5(z) = p(z)—p(0)). and (6) follows sincel is increasing. Thu@ (e~ ") is a lower bound
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on the distortion of any quantizer with entropy not greater tRathat  of finite-level quantizers where it will be possible to identify the global
is, Dy, (R) > (e~ ™). Since¥(c*) is strictly convex and strictly in- optimum.
creasingy ., ®(p;) = T (e~ ") ifand only if all positivep;’s are equal By the Kuhn—Tucker conditions, if a local minimumis a regular
and— 3", p;logp; = R. Equivalently,R = log N for some positive point of the constraints in (9) in the sense that the gradients, Gf)
integerN andp; = 1/N for (say)l <i < N,andp; =0fori > N. and}_ !, p; are linearly independent, then there exist Lagrange mul-
The resulting quantizer is th& -level uniform quantizer ovef0,1) tipliersp > 0 andX € R such that
with entropyR = log N and distortion¥(1/N) = Dy (log N). This "
proves the theorem for ratés= log N, whereN is a positive integer. . L) =6, N Di

Now consider the caseg(N — 1) < R < log N, whereN = 70,44, 0) = 6n(p) + it (p) + A;P
[¢™]. First observe that in the infimum definidgy, (R) it is enough to

consider finite-level quantizers; i.e., satisfiesd.J/dp; = 0 fori = 1,...,n. The gradients of.,(p) and

>, pi are linearly dependent if and only jf; = 1/n fori =
D, (R) =inf{D(Q) : Q is finite-level H(Q) < R}. (7) 1,...,n. Otherwise, the Kuhn—Tucker conditions give

OJ(p i, A) _

(Let @ be any infinite-level quantizer ovei0, 1) with cell lengths 5 = p(pi/2) —p(l+logp:) + A =0, i=1,....n
{pi;i=1,2,...} andfora positive integer, let () have cell lengths s
{piyeeesPa=t, ZiZn pi}. ThenH(Q) < H(Q) and that is, a minimizingp must solve

) A= —p(pi/2)+ p(l+logp:), i=1,...,n. (10)
DQ)-D@) <> p

= Let A andy be fixed and fop > 0 definev(p) = —p(p/2) + n(1 +

log p). Then
and now (7) follows sincg_ .-, »; — 0 asn — oc.) . . .
For a positive integet, let P,, denote thex-dimensional probability v(2e’) = —p(e’) + pt + p(1 +log2)

simplex is a strictly concave function af(sincep(e') is strictly convex). Thus

n the equation/(2¢*) = A has at most two distinct solutions inand,
Prn = {(p1, v pr)ipi 2 0i=1,000,m Zpi = 1} consequently, (10) has at most two distinct solutions;in
i=1 Hence the components of any optimale P, take at most two
distinct positive values. To uniquely describe sugh(ap to permuta-
tions of the components), letdenote the smaller of the two values, let
n { denote the number of components equat,tand let us specify that
hn(p) = — Zl)i log ps, ¢ € (0,1/n)and0 < ! < n. Thenthere are — components equal to
i=1 d = (1-cl)/(n—1) (note that = 0 if and only if all components are

and for allp = (p1,...,pn) € P, define

s e B equal). An associated quantizer Ha=lls of lengthc and» — I cells
6n(P) = Z (p2)- of lengthd, and its distortion and entropy are given, respectively, by
=1
Let R > 0 be fixed. Sincé:,, ands,, are continuous ari@,, is compact d(e,l,n) =1%(c) + (n — 1) @(d)
and
Bnr=A{p € Pn:hn(p) < R} e, l,n) = —lcloge — (1 —lc)logd.
is compact and,, achieves its minimum i#,, . Then (7) implies that Therefore, if there exist, I, and minimizing &(c, 1, ») subject to
Du(R) is given by h(c.1,n) < R, the corresponding quantizer is optimal (i.e, it achieves
L , Di(R)).
— I .
Du(R) = ,ﬁlg min{én(p) : p € Bu.n}- (8) Fix R > 0 and assume thabg » < R. Since the uniform:-level

guantizer has minimum distortion (nameh®(1/n)) and maximum
Note thatmin{é,.(p) : p € B, r} is nonincreasing im and an op- entropy (namelylog n) among alln-level quantizers, it is the optimal
timal entropy-constrained quantizer with a finite codebook exists if apd|eye| guantizer with entropy constrait. Sincelogn < R, one
only ifthe infimum is achieved in (8) for finite. If p* € P,, minimizes g easily construct am + 1)-level quantizerQ with » equal-length
4 over B, r and it hask nonzero components, then by dropping th@ejis and one sufficiently small cell which has entrdpyQ)) < R and
zero components we obtain distortionD(Q) < n®(1/n). Hence no:-level quantizer can achieve
Dy (R) if logn < R. Therefore, we will assume thaig n > R (the
caselogn = R was dealt with previously). We will also assume that

which minimizesé,. over By, r. Since the quantizers associated wit loin();sgcel = 0 results in the:-level uniform quantizer with rate
g .

p* andp™™ are identical, we can conclude that it suffices to find the

preEP={peEPL:p;>0,i=1,....k}

positive solutiong € P, of the constrained minimization problem Note that
Oh(c,l,n
minimize 6, (p) T) =Il(logd —loge) >0 (11)
i [ _ (9)
subjectto h.(p) < R, ;1 pi =1 sincec < d = (1 — ¢l)/(n — 1), and thush(c, [, n) is a strictly in-

creasing function of € (0, 1/n) for fixed I. Therefore, the constraint
forall » > 1 such that a solution exists. Sinég andé, are con- (. 7 ») < R can be satisfied wita > 0 if and only if I > luin,
tinuously differentiable oB., . N P;, we can use the Kuhn-Tuckeryhere the integek.:, is defined by
conditions (see, e.g., [11]) to find all local minimum points in (9) for all
n. The collection of these solutions will correspond to a simple family lmin = min{l > 0: log(n — 1) < R}.
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Note that/min > 1 sincelogn > R by assumption. Next we observeBy implicit differentiation, D, (R) is continuously differentiable in

thaté(c, 1, n) is strictly decreasing i since (log(N — 1),log N) for all N > 2, and its derivative is
96(c,l,n) ¢ d / _ 9Dwp(Re) [(OR. - _plef2) —p(d[2)

Assume thafV > 2. By L'Hospital’s rule, the left derivative ak =

(recall thatp is strictly increasing). Thus for fixedh (such that HITe 2y
log N is given by the limit

logn > R) and! > Imin, the unique: minimizing 6(c,, n) subject
to h(c,l,n) < R is the unique solution of the equation

D,-(logN)=  lim  Dj(R)
R—(log N)—
—lcloge—(1—=lIc)logd =R . p(e/2) — p(d/2)
= lim ————=
c—1/N log(d/c)
in the interval(0,1/n). Letc(I, n, R) denote this solution, and denote p(c/2) = p(d)2)
the corresponding distortion by Td2—c/2 '
= lim A . (16)
. e—1/N log(d/2) —log(c/2)
8" (I,n, R) = 8(c(l,n, R),l,n). (12) /2= c2

Lemma 1 in the Appendix shows th&it(l, », R) is strictly increasing The denominator in (16) convergesd’. On the other hand, we have
in for fixed n andR, and thereforé™ (7, n, R) is uniquely minimized

in [ by the choicé = /i, the smallest possible value bof p(c/2)=pd/2) _r(5)—r(5x) 5~ 3x

Now if log(V — 1) < R < log N, thenlogn > R if and only dj2—c/2 £ - % g -£
if n > N. For any suchn, we havel,,i, = n — N + 1, and now P (g) - (;\r) % _ ﬁ
§*(I,n, R) is minimized inl by I = n — N + 1. The corresponding - T 17
distortion is 272N 272

The convexity ofu(t) = p(e?) implies that its left and right deriva-
n=N4+1nR =mn-N+1)®(c)+(N-1)P(d) (13) tivesu’_(t) andu’, (t) existfor allt, which readily implies the existence
of the left and right derivativeg’_ (') andp’, (x) at everyz > 0. In
wherec is the unique solution of the equation fact,u’_(t) = e'p’_(e") andu! (1) = e'p! ("), and therefore’ (x)
andp’, () are positive for all: > 0. Thus as: — 5, the first term
—(n =N +1)cloge— (1= (n—N+1)c)logd=R  (14) on the right side of (17) converges o+ o’ (%), and the second
term converges te- Ni,p;(ﬁ). Therefore, by (16), the left derivative
in (0,1/n) whered = (1= (n — N +1)¢)/(N —1). Lemma 2in of Da(R) atR = log N is
the Appendix shows that (n — N + 1, n, R) is strictly increasing in .
n for fixed N and R, and thus it is minimized by = NV, the smallest D) _(logN) = _L“pgr <L) _N _“)1 o < 1v) < 0.
possible choice for. We can conclude that any quantizer ovér1) 2N? 2N 2Nz 2N
with one cell of lengtle and NV — 1 cells of lengthl = (1—¢) /(N —1),
wherec satisfies

Now let N > 1. To determine the right derivative dP,,(R) at
R = log N, replaceN by N + 1 in the range of the parameteiso
1—¢ now we have: € (0,1/(N + 1)) andd = (1 — ¢)/N). We obtain
—clogc—(l—c)log(V 1>:R
N —

Dj+(log N) = pdm Dj,(R) = lim Dj,(Rc) =0
is optimal; i.e., it achieve®, (R). It also follows that any other quan-

tizer with a different set of cell lengths is strictly suboptimal. [0 sinced — 1/N asc — 0.

Proof of Corollary 2: i) We haved(z,y) = |z — y|” with » > 0, so that Theorem 1 and
i) Recall that by Corollary 1, in the intervilbg(N — 1),log N] the  Corollary 1 apply. Then by (15), the derivative Bf, (R) in (log(IN —
parametric equations dp;(R) are 1),log V) is parametrically given by
R. = —clogc— (1 - c)logd py = (/D)= (df2)"
cloge— (1 —c)log D}, (R.) og(d/c)

Di(R.) = ®(c) + (N — 1)®(d)
wherec € (0,1/N). It follows that D, (R) is twice differentiable in
whered = (1 —¢)/(N — 1) andc € [0,1/N]. Note that: = 0 corre-  (log(N —1),log N) and its second derivative is as shown at the bottom
sponds ta? = log(N — 1) andc = 1/N corresponds td = log N.  of this page. Next, we show th&; (R) < 0in (log(N — 1),log N)

" _ OD,(R.) [OR.\ "
Dlz(RC)_ ac ac

_rel(1 = o)(e/2)7 + d(d/2) ™ log(d/e) + 2(e/2)” — (4/2)']
2¢(1 = ¢)[log(d/c)]? ’
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forall N > 2if 0 < r < 3. By continuity, this implies thaD (R) is
strictly concave offlog(N — 1),log N] forall N > 2.

Sincec < d, D (R..) < 0 if and only if the numerator of the above @
quotient is negative. Letting = d/c, after some algebra we obtain 9!

that D} (R.) < 0 holds for allc € (0,1/N) if and only if

(" —1DH((N—Dz+1)—r(z"+(N —1)z)logz >0 (18)
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Therefore,

2
_(d=c = clog(d/e)) (p(d/2) = p(c/2))
log (4/)

=®(c)—B(d)+ (d—c)p <—

2)

Sinced = (1 —¢l)/(n—1) > ¢, we haveds™ /ol > ( if and only if

forallz > 1. Now observe that the left side of the preceding inequality

is a linear function ofV — 1 such that the coefficient oV — 1 is
z(z" — 1 —1logz"). Since this coefficient is positive for all > 1 by
the inequalityt — 1 > logt, (¢t # 1), it is enough to prove (18) for
N = 2. Equivalently, we will show that

(" = 1)(z+1)

folr) = 2

—rlogx >0
forall > 1. Settingr = 3 we have

(z=1D**+z+1)
(x4 23)2

fi(x) =

and thereforefs(x) > 0 for allz > 1. Sincefs(1) = 0, we obtain
fs(x) > Oforalla > 1.
On the other hand,

Ofr(x) _

(z" = 1)(2® = 2")logx
or '

(x4 27)?

Hence, forall: > 1,0f.(x)/0r > 0if r < 2, anddf,(x)/0r < 0 if

r > 2. Sincefo(x) = 0 and fz(x) > 0 forall @ > 1, this implies that

fr(z) > 0forallz > 1and0 < r < 3, proving the claim ii).
Lemma 3 in the Appendix shows thatrif> 3, then there exists an

zr > 1 such thatf(z) < 0forallz € (1,2,). ThusD,(R) is no

longer concave ofV, log 2] for » > 3. O

APPENDIX

Lemma 1: If R > 0 andlogn > R, the functions™(l,n, R) de-
fined in (12) is a strictly increasing function dfor l,,in <1< n—1.
Proof: Although6*(i,n, R) has been defined for integérthe
defining formulas clearly allow any redle (Imin — €,n — 1 4 ¢) for
e > 0 small enough. We will show that in this intervaé™ /a1 > 0.

Sinceh(c, 1, n) has continuous partial derivatives with respect to
andl, anddh/dc > 0 (see (11)), the implicit function theorem implies

that the partial derivative of(/, n, R) with respect td is

oh 1
de ’

Now sinces* (I, n, R) = 6(c¢(l,n, R),1,n), the chain rule gives

dc

5=

_on
al

a6
ar’

00" _ 05 e
ol ~ dc Ol

The partial derivatives are

oh
7 c(logd —logc)—d+c
oh =1(logd —logc)
Jdc

and
a6 d
57 = 2= 2(d)+(d-c)p <§)
1ol ¢ d
a—’<”(§)"’<§)>~

d

|:(I)(c) —B(d) + dp <g> —¢p (;)} log <F>
> (A=) [p (;) p (5)} . 19

In the rest of the proof we will show that (19) holds for &l> ¢ > 0
which will imply the claim of the lemma.

By assumptiony(t) = p(e') is convex, and hence absolutely con-
tinuous, i.e., it is the integral of its derivative which exists almost ev-
erywhere (see, e.g., [12]). It follows thatzr) = u(log z) is also ab-
solutely continuous, and since its right derivatiig(«) exists for all
x>0 (pl(z) = 2~ 'l (log x)), we have

(@) ()- )"

If p(z) is differentiable at some > 0, thenzp(z/2) — ®(x) is also
differentiable at this point and
€
(3)

o (3)- 900

The absolute continuity of implies thatzp(z/2) is also absolutely
continuous, and sincé is continuously differentiable, we obtain that

v -2+ dp () o (5) = [ 501 (3)
= 2//:/) xply (z) de.

This and (20) show that (19) can be rewritten as

9 -d/2
<H // mp;(m)(iqz) <
c/2

Letting f (=) = zp’, (x) andg(x) = 1/, the above is equivalent to

Pl (@) da. (20)

d

dx

_:L'/
=3P+

€ 4

5P+

(21)

d

E[f(2))El9(2)] > E[f(Z)y(Z)] (22)
whereZ is a random variable uniformly distributed over the interval
(¢/2,d/2). Sincef(x) = u/ (log x), the strict convexity of: implies
thatf is strictly increasing. Sincgis strictly decreasing, (22) holds by
a classical inequality of Chebyshev [13]. (In fact, (22) easily follows
by expanding the expectation

El[(f(Z) = fY)(9(Z) = g(Y))]
whereY is independent ofZ but has the same distribution, and by

noticing that the expectation is negative sifigéx) — f(y))(g(x) —
g(y)) < Oforallz,y >0,z #y.) O
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Lemma 2: Let R > 0 and letN be a positive integer such that

Proof: Letr > 3. Sincef,.(1) = 0, it is enough to prove that

R <logN.lf n > N,thens*(n — N 4+ 1,n, R) defined in (13)isa f,(x) < 0 in a nonempty intervall, =,.). We have

strictly increasing function of.

Proof: Justasin Lemma 1, the definition&f(rn — N +1, n, R)
can be extended to any real-valueduch thatr > N — e (if e > 0 is
small enough). We will show th@s*(n — N + 1,n, R)/dn > 0 for

22— e — 20" T — e+ 1

(z+ )2

frlz) =

gr (@)

alln > N.
To simplify the notation, let

@+

Sinceg.(1) = 0, it is sufficient to prove thay.(x) < 0 in some
S(con) = (n— N+ 1)®(c) + (N — 1)®(d) (1,2r). We have
and

. gr(x) =2r2” " = (2r = D2 4 r(r 4+ 2"
hic,n) =—(n—N+1clogec— (1 —(n— N +1)c)logd.

) P r(r — D2 — .
Then the chain rule implies Sinceg’.(1) = 0, itis enough to prove that! (x) < 0in some(1, z,).
. . We have
96" (n—N+1,n,R) _ 96 dc | 96 23)
on T 9cdn o on’ gl (x)=ra"? (2(27' — "t = (2r = 1)(2r — 2)a”
We have + r(r + 1)1"2 —2(r—Dxz+(r—1)(r— 2))
X =ra" *he ().
a6 ¢ d
e = (n—N+1) </J (§> =P <§>> Sincehr(1) = 2r(3 —r) < 0if r > 3, there exists aw, > 1 such
98 d thatf-(z) < O forallz € (1,2,), as claimed. O
s B(c)—cp <§>
n

ACKNOWLEDGMENT
and by implicit differentiation in (14)

e _ _oh (9" _
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