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On Codecell Convexity of Optimal Multiresolution
Scalar Quantizers for Continuous Sources

András Antos

Abstract—It has been shown by earlier results that for fixed
rate multiresolution scalar quantizers and for mean squared
error distortion measure, codecell convexity precludes optimality
for certain discrete sources. However it was unknown whether
the same phenomenon can occur for any continuous source. In
this paper, examples of continuous sources (even with bounded
continuous densities) are presented for which optimal fixed
rate multiresolution scalar quantizers cannot have only convex
codecells, proving that codecell convexity precludes optimality
also for such regular sources.

Index Terms—Clustering methods, codecell convexity, continu-
ous density function, mean squared error methods, multiresolu-
tion, optimization methods, quantization, rate distortion theory,
source coding

I. I NTRODUCTION AND DEFINITIONS

DESIGNING and studying quantizers with a given rate
and minimum distortion is an important problem in data

compression. In lossy IP and wireless network environments,
the needs of robust communication implied increasing efforts
on researching multiple description and multiresolution scalar
quantization (MDSQ/MRSQ), a generalization of simple quan-
tization. These concepts are defined formally below.

A. Scalar Quantizers

An N -level scalar quantizer(SQ) (N ≥ 1 is an integer)
is a measurable mappingQ : R → C, where thecodebook
C = {y1, . . . , yN} ⊂ R is a set ofN (usually distinct)
representation values, called thecode points. The quantizer is
completely characterized also by its codebook and the partition
of the alphabet setR consisting of theN (usually nonempty)
sets

Ci = {x ∈ R : Q(x) = yi}, i = 1, . . . , N

called thepartition cellsor codecellsvia the ruleQ(x) = yi, if
x ∈ Ci. The set{C1, . . . , CN} is called thepartition of Q. A
cell is said to beconvexif it is a convex set, i.e., a contiguous
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interval of the real line. An SQ is calledconvexor regular if
all of its cells are convex.

Let X be a random variable with distributionµ on the reals
R. The performance of the quantizerQ, when quantizing the
sourceX, is measured by theexpected distortion(or MSE)

D(µ,Q)
def
= E

{

(X −Q(X))2
}

=

N
∑

i=1

∫

Ci

(x− yi)
2 µ(dx).

(1)
We omit µ from the notation and write onlyD(Q) where
unambiguous. Throughout this paper, we assumeE

{

X2
}

<
∞, thus, the distortion is finite.

A rate is associated to the quantizer, denoted byR(Q).
In the case offixed-rate (FR) (or resolution constrained)
quantizer,R(Q) = log2 N . The goal of optimal quantizer
design is to minimizeD(Q) given a target quantizer rate
R(Q). We define the optimum distortion by

D∗ def
= inf

Q∈QN

D(Q)

where QN denotes the set of allN -level quantizers. If
D(Q∗) = D∗ thenQ∗ ∈ QN is calledoptimal.

A quantizerQ satisfies thenearest neighboror optimal
encoder conditionif

|x−Q(x)| = min
yi∈C

|x− yi|, for all x ∈ R.

Note that a nearest neighbor quantizer is determined by its
codebook with ties arbitrarily broken and it is always convex.
Note also that for any quantizer, a nearest neighbor quantizer
with the same codebook has at most the same distortion re-
gardless ofµ. These imply (e.g., see [1]) that, for MSE fidelity
criterion (and for single quantizers defined above), it suffices
to consider nearest neighbor quantizers when searching for
an optimal quantizer, and so finding an optimal quantizer is
equivalent to finding its codebook. Using this, it is proved in
[1] that there always exists an optimal quantizer, in particular,
there is a convex optimal quantizer. Note that convexity hasa
central role in the arguments above.

B. Multiple Description and Multiresolution Scalar Quantiz-
ers

Multiple description and multiresolution (or
successively/progressively refinable) scalar quantizers
(MDSQ,MRSQ) are extensions of the quantizer model above.
Following the line of [2], takeM different SQs,Q1, Q2,
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. . . ,QM , calledside quantizers, and define anM -description
scalar quantizer(M -DSQ)Q to be a system of2M − 1 SQs:

{QI : ∅ 6= I ⊆ M = {1, 2, . . . ,M}}

where for eachI = {i1, . . . , is} ⊆ M, the partition of the
joint or component quantizerQI is just the intersection of the
partitions ofQi1 , . . . , Qis , whereas its codebook is arbitrary.
The expected distortion ofQ is defined as

D̄(µ,Q)
def
=

∑

I⊆M,I6=∅

ωID(µ,QI) (2)

where eachI ⊆ M is assigned a weightωI ≥ 0, which prac-
tically represents the probability that only the side descriptions
corresponding toI are available for source reconstruction in
some networked source coding environment. (For more details
on interpretations and motivations of this MDSQ model, see,
e.g., [3], [2], [4], [5], [6]. The term forI = ∅ is omitted since
it does not affect the optimal design of MDSQ.) Again, we
write only D̄(Q) where unambiguous.

When allM side quantizers are FR, theM -DSQ is said to
be FR. We call quantizersQI with ωI 6= 0, which contribute
to the expected distortion,activecomponents of theM -DSQ.

The above definition of MDSQ includes multiresolution
scalar quantizers (MRSQ) as well, which have an additional
prefix property. Precisely, anM -resolution scalar quantizer
(M -RSQ) ofM refinement stages is anM -DSQ whose active
components areQ1, Q{1,2},. . . , Q{1,...,i}, . . . , QM.

The problem of optimalM -DSQ design is to minimize the
expected distortion (2) over all possibleM side quantizers,
given the target ratesRi

def
= R(Qi), 1 ≤ i ≤ M of the side

quantizers and the weightsωI . In particular, in optimalM -
RSQ design, the weightsω{1}, ω{1,2}, . . . , ω{1,...,i}, . . . , ωM

are given. In the FR case, the constraint on the rate ofQi is
equivalent to haveNi = 2Ri cells.

DenoteQ1,1 the set of all FR2-DSQs (2-RSQs) with rates
R1 = R2 = 1 (i.e., levelsN1 = N2 = 2).

C. Convexity of MDSQs/MRSQs

An MDSQ/MRSQ is said to beconvex if all its active
quantizers are convex. (Thus, not all side quantizers are
necessarily convex, but only if they are active. For example, in
a convex MRSQ only the side quantizerQ1 is active, therefore
all the others may have nonconvex cells.)

Finding an optimal MDSQ/MRSQ is not easy in general.
Although there are some MDSQ algorithms also for non-
convex cases (e.g., see [7], [8], [4]), several papers propose
algorithms for convex MDSQs, and most MRSQ algorithms
address the problem of finding the optimal one among convex
MRSQs, that is, they hence lead to overall optimality if there is
a convex optimal MDSQ/MRSQ (e.g., see [2], [9], [10], [11],
[5], [12], [6], [13]). Under this constraint, optimal SQ design
is equivalent to designing the optimal threshold sequence
and corresponding codewords, so the search space is usually
reduced significantly. Thus, it is a crucial question whether it
suffices to consider convex MDSQs/MRSQs when searching
for an optimal MDSQ/MRSQ.

A positive result is that for MSE distortion measure, cell
convexity at the finest partition (i.e., that ofQM) can never
preclude optimality, that is, the optimal distortion is always
achievable using convexQM. This is proven for discrete
sources and MRSQs in [6, Theorem 6] and stated in general
for MDSQs in [14], [6] (see also [7, Sec.III-A]).

However, unfortunately it turned out that this is not true for
all other partitions, since convexity may preclude optimality:
It is also shown in [14], [6] that there are discrete sources
on finitely many atoms, target rates, and weights{ωI} such
that the optimal MDSQ cannot be convex. Moreover, such
counterexamples can be constructed even for some absolutely
continuous sources. Namely, for the uniform distribution over
[0, 1] and forω{1} = ω{2}, the optimal2-DSQ inQ1,1 cannot
be convex ifω{1}/ω{1,2} < 7/81, see also [2].

Convexity may preclude optimality for MRSQs, as well:
Proposition 1 ([14], [6]): There exists a (discrete) source

on R and weightsω{1},ω{1,2} > 0 such that the optimal2-
RSQ inQ1,1 cannot be convex.

However, as mentioned in [2], in case of (continuous)
uniform source, the optimal MRSQ is always convex (since
at each refinement stage the optimal quantizer must be the
uniform quantizer with the corresponding rate

∑i
j=1 Rj). Thus

the counterexample above for absolutely continuous sources
does not work for MRSQs.

Also, related results show that for entropy constrained scalar
quantizers (ECSQ, whereR(Q) is the entropy of the measure
{µ(Ci)}

N
i=1), there is also such (discrete) counterexample,

however, as proven in [15], [16] in case of continuous sources
and finite-level ECSQs, there is always a convex optimal
ECSQ.

Considering these facts, one might think that perhaps also
for MRSQs, the situation is different for discrete and contin-
uous sources, that is, in case of, e.g., absolutely continuous
sources over bounded regions with bounded probability den-
sity functions (pdf), there is always a convex optimal MRSQ.
In this paper we want to clarify this question proving that this
conjecture would fail as well. Our main results (Theorem 1, 2)
show that for some weights and absolutely continuous sources
with continuous pdfs, the optimal2-RSQ inQ1,1 cannot be
convex. Earlier results respecting to the class of continuous
sources (e.g., [17] and [2]) also motivate the clarificationof
this case. One major technical difficulty of the proof for the
continuous case is that the cell boundaries can split the mass of
the source distribution anywhere. See Section II, for detailed
motivation and difficulties.

Note that there are several other types of generalizations
and extensions of the simple quantizer model and respecting
results in Subsection I-A:

Distortion: the fidelity criterion used in (1) can
be different from MSE containing some
other function ofX andQ(X).

VQ: vector quantization, where the source
alphabet is multidimensional.

VR, ECQ: variable rate and (Ŕenyi-)entropy con-
strained quantizers, whereR(Q) 6=
log2 N , but depends on the distribution
{µ(Ci)}

N
i=1.
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The organization of the paper is as follows: In Section II, we
give our main results along with their motivation in details.
We present a lemma here that looks interesting on its own.
Some technical lemmata and the proofs of our results are in
Section III. In Section IV, we draw our conclusions and outline
possible direction for future work. Finally, the proofs of the
technical lemmata are given in the Appendix.

II. M AIN RESULT

Here we show that Proposition 1 remains true restricting
ourselves to the case of absolutely continuous sources over
bounded regions with bounded pdfs:

Theorem 1:There exists an absolutely continuous sourceµ
with a bounded pdf over a bounded region ofR and weights
ω{1},ω{1,2} > 0 such that the optimal2-RSQ inQ1,1 for µ
cannot be convex.
In Section III, we give a more quantitative version of this result
(Lemma 5).

Note that clarifying the case of the class of (absolutely)
continuous sources is required also because there are some
results respecting to this important class. For example, itis
proved in [17] and [2] that the local optimal convex MRSQ is
unique (and thus search algorithms, as generalized Lloyd and
gradient methods, always find the global optima correctly) if
the source has a log-concave pdf (consequently it is absolutely
continuous). In [2], also there is a supporting argument that
high resolution MRSQs are convex. This argument is based on
compander functions, and so applies, first of all, to continuous
sources.

Using a quite elegant continuity argument we can develop a
counterexample with continuous pdf based on one with piece-
wise constant pdf as in the proof of Theorem 1. Theorem 2, a
sharpened version of Theorem 1, and Lemmata 1 and 7 below
show this:

Theorem 2:There exists an absolutely continuous sourceµ
with a bounded continuous pdf over a bounded region ofR
and weightsω{1}, ω{1,2} > 0 such that the optimal2-RSQ in
Q1,1 for µ cannot be convex.
In Section III, we give a more quantitative version of this
result, too (Lemma 7).

For the proof, we use the following noteworthy observation:
If a piecewise constant pdf is approximated by a continuous
pdf then the distortion of an SQ for the former is uniformly
approximated by the distortion for the later. To make this
precise, letf be a piecewise constant pdf supported onK
disjoint closed intervals in[0, 1]:

f =
K
∑

i=1

aiI{[bi,bi+wi]} (3)

wherebi, wi > 0, bi + wi < bi+1 < 1, bK + wK < 1. For

0 < ǫ < (4)

min

(

b1, 1− bK − wK , min
1≤i≤K−1

bi+1 − bi − wi

2
, min
1≤i≤K

wi

2

)

let fǫ be a continuous approximation off replacing its jump
discontinuities by linear pieces on2ǫ wide intervals:

fǫ(x) =
K
∑

i=1

(ai
2ǫ

(x− bi + ǫ)I{|x−bi|≤ǫ}

+ aiI{x∈[bi+ǫ,bi+wi−ǫ]} (5)

+
ai
2ǫ

(bi + wi + ǫ− x)I{|x−bi−wi|≤ǫ}

)

.

Then the observation is formalized as shown.
Lemma 1:Let µ andµǫ be the sources corresponding tof

in (3) andfǫ in (5), respectively. Whenever (4) holds forǫ,
then for any SQQ with all code points in[0, 1], we have

|D(µǫ, Q)−D(µ,Q)| ≤ ǫ

K
∑

i=1

ai.

We need the following concept as well: A quantizerQ
satisfies thecentroidor optimal decoder conditionfor a given
source X if each code point is chosen to minimize the
distortion over its associated cell, that is, for the MSE fidelity
criterion

E
{

(X − yi)
2|X ∈ Ci

}

= min
y∈R

E
{

(X − y)2|X ∈ Ci

}

(6)

and soyi = E {X|X ∈ Ci} for all i = 1, . . . , N . Note that
such a quantizer is determined by its partition (given the
source). It is well known (e.g., see [18], [19]) that any optimal
quantizer satisfies the centroid condition.

Note that any active component of an optimal MDSQ/
MRSQ satisfies the centroid condition, but not necessarily the
nearest neighbor condition.

III. PROOFS

The following notations for a2-RSQQ (with active com-
ponentsQ1 and Q{1,2}) will be useful: D1(Q)

def
= D(Q1),

D{1,2}(Q)
def
= D(Q{1,2}), ω

def
= ω{1}/ω{1,2}.

In the proof of Proposition 1, it is shown that for
the discrete distribution with probability mass function
{1/8, 1/8, 3/8, 3/8} on alphabet{2, 4, 6, 14}, whenω is small
enough, an optimal2-RSQQ cannot be convex. For absolutely
continuous sources, we can use a continuous distribution
replacing the atoms by intervals of a pdf with lengthh
approximating the atomic distribution above ash ≪ 1.
Why is this case much more involved to handle then? The
discrete source case is based on the observation that since
the cell partitions of a quantizer are “forced to decide” which
atom belongs to which cell, the amount of the suboptimality
(distortion redundancy) ofQ{1,2} is discrete, thus it could
overwhelm any change inD1(Q) when ω is small, and so
the optimality of the2-RSQ forces the optimality ofQ{1,2},
that is, D{1,2}(Q) = 0. Then D1(Q) is optimized by a
noncontiguous partitioning ofR. For absolutely continuous
sources, the cell boundaries can split the intervals of the pdf
anywhere. Thus for example, the amount of suboptimality
of Q{1,2} can be arbitrarily tiny, so the discussion have to
exclude such cases by other means. Another approach to see
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the difficulty is the following: Consider the rate-distortion (R-
D) domain defined by

{(R1, R2, D1(Q), D{1,2}(Q)) ∈ R4 : Q ∈ {2-RSQs}}

whereQ runs over the set of all2-RSQs. For the discrete
source that was used as counterexample in Proposition 1, we
can see that the point(1, 1, 10.875, 0) ∈ R4 is on the boundary
of the R-D domain. Moreover, because of the0 distortion
at the finer resolution, it is quite easy to see that this point
is on the lower convex hull of the R-D domain implying
that the corresponding (nonconvex)2-RSQ also minimizes
some weighted average distortion like (2) (see [14] and [6]).
Furthermore, due to the discrete source, the R-D domain
must have a jump (a corner) at this point, thus it is easy to
show that there are weights for which this2-RSQ is the only
optimal one. These facts give the basis for the precise proofof
Proposition 1. For the continuous counterpart source, as inthe
proof of Theorem 1, we have positive distortion at the finer
resolution instead, and it is not obvious too see whether the
corresponding point is on the lower convex hull of the R-D
domain. Moreover, if it is there, there is no jump in the R-D
domain due to continuity, and the uniqueness of the optimal
2-RSQ is still more involved to show.

One could think that some simple continuity argument
(e.g., similar to Lemma 1) can be used saying that the
distortion of any quantizer on the discrete counterexampleand
on the approximating absolutely continuous counterexample
corresponding toh (the measure of approximation, see (7)
below) cannot differ more than, let us say,O(h) ash → 0. For
most of the quantizers, this holds (even withO(h2)) quantizer-
wise, but it does not hold uniformly, that is, the threshold for h
depends on the quantizer and can be arbitrarily small. Thus this
argument requires an involved discussion on deferent cases,
which is basically done in our proof below.

We need the following lemmata proved in the Appendix.
Lemma 2:Let

f = I{[−1−2w1,−1]}a1 + I{[1,1+2w2]}a2.

If a quantizer cell contains the support off , the pdf of the
source is given by (or proportional to)f , and the correspond-
ing code point is positioned optimally, then the optimal code
point in the cell is

a2w2(1 + w2)− a1w1(1 + w1)

a1w1 + a2w2
.

Lemma 3:Let

f = I{[−1−2w1h,−1]}a1/h+ I{[1,1+2w2h]}a2/h.

If a quantizer cell contains the support off and the pdf of the
source is given byf , then the distortion contribution of the
cell is

dh,w1,a1,w2,a2

=
2

3

a1a2w1w2(12 + 6s+ s2) + h2(a2w
2
2 − a1w

2
1)

2

a1w1 + a2w2

where s = 2h(w1 + w2) the length of the support off . In
particular,

dh,w1,a1,0,a2
= dh,w1,a1,w2,0 = 2h2a1w

3
1/3 and

dh,w,a,w,a = aw(4 + 2s+ s2/3).

Moreover, if the pdf in the cell is lower bounded byf , then
the distortion contribution of the cell is at leastdh,w1,a1,w2,a2

.
Lemma 4:Let Q be an SQ such that its cellC mapped

to code pointy contains the interval[a, b] which has positive
µ-measure. LetQ′ be the SQ with the same codebook and
partition asQ except that[a, b] is transposed fromC to C̃
(mapped tõy), that is,C ′ = C \ [a, b] and C̃ ′ = C̃ ∪ [a, b]. If
i) y < ỹ andy + ỹ < 2a or
ii) y > ỹ andy + ỹ > 2b,
thenD(Q) > D(Q′). If µ([a, b]) = 0 thenD(Q) = D(Q′).
Moreover, ifQ′′ is the SQ with the same partition asQ′ but
satisfying the centroid condition, thenD(Q′) ≥ D(Q′′).

We prove Theorem 1 approximating the finite-source coun-
terexample in [14] and [6] by an absolutely continuous one.
Let h > 0 and consider the distributionµ having pdf

f =
1

16h

(

I{x∈[2−4h,2−2h]} + I{x∈[4−2h,4]} (7)

+ 3I{x∈[6,6+2h]} + 3I{x∈[14+2h,14+4h]}

)

supported on four disjoint intervals with weighted uniform
distributions on each of them. The following lemma gives a
more technical version of Theorem 1:

Lemma 5: If ω ≤ 1/300 andh ≤ 3/16 then for the source
µ corresponding tof in (7) above and for any convex2-RSQ
Q ∈ Q1,1

D̄(Q)− inf
Q′∈Q1,1

D̄(Q′) ≥ ω{1}(0.697− 4.472h− 2.07h2).

Proof of Lemma 5:By (2), the distortion of a2-RSQ is

D̄(Q) = ω{1}D1(Q) + ω{1,2}D{1,2}(Q)

= ω{1,2}(ωD1(Q) +D{1,2}(Q)).

For concision, we assume without loss of generality (w.l.o.g.)
that the scaling factorω{1,2} = 1 and soω = ω{1}.

Note that, since the distortion of a convex MRSQ onµ is a
continuous function of the cell boundaries and the code points,
it is easily seen from Weierstrass’ Extreme value theorem that
it takes its minimum, that is, there is an optimal one among all
convex MRSQs with given rates. So we can assume w.l.o.g.
that Q is optimal for µ and ω{1}, ω{1,2} among all convex
2-RSQs inQ1,1.

Convexity of Q and N1 = N2 = 2 imply that its first
partition consists of two half-lines, and its second (refined)
partition splits both into an interval and a half-line. Formally,
for appropriatet1, t2, t3,

P1 = {(−∞, t2), [t2,∞)} and

P{1,2} = {(−∞, t1), [t1, t2), [t2, t3), [t3,∞)}.

(For continuous distributions, it is insignificant to whichcells
the boundary pointsti belong.) The optimality ofQ implies
that Q1 and Q{1,2}, the active components ofQ, satisfy
the centroid condition, which determines their code points
{y1, y2} and{c1, c2, c3, c4}, respectively based on{ti}3i=1.



ANTOS: OPTIMAL MULTIRESOLUTION SCALAR QUANTIZERS 5

Define the “trivial” convex2-RSQQ0 as an instance ofQ
whent1 = 4− 2h, t2 = 6, t3 = 14+2h (i.e., each cell of the
refined partition contains exactly one interval of the support
and the centroid condition is satisfied). Recalling the definition
of dh,w1,a1,w2,a2

, by Lemma 3, its corresponding distortions
are

D1(Q
0) = dh,1,1/16,1,1/16 + 64dh,1/4,3/16,1/4,3/16

=
49

4
+ 6.5h+

4h2

3
and

D{1,2}(Q
0) = dh,1,1/16,0,0 + dh,1,1/16,0,0

+ dh,1,3/16,0,0 + dh,1,3/16,0,0

=
h2

3

and thus,

D̄(Q0) = ωD1(Q
0) +D{1,2}(Q

0)

= ω

(

49

4
+ 6.5h+

4h2

3

)

+
h2

3
.

Note that this andω ≤ 1/300 imply

D̄(Q0) ≤
1

300

(

49

4
+

13h

2
+

304h2

3

)

. (8)

Also we have the following lemma (that is obvious in the limit
h → 0) proven in the Appendix:

Lemma 6: If h ≤ 3/16 then Q0
{1,2} minimizes D(µ,Q)

over all 4-level (2-rate) quantizersQ.
Case t2 < 6: It is proven in the Appendix that

now D1(Q
0) ≤ D1(Q). By Lemma 6 alsoD{1,2}(Q

0) ≤
D{1,2}(Q), thus D̄(Q0) ≤ D̄(Q), henceQ0 must also be
optimal convex2-RSQ, which is covered by the third case
below.

Case t2 > 6 + 0.1h: Now, if t1 ≤ 4 − 1.8h then
considering the interval[4 − 1.8h, 6 + 0.1h], D{1,2}(Q) >
dh,0.9,1/16,0.05,3/16, whereas ift1 > 4−1.8h then considering
the interval[2− 4h, 4− 1.8h], D{1,2}(Q) > dh,1,1/16,0.1,1/16,
giving together anyway

D{1,2}(Q) > min(dh,0.9,1/16,0.05,3/16, dh,1,1/16,0.1,1/16).

Substituting by Lemma 3, this is

min

(

18 + 17.1h+ 12.570 625h2

280
,
30 + 33h+ 36.6025h2

660

)

>
1

300

(

49

4
+

13h

2
+

304h2

3

)

(from h ≤ 3/16), which in turn at leastD̄(Q0) by (8). So
in this case,D̄(Q) > D̄(Q0), that is,Q cannot be optimal
convex2-RSQ.

Caset2 ∈ [6, 6 + 0.1h]: Let ǫ2
def
= (t2 − 6)/2 ∈ [0, h/20].

Now, for a givent2, determine the optimal values oft1 and
t3. These do not influenceD1(Q), thus their choices have to
minimizeD{1,2}(Q).

If (t2 ≤)t3 < 6+2h held, moving the boundary fromt3 into
6+2h and applying Lemma 4 case ii) with SQQ{1,2}, interval
[t3, 6 + 2h], and code points(c4, c3), we would get a convex
2-RSQ with smaller distortion. Then if6+2h ≤ t3 < 14+2h

held, increasingt3 would not changeD{1,2}(Q), whereas if
t3 > 14+4h held, decreasingt3 would not changeD{1,2}(Q).
Thus w.l.o.g. we can assume thatt3 ∈ [14+ 2h, 14+ 4h]. Let

ǫ3
def
= (t3 − 14− 2h)/2 ∈ [0, h]. For a givent3, c3 andc4 are

determined by the centroid condition:

c3 =
2(h− ǫ2)(6 + h+ ǫ2) + 2ǫ3(14 + 2h+ ǫ3)

2(h− ǫ2) + 2ǫ3

= 6 + h+ ǫ2 + ǫ3 +
8ǫ3

h− ǫ2 + ǫ3
c4 = 14 + 3h+ ǫ3.

These imply that

c3 + c4 = 20 + 4h+ ǫ2 + 2ǫ3 +
8

1 + (h− ǫ2)/ǫ3

≤ 20 + 4h+
h

20
+ 2h+

8

1 + 19/20

= 20 + 4h+
41h

20
+

160

39
< 2(14 + 2h) (from h ≤ 3/16).

So if we hadt3 > 14+2h, then moving the boundary fromt3
into 14 + 2h and applying Lemma 4 case i) with SQQ{1,2},
interval [14 + 2h, t3], and code points(c3, c4), we would get
a convex2-RSQ with smaller distortion. ThusQ cannot be
optimal convex2-RSQ unlesst3 = 14 + 2h.

If t1 ≤ 2−4h held, movingt1 into 2 = 4h would not change
D{1,2}(Q). Then if 2 − 4h < t1 < 2 − 2h held, moving the
boundary fromt1 into 2− 2h and applying Lemma 4 case ii)
with SQQ{1,2}, interval [t1, 2−2h], and code points(c2, c1),
we would get a convex2-RSQ with smaller distortion. Then
if 2− 2h ≤ t1 < 4− 2h held, increasingt1 would not change
D{1,2}(Q). If 6 < t1(≤ t2) held, moving the boundary fromt1
into 6 and applying Lemma 4 case i) with SQQ{1,2}, interval
[6, t1], and code points(c1, c2), we would get a convex2-RSQ
with smaller distortion. Then if4 < t1 ≤ 6 held, decreasingt1
would not changeD{1,2}(Q)). Thus w.l.o.g. we can assume
that t1 ∈ [4 − 2h, 4]. Moreover, if t1 > 4 − h held, then
considering the interval[2− 4h, 4−h], we would have (using
Lemma 3)

D{1,2}(Q) > dh,1,1/16,1/2,1/16 =
1

6
+

h

4
+

9h2

64

>
1

300

(

49

4
+

13h

2
+

304h2

3

)

(from h ≤ 3/16), which in turn at least̄D(Q0) by (8). So in
this case,D̄(Q) > D̄(Q0), that is,Q could not be optimal
convex2-RSQ. Hence w.l.o.g. we can assume thatt1 ∈ [4 −

2h, 4− h]. Let ǫ1
def
= (t1 − 4 + 2h)/2 ∈ [0, h/2]. For a given

t1, c1 andc2 are determined by the centroid condition:

c1 =
2h(2− 2h− h) + 2ǫ1(4− 2h+ ǫ1)

2h+ 2ǫ1

= 2− 3h+ ǫ1 +
2ǫ1

h+ ǫ1

c2 =
2(h− ǫ1)(4− 2h+ h+ ǫ1) + 3 · 2ǫ2(6 + ǫ2)

2(h− ǫ1) + 3 · 2ǫ2

= 4− h+ ǫ1 + 3ǫ2 +
6ǫ2(1− ǫ2)

h− ǫ1 + 3ǫ2
.
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These imply that

c1 + c2

= 6− 4h+ 2ǫ1 + 3ǫ2 +
2

1 + h/ǫ1
+

6(1− ǫ2)

3 + (h− ǫ1)/ǫ2

≤ 6− 4h+ h+
3h

20
+

2

1 + 2
+

6

3 + 20/2

= 6− 4h+
23h

20
+

44

39
< 2(4− 2h) (from h ≤ 3/16).

So if we hadt1 > 4− 2h, then moving the boundary fromt1
into 4 − 2h and applying Lemma 4 case i) with SQQ{1,2},
interval [4 − 2h, t1], and code points(c1, c2), we would get
a convex2-RSQ with smaller distortion. ThusQ cannot be
optimal convex2-RSQ unlesst1 = 4− 2h.

Thus the optima can be only int1 = 4−2h andt3 = 14+2h
in this case. W.l.o.g. we assume these from now on.

DefineQ′ ∈ Q1,1 as a2-RSQ with active componentsQ′
1

and Q′
{1,2}, which has the same second (refined) partition

P{1,2} asQ, but its first partition consists of two nonconvex
cells which are unions of an interval and a half-line in the
following way:

P ′
1 = {(−∞, t1) ∪ [t2, t3), [t1, t2) ∪ [t3,∞)}

andQ′ also satisfies the centroid condition. HenceD{1,2}(Q
′)

= D{1,2}(Q). DefineQ.1h andQ′.1h as instances ofQ and
Q′, respectively, whent2 − 6 = 2ǫ2 = 0.1h (and the centroid
condition is satisfied).

For a givent2, y1 and y2 are determined by the centroid
condition:

y1 =
2h(2− 3h) + 2h(4− h) + 3 · 2ǫ2(6 + ǫ2)

2h+ 2h+ 3 · 2ǫ2

= 3− 2h+ 3ǫ2

(

1 +
3− 2ǫ2
2h+ 3ǫ2

)

y2 =
3 · 2(h− ǫ2)(6 + h+ ǫ2) + 3 · 2h(14 + 3h)

3 · 2(h− ǫ2) + 3 · 2h

= 10 + 2h+ ǫ2

(

1 +
4

2h− ǫ2

)

.

These imply that

y1+y2 = 13+ǫ2

(

4 + 3
3− 2ǫ2
2h+ 3ǫ2

+
4

2h− ǫ2

)

> 2(6+0.1h).

So moving the boundary fromt2 into t.1h2 = 6 + 0.1h and
applying Lemma 4 case ii) with SQQ1, interval [t2, 6+0.1h],
and code points(y2, y1), we get thatD1(Q) ≥ D1(Q

.1h).
On the other hand, for a givent2, alsoy′1 andy′2 code points

of Q′
1 are determined by the centroid condition:

y′1 =
2h(2− 3h) + 3 · 2(h− ǫ2)(6 + h+ ǫ2)

2h+ 3 · 2(h− ǫ2)

= 5− 3ǫ2
1 + ǫ2

4h− 3ǫ2

y′2 =
2h(4− h) + 3 · 2ǫ2(6 + ǫ2) + 3 · 2h(14 + 3h)

2h+ 3 · 2ǫ2 + 3 · 2h

= 11.5 + 2h−
ǫ2
2

(

3 +
33− 15ǫ2
4h+ 3ǫ2

)

which, for Q′.1h (substitutingǫ2 = h/20), are in turn

y′1
.1h = 5−

3 + 0.15h

77
, y′2

.1h = 11.5−
33

166
+2h−

117h

1660
.

These imply that

y′1
.1h + y′2

.1h = 16.5−
3

77
−

33

166
+ 2h−

h

20

(

3

77
+

117

83

)

> 2(6 + 0.1h).

So moving the boundary fromt.1h2 = 6 + 0.1h back into
t2 = 6 + 2ǫ2 and applying Lemma 4 case ii) with SQQ′.1h

1 ,
interval [t2, 6 + 0.1h], and code points(y2, y1), we get that
D1(Q

′.1h) ≥ D1(Q
′).

Now, we compare the distortions̄D(Q) andD̄(Q′). Recall-
ing D{1,2}(Q

′) = D{1,2}(Q),

D̄(Q)− D̄(Q′)

= ωD1(Q) +D{1,2}(Q)− ωD1(Q
′)−D{1,2}(Q

′)

= ω(D1(Q)−D1(Q
′)).

By the inequalities above, the difference factor can be lower
bounded byD1(Q

.1h)−D1(Q
′.1h). By definition,

16h(D1(Q
.1h)−D1(Q

′.1h))

=

2−2h
∫

2−4h

(x− y.1h1 )2 dx−

2−2h
∫

2−4h

(x− y′1
.1h)2 dx

+

4
∫

4−2h

(x− y.1h1 )2 dx−

4
∫

4−2h

(x− y′2
.1h)2 dx

+

6+0.1h
∫

6

3(x− y.1h1 )2 dx−

6+0.1h
∫

6

3(x− y′2
.1h)2 dx

+

6+2h
∫

6+0.1h

3(x− y.1h2 )2 dx−

6+2h
∫

6+0.1h

3(x− y′1
.1h)2 dx

+

14+4h
∫

14+2h

3(x− y.1h2 )2 dx−

14+4h
∫

14+2h

3(x− y′2
.1h)2 dx

where

y.1h1 =
138

43
−

1597h

860
, y.1h2 =

394

39
+ 2.05h

are the values ofy1, y2 for Q.1h (substitutingǫ2 = h/20),
respectively. We use the following elementary identity

b
∫

a

(x−y)2 dx−

b
∫

a

(x−y′)2 dx = (b−a)(y′−y)(b+a−(y+y′))

to see that the above sum is

2h(y′1
.1h − y.1h1 )(4− 6h− (y.1h1 + y′1

.1h))

+ 2h(y′2
.1h − y.1h1 )(8− 2h− (y.1h1 + y′2

.1h))

+ 0.3h(y′2
.1h − y.1h1 )(12 + 0.1h− (y.1h1 + y′2

.1h))

+ 5.7h(y′1
.1h − y.1h2 )(12 + 2.1h− (y.1h2 + y′1

.1h))

+ 6h(y′2
.1h − y.1h2 )(28 + 6h− (y.1h2 + y′2

.1h)).
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After substitution, calculation, and putting together, weget
that

D̄(Q)− D̄(Q′) ≥ ω(0.697− 4.472h− 2.07h2).

Re-scaled by the factorω{1,2}, this gives the statement of the
lemma.

Proof of Theorem 1: This follows obviously from
Lemma 5 since there the right side is positive ifω{1} > 0
andh < 1/7.

Proof of Lemma 1: Let {C1, . . . , CN} be the partition
of Q. Note that the support offǫ is contained in[b1− ǫ, bK +
wK + ǫ] ⊆ [0, 1]. Now

|D(µǫ, Q)−D(µ,Q)|

=

∣

∣

∣

∣

∣

∣

N
∑

i=1

∫

Ci

(x− yi)
2fǫ(x) dx−

N
∑

i=1

∫

Ci

(x− yi)
2f(x) dx

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

N
∑

i=1

∫

Ci

(x− yi)
2(fǫ(x)− f(x)) dx

∣

∣

∣

∣

∣

∣

≤
N
∑

i=1

∫

Ci∩[0,1]

(x− yi)
2|fǫ(x)− f(x)| dx.

Herex, yi ∈ [0, 1] implies (x− yi)
2 ≤ 1, thus

N
∑

i=1

∫

Ci∩[0,1]

(x− yi)
2|fǫ(x)− f(x)| dx

≤
N
∑

i=1

∫

Ci

|fǫ(x)− f(x)| dx =

∫

R

|fǫ(x)− f(x)| dx.

Since|fǫ(x)− f(x)| can be written as

K
∑

i=1

ai
2ǫ

(

(x− bi + ǫ)I{x∈[bi−ǫ,bi]}

+ (bi + ǫ− x)I{x∈[bi,bi+ǫ]}

+ (x− bi − wi + ǫ)I{x∈[bi+wi−ǫ,bi+wi]}

+ (bi + wi + ǫ− x)I{x∈[bi+wi,bi+wi+ǫ]}

)

and the intervals above are disjoint, its integral is
∫

R

|fǫ(x)− f(x)| dx

=

K
∑

i=1

ai
2ǫ





bi
∫

bi−ǫ

x− bi + ǫ dx+

bi+ǫ
∫

bi

bi + ǫ− x dx

+

bi+wi
∫

bi+wi−ǫ

x− bi − wi + ǫ dx+

bi+wi+ǫ
∫

bi+wi

bi + wi + ǫ− x dx





=
K
∑

i=1

ai
2ǫ

4

ǫ
∫

0

x dx = ǫ
K
∑

i=1

ai

giving the desired bound.
Now we can prove Theorem 2 approximating the pdf in

Theorem 1 by a continuous one. Considerf and µ defined

by (7). Letfǫ andµǫ be their continuous approximation, as is
(5) for (3), supported on the four disjoint intervals[2− 4h−
ǫ, 2 − 2h + ǫ], [4 − 2h − ǫ, 4 + ǫ], [6 − ǫ, 6 + 2h + ǫ], and
[14+2h− ǫ, 14+4h+ ǫ]. The following lemma gives a more
technical version of Theorem 2:

Lemma 7: If ω ≤ 1/300, h ≤ 3/16, andǫ < min(1−4h, h)
then for the sourceµǫ corresponding tofǫ above and for any
convex2-RSQQ ∈ Q1,1

D̄(Q)− inf
Q′∈Q1,1

D̄(Q′)

≥ ω{1}(0.697− 4.472h− 2.07h2)− 14(ω{1} + ω{1,2})
ǫ

h
.

Proof of Lemma 7: As in the proof of Lemma 5, there
is an optimal MRSQ forµǫ among all convex MRSQs with
given rates. So we can assume w.l.o.g. thatQ is optimal for
µǫ andω{1}, ω{1,2} among all convex2-RSQs inQ1,1. Then
it has to satisfy the centroid condition forµǫ, that is, all its
code points lie in the convex hull of the support ofµǫ, which
is [2− 4h− ǫ, 14+ 4h+ ǫ] ⊂ [1, 15] (from ǫ < 1− 4h). Thus
applying Lemma 1 re-scaled for the interval[1, 15] for f , µ,
fǫ, µǫ above andQ1, Q{1,2} gives

max(|D(µǫ, Q1)−D(µ,Q1)|, |D(µǫ, Q{1,2})−D(µ,Q{1,2})|)

≤ 14ǫ
1 + 1 + 3 + 3

16h
= 7

ǫ

h

wheneverǫ < min(1− 4h, h). Hence, using (2),

D̄(µ,Q)− D̄(µǫ,Q)

= ω{1}(D(µ,Q1)−D(µǫ, Q1)) (9)

+ ω{1,2}(D(µ,Q{1,2})−D(µǫ, Q{1,2}))

≤ 7(ω{1} + ω{1,2})
ǫ

h
.

Now, sinceQ is convex, according to Lemma 5, for anyQ′ ∈
Q1,1 optimal for µ, we have

D̄(µ,Q)−D̄(µ,Q′) ≥ ω{1}(0.697−4.472h−2.07h2). (10)

Q′ has to satisfy the centroid condition forµ, that is, its code
points are in the convex hull of the support ofµ, which is
[2 − 4h, 14 + 4h] ⊂ [1, 15] (from 4h ≤ 3/4). Thus applying
now Lemma 1 as above, but for the active componentsQ′

1,
Q′

{1,2} of Q′ gives

max(|D(µǫ, Q
′
1)−D(µ,Q′

1)|, |D(µǫ, Q
′
{1,2})−D(µ,Q′

{1,2})|)

≤ 7
ǫ

h

wheneverǫ < min(1− 4h, h), which implies

D̄(µǫ,Q
′)− D̄(µ,Q′)

= ω{1}(D(µǫ, Q
′
1)−D(µ,Q′

1)) (11)

+ ω{1,2}(D(µǫ, Q
′
{1,2})−D(µ,Q′

{1,2}))

≤ 7(ω{1} + ω{1,2})
ǫ

h
.

Putting together (9), (10), and (11), we get that

D̄(µǫ,Q)− D̄(µǫ,Q
′)

≥ ω{1}(0.697− 4.472h− 2.07h2)− 14(ω{1} + ω{1,2})
ǫ

h
.
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This gives the statement of the lemma.
Proof of Theorem 2: This follows obviously from

Lemma 7 since there the right side is positive ifω{1} > 0,
h < 1/7, and

ǫ <
ω

ω + 1

h

14
(0.697− 4.472h− 2.07h2).

For example,h = 1/14, ω = 1/300, andǫ = 6 ·10−6 will do.

Remark 1:The counterexamples in the results above are
for R1 = R2 = 1. However, it seems possible to extend these
to higher ratesR1, R2. In particular, for any rates and levels
N1 = 2R1 , N2 = 2R2 (≥ 2), let N

def
= N1N2. Then for the

discrete distribution with probability mass function

{p, p, p, . . . , (1− (N − 2)p)/2, (1− (N − 2)p)/2}

on alphabet{1, 2, 3, . . . , N −1, N +W}, whenW ≫ 1 andp
andω = ω{1}/ω{1,2} is small enough, a similar argument as
for Proposition 1 must show that an optimal2-RSQ cannot
be convex. Moreover, it must be possible to extend this
for absolutely continuous sources with bounded (continuous)
densities replacing the atoms by intervals of a pdf with length
h ≪ 1 as in (7) (and then (5)). Giving an accurate proof for
this generalization is far beyond the scope of this paper.

Remark 2:Also the results above are stated for the case
of 2-RSQs. Again, as noted also in [6], it seems plausible to
extend these to more than2 resolution levels. In particular,
if we have 3 (or more) resolution levels with given rates
R1 = R2 = 1, R3,. . . and corresponding weightsω{1}, ω{1,2},
ω{1,2,3}, . . . > 0 such thatω{1} andω{1,2} still satisfyω ≪ 1
and the other weights are sufficiently small compared to them,
and we keep the distributions defined byf in (7) (and fǫ),
then an optimal3-RSQ (M -RSQ) must have the same active
componentsQ1 (that is nonconvex) andQ{1,2} as in the2-
RSQ case above and componentsQ{1,2,3},. . . dividing further
each of the four support intervals in (7) uniformly. Thus our
theorems must extend toM -RSQs for M > 2. Giving a
detailed proof for this is beyond the scope of this paper, as
well.

IV. CONCLUSIONS ANDFUTURE WORK

It has been proven earlier that codecell convexity may
preclude optimality for MRSQs showing a discrete counterex-
ample. Here we have proven that convexity of FR MRSQs
may preclude optimality for the MSE fidelity criterion also
for absolutely continuous sources with bounded continuous
pdfs over bounded regions.

Our counterexample are given for a{1, 1} rate2-RSQ setup
with certain weights in the total distortion. We have given
directions in Remarks 1,2 for extension to higher rates and
more resolutions, but left the detailed calculations for future
work. It still remains possible that under some practical (per-
haps combined) constraints on the weights, the rates, and/or
the distribution, there are always convex optimal MRSQs (as
in the case of the uniform source). See [2, Section VII] for
related conjectures and statements, where both conditionson
the weight ratios and high-rate assumptions are considered.

We have not touched issues such as the other types of
extensions of SQ model mentioned in Section I-B. It remains
an open question how the results can be generalized for fidelity
criterions other than MSE.

Proposition 1 can be obviously generalized to vector quan-
tizers using the fact that the intersection of a convex cell and a
straight line is convex. Similar generalizations of Theorems 1
and 2 are not so obvious (since the support of a multidimen-
sional pdf cannot be on a line), however, we think that they
can be done by some approximation method without actual
difficulty.

Another open question is whether the results can be ex-
tended to VR or EC quantization, for example, based on
the Lagrangian formulation used in [20]. However, as stated
there, very little is known concerning VR quantizers achieving
minimum distortion; nor is it known whether an optimal VR
quantizer always exists. Even in the Lagrangian sense, the
analogous to the nearest neighbor condition of Section I-A is
much more complicated.

For EC quantization, the existence of an optimal ECSQ
is known for several sources [15], [21]. In [6], it is shown
that also for EC MRSQs (and so MDSQs), codecell convexity
may preclude optimality for some discrete sources, that is,
Proposition 1 can be extended to this case. Whether the
analogous extensions of Theorems 1 and 2 hold is espe-
cially interesting in cases of finite-level EC MDSQs/MRSQs,
because for sources with pdfs, as mentioned and stated in
Section II, whereas on one hand convexity of FR MDSQs
[2] and MRSQs (Theorem 1) may preclude optimality, on the
other hand for finite-level ECSQs the optimal distortion can
be arbitrarily approximated by the convex ones [15], [16].

We are currently investigating such models.

APPENDIX

PROOFS OF THEAUXILIARY LEMMATA

Proof of Lemma 2: The centroid condition implies that
the optimal code point is the conditional mean of the source
in the cell:

2w1a1(−1− w1) + 2w2a2(1 + w2)

2w1a1 + 2w2a2

=
a2w2(1 + w2)− a1w1(1 + w1)

a1w1 + a2w2
.

Proof of Lemma 3:By Lemma 2, the optimal code point
is

c =
a2w2(1 + w2h)− a1w1(1 + w1h)

a1w1 + a2w2

and the distortion contribution is

dh,w1,a1,w2,a2

=

−1
∫

−1−2w1h

a1
h
(x− c)2 dx+

1+2w2h
∫

1

a2
h
(x− c)2 dx

=
a1
h

−1
∫

−1−2w1h

x2 − 2xc+ c2 dx+
a2
h

1+2w2h
∫

1

x2 − 2xc+ c2 dx
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=
1

h

(

1

3
(a1((1 + 2w1h)

3 − 1) + a2((1 + 2w2h)
3 − 1))

− a1c(1− (1 + 2w1h)
2)− a2c((1 + 2w2h)

2 − 1)

+ 2a1c
2w1h+ 2a2c

2w2h
)

= 2(a1w1(1 + 2w1h+ 4w2
1h

2/3)

+ a2w2(1 + 2w2h+ 4w2
2h

2/3)

− 2c(a2w2(1 + w2h)− a1w1(1 + w1h))

+ c2(a1w1 + a2w2)).

Now substituting c, the last two terms in the outermost
parentheses together give

−
(a2w2(1 + w2h)− a1w1(1 + w1h))

2

a1w1 + a2w2

and so
3

2
(a1w1 + a2w2)dh,w1,a1,w2,a2

= (a1w1 + a2w2) ·
(

a1w1(3 + 6w1h+ 4w2
1h

2)

+ a2w2(3 + 6w2h+ 4w2
2h

2)
)

− 3(a2w2(1 + w2h)− a1w1(1 + w1h))
2

= (a1w1 + a2w2) · (3(a1w1 + a2w2)

+ 6h(a1w
2
1 + a2w

2
2) + 4h2(a1w

3
1 + a2w

3
2)
)

− 3(a2w2 − a1w1 + (a2w
2
2 − a1w

2
1)h)

2

= 3(a1w1 + a2w2)
2 + 6h(a1w1 + a2w2)(a1w

2
1 + a2w

2
2)

+ 4h2(a1w1 + a2w2)(a1w
3
1 + a2w

3
2)

− 3(a2w2 − a1w1)
2 − 6h(a2w2 − a1w1)(a2w

2
2 − a1w

2
1)

− 3(a2w
2
2 − a1w

2
1)

2h2

= 12a1a2w1w2 + 12ha1a2w1w2(w1 + w2) + h2·

(a21w
4
1 + a22w

4
2 + 4a1a2w1w2(w

2
1 + w2

2) + 6a1a2w
2
1w

2
2)

= a1a2w1w2(12 + 6s)

+ h2((a2w
2
2 − a1w

2
1)

2 + 4a1a2w1w2(w1 + w2)
2)

= a1a2w1w2(12 + 6s+ s2) + h2(a2w
2
2 − a1w

2
1)

2

giving the first equation. The next two equations follow from
trivial substitution. The last statement is obvious.

Proof of Lemma 4: For anyx ∈ [a, b], in case i),2x ≥
2a > y + ỹ, that is,x− y > ỹ − x, and alsox− y > x− ỹ,
implying together|x−y| > |x−ỹ|. In case ii),y+ỹ > 2b ≥ 2x,
that is,y−x > x−ỹ, and alsoy−x > ỹ−x, implying together
|x − y| > |x − ỹ| again. Hence(x − y)2 − (x − ỹ)2 > 0 on
x ∈ [a, b] anyway. Using (1) and the definition ofQ′, we have

D(Q)−D(Q′) =

b
∫

a

(x− y)2 − (x− ỹ)2 µ(dx) > 0

proving the first statement. The second statement is obvious.
Also the third one that follows from the definition of the
centroid condition.

Proof of Lemma 6: Assume that for some 4-level
quantizerQ, D(Q) < D(Q0

{1,2}). We can assume w.l.o.g.
that each boundary point ofQ is in some (closed) interval
of the support of (7) since this can be reached without
changingD(Q). If a cell of Q contains one of the gaps
[2 − 2h, 4 − 2h] or [6 + 2h, 14 + 2h] of the support then it

is easy to see that the optimal distortion contribution from
this cell does not increase if we dissolve this gap moving
the support interval[2 − 4h, 2 − 2h] or [14 + 2h, 14 + 4]
beside[4 − 2h, 4] or [6, 6 + 2h], respectively. ThusD(Q) is
lower bounded by the optimal distortionD′ for the density
(I{x∈[4−4h,4]} + 3I{x∈[6,6+4h]})/(16h), which is reached by
some SQ, sayQ′ with boundary points{ti}3i=1. We can still
assume that eachti is in one of these two united support
intervals, namelyk of them are in[4 − 4h, 4] and 3 − k of
them are in[6, 6+4h]. Then the total distortion from the left-

mostk cells in [4− 4h, 4] is (with t0
def
= 4− 4h)

k
∑

i=1

d
h,

ti−ti−1

2h
,1/16,0,0

=
1

192h

k
∑

i=1

(ti − ti−1)
3

≥
k

192h

(

1

k

k
∑

i=1

(ti − ti−1)

)3

=
(4h+ tk − 4)3

192hk2

=
h2

3

(1− x1)
3

k2
with x1

def
= 4−tk

4h

if k > 0 and 0 if k = 0 (then x1
def
= 1). Similarly, the total

distortion from the right-most3−k cells in[6, 6+4h] is at least

h2 (1−x2)
3

(3−k)2 with x2
def
= tk+1−6

4h if k < 3 and 0 if k = 3 (then

x2
def
= 1). Note thatx1,x2 ∈ [0, 1]. Moreover, the distortion of

Q′ from the cell[tk, tk+1] is dh,2x1,1/16,2x2,3/16 if x1+x2 > 0
(and0 if x1 = x2 = 0), and thus

D′ ≥
h2

3

(

(1− x1)
3

k2
+

3(1− x2)
3

(3− k)2

)

+ dh,2x1,1/16,2x2,3/16.

(12)
We show that in all cases,D(Q) ≥ D′ ≥ D(Q0

{1,2}), that
contradicts to our assumption.

Case k = 0 (x1 = 1): Then D′ ≥ dh,2,1/16,2x2,3/16

from (12), which, using Lemma 3, is at leastdh,2,1/16,0,3/16 =
h2/3 = D(Q0

{1,2}).
Case k = 3 (x2 = 1): Then, similarly, D′ ≥

dh,2x1,1/16,2,3/16 ≥ dh,0,1/16,2,3/16 = h2 > D(Q0
{1,2}) again.

Casek = 1: Then for x1 = x2 = 0, (12) is obviously
(1 + 3/4)h2/3 > D(Q0

{1,2}), otherwise it is

D′ ≥
h2

3

(

(1− x1)
3 +

3(1− x2)
3

4

)

+ dh,2x1,1/16,2x2,3/16

=
h2

3
+

h2

3

A1

4(x1 + 3x2)

whereA1 is

4(x1 + 3x2)

·

(

(1− x1)
3 +

3(1− x2)
3

4
− 1 +

3dh,2x1,1/16,2x2,3/16

h2

)

= (x1 + 3x2)(4(1− x1)
3 + 3(1− x2)

3 − 4)

+ 4(3x1x2(3/h
2 + 6(x1 + x2)/h+ 4(x1 + x2)

2)

+ (3x2
2 − x2

1)
2)

≥ (x1 + 3x2)

· (4(1− 3x1 + 3x2
1 − x3

1) + 3(1− 3x2 + 3x2
2 − x3

2)− 4)
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+ 4x1x2(256 + 96(x1 + x2) + 12(x1 + x2)
2)

+ 4(3x2
2 − x2

1)
2

(from h ≤ 3/16)

= 3x1(1− 2x1)
2 + 9x2(1/4 + 3(x2 − 1/2)2) + 979x1x2

+ 420x2
1x2 + 393x1x

2
2

+ 45x1x
3
2 + 72x2

1x
2
2 + 36x3

1x2 + 27x4
2

≥ 0

(each term is nonnegative). SoD′ ≥ h2/3 = D(Q0
{1,2}) again.

Casek = 2: Then, similarly, forx1 = x2 = 0, (12) is
(1/4 + 3)h2/3 > D(Q0

{1,2}), otherwise it is

D′ ≥
h2

3

(

(1− x1)
3

4
+ 3(1− x2)

3

)

+ dh,2x1,1/16,2x2,3/16

=
h2

3
+

h2

3

A2

4(x1 + 3x2)
,

whereA2 is

4(x1 + 3x2)

·

(

(1− x1)
3

4
+ 3(1− x2)

3 − 1 +
3dh,2x1,1/16,2x2,3/16

h2

)

= (x1 + 3x2)((1− x1)
3 + 12(1− x2)

3 − 4)

+ 4(3x1x2(3/h
2 + 6(x1 + x2)/h+ 4(x1 + x2)

2)

+ (3x2
2 − x2

1)
2)

≥ (x1 + 3x2)

· (1− 3x1 + 3x2
1 − x3

1 + 12(1− 3x2 + 3x2
2 − x3

2)− 4)

+ 4x1x2(256 + 96(x1 + x2) + 12(x1 + x2)
2)

+ 4(3x2
2 − x2

1)
2

= 3x1(3− x1) + 27x2(1− 2x2)
2 + 979x1x2

+ 3x3
1 + 393x2

1x2 + 420x1x
2
2

+ 3x4
1 + 45x3

1x2 + 72x2
1x

2
2 + 36x1x

3
2

≥ 0

again. SoD′ ≥ h2/3 = D(Q0
{1,2}).

Proof of D1(Q
0) ≤ D1(Q) in Lemma 5, Caset2 < 6:

Consider three subcases:
Caset2 ∈ [4, 6): ThenD1(Q) = D1(Q

0) for µ([4, 6]) =
0.

Caset2 ∈ [4 − 2h, 4): Then y1 ≥ 2 − 3h and y2 ≥ y∗2 ,
where

y∗2 =
(4− h)/8 + 3(6 + h)/8 + 3(14 + 3h)/8

7/8
=

64 + 11h

7

is the optimal code point in a cell consisting of the interval
[4− 2h, 14 + 4h]. These andh ≤ 3/16 imply that

y1 + y2 ≥
78− 10h

7
≥

87

8
> 8.

Moving the boundary fromt2 into 4 and applying Lemma 4
case ii) with SQQ1, interval [t2, 4], and code points(y1, y2),
we get thatD1(Q) ≥ D(Q′′) where the SQQ′′ has its only
boundary at4 and satisfies the centroid condition, and so again
D(Q′′) = D1(Q

0).

Caset2 < 4− 2h: ThenD1(Q) is lower bounded by the
distortion contribution from the cell consisting of[4−2h, 14+
4h] with code pointy∗2 above. The latter can written as

1

16h
·





4
∫

4−2h

(x− y∗2)
2dx+

6+2h
∫

6

3(x− y∗2)
2dx+

14+4h
∫

14+2h

3(x− y∗2)
2dx





=
1

16h





h
∫

−h

x2 dx+ 3

h
∫

−h

x2 dx+ 3

h
∫

−h

x2 dx



+

(

(4− h− y∗2)
2 + 3(6 + h− y∗2)

2 + 3(14 + 3h− y∗2)
2
)

/8

=
[

7h2/3 + 16 + h2 − 8h− 2(4− h)y∗2 + y∗2
2

+ 108 + 3h2 + 36h− 6(6 + h)y∗2 + 3y∗2
2

+ 588 + 27h2 + 252h− 6(14 + 3h)y∗2 + 3y∗2
2
]

/8

=
[

712 + 280h+ 100h2/3− 2(64 + 11h)y∗2 + 7y∗2
2
]

/8

=
[

4984 + 1960h+ 700h2/3− (64 + 11h)2
]

/56

=
(

111 + 69h+ 337h2/24
)

/7,

that is (term-wise) greater than494 + 6.5h + 4h2

3 = D1(Q
0).

ACKNOWLEDGMENT

The author would like to thank an anonymous reviewer and
the associate editor for their efforts and A. György and Cs.
Szepesv́ari for the friendly discussions which helped us to
improve the paper to a great extent.

REFERENCES

[1] D. Pollard, “Quantization and the method ofk-means,”IEEE Transac-
tions on Information Theory, vol. IT-28, no. 2, pp. 199–205, Mar. 1982.

[2] S. Dumitrescu and X. Wu, “On properties of locally optimal multiple
description scalar quantizers with convex cells,”IEEE Transactions on
Information Theory, vol. IT-55, no. 12, Dec. 2009.

[3] J. K. Wolf, A. D. Wyner, and J. Ziv, “Source coding for multiple
descriptions,”Bell Sys. Tech. Jour., vol. 59, pp. 1417–1426, 1980.

[4] M. Effros, “Optimal multiple description and multiresolution scalar
quantizer design,” inInformation Theory and Applications Workshop.
Piscataway, NJ: IEEE Comput. Soc. Press, Aug. 2008, pp. 70–76, (San
Diego, CA, 27 Jan–1 Feb, 2008).

[5] S. Dumitrescu and X. Wu, “Algorithms for optimal multi-resolution
quantization,”Journal of Algorithms, vol. 50, pp. 1–22, Jan. 2004.

[6] D. Muresan and M. Effros, “Quantization as histogram segmentation:
optimal scalar quantizer design in network systems,”IEEE Transactions
on Information Theory, vol. IT-54, no. 1, p. 344366, Jan. 2008.

[7] V. A. Vaishampayan, “Design of multiple description scalar quantizers,”
IEEE Transactions on Information Theory, vol. IT-39, no. 3, pp. 821–
834, May 1993.

[8] M. Effros and L. Schulman, “Rapid near-optimal vq design with a deter-
ministic data net,” inProceedings 2004 IEEE International Symposium
on Information Theory, Jun. 2004, p. 299, (Chicago, IL, June 27-July
2, 2004.).

[9] H. Brunk and N. Farvardin, “Fixed-rate successively refinable scalar
quantizers,” inProceedings of the IEEE Data Compression Conference,
DCC’96. IEEE Comput. Soc. Press, Apr. 1996, pp. 250–259, (Snow-
bird, UT, March 1996).

[10] D. Muresan and M. Effros, “Quantization as histogram segmenta-
tion: globally optimal scalar quantizer design in network systems,” in
Proceedings of the IEEE Data Compression Conference, DCC 2002.
Snowbird, UT: IEEE Comput. Soc. Press, Apr. 2002, pp. 302–311.



ANTOS: OPTIMAL MULTIRESOLUTION SCALAR QUANTIZERS 11

[11] X. Wu and S. Dumitrescu, “On optimal multi-resolution scalar quan-
tization,” in Proceedings of the IEEE Data Compression Conference,
DCC 2002. Snowbird, UT: IEEE Comput. Soc. Press, Apr. 2002, pp.
322–331.

[12] S. Dumitrescu and X. Wu, “Lagrangian optimization of two-description
scalar quantizers,”IEEE Transactions on Information Theory, vol. IT-53,
no. 11, pp. 3990–4012, Nov. 2007.

[13] S. Dumitrescu and X. Wu, “Optimal two-description scalarquantizer
design,”Algorithmica, vol. 41, no. 4, pp. 269–287, Apr. 2005.

[14] M. Effros and D. Muresan, “Codecell contiguity in optimal fixed-rate
and entropy-constrained network scalar quantization,” inProceedings of
the Data Compression Conference, DCC 2002. Snowbird, UT: IEEE
Comput. Soc. Press, Apr. 2002, pp. 312–321.

[15] A. György and T. Linder, “On the structure of optimal entropy-
constrained scalar quantizers,”IEEE Transactions on Information The-
ory, vol. IT-48, no. 2, pp. 416–427, Feb. 2002.

[16] A. György and T. Linder, “Codecell convexity in optimal entropy-
constrained vector quantization,”IEEE Transactions on Information
Theory, vol. IT-49, no. 7, pp. 1821–1828, Jul. 2003.

[17] S. Dumitrescu and X. Wu, “On global optimality of gradientdescent
algorithms for fixed-rate scalar multiple description quantizer design,”
in Data Compression Conference, 2005. Proceedings. DCC 2005, Mar.
2005, pp. 388–397.

[18] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer
design,”IEEE Transactions on Communications, vol. COM-28, pp. 84–
95, Jan. 1980.

[19] A. Gersho and R. M. Gray,Vector Quantization and Signal Compression.
Boston, MA: Kluwer, 1992.

[20] T. Linder, “Learning-theoretic methods in vector quantization,” in Prin-
ciples of Nonparametric Learning, ser. CISM Courses and Lectures,
L. Györfi, Ed. Wien, New York: Springer-Verlag, Sep. 2002, no. 434,
ch. 4, pp. 163–210.

[21] A. György, T. Linder, P. A. Chou, and B. J. Betts, “Do optimal entropy-
constrained quantizers have a finite or infinite number of codewords?”
IEEE Transactions on Information Theory, vol. IT-49, no. 11, pp. 3031–
3037, Nov. 2003.
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