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Online Markov Decision Processes
Under Bandit Feedback

Gergely Neu, András György, Member, IEEE, Csaba Szepesvári, Senior Member, IEEE, and András Antos

Abstract—We consider online learning in finite stochastic Mar-
kovian environments where in each time step a new reward func-
tion is chosen by an oblivious adversary. The goal of the learning
agent is to compete with the best stationary policy in hindsight
in terms of the total reward received. Specifically, in each time
step the agent observes the current state and the reward associ-
ated with the last transition, however, the agent does not observe
the rewards associated with other state-action pairs. The agent is
assumed to know the transition probabilities. The state of the art
result for this setting is an algorithm with an expected regret of

. In this paper, assuming that stationary policies mix
uniformly fast, we show that after time steps, the expected re-
gret of this algorithm (more precisely, a slightly modified version
thereof) is , giving the first rigorously proven, essen-
tially tight regret bound for the problem.

Index Terms—Adversarial environment, Markov decision
process, online learning, robust control.

I. INTRODUCTION

I N THIS paper we consider online learning in finite sto-
chastic Markovian environments where in each time step

a new reward function may be chosen by an oblivious adver-
sary. The interaction between the learner and the environment
is shown in Fig. 1. The environment is split into two parts: One
part has a controlled Markovian dynamics, while another one
has an unrestricted, uncontrolled (autonomous) dynamics. In
each discrete time step , the learning agent receives the state
of the Markovian environment and some informa-
tion about the previous state of the autonomous
dynamics. The learner then makes a decision about the next ac-
tion , which is sent to the environment. In response,
the environment makes a transition: the next state of the
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Fig. 1. Interaction between the learning agent and the environment. Here
denotes a unit delay, that is, any information sent through such a box is received
at the beginning of the next time step.

Markovian part is drawn from a transition probability kernel
, while the other part makes a transition in an au-

tonomous fashion. In the meanwhile, the agent incurs a reward
that depends on the complete state

of the environment and the chosen action; then the process con-
tinues with the next step. The goal of the learner is to collect as
much reward as possible. The agent knows the transition proba-
bility kernel and the reward function , however, he does not
know the sequence in advance. We call this problem online
learning in Markov Decision Processes (MDPs).
We take the viewpoint that the uncontrolled dynamics might

be very complex and thus modeling it based on the available
limited information might be hopeless. Equivalently, we assume
that whatever can be modeled about the environment is modeled
in the Markovian, controlled part. As a result, when evaluating
the performance of the learner, the total reward of the learner
will be compared to that of the best stochastic stationary policy
in hindsight that assigns actions to the states of the Markovian
part in a random manner. This stationary policy is thus selected
as the policy that maximizes the total reward given the sequence
of reward functions , .1 Given a
horizon , any policy and initial distribution uniquely
determines a distribution over the sequence space .
Noting that the expected total reward of is then a linear func-
tion of the distribution of and that the space of distributions is
a convex polytope with vertices corresponding to distributions
of deterministic policies, we see that there will always exist a
deterministic policy that maximizes the total expected reward
in time steps. Hence, it is enough to consider deterministic
policies only as a reference. To make the objective more pre-
cise, for a given stationary deterministic policy
let denote the state-action pair that would have been
visited in time step had one used policy from the beginning

1It is worth noting that the problem can be defined without referring to the
uncontrolled, unmodelled dynamics by starting with an arbitrary sequence of
reward functions . That the two problems are equivalent follows because
there is no restriction on the range of or its dynamics.
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of time (the initial state being fixed). Then, the goal can be ex-
pressed as keeping the (expected) regret,

small, regardless of the sequence of reward functions .
In particular, a sublinear regret-growth,

means that the average reward collected by the learning
agent approaches that of the best policy in hindsight. Naturally,
a smaller growth-rate is more desirable.2
The motivation to study this problem is manifold. One view-

point is that a learning agent achieving sublinear regret growth
shows robustness in the face of arbitrarily assigned rewards,
thus, the model provides a useful generalization of learning and
acting inMarkovDecision Processes. Some examples where the
need for such robustness arises naturally are discussed below.
Another viewpoint is that this problem is a useful generalization
of online learning problems studied in the machine learning lit-
erature (e.g., [5]). In particular, in this literature, the problems
studied are so-called prediction problems that involve an (obliv-
ious) environment that chooses a sequence of loss functions.
The learner’s predictions are elements in the common domain
of these loss functions and the goal is to keep the regret small as
compared with the best fixed prediction in hindsight. Identifying
losses with negative rewards we may notice that this problem
coincides exactly with our model with , that is, our
problem is indeed a generalization of this problem where the
reward functions have memory represented by multiple states
subject to the Markovian control.
Let us now consider some examples that fit the above model.

Generally, since our approach assumes that the hard-to-model,
uncontrolled part influences the rewards only, the examples con-
cern cases where the reward is difficult to model. This is the
case, for example, in various production- and resource-alloca-
tion problems, where the major source of difficulty is to model
the prices that influence the rewards. Indeed, the prices in these
problems tend to depend on external, generally unobserved fac-
tors and thus dynamics of the prices might be hard to model.
Other examples include problems coming from computer sci-
ence, such as the -server problem, paging problems, or web-
optimization (e.g., ad-allocation problems with delayed infor-
mation) (see, e.g., [7], [22]).
Previous results that concern online learning in MDPs

(with known transition probability kernels) are summarized
in Table I. In the current paper we study the problem with
recurrent Markovian dynamics while assuming that the only
information received about the uncontrolled part is in the
form of the actual reward . In particular, in our model the
agent does not receive , while in most previous works it
was assumed that is observed [6], [7], [22]. Following the
terminology used in the online learning literature [2], when
is available (equivalently, the agent receives the reward

function in every time step), we say that
learning happens under full information, while in our case we
say that learning happens under bandit feedback (note that
Even-Dar et al. [7] suggested as an open problem to address
the bandit situation studied here). In an earlier version of this
paper [16], we provided an algorithm, MDP-EXP3, for learning

2Following previous works in the area, in this paper we only consider regret
relative to a fixed stationary policy. However, as usual in online learning, our
results and algorithms can also be extended to less restricted sets of reference
policies, such as the class of sequences of stationary policies with a restricted
number of switches. We discuss such extensions in Section IV-D.

TABLE I
SUMMARY OF PREVIOUS RESULTS. PREVIOUS WORKS CONCERNED PROBLEMS
WITH EITHER FULL-INFORMATION OR BANDIT FEEDBACK, PROBLEMS
WHEN THE MDP DYNAMICS MAY OR MAY NOT HAVE LOOPS (TO BE

MORE PRECISE, IN NEU ET AL. [13] WE CONSIDERED EPISODIC MDPS WITH
RESTARTS). FOR EACH PAPER, THE ORDER OF THE OBTAINED REGRET

BOUND IN TERMS OF THE TIME HORIZON IS GIVEN

The Lazy-FPL algorithm has smaller computational complexity than
MDP-E.
The stochastic regret of Q-FPL was shown to be sublinear almost

surely (not only in expectation).

in MDPs with recurrent dynamics under bandit feedback, and
showed that it achieves a regret of order .3 In this
paper we improve upon the analysis of [16] and prove an

-regret bound for the same algorithm. As it follows
from a lower bound proven by Auer et al. [2] for bandit
problems, apart from logarithmic and constant terms the rate
obtained is unimprovable. The improvement compared to [16]
is achieved by a more elaborate proof technique that builds on
a (perhaps) novel observation that the so-called exponential
weights technique (that our algorithm builds upon) changes
its weights “slowly.” As in previous works where “loopy”
Markovian dynamics were considered, our main assumptions
on the MDP transition probability kernel will be that stationary
policies mix uniformly fast. In addition, we shall assume that
the stationary distributions of these policies are bounded away
from zero. These assumptions will be discussed later.
We also mention here that Yu and Mannor [20], [21] consid-

ered the related problem of online learning in MDPs where the
transition probabilities may also change arbitrarily after each
transition. This problem is significantly more difficult than
the case where only the reward function is allowed to change.
Accordingly, the algorithms proposed in these papers do not
achieve sublinear regret. Unfortunately, these papers have also
gaps in the proofs, as discussed in detail in [13].
Finally, we note in passing that the contextual bandit problem

considered by Lazaric and Munos [12] can also be regarded as
a simplified version of our online learning problem where the
states are generated in an i.i.d. fashion (though we do not con-
sider the problem of competing with the best policy in a re-
stricted subset of stationary policies). For regret bounds con-
cerning learning in purely stochastic unknown MDPs, see the
work of Jaksch et al. [10] and the references therein. Learning in
adversarial MDPs without loops was also considered by György
et al. [8] for deterministic transitions under bandit feedback, and
under full information but with unknown transition probability
kernels in our recent paper [14].
The rest of the paper is organized as follows: The problem

is laid out in Section II, which is followed by a section that
makes our assumptions precise (Section III). The algorithm and
the main result are given and discussed in Section IV, with the
proofs presented in Section V.

3Here, denotes the class of functions satisfying
for some .
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II. NOTATION AND PROBLEM DEFINITION

The purpose of this section is to provide the formal defini-
tion of our problem and to set the goals. We start with some
preliminaries, in particular by reviewing the language we use
in connection to Markov Decision Processes (MDPs). This will
be followed by the definition of the online learning problem.We
assume that the reader is familiar with the concepts necessary to
study MDPs, our purpose here is to introduce the notation only.
For more background about MDPs, consult Puterman [17].
We define a finite Markov Decision Process (MDP)

by a finite state space , a finite action set , a transition
probability kernel , and a reward
function . At time , based
on the sequence of past states, observed rewards, and actions,

, an agent acting in the MDP chooses
an action to be executed.4 As a result, the process moves
to state with probability and the agent
incurs the reward .We note in passing that at the price of
increased notational load, but with essentially no change to the
contents,wecouldconsider thecasewhere thesetofactionsavail-
able at time step is restricted to a non-empty subset of all
actions,where the set-system, , is known to the agent.
However, for simplicity, in the restof thepaperwestick to thecase

. In an MDP the goal of the agent is to maximize the
long-term reward. In particular, in the so-called average-reward
problem, thegoalof theagent is tomaximize the long-runaverage
reward. In what follows, the symbols will be reserved
to denote a state in , while will be reserved to denote an
action in . In expressions involving sumsover , the domain of

will be suppressed to avoid clutter. The same holds for
sums involving actions.
Before defining the learning problem, let us introduce some

more notation. We use to denote the -norm of a function
or a vector. In particular, for the supremum norm of a
function is defined as , and
for and for any vector ,

. We use to denote the row
vectors of the canonical basis of the Euclidean space . Since
we will identify with the integers , we will also
use the notation for . We will use ln to denote the
natural logarithm function.

A. Online Learning in MDPs

In this paper we consider a so-called online learning problem
when the reward function is allowed to change arbitrarily in
every time step. That is, instead of a single reward function ,
a sequence of reward functions is given. This sequence
is assumed to be fixed ahead of time, and, for simplicity, we
assume that for all and

. No other assumptions are made about this sequence.
The learning agent is assumed to know the transition proba-

bilities , but is not given the sequence . The protocol of
interaction with the environment is unchanged: At time step
the agent selects an action based on the information avail-
able to it, which is sent to the environment. In response, the re-
ward and the next state are communicated to the
agent. The initial state is generated from a fixed distribution
, which may or may not be known.
Let the expected total reward collected by the agent up to time
be denoted by

4Throughout thepaperwewill useboldface letters todenote randomvariables.

As before, the goal of the agent is to make this sum as large
as possible. In classical approaches to learning one would as-
sume some kind of regularity of and then derive bounds on
how much reward the learning agent loses as compared to the
agent that knew about the regularity of the rewards and who
acted optimally from the beginning of time. The loss or regret,
measured in terms of the difference of total expected rewards of
the two agents, quantifies the learner’s efficiency. In this paper,
following the recent trend in the machine learning literature [5],
while keeping the regret criterion, we will avoid making any
assumption on how the reward sequence is generated, and take
a worst-case viewpoint. The potential benefit is that the results
will be more generally applicable and the algorithms will enjoy
added robustness, while, generalizing from results available for
supervised learning [4], [11], [18], the algorithms can also be
shown to avoid being too pessimistic.
The concept of regret in our case is defined as follows: We

shall consider algorithms which are competitive with stochastic
stationary policies. Fix a (stochastic) stationary policy

and let be the trajectory that results
from following policy from (in particular,

). The expected total reward of over the
first time steps is defined as

Now, the (expected) regret (or expected relative loss) of the
learning agent relative to the class of stationary policies is de-
fined as

where the supremum is taken over all stochastic stationary poli-
cies in . Note that the policy maximizing the total expected
reward is chosen in hindsight, that is, based on the knowledge of
the reward functions . Thus, the regret measures how
well the learning agent is able to generalize from its moment to
moment knowledge of the rewards to the sequence .
If the regret of an agent grows sublinearly with then it can be
said to act as well as the best (stochastic stationary) policy in the
long run (i.e., the average expected reward of the agent in the
limit is equal to that of the best policy). In this paper our main
result will show that there exists an algorithm such that if that
algorithm is followed by the learning agent, then the learning
agent’s regret will be bounded by , where is a
constant that depends on the transition probability kernel, but is
independent of the sequence of rewards .

III. ASSUMPTIONS ON THE TRANSITION PROBABILITY KERNEL

Before describing our assumptions, a fewmore definitions are
needed: First of all, for brevity, in what follows we will call sto-
chastic stationary policies just policies. Further, without loss of
generality, we shall identify the states with the first integers
and assume that . Now, take a policy and
define the Markov kernel .
The identification of with the first integers makes it pos-
sible to view as a matrix: . In what
follows, we will also take this view when convenient.
In general, distributions will also be treated as row vectors.

Hence, for a distribution over , is the distribution over
that results from using policy for one step after a state

is sampled from (i.e., the “next-state distribution” under ).
Finally, a stationary distribution of a policy is a distribution

that satisfies .
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In what follows we assume that every (stochastic stationary)
policy has a well-defined unique stationary distribution .
This ensures that the average reward underlying any stationary
policy is a well-defined single real number. It is well-known that
in this case the convergence to the stationary distribution is ex-
ponentially fast. Following Even-Dar et al. [7], we consider the
following stronger, “uniform mixing condition” (which implies
the existence of the unique stationary distributions):
Assumption A1: There exists a number such that for

any policy and any pair of distributions and over

(1)

As Even-Dar et al. [7], we call the smallest satisfying this
assumption the mixing time of the transition probability kernel
. Together with the existence and uniqueness of the stationary

policy, the next assumption ensures that every state is visited
eventually no matter what policy is chosen.
Assumption A2: The stationary distributions are uniformly

bounded away from zero:

for some .
Note that is the supremum over all policy of the

Markov–Dobrushin coefficient of ergodicity, defined as
for the transition proba-

bility kernel , see, e.g., [9]. It is also known that
[9]. Since is

a continuous function of and the set of policies is compact,
there is a policy with . These facts imply
that Assumption A1 is satisfied, that is, , if and
only if for every , , that is, is a scramblingmatrix
( is a scrambling matrix if any two rows of share some
column in which they both have a positive element). Further-
more, if is a scrambling matrix for any deterministic policy
then it is also a scrambling matrix for any stochastic policy.

Thus, to guarantee Assumption A1 it is enough to verify mixing
for deterministic policies only. The assumptions will be further
discussed in Section IV-D.

IV. LEARNING IN ONLINE MDPS UNDER BANDIT FEEDBACK

In this section we shall first introduce some additional, stan-
dard MDP concepts that we will need. That these concepts are
well-defined follows from our assumptions on and from stan-
dard results to be found, for example, in the book by Puterman
[17]. After the definitions, we specify our algorithm. The sec-
tion is finished by the statement of our main result concerning
the performance of the proposed algorithm.

A. Preliminaries

Fix an arbitrary policy and . Let be a
random trajectory generated by and the transition probability
kernel and an arbitrary everywhere positive initial distribu-
tion over the states. We will use to denote the action-value
function underlying and the immediate reward , while we
will use to denote the corresponding (state) value function.5
That is, for , we have

5Most sources would call these functions differential action- and state-value
functions. We omit this adjective for brevity.

where is the average reward per stage corresponding to :

The average reward per stage can be expressed as

where is the stationary distribution underlying policy .
Under our assumptions stated in the previous section, up to a
shift by a constant function, the value functions are the
unique solutions to the Bellman equations

(2)

which hold simultaneously for all (Corollary
8.2.7 of [17]). We will use to denote the optimal action-value
function, that is, the action-value function underlying a policy
that maximizes the average-reward in the MDP specified by

. We will also need these concepts for an arbitrary re-
ward function . In such a case, we will use ,
, and to denote the respective value function, action-value

function, and average reward of a policy .
Now, consider the trajectory followed by a

learning agent with . For any , define

(3)

and introduce the policy followed in time step ,
, where and, more generally

for all is defined to be the empty sequence. Note that
is computed based on past information and is therefore random.
We introduce the following notation:

With this, we see that the following equations hold simultane-
ously for all :

(4)

B. Algorithm

Our algorithm,MDP-EXP3, shown as Algorithm 1, is inspired
by that of Even-Dar et al. [7], while also borrowing ideas from
the EXP3 algorithm (exponential weights algorithm for explo-
ration and exploitation) of Auer et al. [2]. The main idea of
the algorithm is to construct estimates of the action-value
functions , which are then used to determine the action-se-
lection probabilities in each state in each time step .
In particular, the probability of selecting action in state at
time step is computed as the mixture of the uniform distribu-
tion (which encourages exploring actions irrespective of what
the algorithm has learned about the action-values) and a Gibbs
distribution, themixture parameter being . Given a state ,
the Gibbs distribution defines the probability of choosing action
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at time step to be proportional to .6
Here, , are further parameters of the algorithm.
Note that for the single-state setting with , MDP-EXP3 is
equivalent to the EXP3 algorithm of Auer et al. [2].

Algorithm 1 MDP-EXP3: an algorithm for online learning in
MDPs

Set , ,
, .

For repeat:
1) Set

for all .
2) Draw an action .
3) Receive reward and observe .
4) If

a) Compute for all using (8).
b) Construct estimates using (6) and compute

using (5).
c) Set for
all .

The reason the Gibbs policy does not use the last estimates
is to allow the construction of a reasonable estimate of the
action-value function . If was available, one could com-
pute based on [cf. (4)] and the sum could then run up to

, resulting in the algorithm of Even-Dar et al. [7]. Since
in our problem is not available, we estimate it using an im-
portance sampling estimator below (from now on, ).
Given this , the estimate of the action-value function is
defined as the action-value function underlying policy in the
average-reward MDP given by the transition probability kernel
and reward function . Thus, , up to a shift by a constant

function, can be computed as the solution to the Bellman equa-
tions corresponding to [cf. (4)]:

(5)

which hold simultaneously for all . Since is
invariant to constant shifts of , any of the solutions of these
equations leads to the same sequence of policies.Hence, in what
follows, without loss of generality we assume that the algorithm
uses , i.e., the value function of in the average-rewardMDP
defined by .
To define the estimator define as the probability of

visiting state at time step , conditioned on the history
up to time step , including and (cf. (3) for the
definition of ):

6In the algorithm the Gibbs action-selection probabilities are com-
puted in an incremental fashion with the help of the “weights” .
Note that a numerically stable implementation would calculate the ac-
tion-selection probabilities based on the relative value differences,

. These relative value dif-
ferences can also be updated incrementally. The form shown in Algorithm 1 is
preferred for mathematical clarity.

Then, the estimate of is constructed using

if ;

otherwise.
(6)

The importance sampling estimator (6) is well-defined only if
for ,

(7)

holds almost surely (by construction ).
To see the intuitive reason of why (7) holds, it is instructive to
look into how the distribution can be computed.
When , it should be clear from the definition of

that, viewing as a row vector, . Now
let . Denote by the transition probability matrix of
the policy that selects action in every state and recall that
denotes the th unit row vector of the canonical basis of the
-dimensional Euclidean space. We may write

(8)

This holds because for any , is entirely determined
by the history , while for the history also
includes (and thus determines) . Using the notation

to denote that the random variable is measur-
able with respect to the sigma-algebra generated by the history

, the above fact can be stated as

for
for (9)

Consequently, we also have that
and therefore (8) follows from the law of total probability. Note
also that

(10)
where the last equality follows from the definition of and .
The algorithm as presented needs to know to compute

at step . When is unknown, instead of starting the
computation of the weights at time step , we can start
the computation at time step (i.e., change
of step 4 to ). Clearly, in the worst-case, the regret
can only increase by a constant amount (the magnitude of the
largest reward) as a result of this change.
An essential step of the proof of our main result is to show

that inequality (7) indeed holds, that is, is bounded away
from zero. In fact, we will show that this inequality holds almost
surely7 for all provided that is large enough, which
explains why the sum in the definition of the Gibbs policy runs
from time . This will be done by first showing that the poli-
cies (especially, during the last steps) change “suffi-
ciently slowly” (this is where it becomes useful that the Gibbs
policy is defined using a sum of previous action values). Conse-
quently, will all be “quite close” to the policy
of the last time step. Then, the expression on the right-hand side
of (8) can be seen to be close to the -step state distri-
bution of when starting from , which, if is
large enough, will be shown to be close to the stationary dis-
tribution of thanks to Assumption A1. Since by Assumption
A2, then, by choosing the algorithm’s
parameters appropriately, we can show that

7In what follows, for the sake of brevity, unless otherwise stated, we will
omit the modifier “almost surely” from probabilistic statements. It is worth to
mention that the finiteness of and allows several statements concerning
conditional expectations to hold always, instead of almost surely.



NEU et al.: ONLINE MARKOV DECISION PROCESSES UNDER BANDIT FEEDBACK 681

holds for all , that is, inequality (7) follows. This is shown
in Lemma 13.
It remains to be seen that the estimate is meaningful. In

this regard, we claim that

(11)

holds for all . First note that

where we have exploited that . Now,

By definition, and by (10),
. Putting together the equalities

obtained, we get (11).
By linearity of expectation and since ,

it then follows from (5) and (11) that , and,
hence, by the linearity of the Bellman equations and by our
assumption that is the value function underlying the MDP

and policy , we have, for all ,

(12)

As a consequence, we also have, for all , ,

(13)

Let us finally comment on the computational complexity of
our algorithm. Due to the delay in updating the policies based on
the weights, the algorithm needs to store policies (or weights,
leading to the policies). Thus, thememory requirement ofMDP-
EXP3 scales with (in the real-number model). The
computational complexity of the algorithm is dominated by the
cost of computing and, in particular, by the cost of computing
, plus the cost of solving the Bellman (5). The cost of this is

in the worst case, for each time step,
however, it can be much smaller for specific practical cases such
as when the number of possible next-states is limited.

C. Main Result

Our main result is the following bound concerning the per-
formance of MDP-EXP3.
Theorem 1 (Regret Under Bandit Feedback): Let the transi-

tion probability kernel satisfy Assumptions A1 and A2. Let
and let , and for

. Then for an appropriate choice of the parameters and
(which depend on ), for any sequence of reward

functions taking values in [0,1], for

and 8 the regret of the algorithm MDP-EXP3 can be
bounded as

for some universal constants .
Note that with the specific choice of parameters the total cost

of the algorithm for a time horizon of is
.

The proof is presented in the next section. For comparison,
we give now the analogue result for the algorithm of Even-Dar
et al. [7] that was developed for the full-information case when
the algorithm is given in each time step. As hinted on before,
our algorithm reduces to this algorithm if we set ,
and . We call this algorithm MDP-E after Even-Dar et al.
[7]. The following regret bound holds for this algorithm:
Theorem 2 (Regret Under Full-Information Feedback): Fix

. Let the transition probability kernel satisfy Assump-
tion A1. Then, for an appropriate choice of the parameter
(which depends on ), for any sequence of reward func-
tions taking values in [0,1], the regret of the algorithm
MDP-E can be bounded as

(14)

For pedagogical reasons, we shall present the proof in the next
section, too. Note that the constants in this bound are different
from those presented in Theorem 5.1 of Even-Dar et al. [7]. In
particular, the leading term here is , while their
leading term is . The above bound both corrects
some small mistakes in their calculations and improves the re-
sult at the same time.9
As Even-Dar et al. [7] note, the regret bound (14) does not

depend directly on the number of states, , but the depen-
dence appears implicitly through only. Even-Dar et al. [7]
also note that a tighter bound, where only the mixing times of
the actual policies chosen appear, can be derived. However, it is
unclear whether in the worst-case this could be used to improve
the bound. Similarly to (14), our bound depends on through
other constants. In the bandit case, these are and . Comparing
the theorems it seems that the main price of not seeing the re-
wards is the appearance of instead of (a typical dif-
ference between the bandit and full observation cases) and the
appearance of a term in the bound.

D. Discussion and Future Work

In this paper, we have presented an online learning algorithm,
MDP-EXP3 for adversarial MDPs, that is, finite stochastic Mar-
kovian decision environments where the reward function may
change after each transition. This is the first algorithm for this
setting that has a rigorously proved bound on its
regret. We discuss the features of the algorithm, along with fu-
ture research directions below.

8The choice of the lower bound on is arbitrary, but the constants in the
theorem depend on it. Furthermore, with some extra work, our proof also gives
rise to a bound for the case when , but for simplicity we decided to leave
out this analysis.
9One of the mistakes is in the proof of Theorem 4.1 of Even-Dar et al. [7]

where they failed to notice that can take on negative values. Thus, their As-
sumption 3.1 is not met by (one needs to extend the upper bound given
in their Lemma 2.2 with a lower bound and change Assumption 3.1). As a re-
sult, Assumption 3.1 cannot be used to show that the inequality in the proof of
Theorem 4.1 holds. This mistake, as well as the others, can easily be corrected,
as we show it here.
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1) Extensions: We considered the expected regret relative to
the best fixed policy selected in hindsight. A typical extension is
to prove a high probability bound on the regret, which we think
can be done in a standard way using concentration inequalities.
Note, however, that the extension is more complicated than for
the bandit problems because the mixing property has to be used
together with the martingale reasoning. Another potential ex-
tension is to compete with larger policy classes, such as with se-
quences of policies with a bounded number of policy-switches.
Similarly to Neu et al. [13], [15], the MDP-EXP3 algorithm
should then be modified by replacing EXP3 with the EXP3.S
algorithm of Auer et al. [2], specifically designed to compete
with switching experts in place of EXP3. Note that, again, the
analysis will be more complicated than in the bandit case, and
requires to bound the maximum regret of EXP3.S relative to any
fixed policy over any time window. When compared to a policy
with switches, the resulting regret bound is expected to be
times larger than that of Theorem 1, while the algorithm would
not need to know the number of switches .
2) Tuning and Complexity: Setting up and running the algo-

rithm MDP-EXP3 may actually be computationally demanding.
Setting the parameters of the algorithm ( and ) requires a
known lower bound on the visitation probabilities such that

and also the knowledge of an
upper bound on the mixing time .While these quantities can
be determined in principle from the transition probability kernel
, it is not clear how to compute efficiently the minimum over

all policies. Computational issues also arise during running the
algorithm: as it is discussed in Section IV-B, each step of the
MDP-EXP3 algorithm requires
computations, which may be too demanding if, e.g., the size
of the state space is large. It is an interesting problem to de-
sign a more efficient method that achieves similar performance
guarantees.
3) Assumptions on the Markovian Dynamics: We believe

that it should be possible to extend our main result beyond As-
sumption A1, requiring only the existence of a unique stationary
distribution for any policy (we will refer to this latter assump-
tion as the unichain assumption). Using that the distribution of
any unichain Markov chain converges exponentially fast to its
stationary distribution, and that it is enough to verify Assump-
tion A1 for deterministic policies only, one can easily show that
if satisfies the unichain assumption, then there exists an in-
teger such that is a scrambling matrix for any
policy . Then, we conjecture that the MDP-EXP3 algorithm
will work as it is, except that the regret will be increased. The
key to prove this result is to generalize Lemmas 4 and 5 to this
case.
Finally, one may also consider the case when the Markov

chains corresponding to are periodic. We speculate that
this may be dealt with using occupancy probabilities and Ce-
saro-averages instead of the stationary and state distributions,
respectively.

V. PROOFS

In this section we present the proofs of Theorems 1 and 2. We
start with the proof of Theorem 2 as this is a simpler result. The
proof of this result is presented partly for the sake of complete-
ness and partly so that we can be more specific about the correc-
tions required to fix the main result (Theorem 5.2) of Even-Dar
et al. [7]. Further, the proof will also serve as a starting point
for the proof of our main result, Theorem 1. Nevertheless, the
impatient reader may skip this next section and jump immedi-
ately to the proof of Theorem 1, which apart from referring to
some general lemmas developed in the next subsection, is en-
tirely self-contained.

A. Proof of Theorem 2

Throughout this section we consider the MDP-E algorithm
(given by Algorithm 1 with , and ),
and we suppose that satisfies Assumption A1. Let denote
the policy used in step of the algorithm. Note that is not
random since by assumption the reward function is available
at all states (not just the visited ones). Hence, the sequence of
policies chosen does not depend on the states visited by the al-
gorithm but is deterministic. Remember that denotes
the average reward of policy measured with respect to the re-
ward function . Following Even-Dar et al. [7], fix some policy
and consider the decomposition of the regret relative to :

(15)
The first and the last terms measure the difference between the
sum of (asymptotic) average rewards and the actual expected
reward. The mixing assumption (Assumption A1) ensures that
these differences are not large. In particular, in the case of a fixed
policy, this difference is bounded by a constant of order :
Lemma 1: For any and any policy , it holds that

(16)

This lemma is also stated in [7]. We give the proof for complete-
ness also to correct slight inaccuracies of the proof given in [7].

Proof: Let be the trajectory when is followed.
Note that the difference between and is caused
by the difference between the initial distribution of and the
stationary distribution of . To quantify the difference, write

where is the state distribution at time step .
Viewing as a row vector, we have . Consider
the th term of the above difference. Then, using

and Assumption A1 we get10

This, together with the elementary inequality
gives

the desired bound.
Consider now the second term of (15) and in particular its
th term . This term is the difference of
the average reward obtained by and . The following lemma
shows that this difference can be rewritten in terms of the state-
wise action-disadvantages underlying :
Lemma 2 (Performance Difference Lemma): Consider an

MDP specified by the transition probability kernel and re-
ward function . Let be two (stochastic stationary) policies

10Even-Dar et al. [7] mistakenly uses
in their paper ( immediately shows that this can be false). See, e.g., the
proofs of their Lemmas 2.2 and 5.2.
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in the MDP. Assume that , and are well-defined.11
Then

This lemma appeared as Lemma 4.1 in [7], but similar state-
ments have been known for a while. For example, the book
of Cao [3] also puts performance difference statements in the
center of the theory of MDPs. For the sake of completeness, we
include the easy proof. Note that the statement of the lemma
continues to hold even when and are shifted by the same
constant function.

Proof: We have

where the second equality holds since
. Re-

ordering the terms gives the desired result.
Because of this lemma,

. Thus, by
flipping the sum that runs over time with the one that
runs over the state-action pairs, we get:

.
Thus, it suffices to bound, for a fixed state-action pair ,
the sum

By construction, (recall that
in this version of the algorithm), which means that the

sum is the regret of the so-called exponential weights algorithm
(EWA) against action when the algorithm is used on the se-
quence . Assume for a moment that is such
that holds for . Then, since takes
its values from an interval of length , Theorem 2.2 in [5] im-
plies that the regret of EWA can be bounded by .
Notice that is a sequence that is sequentially generated
from . It is Lemma 4.1 of [5] that shows that the bound of
Theorem 2.2 of [5] continues to hold for such sequentially gen-
erated functions. Putting the inequalities together, we obtain

(17)

According to the next lemma an appropriate value for is
. The lemma is stated in a greater generality thanwhat is needed
here because the more general form will be used later.
Lemma 3: Pick any policy in an MDP . As-

sume that the mixing time of is in the sense of (1). If
holds for any , then

holds for all . Furthermore, for
any ,
and, if, in addition, for any , then

.

11This lemma does not need Assumption A1 and in fact the assumptions we
make could be further relaxed with a slight change to the claim.

Proof: As it is well known and is easy to see from the
definitions, the (differential) value of policy at state can be
written as

where is the state distribution when fol-
lowing for steps starting from state . Thus, the first
statement can be proven by following the proof of Lemma 1.
The inequalities on follow from the first part and the
Bellman equation:

The first upper bound on follows from using
, while the second

inequality holds since .
Let us now consider the third term of (15), .

The th term of this difference is the difference between the
average reward of and the expected reward obtained in step
. If is the distribution of states in time step ,

. Thus

(18)

and so remains to bound the distances between the distri-
butions and . For this, we will use two general lemmas
that will again come useful later. For , in-
troduce the mixed norm , where

is identified with . Clearly,
holds for any two policies and any distribu-

tion (cf. Lemma 5.1 in [7]). The first lemma shows that the
map as a map from the space of stationary policies
equipped with the mixed norm to the space of distribu-
tions equipped with the -norm is -Lipschitz:
Lemma 4: Let be a transition probability kernel over

such that the mixing time of is . For any two policies,
, it holds that

Proof: The statement follows from solving

for and using .
The next lemma allows us to compare an -step distribution

under a policy sequence with the stationary distribution of the
sequence’s last policy:
Lemma 5: Let be a transition probability kernel over

such that the mixing time of is . Take any probability
distribution over , integer and policies .
Consider the distribution . Then, it holds
that

where, for convenience, we have introduced .
Proof: If the result is obtained from

. Thus, in what follows we assume . Let
. By the triangle inequality,
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where we used that by the previous lemma
. Continuing recursively,

we get

where we bounded the geometrical series by and
used (20).
Applying this lemma to we get

where is a bound on .12 There-
fore, by (18), we have

Thus, it remains to find an appropriate value for . It is a
well-known property of EWA that

. Indeed, applying Pinsker’s inequality and Ho-
effding’s lemma (see Section A.2 and Lemma A.6 in Cesa-
Bianchi and Lugosi [5]), we get for any

where, for two distributions de-
notes the Kullback–Leibler divergence of the distributions and
. Thus, . Now, by Lemma 3,

, showing that is suitable.
Putting together the inequalities obtained, we get

Combining (16), (17), and this last bound, we obtain

Setting

we get the bound stated in Theorem 2.

B. Proof of Theorem 1

Throughout this section we consider the MDP-EXP3 algo-
rithm and suppose that both Assumptions A1 and A2 hold for .

12Lemma 5.2 of Even-Dar et al. [7] gives a bound on with a
slightly different technique. However, there are multiple mistakes in the proof.
Once the mistakes are removed, their bounding technique gives the same re-
sult as ours. One of the mistakes is that Assumption 3.1 states that

, whereas since the range of the action-value functions scales with
, should also scale with . Unfortunately, in [16] we committed the same
mistake, which we correct here. We choose to present an alternate proof, as we
find it somewhat cleaner and it also gave us the opportunity to present Lemma
4.

We start from the decomposition (15), which is repeated to em-
phasize the difference that some of the terms are random now:

(19)

As before, Lemma 1 shows that the first term is bounded by
. Thus, it remains to bound the expectation of the other

two terms. This is done in the following two propositions whose
proofs are deferred to the next subsections:
Proposition 1: Let ,

, ,
, , , ,

,

and assume that , ,
,

. Then, for any policy , we have

Proposition 2: Assume that the conditions of Proposition 1
hold. Then

(20)

Note that setting , as suggested in Theorem 1,
the last term in the right-hand side of (20) becomes , while
for sufficiently large all the conditions of the last two propo-
sitions will be satisfied. This leads to the proof of Theorem 1.
Proof of Theorem 1: If then, due to ,

the statement is trivial, so we assume from now on.
Define ,

so that
and ,

where . In the following
we will use the notation for two positive-valued func-
tions defined on the same domain to de-
note that they are equivalent up to a constant factor, that is,

. With this nota-
tion, for , and as long as , we have

and (21)

independently of the value of and of the choice of , , . In
what follows all the equivalences will be stated for the domain

, .
We now show how to choose , and so as to achieve a

small regret bound. In order to do so we will choose these con-
stants so that the conditions of Propositions 1 and 2 are satisfied.
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For simplicity, we add the constraint that we will also
show to hold. Under this additional constraint, the inequality

(22)

will be satisfied if we choose .
Indeed, the said inequality holds since it is equivalent to

and

where the first inequality holds because and the second
equality holds by the definition of . Since and

, this also implies

and (23)

Due to this upper bound on , will be satisfied
if

(24)

To satisfy , the inequality

(25)

has to be satisfied, too. Before proving (24) and (25), we derive
the regret bound they imply.
Taking expectation in (19) and using the bounds of Lemma 1

and Propositions 1 and 2, we get

Choosing , we have .
Furthermore, (22) implies . This, to-
gether with the definition of the different constants above and
the bound (23) on and gives

where we introduced to denote the expression in the squared
brackets and used the fact that

for some constant . Note that (21) implies that

(26)

since for , . Now, choose
. Then

for some appropriate constants .
It remains to show that for large enough, inequalities (24)

and (25) will hold, and also the lower bound on in the propo-
sitions will be satisfied. Instead of (24) we will choose a lower
bound on to guarantee the stronger condition

(27)

which, together with (23), also ensures . The
latter inequality implies that the lower bound on in the propo-
sitions is satisfied for . Using the choice of and the
respective equivalent forms (21) and (26) for and , one can
see that condition (27) is satisfied if

for some appropriate constant . To
keep things simple, notice that selecting

implies (27), and also if
.13 Furthermore, one can similarly show that (25) is satisfied if

for some appropriate
constant . By Proposition 3 of Antos et al. [1], for any

, if . Thus, the last condi-
tion on is satisfied if .
This finishes the proof of the theorem.

C. General Tools for the Proofs of Propositions 1 and 2

Just like in the previous section, throughout this section we
suppose that both Assumptions A1 and A2 hold for and the
rewards are in the [0,1] interval. We proceed with a series of
lemmas to bound the rate of change of the policies generated by
MDP-EXP3.
Lemma 6: Let and assume that

holds for all states . Then, for any , we have
and
.

Proof: Since
by assumption

and , the first statement of the lemma follows from
Lemma 3.
To prove the bounds on , notice that

Applying the above inequalities to the Bellman (5), we obtain

. Since , the
assumption on and the definition of imply

. Thus, we get the upper bound
.

The previous result can be strengthened if one is interested in
a bound on :

13With some extra work one can show that it is sufficient to choose
with and .
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Lemma 7: Let and assume that
holds for all states . Then, for any , we have

.
Proof: Proceeding as in the proof of Lemma 3 and then

taking expectations, we get

where we have exploited that is well-defined by our assump-
tion on and it takes only nonnegative values. Now, by (9)
and (11),

which is bounded between 0 and 1. Hence,
. Finishing as in the proof of

Lemma 1 or 3, we get the statement.
Similarly, we will also need a bound on the expected value of

:
Lemma 8: Let and assume that

holds for all states . Then, for any ,
we have that and also

.
Proof: By the Bellman equation(5), we have

As before, , and also .
Combining these with the result of the previous lemma, we get
the first part of the statement. To get the second part note that

The quantity also enjoys a bound which is
independent of the exploration rate :
Lemma 9: Let and assume that

holds for all states . Then, for any , it holds
that .

Proof: By our assumption on and the construction of
,

(28)

Since unless , Lemma 3 can be applied
with to obtain .
Multiplying both sides by and using (28) again finishes
the proof.
Now we show that if the policies that we follow up to time

step change slowly, is “close” to :
Lemma 10: Let and be such that

holds for . Then we have
.

Proof: This follows directly from Lemma 5 since, thanks
to the recursive form of , ,
where for and if

.
In the lemma that follows we compute the rate of change of

the policies produced by MDP-EXP3. We will use this lemma
for multiple purposes, including showing that for a large enough
value of , can be uniformly bounded from below by .
To simplify the presentation, we recall some short-hand nota-

tion from Proposition 1. In particular, we denote the lower and
upper bounds for by and of Lemma 6, respectively,
and the upper bound on from the same lemma by . Thus
setting

we have , and for all state-
action pairs .
Lemma 11: Assume that . For
, , let

(29)
Then, for all ,

Proof: Fix some state-action pair and let
where . Since is

computed using the exponential weight update for , we
have

(30)

We examine two separate cases depending on the sign of the
expression in the absolute value on the right-hand side.
Case a) : First

notice that the logarithm of the second term is positive by the
condition, that is, .
Furthermore, it is bounded from above by 1. Indeed, by Jensen’s
inequality, we have

(31)

and thus
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where the second inequality holds by our choice of and ,
while the third one holds by our assumption on . Thus, using

, which holds for any , we get

From this inequality, (30) and (31) and using the definition of
, we get

Case b) : Using
(which holds for all ), we get

Applying Jensen’s inequality, the second term can be bounded
as

Combining these inequalities with (30), we get

The two cases together prove the lemma.
By the lemma just proved, the rate of change is partially

governed by . To further bound the rate of change, we
develop lower and upper bounds on . To facilitate this, we
rewrite by grouping the terms with identical signs:

(32)

Then, from , as long as , we
have

(33)

Notice that since scales with , we avoided upper
bounding by except when is multiplied by , and so
the bounds will not “blow up” as . In fact, this is one
of the main reasons that in this paper we succeed in proving
an regret bound as compared to the regret
bound of [16].
Let us now show that, provided is uniformly bounded

away from zero, the sequence changes slowly.

Lemma 12: Assume that ,
and

that for all and states , holds true.
Set . Then, for any

,
(34)

Proof: We prove the statement by induction on . To show
the bound for time step assume that
holds for all . As for all

, the assumption holds for
and we are left with proving the induction step for .
Fix . For any , by Lemma 11,

Our goal is to upper-bound and lower-
bound . As before, we make an effort to
avoid terms that scale with , but we allow terms that scale
with as will be seen to scale with (and ).
Consider first an upper bound on .

From (33), it remains to bound . By a
simple telescoping argument, we bound this by

where we have introduced

Now, using (32), we have

Now, let us consider upper bounding
. In this case, we use tele-

scoping for the second term on the left-hand side of (33):

where we used , and the induction
hypothesis. Plugging this into the lower bound in (33), we get

Combining the two cases, we get
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Summing these inequalities for all and taking the maximum
over gives

where we upper bounded by and
used that the inequality holds
by the induction hypothesis. Now, the result follows because,
thanks to the definition of , the right-hand side equals (in fact,
this is how the definition of is obtained).
Lemma 13: Let be as in Lemma 12. Assume further

that , and let

(35)

Then, for all , , we have and
.

Proof: We prove the lemma by induction on . The induc-
tion hypothesis is that for , and

hold for all .
Let us first show that this hypothesis holds when

. By the construction of the policies,
we have for
all . Thus, by Lemma 10, we get that

holds for all
. By our assumption about , we have

(36)

thus for any ,

(37)

Since, by assumption, holds for any stationary
policy , we also have . This, together
with (37) gives that holds for any .
Now, fix a time index and as-

sume that the induction hypothesis holds for time .
Then, thanks to , Lemma 12 im-
plies . Now, by Lemma 10, we have

. Using the same
reasoning as above, we finish the inductive step and thus the
proof.
In our final result we study the weighted sums

for , , . To state this result recall the definitions

from Proposition 1. Note that by Lemma 9,
and by Lemma 8,

.
Lemma 14: Let ,

, and . Assume
that ,

and thatfor
all and states , holds true. Then,
for any , and , it holds that

.
An observation that will be needed later is that the conditions

of this lemma on , and imply those of Lemma 12.

Proof: Fix . We will prove the result by induction.
Since in the algorithm the weights are kept fixed for

, when . This establishes
the base case of the induction. Thus, fix and assume that

holds for all pairs such that
, .

By Lemma 11,

(38)

As in the proof of Lemma 12, we upper bound the two terms
resulting from the maximum on the right-hand side of the above
expression separately. Considering the first of these, using the
upper bound from (33), we get

We use telescoping to bound the first term in the numerator on
the right-hand side:

Hence,

Now, considering the second branch of the maximum, using this
time the lower bound from (33),

Combining these two inequalities, introducing
, we get
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Plugging this into (38), we get

Using , and
(where the last inequality holds thanks to ), we obtain

Now, take the expectation of both sides and use that
. Introducing the constant

, we
get

(39)

Taking in (39), using which
holds by our assumption on and , reordering gives

(40)

where the second inequality follows since, by our induction hy-
pothesis, holds for any such that

, the third follows by our assumptions on , and ,
while the last equality holds by the definition of . This shows
that the induction hypothesis holds for the pair .
Let us now consider the pairs , where .

We start from (39) again. Note that by our induction hypothesis,

for . Furthermore, by (40),
we also have . Hence

D. Proof of Proposition 1

For every define and
. Lemma 2 shows that in order to

prove Proposition 1, it suffices to prove an upper bound on
.

Lemma 15: Let be as in Lemma 12 and be as in Lemma
14. Assume that , ,

,
, and hold. Then, for all

,

Proof: Note that if , the conclusion of the lemma
trivially holds. Therefore, in what follows we assume that
. First, note that the conditions of both Lemmas 13 and 9

are satisfied. Thus, the conclusions of Lemma 9 and therefore
also those of Lemmas 6–9 hold. In particular, by Lemma 9,

holds for any
. Now, using Lemma 6, we have

, thus by the constraint on ,
.
We will follow the steps of the proof in Auer et al. [2]. For

, define . Fix a time step
such that and a state-action pair .
Define and

Following the proof of Auer et al. [2] and recalling ,
we obtain

Summing over , we get

(41)

where and

.
Now, considering a lower bound on the left-hand side, we

have for any action ,

where we used that holds for all .
Combining with (41), we get

(42)

where .
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Let us now bound the difference of and

Note that

Therefore

where we used the definition of . Taking the expectation
of both sides, using Lemmas 14 and 8, we get

This, together with (42) gives

(43)

By (13), we have and with the
definition , we also have

. Thus, we now need a bound on
the expectation of . For this, write

By Lemma 9, the first term on the right-hand side can be
bounded as follows:

while, thanks to Lemma 14, the second one is bounded, in ex-
pectation, by

where we have used that and also that
. Combining these inequalities, we get that

(44)

Reordering terms after using this inequality, we get

(45)

We now lower bound by . Since the re-
wards are bounded between 0 and 1, by Lemma 3 we
have . Therefore,

(46)
Moreover, the upper bound on also implies that

. Combining this with
(46) and (45), we obtain the desired bound:

The proof of Proposition 1 is now easy.
Proof of Proposition 1: Under the conditions of the propo-

sition, combining Lemmas 2 and 15, and using that ,
proves Proposition 1.

E. Proof of Proposition 2

Let . First, since is -measurable,
. We also have

Hence

where we have used that .
Thanks to Lemma 13, Lemma 10 is applicable. Hence,

, and thus
. Summing up

these inequalities for , and using the trivial bound
for the first terms, we get the

desired result.
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