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Let a ! 0 andT ! 0 first, and then letk ! 1 to obtain

lim sup
a!0

lim sup
D!0

h(X j X̂D; Y; Va)�
1

2
log(2�eD)

� �
1

2
EEE[logm(X;Y )]

which was to be proved.

APPENDIX C

Lemma 2: Assume thatI(X;V ) < 1 and for anyD > 0, Y $
V $ X $ ZD forms a Markov chain. Suppose further that there is
a measurable functionf(Y;ZD) (which may depend onD) such that
f(Y; ZD) ! X in probability asD ! 0. Then

lim
D!0

I(X;V j Y; ZD) = 0:

Proof: Use the chain rule twice to obtain

I(X;V jY; ZD) = I(X;ZD; V jY )� I(ZD;V jY )

= I(X;V j Y ) + I(ZD; V jY;X)� I(ZD; V jY )

= I(X;V j Y )� I(ZD; V jY ) (C.1)

where all quantities are finite sinceI(X;V ) < 1, and the third
equality holds becauseI(ZD;V j Y;X) = 0 by the Markov chain
conditionY $ V $ X $ ZD . Since

I(ZD; V jY ) = I(Y;ZD ;V j Y ) � I(f(Y;ZD);V j Y )

we have

lim inf
D!0

I(ZD;V jY ) � lim inf
D!0

I(f(Y;ZD);V jY ): (C.2)

Now the lower semicontinuity of the mutual information [17] and the
condition thatf(Y; ZD) ! X in probability imply that

lim inf
D!0

I(f(Y;ZD);V jY = y) � I(X;V jY = y) a.e.[PY ]

and therefore by Fatou’s lemma [15] we have

lim inf
D!0

I(f(Y;ZD);V jY ) � I(X;V j Y ):

The lemma now follows by (C.1) and (C.2).
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Optimal Entropy-Constrained Scalar Quantization of a
Uniform Source

András György and Tamás Linder, Senior Member, IEEE

Abstract—Optimal scalar quantization subject to an entropy constraint
is studied for a wide class of difference distortion measures including

th-power distortions with 0. It is proved that if the source is
uniformly distributed over an interval, then for any entropy constraint

(in nats), an optimal quantizer has = interval cells such
that 1 cells have equal length and one cell has length .
The cell lengths are uniquely determined by the requirement that the
entropy constraint is satisfied with equality. Based on this result, a
parametric representation of the minimum achievable distortion ( )
as a function of the entropy constraint is obtained for a uniform source.
The ( ) curve turns out to be nonconvex in general. Moreover, for the
squared-error distortion it is shown that ( ) is a piecewise-concave
function, and that a scalar quantizer achieving the lower convex hull of

( ) exists only at rates = log , where is a positive integer.

Index Terms—Constrained optimization, difference distortion measures,
entropy coding, scalar quantization, uniform source.

I. INTRODUCTION

Scalar (or zero-memory) quantization is the simplest method for the
lossy coding of an information source with real-valued outputs. A scalar
quantizer followed by variable-length lossless coding (entropy coding)
can perform remarkably well, which makes this method popular in ap-
plications where implementation complexity is a decisive factor.
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The two main quantities characterizing a scalar quantizerQ are its
distortion and rate. The distortionD(Q) is the average distortion be-
tween the source and the quantizer output. IfQ is followed by en-
tropy coding, the rate is usually defined as the entropyH(Q) of the
output ofQ. (For a stationary and memoryless source,H(Q) is indeed
the smallest rate asymptotically achievable by variable-length lossless
coding of blocks of quantizer outputs.) One would like to make both
H(Q) andD(Q)as small as possible, but these quantities are inversely
related. A natural design problem is then to minimizeD(Q) subject to
an entropy constraintH(Q) � R. LetDh(R) denote the lowest pos-
sible distortion of any scalar quantizer with output entropy not greater
thanR. A quantizer achieving this minimum is called an ECSQ. It is of
interest to determineDh(R) either analytically or numerically, as well
as to find the optimal ECSQ achieving the minimum distortion.

It appears that very few concrete examples for an optimal ECSQ are
known in analytic form. In general, efforts have focused on finding nec-
essary conditions for the optimality of an ECSQ with afixednumber
of output pointsn [1]–[3]. These conditions give rise to practical al-
gorithms for designing an ECSQ with a fixed number of output points
[1], [4], [2], [3], [5]. To determine the overall optimal ECSQ and the
corresponding optimal performance curveDh(R), one must find the
optimum performance over alln. Unfortunately, this step is rather hard,
even for the most common continuous source distributions. A notable
exception is the case of an exponentially distributed source and mean-
squared distortion considered by Berger [1]. He derived an analytic ex-
pression forDh(R) based on the observation that for the exponential
distribution, the necessary conditions for optimality at any positive rate
are satisfied by an infinite-level uniform quantizer. To our knowledge,
this is the only case where a correct1 analytic formula forDh(R) is
known.

In this correspondence we determine analytically the optimal ECSQ
for a source which is uniformly distributed over a finite interval. We
allow a rather wide class of difference distortion measures including
rth-power distortionsd(x; y) = jx � yjr with r > 0, and distortion
measures of the formd(x; y) = �(jx � yj), where� is a nonnega-
tive, strictly increasing, and convex function. Our main result proves
that an optimal ECSQ for any rateR � 0 (measured in nats) is an
N = deRe-level quantizer (heredxe denotes the smallest integer not
less thanx). This quantizer hasN � 1 cells of equal lengthd and
one cell of lengthc � d, whered andc are uniquely determined by
the requirement that the entropy constraint is satisfied with equality
(the optimal quantizer is uniform ifeR = N , as expected). Special-
ized to the squared-error distortion, our result rigorously proves that
the ECSQs found for the uniform distribution by Farvardin and Mod-
estino [2] (using a numerical approach) are indeed optimal. In case of
the absolute-error distortion our result also agrees with a result inde-
pendently obtained by Topsoe [14] in a prediction context. Based on
the analytic description of an optimal finite-level ECSQ, we then ob-
tain a parametric expression for theDh(R) curve and investigate its
properties. In general,Dh(R) is piecewise-smooth (differentiable ev-
erywhere except at the pointsR = logN ). For the squared-error dis-
tortion (and more generally forrth-power distortions with0 < r � 3)
we prove thatDh(R) is concave in each interval[log(N � 1); logN ],
whereN � 2 is an integer. Thus for such distortion measures,Dh(R)
is not convex over any interval. It also follows that in this case an op-
timal ECSQ achieving the lower convex hull ofDh(R) exists only at
ratesR = logN , whereN is a positive integer.

The question whetherDh(R) for a given source is convex is of par-
ticular interest because of the special role of the lower convex hull of
Dh(R) in variable-length lossy coding. For example, the lower convex

1Although a complete proof that infinite-level uniform quantizers are indeed
optimal is missing, the result is widely believed to be correct.

hull of Dh(R) is the minimum achievable distortion in causal lossy
coding of a memoryless source [6]. Also, Lloyd–Max type necessary
conditions of optimality are known only for an optimal ECSQ which
achieves the lower convex hull ofDh(R) [7]. Now for a discrete source,
Dh(R) is never convex since it is decreasing and piecewise-constant.
On the other hand, it can be shown (using the analytical expression of
Berger [1]) that for an exponentially distributed source and the squared-
error distortion,Dh(R) is convex. It has also been conjectured [6] that
Dh(R) is convex for a wide variety of source distributions and dis-
tortion measures. Our results for the uniform source demonstrate that
Dh(R) can be nonconvex even for “nice” continuous source distribu-
tions.

II. PRELIMINARIES

An N -level scalar quantizerQ is a measurable mapping of the
real line into a finite or countably infinite set of distinct reals
fy1; . . . ; yNg called thecodebookof Q. (In case the codebook is
not finite, we formally defineN = 1 and callQ an infinite-level
quantizer.) Thecodepointsyi and the associatedquantization cells
Si = fx : Q(x) = yig; i = 1; . . . ; N completely characterizeQ
since theSi form a partition of and

Q(x) = yi; if x 2 Si:

The distortion ofQ in quantizing a real random variableX with distri-
bution�X is measured by the expectation

D(Q) = E[d(X;Q(X))] =
1

�1

d(x;Q(x))�X (dx)

where thedistortion measured(�; �) is a nonnegative measurable func-
tion of two real variables. The entropy-constrainedrate of Q is the
entropy of the discrete random variableQ(X)

H(Q) = �

N

i=1

P [X 2 Si] logP [X 2 Si]

wherelog denotes the natural logarithm (H(Q) is measured in nats). A
scalar quantizer whose rate is measured byH(Q) is called anentropy-
constrained scalar quantizer(ECSQ).

For anyR � 0 let Dh(R) denote the lowest possible distortion of
any quantizer with output entropy not greater thanR. This function is
formally defined by

Dh(R) = inffD(Q) : H(Q) � Rg

where the infimum is taken over all finite- or infinite-level scalar quan-
tizers whose entropy is less than or equal toR. Any Q that achieves
Dh(R) in the sense thatH(Q) � R andD(Q) = Dh(R) is called an
optimalECSQ.

III. OPTIMAL ECSQFOR A UNIFORM SOURCE

A scalar quantizer is calledregular if each cellSi is an interval and
each code pointyi lies insideSi. Assume that the distortion measure
is of the form

d(x; y) = �(jx � yj) (1)

where� : [0;1) ! [0;1) is a strictly increasing function. For such
distortion measures, nearest neighbor quantizers (i.e., quantizers which
satisfyd(x;Q(x)) = min1�i�N d(x; yi) for all x) are regular, and
thus an optimal fixed-rateN -level quantizer (i.e., a quantizer which has
minimum distortion among allN -level quantizers) can be assumed to
be regular.
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Unfortunately, an optimal ECSQ is not necessarily a nearest
neighbor quantizer, and thus in general it is incorrect to restrict
attention to regular quantizers (or quantizers with interval cells) when
searching for an optimal ECSQ. Indeed, it is not hard to construct a
discrete source with three real-valued outputs for which the unique
optimal ECSQ is not regular at certain rates. We note here that a
nearest neighbor type condition does hold for an optimal ECSQ
which achieves the lower convex hull ofDh(R), implying that such a
quantizer can be assumed to be regular [7]. However, as Corollary 2
later shows, an ECSQ achieving the lower convex hull ofDh(R) may
not exist for most rate constraints. More recently, it has been shown
[8] for continuous source distributions and distortion measures in the
form d(x; y) = �(jx � yj), where� is an increasing convex function,
that if an optimal finite-level ECSQ exists for a given rate constraint,
then there is an optimal ECSQ for the same rate constraint which is
regular.

The question of ECSQ regularity is much simpler if the source is
uniformly distributed. LetX have a uniform distribution on the unit in-
terval(0; 1) and assume that the distortion measure is in the form of (1).
LetQ be any finite- or infinite-level quantizer with cellsfS1; . . . ; SNg
and code pointsfy1; . . . ; yNg, and definepi = �(Si \ (0; 1)) for
i = 1; . . . ; N , where� denotes the Lebesgue measure. Then we can
define a new quantizer̂Q over (0; 1) which hasN interval cells of
lengthpi; i = 1; . . . ; N , andN code points which are located at the
midpoints of these cells (the definition of̂Q outside(0; 1) is immate-
rial). The distortion ofQ̂ is

D(Q̂) =

N

i=1

�(pi) (2)

where�(p) is defined for allp � 0 by

�(p) = 2
p=2

0

�(x) dx: (3)

Since� is increasing, it is easy to see that for alli = 1; . . . ; N

S \(0;1)

�(jx� yij) dx �
p =2

�p =2

�(jxj) dx

and soD(Q̂) � D(Q). On the other hand,

H(Q̂) = �

N

i=1

pi log pi (4)

so thatH(Q̂) = H(Q). Consequently, when searching for an optimal
ECSQ for the uniform distribution over(0; 1), it suffices to consider
interval partitions of(0; 1) and the associated regular quantizers with
code points at the midpoints of the intervals. All quantizers in the re-
mainder of this correspondence will be assumed to be of this type. The
distortion and rate of any such quantizer are uniquely determined by
the cell lengthsfpi; i = 1; . . . ; Ng through (2) and (4). Note that if
N is finite andpi = 1=N; i = 1; . . . ; N; the resulting quantizer is the
N -level uniform quantizer over(0; 1).

In what follows we will consider distortion measures in the form
d(x; y) = �(jx�yj), where� : [0;1)! [0;1) is strictly increasing,
continuous, and�(et); t 2 is strictly convex. Examples for such dis-
tortion measures includerth-power distortionsd(x; y) = jx�yjr with
r > 0 (in this case,�(et) = ert), and distortion measuresd(x; y) =
�(jx�yj), where� is strictly increasing and convex on[0;1). Another
distortion measure which does not fall into either of these categories but
satisfies the requirements isd(x; y) = log(1 + jx � yj).

If R = 0, the optimal ECSQ for any source distribution has only
one code point. The next result shows that if the source has a uniform
distribution, then for any rateR > 0 there exists an optimal finite-level
ECSQ with a very simple structure.

Theorem 1: Let the sourceX have uniform distribution over(0; 1)
and assume thatd(x; y) = �(jx � yj), where� : [0;1) ! [0;1)

is a strictly increasing continuous function such that�(et) is strictly
convex. ThenQ is an optimal ECSQ for a rate constraintR > 0 if and
only if Q hasN = deRe cells; one cell of lengthc andN � 1 cells of
length(1� c)=(N � 1), wherec is the unique solution of the equation

�c log c� (1� c) log
1� c

N � 1
= R

in the interval(0; 1=N).

Theorem 1 implies the intuitive result that ifR = logN , then the
unique optimal ECSQ for the uniform source is theN -level uniform
quantizer. IfR < logN , thenc < (1 � c)=(N � 1), and the op-
timal ECSQ is no longer unique; there are exactlyN such quantizers.
Farvardin and Modestino [2] reached the same conclusion for squared-
error distortion using numerical methods.

Theorem 1 remains valid (after rescaling) ifX is uniformly dis-
tributed over an arbitrary interval(a; b). To see this, let

X =
X � a

b� a
and

�(x) = �
x

b� a
:

ThenX and� satisfy the conditions of the theorem, and a quantizerQ
is optimal forX and� if and only if

Q̂(x) =
Q(x(b� a) + a)� a

b� a

is optimal forX and�.
The proof of the theorem, given in the next section, has two main

parts. First, similarly to [1] and [2], the usual Kuhn–Tucker conditions
of constrained optimization are used to identify necessary conditions
for the optimality of ann-level ECSQ for a fixed positive integern.
After eliminating all quantizers not satisfying these conditions, we are
left with the family ofn-level quantizers over(0; 1) which satisfy the
entropy constraint with equality and whose cell lengths can take only
two distinct values (these quantizers were also identified in [2]). The
second, harder part of the proof consists of identifying, for a fixedn,
the quantizers which have minimal distortion in this family, and then
finding the optimal choice ofn.

Using (2) and (4), the distortion and entropy of anN -level quantizer
Q with cell lengthsp1 = c andpi = (1� c)=(N � 1); i = 2; . . . ; N
are given, respectively, by

D(Q) = �(c) + (N � 1)�
1� c

N � 1
:

and

H(Q) = �c log c� (1� c) log
1� c

N � 1
:

It is easy to see thatH(Q) is a strictly increasing function ofc 2
[0; 1=N ]. Also, H(Q) = log(N � 1) if c = 0; H(Q) = logN if
c = 1=N , and the corresponding quantizers are the(N � 1)-level and
N -level uniform quantizers, respectively. Thus Theorem 1 yields the
following parametric description ofDh(R) for the uniform distribu-
tion.

Corollary 1: ForX andd(x; y) as in Theorem 1, and for any pos-
itive integerN � 2, the parametric representation ofDh(R) in the
interval [log(N � 1); logN ] is given by

Rc = �c log c� (1� c) log
1� c

N � 1

Dh(Rc) = �(c) + (N � 1)�
1� c

N � 1

wherec 2 [0; 1=N ].

From the parametric representation we can deduce some important
properties ofDh(R). For example, it immediately follows thatDh(R)
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Fig. 1. D (R) for the uniform source and squared error distortion.

is everywhere continuous. Moreover, plottingDh(R) for the squared
error distortiond(x; y) = (x� y)2 (see Fig. 1) suggests that the graph
of Dh(R) consists of smooth, concave pieces joined in a nonsmooth
manner at ratesR = logN . The next result proves these properties of
Dh(R) under more general conditions.

Corollary 2: With the conditions of Theorem 1,Dh(R) has the fol-
lowing properties.

i) Dh(R) is continuously differentiable on each open interval
(log(N � 1); logN), whereN � 2 is a positive integer. At
R = logN , the right derivative ofDh(R) is zero for allN � 1,
and the left derivative ofDh(R) is negative for allN � 2. Thus
Dh(R) is not differentiable at the pointsR = logN for N � 2.

ii) Let d(x; y) = jx�yjr be therth-power distortion with0 < r �
3. ThenDh(R) is strictly concave on each interval[log(N �
1); logN ] for N � 2.

The proof of the corollary is given in the next section. The proof also
shows that part ii) cannot be improved in the sense that ifd(x; y) =
jx � yjr with r > 3, thenDh(R) is no longer concave on[0; log 2].

Part i) of the preceding corollary implies thatDh(R) is not convex.
Moreover, part ii) shows that for the squared-error distortion an ECSQ
achieving the lower convex hull ofDh(R) exists only at the discrete
rate valuesR = logN . This fact suggests that an ECSQ which
achieves the lower convex hull ofDh(R) is the exception rather than
the rule.

IV. PROOFS

Proof of Theorem 1:Without loss of generality we will assume
that�(0) = 0 (otherwise, we can replace�(x) by�(x) = �(x)��(0)).

Let 	 be the Gish–Pierce function [9], [10] defined by

	(p) =

�(p)

p
; if p > 0

0; if p = 0

where�(p) = 2
p=2

0
�(x) dx. Notice that	(p) = E[�(pY )] for all

p � 0, whereY is a random variable that is uniformly distributed over
the interval(0; 1=2). Then the strict convexity of�(et) implies that for
all t1; t2 2 such thatt1 6= t2, and0 < � < 1

	 e�t +(1��)t = E � e�t +(1��)t Y

= E � e�(t +log Y )+(1��)(t +log Y )

< E �� et +log Y + (1� �)� et +log Y

= �	(et ) + (1� �)	(et ):

Thus	(et) is strictly convex. Since	(0) = 0 and	(p) > 0 for
p > 0, the convexity of	(et) implies that	(p) is strictly increasing.

By the discussion preceding Theorem 1, we need to find nonnegative
cell lengthsfpi; i = 1; 2; . . .g satisfying i pi = 1, which minimize

i �(pi) subject to� i pi log pi � R. For allfpig satisfying this
entropy constraint we have

i

�(pi) =
i: p >0

pi	(elogp )

� 	 e
p log p (5)

� 	(e�R) (6)

where (5) follows from Jensen’s inequality and the convexity of	(et),
and (6) follows since	 is increasing. Thus	(e�R) is a lower bound
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on the distortion of any quantizer with entropy not greater thanR, that
is,Dh(R) � 	(e�R). Since	(et) is strictly convex and strictly in-
creasing,

i
�(pi) = 	(e�R) if and only if all positivepi ’s are equal

and�
i
pi log pi = R. Equivalently,R = logN for some positive

integerN andpi = 1=N for (say)1 � i � N , andpi = 0 for i > N .
The resulting quantizer is theN -level uniform quantizer over(0; 1)
with entropyR = logN and distortion	(1=N) = Dh(logN). This
proves the theorem for ratesR = logN , whereN is a positive integer.

Now consider the caselog(N � 1) < R < logN , whereN =
deRe. First observe that in the infimum definingDh(R) it is enough to
consider finite-level quantizers; i.e.,

Dh(R) = inffD(Q) : Q is finite-level; H(Q) � Rg: (7)

(Let Q be any infinite-level quantizer over(0; 1) with cell lengths
fpi; i = 1; 2; . . .g and for a positive integern, let Q̂ have cell lengths
fp1; . . . ; pn�1; i�n pig. ThenH(Q̂) � H(Q) and

D(Q̂)�D(Q) � �
i�n

pi

and now (7) follows since
i�n pi ! 0 asn ! 1.)

For a positive integern, letPn denote then-dimensional probability
simplex

Pn = (p1; . . . ; pn) : pi � 0; i = 1; . . . ; n;

n

i=1

pi = 1

and for allppp = (p1; . . . ; pn) 2 Pn define

hn(ppp) = �

n

i=1

pi log pi;

�n(ppp) =

n

i=1

�(pi):

LetR > 0 be fixed. Sincehn and�n are continuous andPn is compact

Bn;R = fppp 2 Pn : hn(ppp) � Rg

is compact and�n achieves its minimum inBn;R. Then (7) implies that
Dh(R) is given by

Dh(R) = inf
n�1

minf�n(ppp) : ppp 2 Bn;Rg: (8)

Note thatminf�n(ppp) : ppp 2 Bn;Rg is nonincreasing inn and an op-
timal entropy-constrained quantizer with a finite codebook exists if and
only if the infimum is achieved in (8) for finiten. If ppp� 2 Pn minimizes
�n overBn;R and it hask nonzero components, then by dropping the
zero components we obtain

ppp�� 2 P+

k = fppp 2 Pk : pi > 0; i = 1; . . . ; kg

which minimizes�k overBk;R. Since the quantizers associated with
ppp� andppp�� are identical, we can conclude that it suffices to find the
positive solutionsppp 2 P+

n of the constrained minimization problem

minimize �n(ppp)

subject to hn(ppp) � R;
n

i=1

pi = 1
(9)

for all n � 1 such that a solution exists. Sincehn and�n are con-
tinuously differentiable onBn;R \ P

+
n , we can use the Kuhn–Tucker

conditions (see, e.g., [11]) to find all local minimum points in (9) for all
n. The collection of these solutions will correspond to a simple family

of finite-level quantizers where it will be possible to identify the global
optimum.

By the Kuhn–Tucker conditions, if a local minimumppp is a regular
point of the constraints in (9) in the sense that the gradients ofhn(ppp)
and n

i=1
pi are linearly independent, then there exist Lagrange mul-

tipliers� � 0 and� 2 such that

J(ppp; �; �) = �n(ppp) + �hn(ppp) + �

n

i=1

pi

satisfies@J=@pi = 0 for i = 1; . . . ; n. The gradients ofhn(ppp) and
n

i=1
pi are linearly dependent if and only ifpi = 1=n for i =

1; . . . ; n. Otherwise, the Kuhn–Tucker conditions give

@J(ppp; �; �)

@pi
= �(pi=2)� �(1 + log pi) + � = 0; i = 1; . . . ; n

that is, a minimizingppp must solve

� = ��(pi=2) + �(1 + log pi); i = 1; . . . ; n: (10)

Let � and� be fixed and forp > 0 definev(p) = ��(p=2) + �(1 +
log p). Then

v(2et) = ��(et) + �t+ �(1 + log 2)

is a strictly concave function oft (since�(et) is strictly convex). Thus
the equationv(2et) = � has at most two distinct solutions int, and,
consequently, (10) has at most two distinct solutions inpi.

Hence the components of any optimalppp 2 P+
n take at most two

distinct positive values. To uniquely describe such appp (up to permuta-
tions of the components), letc denote the smaller of the two values, let
l denote the number of components equal toc, and let us specify that
c 2 (0; 1=n) and0 � l < n. Then there aren� l components equal to
d = (1� cl)=(n� l) (note thatl = 0 if and only if all components are
equal). An associated quantizer hasl cells of lengthc andn � l cells
of lengthd, and its distortion and entropy are given, respectively, by

�(c; l; n) = l�(c) + (n� l)�(d)

and

h(c; l; n) = �lc log c� (1� lc) log d:

Therefore, if there existc; l; andn minimizing �(c; l; n) subject to
h(c; l; n) � R, the corresponding quantizer is optimal (i.e, it achieves
Dh(R)).

Fix R > 0 and assume thatlogn < R. Since the uniformn-level
quantizer has minimum distortion (namely,n�(1=n)) and maximum
entropy (namely,logn) among alln-level quantizers, it is the optimal
n-level quantizer with entropy constraintR. Sincelogn < R, one
can easily construct an(n+ 1)-level quantizerQ with n equal-length
cells and one sufficiently small cell which has entropyH(Q) < R and
distortionD(Q) < n�(1=n). Hence non-level quantizer can achieve
Dh(R) if logn < R. Therefore, we will assume thatlogn > R (the
caselogn = R was dealt with previously). We will also assume that
l > 0, sincel = 0 results in then-level uniform quantizer with rate
logn > R.

Note that

@h(c; l; n)

@c
= l(log d� log c) > 0 (11)

sincec < d = (1 � cl)=(n � l), and thush(c; l; n) is a strictly in-
creasing function ofc 2 (0; 1=n) for fixed l. Therefore, the constraint
h(c; l; n) � R can be satisfied withc > 0 if and only if l � lmin,
where the integerlmin is defined by

lmin = minfl � 0 : log(n� l) < Rg:
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Note thatlmin � 1 sincelogn > R by assumption. Next we observe
that�(c; l; n) is strictly decreasing inc since

@�(c; l; n)

@c
= l �

c

2
� �

d

2
< 0

(recall that � is strictly increasing). Thus for fixedn (such that
logn > R) andl � lmin, the uniquec minimizing �(c; l; n) subject
to h(c; l; n) � R is the unique solution of the equation

�lc log c� (1� lc) log d = R

in the interval(0; 1=n). Let c(l; n; R) denote this solution, and denote
the corresponding distortion by

��(l; n; R) = �(c(l; n; R); l; n): (12)

Lemma 1 in the Appendix shows that��(l; n; R) is strictly increasing
in l for fixedn andR, and therefore��(l; n; R) is uniquely minimized
in l by the choicel = lmin, the smallest possible value ofl.

Now if log(N � 1) < R < logN , thenlogn > R if and only
if n � N . For any suchn, we havelmin = n � N + 1, and now
��(l; n; R) is minimized inl by l = n � N + 1. The corresponding
distortion is

��(n�N + 1; n; R) = (n�N + 1)�(c) + (N � 1)�(d) (13)

wherec is the unique solution of the equation

�(n�N + 1)c log c� (1� (n�N + 1)c) log d = R (14)

in (0; 1=n) whered = (1 � (n � N + 1)c)=(N � 1). Lemma 2 in
the Appendix shows that��(n�N + 1; n; R) is strictly increasing in
n for fixedN andR, and thus it is minimized byn = N , the smallest
possible choice forn. We can conclude that any quantizer over(0; 1)
with one cell of lengthc andN�1 cells of lengthd = (1�c)=(N�1),
wherec satisfies

�c log c� (1� c) log
1� c

N � 1
= R

is optimal; i.e., it achievesDh(R). It also follows that any other quan-
tizer with a different set of cell lengths is strictly suboptimal.

Proof of Corollary 2:
i) Recall that by Corollary 1, in the interval[log(N � 1); logN ] the

parametric equations ofDh(R) are

Rc = �c log c� (1� c) log d

Dh(Rc) = �(c) + (N � 1)�(d)

whered = (1� c)=(N � 1) andc 2 [0; 1=N ]. Note thatc = 0 corre-
sponds toR = log(N � 1) andc = 1=N corresponds toR = logN .

By implicit differentiation,Dh(R) is continuously differentiable in
(log(N � 1); logN) for all N � 2, and its derivative is

D0

h(Rc) =
@Dh(Rc)

@c

@Rc

@c

�1

=
�(c=2)� �(d=2)

log(d=c)
: (15)

Assume thatN � 2. By L’Hospital’s rule, the left derivative atR =
logN is given by the limit

D0

h (logN) = lim
R!(logN)

D0

h(R)

= lim
c!1=N

�(c=2)� �(d=2)

log(d=c)

= lim
c!1=N

�(c=2)� �(d=2)

d=2� c=2

log(d=2)� log(c=2)

d=2� c=2

: (16)

The denominator in (16) converges to2N . On the other hand, we have

�(c=2)� �(d=2)

d=2� c=2
=

� c
2
� � 1

2N
c
2
� 1

2N

c
2
� 1

2N
d
2
� c

2

�
� d

2
� � 1

2N
d
2
� 1

2N

d
2
� 1

2N
d
2
� c

2

: (17)

The convexity ofu(t) = �(et) implies that its left and right deriva-
tivesu0�(t)andu0+(t) exist for allt, which readily implies the existence
of the left and right derivatives�0

�
(x) and�0+(x) at everyx > 0. In

fact,u0�(t) = et�0�(e
t) andu0+(t) = et�0+(e

t), and therefore�0�(x)
and�0+(x) are positive for allx > 0. Thus asc ! 1

N , the first term
on the right side of (17) converges to�N�1

N
�0
�
( 1
2N

), and the second
term converges to� 1

N
�0+(

1
2N

). Therefore, by (16), the left derivative
of Dh(R) atR = logN is

D0

h (logN) = �
1

2N2
�0+

1

2N
�

N � 1

2N2
�0�

1

2N
< 0:

Now let N � 1. To determine the right derivative ofDh(R) at
R = logN , replaceN by N + 1 in the range of the parameterc (so
now we havec 2 (0; 1=(N + 1)) andd = (1� c)=N ). We obtain

D0

h (logN) = lim
R!(logN)

D0

h(R) = lim
c!0

D0

h(Rc) = 0

sinced ! 1=N asc ! 0.
ii) We haved(x; y) = jx � yjr with r > 0, so that Theorem 1 and

Corollary 1 apply. Then by (15), the derivative ofDh(R) in (log(N �
1); logN) is parametrically given by

D0

h(Rc) =
(c=2)r � (d=2)r

log(d=c)

wherec 2 (0; 1=N). It follows thatDh(R) is twice differentiable in
(log(N�1); logN) and its second derivative is as shown at the bottom
of this page. Next, we show thatD00

h(R) < 0 in (log(N � 1); logN)

D00

h(Rc) =
@D0

h(Rc)

@c

@Rc

@c

�1

=
rc[(1� c)(c=2)r�1+ d(d=2)r�1] log(d=c) + 2[(c=2)r � (d=2)r]

2c(1� c)[log(d=c)]3
:



2710 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 7, NOVEMBER 2000

for all N � 2 if 0 < r � 3. By continuity, this implies thatDh(R) is
strictly concave on[log(N � 1); logN ] for all N � 2.

Sincec < d;D00

h(Rc) < 0 if and only if the numerator of the above
quotient is negative. Lettingx = d=c, after some algebra we obtain
thatD00

h(Rc) < 0 holds for allc 2 (0; 1=N) if and only if

(xr � 1)((N � 1)x+ 1)� r(xr + (N � 1)x) log x > 0 (18)

for all x > 1. Now observe that the left side of the preceding inequality
is a linear function ofN � 1 such that the coefficient ofN � 1 is
x(xr � 1� log xr). Since this coefficient is positive for allx > 1 by
the inequalityt � 1 > log t; (t 6= 1), it is enough to prove (18) for
N = 2. Equivalently, we will show that

fr(x) =
(xr � 1)(x+ 1)

x+ xr
� r log x > 0

for all x > 1. Settingr = 3 we have

f 0

3(x) =
(x� 1)4(x2 + x+ 1)

(x+ x3)2

and thereforef 0

3(x) > 0 for all x > 1. Sincef3(1) = 0, we obtain
f3(x) > 0 for all x > 1.

On the other hand,

@fr(x)

@r
=

(xr � 1)(x2 � xr) log x

(x+ xr)2
:

Hence, for allx > 1; @fr(x)=@r > 0 if r < 2, and@fr(x)=@r < 0 if
r > 2. Sincef0(x) = 0 andf3(x) > 0 for all x > 1, this implies that
fr(x) > 0 for all x > 1 and0 < r � 3, proving the claim ii).

Lemma 3 in the Appendix shows that ifr > 3, then there exists an
xr > 1 such thatfr(x) < 0 for all x 2 (1; xr). ThusDh(R) is no
longer concave on[0; log 2] for r > 3.

APPENDIX

Lemma 1: If R > 0 and logn > R, the function��(l; n; R) de-
fined in (12) is a strictly increasing function ofl for lmin � l � n� 1.

Proof: Although ��(l; n; R) has been defined for integerl, the
defining formulas clearly allow any reall 2 (lmin � �; n � 1 + �) for
� > 0 small enough. We will show that in this interval,@��=@l > 0.

Sinceh(c; l; n) has continuous partial derivatives with respect toc
andl, and@h=@c > 0 (see (11)), the implicit function theorem implies
that the partial derivative ofc(l; n; R) with respect tol is

@c

@l
= �

@h

@l

@h

@c

�1

:

Now since��(l; n; R) = �(c(l; n; R); l; n), the chain rule gives

@��

@l
=

@�

@c

@c

@l
+

@�

@l
:

The partial derivatives are

@h

@l
= c(log d� log c)� d+ c

@h

@c
= l(log d� log c)

and
@�

@l
= �(c)� �(d) + (d� c)�

d

2

@�

@c
= l �

c

2
� �

d

2
:

Therefore,

@��

@l
= �(c)� �(d) + (d� c)�

d

2

�
(d� c� c log(d=c)) (� (d=2)� � (c=2))

log (d=c)
:

Sinced = (1� cl)=(n� l) > c, we have@��=@l > 0 if and only if

�(c)� �(d) + d�
d

2
� c�

c

2
log

d

c

> (d� c) �
d

2
� �

c

2
: (19)

In the rest of the proof we will show that (19) holds for alld > c > 0
which will imply the claim of the lemma.

By assumption,u(t) = �(et) is convex, and hence absolutely con-
tinuous, i.e., it is the integral of its derivative which exists almost ev-
erywhere (see, e.g., [12]). It follows that�(x) = u(logx) is also ab-
solutely continuous, and since its right derivative�0+(x) exists for all
x > 0 (�0+(x) = x�1u0+(log x)), we have

�
d

2
� �

c

2
=

d=2

c=2

�0+(x) dx: (20)

If �(x) is differentiable at somex > 0, thenx�(x=2)� �(x) is also
differentiable at this point and

d

dx
x�

x

2
� �(x) =

x

2
�0+

x

2
:

The absolute continuity of� implies thatx�(x=2) is also absolutely
continuous, and since� is continuously differentiable, we obtain that

�(c)� �(d) + d�
d

2
� c�

c

2
=

d

c

x

2
�0+

x

2
dx

= 2
d=2

c=2

x�0+(x) dx: (21)

This and (20) show that (19) can be rewritten as

2

d� c

d=2

c=2

x�0+(x) dx
2

d� c

d=2

c=2

1

x
dx

>
2

d� c

d=2

c=2

�0+(x) dx :

Lettingf(x) = x�0+(x) andg(x) = 1=x, the above is equivalent to

E[f(Z)]E[g(Z)] > E[f(Z)g(Z)] (22)

whereZ is a random variable uniformly distributed over the interval
(c=2; d=2). Sincef(x) = u0+(log x), the strict convexity ofu implies
thatf is strictly increasing. Sinceg is strictly decreasing, (22) holds by
a classical inequality of Chebyshev [13]. (In fact, (22) easily follows
by expanding the expectation

E[(f(Z)� f(Y ))(g(Z)� g(Y ))]

whereY is independent ofZ but has the same distribution, and by
noticing that the expectation is negative since(f(x)� f(y))(g(x)�
g(y)) < 0 for all x; y > 0; x 6= y.)
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Lemma 2: Let R > 0 and letN be a positive integer such that
R < logN . If n � N , then��(n�N + 1; n; R) defined in (13) is a
strictly increasing function ofn.

Proof: Just as in Lemma 1, the definition of��(n�N+1; n; R)
can be extended to any real-valuedn such thatn � N � � (if � > 0 is
small enough). We will show that@��(n �N + 1; n; R)=@n > 0 for
all n � N .

To simplify the notation, let

�̂(c; n) = (n�N + 1)�(c) + (N � 1)�(d)

and

ĥ(c; n) = �(n�N + 1)c log c� (1� (n�N + 1)c) log d:

Then the chain rule implies

@��(n�N + 1; n; R)

@n
=

@�̂

@c

@c

@n
+

@�̂

@n
: (23)

We have

@�̂

@c
= (n�N + 1) �

c

2
� �

d

2

@�̂

@n
= �(c)� c�

d

2

and by implicit differentiation in (14)

@c

@n
= �

@ĥ

@n

@ĥ

@c

�1

= �
c(log d� log c+ 1)

(n�N + 1)(logd� log c)
:

Substitution into (23) gives

@��(n �N + 1; n; R)

@n
= �(c)� c�

c

2
+

c(�(d=2)� �(c=2))

log(d=c)
:

Sinced = (1� c(n�N +1))=(N � 1) > c if c 2 (0; 1=n), we have
@��(n � N + 1; n; R)=@n > 0 if and only if

�(d=2)� �(c=2)

log(d=2)� log(c=2)
> �

c

2
�

�(c)

c
: (24)

By (21), the right side of the preceding inequality equals

1

c=2

c=2

0

x�0+(x) dx =
1

c=2

c=2

0

u0+(log x) dx

whereu(t) = �(et). Sinceu0+ is strictly increasing, the last expression
is less thanu0+(log(c=2)). On the other hand, sinceu is strictly convex

�(d=2)� �(c=2)

log(d=2)� log(c=2)

=
u(log(d=2))� u(log(c=2))

log(d=2)� log(c=2)
> u0+(log(c=2))

which proves (24).

Lemma 3: Let

fr(x) =
(xr � 1)(x+ 1)

x+ xr
� r log x:

If r>3, then there is anxr>1 such thatfr(x)<0 for all x2(1; xr).

Proof: Let r > 3. Sincefr(1) = 0, it is enough to prove that
f 0r(x) < 0 in a nonempty interval(1; xr). We have

f 0r(x) =
x2r � rx2r�1 + rxr+1 � 2xr + rxr�1 � rx+ 1

(x+ xr)2

=
gr(x)

(x+ xr)2
:

Sincegr(1) = 0, it is sufficient to prove thatg0r(x) < 0 in some
(1; xr). We have

g0r(x) = 2rx2r�1 � r(2r � 1)x2r�2 + r(r + 1)xr

�2rxr�1 + r(r � 1)xr�2 � r:

Sinceg0r(1) = 0, it is enough to prove thatg00r (x) < 0 in some(1; xr).
We have

g00r (x) = rxr�3 2(2r� 1)xr+1 � (2r� 1)(2r� 2)xr

+ r(r + 1)x2 � 2(r � 1)x+ (r � 1)(r� 2)

= rxr�3hr(x):

Sincehr(1) = 2r(3� r) < 0 if r > 3, there exists anxr > 1 such
thatfr(x) < 0 for all x 2 (1; xr), as claimed.

ACKNOWLEDGMENT

The authors wish to thank an anonymous referee for many construc-
tive comments.

REFERENCES

[1] T. Berger, “Optimum quantizers and permutation codes,”IEEE Trans.
Inform. Theory, vol. IT-18, pp. 759–765, Nov. 1972.

[2] N. Farvardin and J. W. Modestino, “Optimum quantizer performance
for a class of non-Gaussian memoryless sources,”IEEE Trans. Inform.
Theory, vol. IT-30, pp. 485–497, May 1984.

[3] J. C. Kieffer, T. M. Jahns, and V. A. Obuljen, “New results on optimal
entropy-constrained quantization,”IEEE Trans. Inform. Theory, vol. 34,
pp. 1250–1258, Sept. 1988.

[4] A. N. Netravali and R. Saigal, “Optimum quantizer design using a fixed-
point algorithm,”Bell Syst. Tech. J, vol. 55, pp. 1423–1435, Nov. 1976.

[5] P. A. Chou, T. Lookabaugh, and R. M. Gray, “Entropy-constrained
vector quantization,”IEEE Trans. Acoust. Speech, Signal Processing,
vol. 37, pp. 31–42, Jan. 1989.

[6] D. L. Neuhoff and R. K. Gilbert, “Causal source codes,”IEEE Trans.
Inform. Theory, vol. IT-28, pp. 701–713, Sept. 1982.

[7] P. A. Chou and B. J. Betts, “When optimal entropy-constrained quan-
tizers have only a finite number of codewords,” inProc. IEEE Int. Symp.
Information Theory, Cambridge, MA, USA, Aug. 16–21, 1998, p. 97.

[8] A. György and T. Linder, On the structure of optimal entropy-con-
strained quantizers, 2000. in preparation.

[9] H. Gish and J. N. Pierce, “Asymptotically efficient quantizing,”IEEE
Trans. Inform. Theory, vol. IT-14, pp. 676–683, Sept. 1968.

[10] R. M. Gray,Source Coding Theory. Boston, MA: Kluwer, 1990.
[11] D. G. Luenberger, Linear and Nonlinear Programming, 2nd

ed. Reading, MA.: Addison-Wesley, 1984.
[12] W. Rudin,Real and Complex Analysis, 3rd ed. New York: McGraw-

Hill, 1987.
[13] G. H. Hardy, J. E. Littlewood, and G. Polya,Inequalities, 2nd

ed. Cambridge, U.K.: Cambridge Univ. Press, 1959.
[14] F. Topsoe, “Instances of exact prediction and a new type of inequalities

obtained by anchoring,” inProc. IEEE Information Theory Workshop,
Kruger National Park, South Africa, June 20–25, 1999, p. 99.


