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On Codecell Convexity of Optimal Multiresolution
Scalar Quantizers for Continuous Sources

Andras Antos

Abstract—It has been shown by earlier results that for fixed interval of the real line. An SQ is callecbnvexor regular if
rate multiresolution scalar quantizers and for mean squared g|| of its cells are convex.

error distortion measure, codecell convexity precludes optimality Let X be a random variable with distributignon the reals

for certain discrete sources. However it was unknown whether = Th f f th fi h tizing th
the same phenomenon can occur for any continuous source. In "% e performance of the quantize;, when quantizing the

this paper, examples of continuous sources (even with bounded Source X, is measured by thexpected distortiofior MSE)
continuous densities) are presented for which optimal fixed

X X - N
rate multiresolution scalar quantizers cannot have only convex def 9 ' 9
codecells, proving that codecell convexity precludes optimality D(p,Q) = E{(X - QX)) } = Z (z — vi)” p(dz).
also for such regular sources. =1,

Index Terms—Clustering methods, codecell convexity, continu- 1)

ous density function, mean squared error methods, multiresolu- e omit . from the notation and write onlyD(Q) where
tion, optimization methods, quantization, rate distortion theory, unambiguous. Throughout this paper, we assﬂﬁh{@( 2} <
source coding oo, thus, the distortion is finite.
A rate is associated to the quantizer, denoted R{y)).

|. INTRODUCTION AND DEFINITIONS In the case offixed-rate (FR) (or resolution constrained
guantizer,R(Q) = log, N. The goal of optimal quantizer
design is to minimizeD(Q) given a target quantizer rate
. We define the optimum distortion by

ESIGNING and studying quantizers with a given rat
and minimum distortion is an important problem in dat
compression. In lossy IP and wireless network environmen@;(Q)
the needs of robust communication implied increasing &ffor o def .
) . o . ) D*'= inf D(Q)
on researching multiple description and multiresolutioalar QEON
guantization (MDSQ/MRSQ), a generalization of simple guan

. . where Qy denotes the set of allV-level quantizers. If
tization. These concepts are defined formally below. D(Q*) — D* thenQ* € Qy is calledoptimal

A quantizer ) satisfies thenearest neighboror optimal

A. Scalar Quantizers encoder conditiorif
An N-level scalar quantize(SQ) (V> 1 is an integer) _
is a measurable mapping : R — C, where thecodebook [z — Q)] = Inia |z —wil, forall z € R.

C = {y1,...,yn} C R is a set of N (usually distinct) . ) . . .
representation values, called tbede points The quantizer is NOt€ that a nearest neighbor quantizer is determined by its

completely characterized also by its codebook and thetjoarti c0debook with ties arbitrarily broken and it is always conve
of the alphabet seR consisting of theV (usually nonempty) Note also that for any quantizer, a nearest neighbor quentiz
sets with the same codebook has at most the same distortion re-
' gardless of:. These imply (e.g., seEl[1]) that, for MSE fidelity
Ci={zeR:Q) =y}, i=1...,N criterion (and for single quantizers defined above), it saffi
called thepartition cellsor codecellsvia the ruleQ(z) = y;, if to consider nearest neighbor quantizers when searching for
x € C;. The set{Ch,...,Cy} is called thepartition of Q. A an optimal quantizer, and so finding an optimal quantizer is
cell is said to bazonvexif it is a convex set, i.e., a contiguousauivalent to finding its codebook. Using this, it is proved i
[1] that there always exists an optimal quantizer, in patég
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....Qn, calledside quantizersand define anV/-description A positive result is that for MSE distortion measure, cell
scalar quantizer()M/-DSQ) Q to be a system o2 —1 SQs: convexity at the finest partition (i.e., that 6f,() can never
preclude optimality, that is, the optimal distortion is alys
{Qr:0#TCcM={1,2,...,M}} achievable using convex).,. This is proven for discrete

where for eact? — {i, i} C M, the partition of the sources and MRSQs inl[6, Theorem 6] and stated in general

joint or component quantizep+ is just the intersection of the forHMDSQs n ]' B]t (lse_iztalsdjg, Stetﬁllnltf\‘]) ttrue f
partitions of @Q;, , ..., Q;., whereas its codebook is arbitrary. owever, unfortunately it turned out that this 1S not true 1o

. . : - all other partitions, since convexity may preclude optityal
The expected distortion dQ is defined as It is also shown in[[14],[[6] that there are discrete sources
D1, Q) def Z wrD (1, Qz) (2) on finitely many atoms, target rates, and weights:} such
TCMI#0 that the optimal MDSQ cannot be convex. Moreover, such
counterexamples can be constructed even for some abgolutel
where eactl C M is assigned a weightz > 0, which prac-  continuous sources. Namely, for the uniform distributioero
tically represents the probability that only the side diggicms [0,1] and forwyy = wyay, the optimal2-DSQ in Q;; cannot
corresponding td@ are available for source reconstruction ifhe convex ifwi1y /w2y < 7/81, see also[]2].
some networked source coding environment. (For more detalil Convexity may pre’clude optimality for MRSQs, as well:
on interpretations and motivations of this MDSQ model, see, Proposition 1 ([14], [6]): There exists a (discrete) source
e.g., [3], [2], [4], [3], [€]. The term for = {) is omitted since on R and weightsw;y.wi1 2, > 0 such that the optima-
it does not affect the optimal design of MDSQ.) Again, WRSQ in Q; ; cannot be convex.
write only D(Q) where unambiguous. However, as mentioned if[2], in case of (continuous)
When all M side quantizers are FR, theg-DSQ is said to uniform source, the optimal MRSQ is always convex (since
be FR. We call quantizer®7 with wz # 0, which contribute at each refinement stage the optimal quantizer must be the
to the expected distortiomctivecomponents of thé/-DSQ.  uniform quantizer with the corresponding @@;:1 R;). Thus
The above definition of MDSQ includes multiresolutionthe counterexample above for absolutely continuous seurce
scalar quantizers (MRSQ) as well, which have an additiondgbes not work for MRSQs.
prefix property. Precisely, afn/-resolution scalar quantizer  Also, related results show that for entropy constrainethsca
(M-RSQ) of M refinement stages is aif-DSQ whose active quantizers (ECSQ, wher®(Q) is the entropy of the measure
components ar€1, Qi 2y, -, Q1,....i3s -+ QM- {u(C:)IY), there is also such (discrete) counterexample,
The problem of optimall/-DSQ design is to minimize the however, as proven i [15], [16] in case of continuous saairce
expected distortion[[2) over all possible side quantizers, and finite-level ECSQs, there is always a convex optimal
given the target rate®; def R(Q;), 1 <i < M of the side ECSQ.
guantizers and the weightsy. In particular, in optimal)M - Considering these facts, one might think that perhaps also
RSQ design, the weights1y, w12y, .., wi1,.ip, ---,waq  fOF MRSQs, the situation is different for discrete and conti

.....

are given. In the FR case, the constraint on the rat@,0fs Uous sources, that is, in case of, e.g., absolutely coniguo

equivalent to haveV; = 2% cells. sources over bounded regions with bounded probability den-
DenoteQ; ; the set of all FR2-DSQs @-RSQs) with rates sity functions (pdf), there is always a convex optimal MRSQ.
Ri =Ry, =1 (i.e., levelsN; = N, = 2). In this paper we want to clarify this question proving thasth

conjecture would fail as well. Our main results (Theotdm)1, 2
) show that for some weights and absolutely continuous seurce
C. Convexity of MDSQS/MRSQs with continuous pdfs, the optim&-RSQ in Q; ; cannot be
An MDSQ/MRSQ is said to beconvexif all its active convex. Earlier results respecting to the class of contisuo
quantizers are convex. (Thus, not all side quantizers aeurces (e.g./[17] and][2]) also motivate the clarificatadn
necessarily convex, but only if they are active. For exaryiple this case. One major technical difficulty of the proof for the
a convex MRSQ only the side quantizgy is active, therefore continuous case is that the cell boundaries can split the ofas
all the others may have nonconvex cells.) the source distribution anywhere. See Secfipn I, for tedai
Finding an optimal MDSQ/MRSQ is not easy in generamotivation and difficulties.
Although there are some MDSQ algorithms also for non- Note that there are several other types of generalizations
convex cases (e.g., s€€ [7]) [8]] [4]), several papers m@p@nd extensions of the simple quantizer model and respecting
algorithms for convex MDSQs, and most MRSQ algorithmigsults in Subsection THA:

address the problem of finding the optimal one among convexDistortion: the fidelity criterion used in[}1) can
MRSQs, that is, they hence lead to overall optimality if thisr be different from MSE containing some
a convex optimal MDSQ/MRSQ (e.g., séé [2]} [9].[10].][11], other function ofX and Q(X).

[5], [12], €], [L3]). Under this constraint, optimal SQ dgs VQ: vector quantization, where the source
is equivalent to designing the optimal threshold sequence alphabet is multidimensional.

and corresponding codewords, so the search space is usualyR, ECQ: variable rate and @Ryi-)entropy con-
reduced significantly. Thus, it is a crucial question whethe strained quantizers, wherdk(Q) #
suffices to consider convex MDSQs/MRSQs when searching log, N, but depends on the distribution

for an optimal MDSQ/MRSQ. {u(C)IY,.
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The organization of the paper is as follows: In Secfidn I, wiet f. be a continuous approximation ¢freplacing its jump
give our main results along with their motivation in detailsdiscontinuities by linear pieces d& wide intervals:
We present a lemma here that looks interesting on its own. X
Some technical lemmata and the proofs of our results are in fulz) = Z (@(x i+l
SectiorTll. In Sectiof 1V, we draw our conclusions and meli ‘ 2¢ ' {Jo=bilse}
possible direction for future work. Finally, the proofs diet
technical lemmata are given in the Appendix.

i=1

+ aiH{re[bi+e,bi+wi76]} (5)
Q;
+ oo (bi +wi e~ x)ﬂ{\szﬁwige}) :

. MAIN RESULT Then the observation is formalized as shown.
Lemma 1:Let x and . be the sources corresponding fo

Here we show that Propositidd 1 remains true restricting @) and f. in (8), respectively. Whenevefl(4) holds fer
ourselves to the case of absolutely continuous sources otfen for any SQQ with all code points in0, 1], we have
bounded regions with bounded pdfs: X

.Theorem 1:There exists an absolutely. continuous soyrce 1D(pte, Q) — D11, Q)| < Ezai.
with a bounded pdf over a bounded region7fand weights —
wy1},wi1,2y > 0 such that the optima2-RSQ in Q; ; for u

cannot be convex. We need the following concept as well: A quantizer
In SectiorfIIl, we give a more quantitative version of thisute satisfies theentroid or optimal decoder conditiofor a given
(Lemmal’) ' source X if each code point is chosen to minimize the

Note that clarifying the case of the class of (absolutel?ismrtion over its associated cell, that is, for the MSE Ifide
continuous sources is required also because there are s rrr'1t8”0n

results respecting to this important class. For examplés it g {(X — )X € Ci} — minE {(X —y2|X e Ci} (6)
proved in [17] and[[2] that the local optimal convex MRSQ is yeER

uniqge (and thus search algorithms, as gene_ralized Llogd d soy; = E{X|X € C,)} for all i = 1,...,N. Note that
gradient methods, always find the global optlma} (_:orrecﬂy) uch a quantizer is determined by its partition (given the
the source has a log-concave pdf (consequgntly itis aw'“tsource). It is well known (e.g., sée 118 [19]) that any oyl
continuous). In[[2], also there is a supporting argument th antizer satisfies the centroid condition.

high resolution MRSQs are convex. This argument is based "Note that any active component of an optimal MDSQ/

compander functions, and so applies, first of all, to cormtira MRSQ satisfies the centroid condition, but not necessdray t

sourges. . - nearest neighbor condition.
Using a quite elegant continuity argument we can develop a

counterexample with continuous pdf based on one with piece-

wise constant pdf as in the proof of TheorEm 1. Thedrém 2, a Ill. PROOFS
sEarp(;r]].ed version of Theoréth 1, and Lemrhita 1&nd 7 belowre foliowing notations for 2-RSQ Q (with active com-
show this: def

onents@; and will be useful: D =D ,
Theorem 2:There exists an absolutely continuous soyrce P @ Qi) Q) (@)

def def
with a bounded continuous pdf over a bounded regiorRof D (Q) = D(Quxy), w = wiy/win 2y

and weightsuy}, wyi 23 > 0 such that the optimal-RSQ in In the proof of P_rOposit_ionl:Il, it is shown that for
Q. for 1 cannot be convex. the discrete distribution with probability mass function
In Section[dll, we give a more quantitative version of thiél/g’ 1/8’3/8’3./8} on alphabe(2, 4, 6,14}, whenw is small
result, t0o (Lemmd&l7) enough, an optimal-RSQQ cannot be convex. For absolutely
For,the roof. we us.e the followina noteworthy observatio r(]:_ontinuous sources, we can use a continuous distribution
Proot, 9 y replacing the atoms by intervals of a pdf with length

If a piecewise constant pdf is approximated by a Contmuogﬁproximaﬂng the atomic distribution above as < 1.

pdf then the distortion of an SQ for the former is uniforml)why is this case much more involved to handle then? The

apprpxmlatedbby thg d|st9rt|on for the I:fter. To ma(‘jk% thi iscrete source case is based on the observation that since
Sirsegii?clgg; d ientz;r\?;g?rtvgsa'constant pdf supported fen the cell partitions of a quantizer are “forced to decide” e¥hi
) T atom belongs to which cell, the amount of the suboptimality
K (distortion redundancy) of)(, », is discrete, thus it could
f= Zaiﬂ{[b, betw]} A3) overwhelm any change i, (Q) whenw is small, and so
e the optimality of the2-RSQ forces the optimality of)(; o3,
that is, D{;2,(Q) = 0. Then D(Q) is optimized by a

i=1

whereb;, w; > 0, b; +w; < bi11 <1, bx +wx < 1. For noncontiguous partitioning oRR. For absolutely continuous
sources, the cell boundaries can split the intervals of tife p
0<e< (4) anywhere. Thus for example, the amount of suboptimality
) . b1 — by —w; LW of Q1,2y can be arbitrarily tiny, so the discussion have to
i (bl’ 1=bx —wi, | _min| 2 B 2) exclude such cases by other means. Another approach to see
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the difficulty is the following: Consider the rate-distanti (R- wheres = 2h(w; + w2) the length of the support of. In
D) domain defined by particular,

— _ 2 3
{(R1, Rz, D1(Q), D(1.23(Q)) € R* : Q € {2-RSQg} iy sar,0.02 = Qhywyar,wa,0 = 2hPa1wi /3 and
dh,w,a,w,a - aw(4 + 2s + 82/3).
where Q runs over the set of al2-RSQs. _For the dlgcrete Mareover, if the pdf in the cell is lower bounded by then
source that was used as counterexample in Propogition 1, we

can see that the poifit, 1,10.875,0) € R* is on the boundary twig:ﬁﬁg'gﬂ_‘;?ng'%g'g O;g]esgg: Ifh:: Iﬁ:‘g&’f’“&{;“gd
of the R-D domain. Moreover, because of thedistortion ) pp

at the finer resolution, it is quite easy to see that this poitn(% code pointy co/ntalns the mter_va[la, b| which has positive
. . .~ n-measure. Let)’ be the SQ with the same codebook and
is on the lower convex hull of the R-D domain |mply|ng”

that the corresponding (nonconve2)RSQ also minimizes p;gltlo:da;s% fﬁ;fipst g}ai[aéb]\ ['S ;a‘:ﬁg%s/eii g%mf g]) |C]:
some weighted average distortion likg (2) (se€ [14] and. [61( Zp~ anczi/ ’+ ;o 2 0: ® a @Ol
Furthermore, due to the discrete source, the R-D dom Y >yg andyy +yg N 262
must have a jump (a corner) at this point, thus it is easy , ’ - - ,
show that there are weights for which tlRSQ is the only Mﬁ?elg\ggr) |f>Ql’?(|ng t)ﬁelfsl(ig([(\j\;i?p tﬁeosrgg De(lgi?ci(;w Z}({%&t
optimal one. These facts give the basis for the precise mbof__.. . "’ . . ; P .

- . .~ satisfying the centroid condition, thed(Q’) > D(Q").
Propositior L. For the continuous counterpart source, ésein o .
proof of Theoren{1l, we have positive distortion at the finer We prove _Theorerﬁll approximating the f|n|te-sp urce coun-
resolution instead, and it is not obvious too see whether tlegrfza;ngir:g?ﬂs%lﬂﬁl Z}i/s?r?bt?t?jmrl:gi{\ cor(;tfmuous one.
corresponding point is on the lower convex hull of the R- . n ap
domain. Moreover, if it is there, there is no jump in the R-D — (1 +1 7
domain due to continuity, and the uniqueness of the optimal 16h ( frelmah2=2hl) T eeli=2h A1) )
2-RSQ is still more involved to show. + 3L{ze(s,6+2h)} + 3{we[atan, 1444n)})

One could think that some simple continuity argumenfypported on four disjoint intervals with weighted uniform

(e.g., similar to Lemme]1) can be used saying that th@stributions on each of them. The following lemma gives a
distortion of any quantizer on the discrete counterexaraptt more technical version of Theordm 1:

on the approximating absolutely continuous counterexampl | emma 5:1f w < 1/300 andk < 3/16 then for the source

corresponding toh (the measure of approximation, séé (7), corresponding tof in (7) above and for any convexRSQ
below) cannot differ more than, let us saj(h) ash — 0. For q ¢ g, ,

most of the quantizers, this holds (even wi»?)) quantizer- . _ )
wise, but it does not hold uniformly, that is, the threshaid/i ~ D(Q) —  inf  D(Q") = w(1y(0.697 — 4.472h — 2.07h%).
depends on the quantizer and can be arbitrarily small. Thisis t ¢ of ’ ) : . .
argument requires an involved discussion on deferent cases Proof of Lemmdl5:By @), the distortion of 2-RSQ is
which is basically don_e in our proof be|OW: _ D(Q) = w13 D1(Q) + wy1,23 D123 (Q)

We need the following lemmata proved in the Appendix. = w12} (wD1(Q) + Dy1,21(Q)).-

Lemma 2:Let . ) .
For concision, we assume without loss of generality (vgl)o.

f =T c1—2wr,—13@1 + L1420} 02- that the scaling factow; 2y = 1 and sow = wy3.
Note that, since the distortion of a convex MRSQ0ors a
If a quantizer cell contains the support ¢f the pdf of the continuous function of the cell boundaries and the codetppin
source is given by (or proportional tg) and the correspond- it is easily seen from Weierstrass’ Extreme value theoreah th
ing code point is positioned optimally, then the optimal eodit takes its minimum, that is, there is an optimal one amohg al
point in the cell is convex MRSQs with given rates. So we can assume w.l.o.g.
that Q is optimal for 1 and wyqy, wy1,2y @among all convex
a2w2(1—|—w2) —a1w1(1—|—w1) Q-RSQS ian,l-
ajwy + asws ' Convexity of Q and N, = N, = 2 imply that its first
partition consists of two half-lines, and its second (refjne
partition splits both into an interval and a half-line. Feaiy,
for appropriatety, to, ts,

P1 = {(—Oo,tg), [tQ,OO)} and
P19y = {(—00,t1), [t1,2), [t2, 3), [t3,00) }.

Lemma 3:Let

[ = c1—2wh,—11y01/ P + I 142wen) 1 02/ B

If a quantizer cell contains the support pfand the pdf of the
source is given byf, then the distortion contribution of the

cell is (For continuous distributions, it is insignificant to whicklls
the boundary pointg; belong.) The optimality ofQ implies
Ah w1 a1 w2502 that Q; and Qy; 2, the active components of), satisfy

2 ajaswiwg (12 + 6s + s2) + h?(aw3 — ajw?)? the centroid condition, which determines their code points

3 a1w1 + Ggws {y1,y2} and{c1, 2, c3, cs}, respectively based oft;}?_;.
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Define the “trivial” convex2-RSQ QP as an instance of

held, increasings would not changeDy; »,(Q), whereas if

whent, =4 —2h, t, = 6, t3 = 14+ 2h (i.e., each cell of the 3 > 14+4h held, decreasing; would not changey; 53 (Q).
refined partition contains exactly one interval of the suppoThus w.l.0o.g. we can assume thgte [14 + 2h, 14 + 4h). Let

and the centroid condition is satisfied). Recalling the dk&im

€3 def (ts — 14 —2h)/2 € [0, h]. For a givents, c3 andc, are

Of dh 1y ,a1,u0,0,, DY LemmalB, its corresponding distortionsjetermined by the centroid condition:

are

D1(Q%) =dp1,1/16,1,1/16 + 64dp1/4,3/16,1/4,3/16
49 1p?

— = 4 6.5h 4 —
I

Dy123(Q% = dn1.1/16,0,0 + dh,1,1/16,0,0

and

+dn,1,3/16,0,0 T dh,1,3/16,0,0
h2
~ 3
and thus,

D(Q%) = wD1(Q°) + Dy121(Q)
49 4h? h2

Note that this andv < 1/300 imply

1 (49 130 304h2>
e e .

B 0
D<Q)*3oo 42 3

®

2(h —€2)(6 + h + €2) + 2e3(14 + 2h + €3)

€= 2(h—€2)+263

863
=6+h+62+€3+m
— €2 3

64214+3h+63.

These imply that
8

1+(h—62)/€3

<20+4h+£+2h+L

- 20 14 19/20
41h 160

=20+4h+ — + —
* +20+39

< 2(14 + 2h) (from h < 3/16).

So if we hadts > 14+ 2h, then moving the boundary from
into 14 + 2h and applying LemmAl4 case i) with SQ; 13,
interval [14 + 2h, t5], and code points$cs, c4), we would get
a convex2-RSQ with smaller distortion. Thu€) cannot be

03+C4:20+4h+62+263+

Also we have the following lemma (that is obvious in the limibptimal convex2-RSQ unlesss = 14 + 2h.

h — 0) proven in the Appendix:

Lemma 6:If h < 3/16 then QY, o) minimizes D(u, Q)
over all 4-level (2-rate) quantize(é.’

Casety < 6:

If t; < 2—4h held, movingt; into 2 = 4h would not change
Dy123(Q). Then if 2 —4h < t; < 2 — 2h held, moving the
boundary fromt; into 2 — 2k and applying Lemml4 case ii)

It is proven in the Appendix that with SQQy, 2}, interval[t;, 2 —2h], and code pointsc, c1),

now D;(Q°%) < D;(Q). By Lemmal® aIsoD{LQ}(QO) < we would get a conveg-RSQ with smaller distortion. Then
Di123(Q), thus D(Q°) < D(Q), henceQ’ must also be if 2—2h <t; < 4—2h held, increasing, would not change
optimal convex2-RSQ, which is covered by the third caseDy; 53(Q). If 6 < t1(< t2) held, moving the boundary from

below.

Casety > 6 + 0.1h: Now, if t; < 4 — 1.8h then
considering the interval4 — 1.8h,6 + 0.1h], D1 21(Q) >
dhn.0.9,1/16,0.05,3/16, Whereas ift; > 4—1.8h then considering
the interval[2 — 4h,4 — 1.8h], D112}(Q) > dp1,1/16,0.1,1/16
giving together anyway

D{1,2}(Q) > min(dh,(].Q,1/16,(),()5,3/16a dh,1,1/16,0.1,1/16)-
Substituting by Lemmal3, this is

min 18 + 17.1h + 12.570625h2 30 + 33h + 36.6025h>
280 ’ 660

- L <4$)+13h+ 304h2>
300 \ 4 2 3
(from h < 3/16), which in turn at leastD(Q°) by @). So
in this case,D(Q) > D(QY), that is,Q cannot be optimal
convex2-RSQ.
Casety € [6,6 +0.1h]:  Letes = (t2 —6)/2 € [0, h/20].
Now, for a giventsy, determine the optimal values of and

def

t3. These do not influenc®,(Q), thus their choices have to

minimize Dy 93(Q).
If (t2 <)t3 < 6+2h held, moving the boundary from into
64-2h and applying Lemm@l4 case ii) with SQ; »y, interval

[ts, 6 + 2h], and code point$cy, c3), we would get a convex

2-RSQ with smaller distortion. Then if+2h < t3 < 14+2h

into 6 and applying Lemm@l4 case i) with SQ, 5}, interval
[6,t1], and code pointécy, c2), we would get a convex-RSQ
with smaller distortion. Then if < ¢; < 6 held, decreasing;
would not changeD; 5,(Q)). Thus w.l.o.g. we can assume
thatt; € [4 — 2h,4]. Moreover, ift; > 4 — h held, then
considering the intervgR — 4h, 4 — h|, we would have (using

Lemmal3)
9h?

1 h

D{172}(Q) > dp,1,1/16,1/2,1/16 = 5 + 1 + Gl

L (49 130 som
300 \ 4 2 3

(from h < 3/16), which in turn at leasD(Q°) by (8). So in
this case,D(Q) > D(Q"), that is,Q could not be optimal
convex2-RSQ. Hence w.l.0.g. we can assume that [4 —
2h,4 — h]. Let ¢; def (t1 —4+2h)/2 € [0,h/2]. For a given
t1, ¢c; andcy are determined by the centroid condition:

2h(2 — 2h — h) + 261(4 — 2h + 61)
N 2h + 261

261

h+ e

Q(h, — 61)(4 — 2h + h + 61) + 3 . 262(6 + 62)
2(h - 61) +3- 262

662(1 — 62)

h—e€ +3e

&]

:273}14’614’

Co =

=4 —h+e€ + 36+



These imply that

Cl+02

6(1—62)
— 6 dh+26; + 3
et T e T3 (h—a)/e
3h 2 6
<6—dhtht 2
= Tt T T2 T3 202
23h 44
6 _4h L 2
O—4h+ 55 39
< 2(4 —2h) (from h < 3/16).

So if we hadt; > 4 — 2h, then moving the boundary from
into 4 — 2 and applying Lemmal4 case i) with SQ; oy,
interval [4 — 2h,t,], and code pointgc;, c2), we would get
a convex2-RSQ with smaller distortion. Thu€) cannot be
optimal convex2-RSQ unlesg; = 4 — 2h.

Thus the optima can be only in = 4—2h andt; = 14+2h
in this case. W.l.o.g. we assume these from now on.

DefineQ’ € Q;; as a2-RSQ with active componeni’,

and Q/{m}’ which has the same second (refined) partition
P12y asQ, but its first partition consists of two nonconvex,

cells which are unions of an interval and a half-line in th
following way:

Pl = {(—00,t1) U[ta, t3), [t1, t2) U [ts, 00)}

andQ'’ also satisfies the centroid condition. Hergg 5, (Q’)
= D{12,(Q). DefineQ'" and Q"' as instances 0@ and
Q’, respectively, when; — 6 = 2¢5 = 0.1 (and the centroid
condition is satisfied).

For a givent,, y; andy, are determined by the centroid

condition:
2h 4+ 2h 4+ 3 - 2¢4

3.9
:3—2h+362(1+ 62)

2h+3€2
_ 3-2(h—e)(6+h+e)+3-2h(14 + 3h)
3-2(h—e€)+3-2h

).

3 — 262 4
2h + 3¢y 2h — €9
So moving the boundary from, into t;'* = 6 4 0.1h and
applying Lemmd&¥ case ii) with SQ, interval [t5, 6 +0.1h],
and code pointsy»,y:1), we get thatD;(Q) > D;(Q").
On the other hand, for a given, alsoy} andy) code points
of @)} are determined by the centroid condition:
~ 20(2—3h) +3-2(h — e2)(6+ h + €2)
- 2h+3-2(h — €3)
1+ e
4h — 362

(23

=10+ 2h 1
+ +62< +2h—62

These imply that

Yy1t+y2 = 13+€ (4 +3 > > 2(6-+0.1h).

/
1

)
:5—362

_ 2h(4—h)+3-26(6+ €2) + 3 - 2h(14 + 3h)
B 2h +3-2¢5 + 3 - 2h

4h + 362

Yo

€2
=11. 2h — —
5+ 5
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which, for Q"' (substitutinge, = h/20), are in turn

34 0.15h 33 117h
/.1h 1.1h
— 52T 15— 2 pop—
% 7 r 2 166 " 1660
These imply that
3 33 ho(3 117
/.1h /.1h

—165— o — 22 yop (2200
it 0577 ~ 166 20 (77 T3 )

> 2(6 + 0.1h).

So moving the boundary from'* = 6 + 0.1~ back into
ty = 6 + 2¢, and applying Lemm&l4 case ii) with SQ;'",
interval [t2,6 4+ 0.1h], and code pointgy,,y:), we get that

Dy (Q"'™") > Di(Q)). _ .
Now, we compare the distortiord3(Q) and D(Q’). Recall-

ing D{l,Q}(Q,) =D 21(Q),

D(Q) - D(Q))

=wD1(Q) + D1,93(Q) —wD1(Q') — Dg1.23(Q)
=w(D1(Q) — D1(Q)).

Bounded byD,(Q1") — D, (Q""). By definition,
16h(D1(Q™") = Di(Q"")

2-2h 2-2h
= / (z —yi"")? do — / (x—yi ") dx
2 4h 24n
4 4
+ [t [ @i
4 2n 4 2n
6+0.1h 6+0.1h
+ / 3(x — yi'h)? da — / 3(x — yy ) do
6 6
642h 6+2h
+ / 3(x — y3'h) 2 da — / 3(x — ) ) do
6-+0.1h 6+0.1h
14+4h 14+4h
+ 3(x — y'M)? da — 3(x — yy ") do
14°%2h 14%2h
where
138 1597h 394
1h 1h
= — - — = 2.05h
YT T 860 0 B T T

are the values ofy;, y» for Q' (substitutinge, = h/20),
respectively. We use the following elementary identity

b b
J@-v?do- [ @y do = -0 +a (1)
to see that the above sum is

a

2h(yy " =y (4 = 6h — (1" + 1)

+ 20y — 4 ") (8 = 2h — (yi"" + 45 M"))
+0.3h(yy ™" =y (124 0.1h — (1" + g5 "
+5.7h(yy " =y ") (12 + 218 — (" + 971"
+6R(yy " — y5'")(28 4+ 6h — (v + 95 1")).

)
)

1

y the inequalities above, the difference factor can be towe
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After substitution, calculation, and putting together, get by (@). Let f. and . be their continuous approximation, as is
that (®) for (3), supported on the four disjoint intervdis— 4 —
- - 2—2h+¢€,[4—2h—¢4+¢€, [6—¢6+2h+¢, and
/ 2 ) )
D(Q) - D(Q) 2 w(0.697 — 4.472h — 2.07h). [14 +2h — €,14 + 4h + €]. The following lemma gives a more
Re-scaled by the factawy; », this gives the statement of thetechnical version of Theorel 2:
lemma. 0 Lemma 7:1f w < 1/300, h < 3/16, ande < min(1—4h, h)
Proof of Theorem[]1: This follows obviously from then for the sourcg. corresponding tgf. above and for any
Lemma[b since there the right side is positivewif;; > 0 convex2-RSQQ € Q1
andh < 1/7. [ = . A
Proof of Lemmdll: Let {C1,...,Cn} be the partition D(Q) - Q/lengfm D(Q)
of Q. Note that the support of. is contained inb; —e, bx + > B B 2y €
Wi + 6] c [07 1]. Now > W{l}(0.697 4.472h — 2.07h ) 14(0.}{1} + w{l,g})h.
1D(ie, Q) — D(11, Q)| . Prooyc of Lemmdl7: As in the proof of Lemma&l5, the:re
is an optimal MRSQ foru. among all convex MRSQs with
B B B Y given rates. So we can assume w.l.0.g. 1®ais optimal for
= Z/ z —y;)* fe(x) dz Z/(I yi)"f(x) dz tte andwyiy, wii 23 among all convex-RSQs inQ; ;. Then
Ci

=e it has to satisfy the centroid condition for, that is, all its

N code points lie in the convex hull of the supportef, which
=D /(w —yi)?(fe(x) = f(x)) d is [2 —4h —€,14 + 4h+ €] C [1,15] (from € < 1 — 4h). Thus
=1, applying LemmdTL re-scaled for the interjal 15] for f, u,
N fer e @bove andly, Qq 23 gives
< —yi)?[fe(x) — da.
: ;C JCRCR max(|D(j1e, Q1) D11, Q1)l, D lptes Q1.2) =D, Qpr.2))))
- M[0,1
0.1 1+1+3+3
Herex, y; € [0,1] implies (x — y;)? < 1, thus < 14€T = 7%
N ) whenevere < min(1 — 4h, h). Hence, using[{2),
(@ —yi) | fe(@) = f(2)] dx _ _
Z_lc,;m[o 1 D(Mv Q) - D(:U/m Q)
N = w{l}(D(,uv @1) — D(pe, Q1)) )
SWIFCEETS / fu(a) - F(@)] da. w12y (D1 Quuzy) — Dk Q1.2)))
=14,

€
< Tlwpy +wpey)y
Now, sinceQ is convex, according to Lemnia 5, for ay ¢

XK: a; (& = b + OLpac—eo) Q1,1 optimal for i, we have
— Y xre|b; —€,b; _ _
i %€ D11, Q) — D(p, Q) > wy1(0.697 —4.472h —2.07h). (10)

4+ (b + € —2)ypcm. b 4e . . . .

( € = D eepibord) Q’ has to satisfy the centroid condition for that is, its code
+ (@ = bi —wi + )l izepituwi—ebitwi) points are in the convex hull of the support @f which is
+ (b +w; + € — SC)]I{.TE[b,;—&-wi,bi—i—’wi-&-e]}) [2 —4h,14 + 4h] C [1,15] (from 4h < 3/4). Thus applying

now Lemma[ll as above, but for the active componépis

and the intervals above are disjoint, its integral is ; ;s
(1.2} of Q' gives

/ [fe(@) = fl@)l do max(|D(pe, @)~ D (. QD 1D (s Q1.2)~ D11, Q1 2)))
K b; bi+e < 7E
:Z& /mfbiJreder/b?;Jrefxdz ) o .
— 2e . / whenevere < min(1 — 4h, k), which implies
bit-w; bitw;+e D(.u“sa Q,) - D(luv Ql)
+ / x—b; —w; +edr + / bi+wi+e—xdx) = wy(D(pe, Q1) — D(p, Q1)) (11)
bi4w; —e bi+w; + w{l,?}(D(Ma Qf{m}) - D(M’ Q{{Lz}))
K w € K <7 €
= —14/mda::eZai = (w{1}+w{172})g.
— e - .
=1 0 =1 Putting together{9)[(10), anf{11), we get that
giving the desired bound. O D(1te, Q) — D(pe, Q')

Now we can prove Theoreifd 2 approximating the pdf in ) €
Theorem[lL by a continuous one. Consideand u defined = w1}(0-697 — 4.472h — 2.07h%) — 14(wqy +wii2y) -
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This gives the statement of the lemma. O We have not touched issues such as the other types of
Proof of Theorem[]2: This follows obviously from extensions of SQ model mentioned in Secfion I-B. It remains
LemmalT since there the right side is positivewif;; > 0, an open question how the results can be generalized fortjideli

h<1/7, and criterions other than MSE.
w h Propositior L can be obviously generalized to vector quan-
€< mﬁ(o.ﬁw — 4.472h — 2.07h?). tizers using the fact that the intersection of a convex cedl @

straight line is convex. Similar generalizations of Theas€l
For exampleh = 1/14, w = 1/300, ande = 6-10~° will do. and[2 are not so obvious (since the support of a multidimen-
0 sional pdf cannot be on a line), however, we think that they
Remark 1: The counterexamples in the results above atan be done by some approximation method without actual
for Ry = R, = 1. However, it seems possible to extend thesdifficulty.
to higher ratesR;, R». In particular, for any rates and levels Another open question is whether the results can be ex-

Ny = 281 Ny = 282 (> 2), let N def N;N>. Then for the tended to VR or EC quantization, for example, based on

discrete distribution with probability mass function the Lagrangian formulation used in_[20]. However, as stated
there, very little is known concerning VR quantizers aclrigv
{p,p;p,..., (L= (N —2)p)/2,(1 = (N —2)p)/2} minimum distortion; nor is it known whether an optimal VR

on alphabef1,2,3,..., N —1, N+ W}, whenW > 1 andp guantizer always exists. Evgn in the ngrangian sense, the
andw = wyyy /w1 2y is small enough, a similar argument a&nalogous to the qearest neighbor condition of Se¢fioh 3-A i
for Proposition[]. must show that an optim®@RSQ cannot Much more complicated. . .
be convex. Moreover, it must be possible to extend this FOr EC quantization, the existence of an optimal ECSQ
for absolutely continuous sources with bounded (contispodS known for several source5 [15]. [21]. IAI[6], it is shown
densities replacing the atoms by intervals of a pdf with fengthat &lso for EC MRSQs (and so MDSQs), codecell convexity
h < 1 as in [T) (and ther(I5)). Giving an accurate proof fofa&y pr_e_clude optimality for some dlsc_rete sources, that is,
this generalization is far beyond the scope of this paper. FropositionllL can be extended to this case. Whether the
Remark 2:Also the results above are stated for the cad¥idlogous extensions of Theorefls 1 did 2 hold is espe-

of 2-RSQs. Again, as noted also in [6], it seems plausible glally interesting in cases of finite-level EC_ MDSQs/MRSQs,.
extend these to more thah resolution levels. In particular, P€cause for sources with pdfs, as mentioned and stated in
if we have 3 (or more) resolution levels with given rates>ectionlll, whereas on one hand convexity of FR MDSQs
Ry = Ry = 1, Rs,...and corresponding weights ., w1 2, [2] and MRSQs _(Theore 1) may precludg optlmahty,_ on the
W23} -~ > 0 such thatuy;y andwy; 4 still satisfyw < 1 other hand for finite-level ECSQs the optimal distortion can

and the other weights are sufficiently small compared to theRf arbitrarily approximated by the convex ongs [15]] [16].

and we keep the distributions defined Iyin (@) (and f,), Ve are currently investigating such models.
then an optimaB-RSQ (M/-RSQ) must have the same active

components?; (that is nonconvex) and)y; o, as in the2- APPENDIX

RSQ case above and componefts - sy... . dividing further PROOFS OF THEAUXILIARY LEMMATA

each of the four support intervals il (7) uniformly. Thus our  proof of Lemm412: The centroid condition implies that

theorems must extend t8/-RSQs for M > 2. Giving @ the optimal code point is the conditional mean of the source
detailed proof for this is beyond the scope of this paper, g$the cell:

well.
2’(1}16!1(—1 — UJ1) + 211)2&2(1 + wg)

2’(1)1&1 + 2'[02(12
. a2w2(1 + wg) — a1w1(1 + wl)
It has been proven earlier that codecell convexity may - ajwy + asws
preclude optimality for MRSQs showing a discrete counterex
ample. Here we have proven that convexity of FR MRSQs
may preclude optimality for the MSE fidelity criterion also
for absolutely continuous sources with bounded continuous aswa (1 4+ woh) — aywy (1 + wih)
pdfs over bounded regions. €=
.Our cou'ntere>.<ampltla are given f0|{a7 1}. rate2-RSQ setu'p and the distortion contribution is
with certain weights in the total distortion. We have given
directions in RemarkEl[l,2 for extension to higher rates angd;, ., .. w,.a,

IV. CONCLUSIONS ANDFUTURE WORK

O
Proof of Lemma&l3:By Lemma2, the optimal code point

aiwi + agwsz

more resolutions, but left the detailed calculations faufe _1 142wah
work. It still remains possible that under some practicar{p / ai 2 / as 2
. ; ) = —(z—¢)°d —(x—c)*d
haps combined) constraints on the weights, the rates, mnd/o h (=) do+ h (& =) de
the distribution, there are always convex optimal MRSQs (as —!—2wih !
in the case of the uniform source). Sée [2, Section VI[] for N a21+2w2h
related conjectures and statements, where both conditions = W / x? — 2xc+ ¢ dx + W / z? = 2xc+ A dx

the weight ratios and high-rate assumptions are considered 12wk 1
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_ 1 (1(a1((1 + 2w1h)? — 1) 4 az((1 + 2wah)® — 1)) is easy to see that the optimal distortion contribution from
h \3 this cell does not increase if we dissolve this gap moving
—ac(1 — (142w h)?) — age((1 + 2wah)? — 1) the support interval2 — 4h,2 — 2h] or [14 + 2h, 14 + 4]

+ 2a1 w1 h + 2a9cPwah) beside[4 — 2h, 4] or [6,6 + 2h], respectively. ThuD(Q) is

_ 272 lower bounded by the optimal distortiop’ for the density
= 2wl 2wk + dwih/3) (Lweti—anay + 3lioe6oany)/(16h), which is reached by
+agwa (1 + 2wah + dwyh”/3) some SQ, say)’ with boundary points(t;}3_,. We can still
— 2¢(agwa (1 + wah) — ajwi (1 + wih)) assume that each is in one of these two united support
intervals, namelyk of them are in[4 — 4h,4] and 3 — k of

them are in[6, 6 + 4h]. Then the total distortion from the left-
Now substituting ¢, the last two terms in the outermost, o« cells in [4 — 4h, 4] is (with £ def 4 _ 4h)

parentheses together give

+ 02(a1w1 + asws)).

k k
_(a2w2(1+12jf;)1+6221$2(1+w1h))2 ;d o1 60,0 1h§_:(t' —tio1)®
and so k 1E ?
g(a1w1 + aow2)dh wy a1 ,ws,a0 - 192h <k ;(tl t1—1)>
= (aywy + asws) - (alwl (3 4 6w h + dw?h?) — M
(3 + Gush + 4udh) Eon)
— 3(aswa(1 + wah) — aywy (1 + wih))? =52 with z; = 4Z’fk

= (a1wy + asws) - (3(a1wy + agws)

1 H def ..
if k> 0and0 if £ =0 (then = 1). Similarly, the total
+ 6h(a1w] 4 asw3) + 4h*(a1wi + asw3)) ( 1 ) y

distortion from the right-most—% cells in[6, 6+4h] is at least

2 2y712

= 3(azwz — @t (azwj — aywi)h) ) ) W20 with o, 4 a0 if k< 3 and 0 if k = 3 (then
- 3(a1u;1 +agwz)” + 6h(a11§1 + a21§2)(a1w1 + azwy) > % 1). Note thatz,25 € [0, 1]. Moreover, the distortion of

+4h (alwl + a2w2)(a1w1 + a2w2) Ql from the Cen[tk, tk_l'_l} is dh,2m1,1/16,2w2,3/16 if 1420 >0

— 3(agwy — aywy)? — 6h(asws — aywi)(asws — ayw?)  (ando if 1 = x5 = 0), and thus

— 3(agw3 — aywi)?h? o h2 (1 —21)2 31 —a9)?

2 D' > — + + dh,221,1/16,225,3/16-

= 12aqaswiws + 12hay aswiwe (w1 + we) + b= 3 2 (3— k)2 ,2@1, 213,

12)
We show that in all cased)(Q) > D' > D(QY, ,), that
contradicts to our assumption.
+h2((a2w2 —alwl) +46L1a2w1’lU2(U)1 +w2) ) Casek = 0 (331 = 1): Then D’ > dh,2,1/16,2zg,3/16
= ajaswiwy(12 4 65 + %) + h%(agw? — ayw?)? frzom (12), which, using Lemnid 3, is at leabt 1 /16,0,3/16 =
12/3 = D(Qf, ).

giving the first equation. The next two equations follow from Casek = 3 (ra = 1) Then, similarly, D' >

trivial titution. The last statement i Vi :
al substitutio € last statement is obvious. - dh,221,1/16,2,3/16 = Ar,0,1/16,2,3/16 = h? >D(Q01 2}) again.

Proof~of Lemmﬂ4: For anyx ¢ [a,b], in case i),2x ? Casek — 1: Then forz, = a4 = 0, m) is obviously
20 >y +j, that is,z —y > y—o and alsar “Y>T Y (143/4)h2/3 > D(Q0 71.2)) Otherwise it is
implying togethetz—y| > |z—g|. In caseii),y+y > 2b > 2z,
thatis,y—x > x—y, and alsqyj—x > §—z, implying together ,_ h? 5 3(1—m:p)?
|z —y| > |v — | again. Hencgz — y)? — (z — §)? > 0 on D= 3 ((1 — 1) + a1 ) + dn,221,1/16,222,3/16

2,4 2 4 2 2 2,2
(ajw] + azwy + dajaswiwy(w] + w3) + 6a;aswiwsy)

= ayaswiws(12 + 65)

x € [a,b] anyway. Using[{ll) and the definition ¢f, we have 22 Ay
) =3 B 4(e 4+ 800
D(Q) - D(Q') = /(33 —y)? = (- 9)? p(de) > where 4, is

a

proving the first statement. The second statement is obwougle +312) 5
Also the third one that follows from the definition of the . ((1 — )+ 3(1—x9)” 1+ 3dh,2x1,1/16,2x2,3/16>
centroid condition. O 4 h?
Proof of Lemmal[J6: Assume that for some 4-level = (z1 + 3x2)(4(1 — 1) + 3(1 — 22)® — 4)
quantizerQ, D(Q) < D(QY, ;). We can assume W.LO.Q. | 4(3z,25(3/h% + 6(z, + a2)/h + A(z1 + 22)?)
that each boundary point 0@ is in some (closed) interval 2 o9
of the support of [[[7) since this can be reached without + (323 — 1))
changing D(Q). If a cell of Q contains one of the gaps = (¥1 + 3%2)
[2 — 2h,4 — 2h] or [6 + 2h, 14 + 2h] of the support then it (4(1 = 3zy + 327 — 23) + 3(1 — 3wy + 323 — 23) — 4)
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+ 4x129(256 + 96(21 + T2) + 12(x1 + 29)?)
+ 4(323 — 23)?
(from h < 3/16)
=321 (1 — 221)% 4+ 922(1/4 + 3(z2 — 1/2)?) + 97921 25
+ 4207372 + 3937175
+ 45225 + 722325 + 36232y + 271
>0

(each term is nonnegative). $¥ > h?/3 = D(Q({’LQ}) again.
Casek = 2: Then, similarly, forz; = o, = 0, (I12) is
(1/4+3)h?/3 > D(QY ), otherwise it is

h? 1—a1)3 .
D' >— <(1) +3(1 - 952)3) +dp22,,1/16,220,3/16

3 4
R A
3 3 4(x1 + 3x9)’
where A, is
4(.%‘1 + 3.1‘2)
(1 — )3 3 3dn 241,1/16,222,3/16
(4—|—3(1—I2) -1+ 1h2 2

= (21 4+ 322) (1 — 21)® +12(1 — 22)> — 4)

+4(32122(3/h% 4+ 6(z1 + x2)/h + 4(z1 + 22)?)
+ (323 —23)%)

> (z1 + 3z2)
(1 =3z + 322 — 23 +12(1 — 320 + 322 — 23) — 4)
+ 42129 (256 + 96(x1 + 2) + 12(z1 + 22)?)
+4(323 — 21)?

=321(3 — x1) + 2722 (1 — 222)% + 9792125
+ 3:5? + 393z%9:2 + 420x1:17§
+ 327 + 453wy + 72z1w3 + 362,75

>0

again. SoD’ > h?/3 = D(QY, ,y)- O
Proof of D1(Q") < D;(Q) in Lemmab, Case, < 6:

Consider three subcases:

Casets € [4,6): ThenD:;(Q) = D1(QP) for u([4,6]) =
0.

Casety € [4 — 2h,4): Theny, > 2 —3h andys > v3,
where
(4—h)/8+3(6+h)/8+3(14+3h)/8 64+ 11h

7/8 T

Y5 =

is the optimal code point in a cell consisting of the interval

[4 — 2h,14 + 4h]. These and: < 3/16 imply that

78 —10h _ 87
_— >

— > 8.
7 - 8

Y1 +y2 >

Moving the boundary front, into 4 and applying Lemmaéal4

case ii) with SQQ1, interval[t2, 4], and code point$y:, y2),

we get thatD;(Q) > D(Q") where the SQQ” has its only [10]
boundary atl and satisfies the centroid condition, and so again

D(Q") = D1 (Q").

Casets < 4 —2h: ThenD;(Q) is lower bounded by the
distortion contribution from the cell consisting ff—2h, 14+
4h] with code pointy; above. The latter can written as

1
16h
4 64-2h 14+4h
/(xfy;)2d1+/3(xfy§)2dx+ /3(xfy§)2d:c
Zon 14%2n
. h h h
:ﬁ /:Ezdx+3/x2dx+3/x2d:c +
“h “h “h

(4= —y3)> +3(6+h —y3)° +3(14+ 30 —y3)%) /8
- [7h2/3 +16 4+ h% —8h — 2(4 — h)yj + 3>

+108 + 3h2 + 36k — 6(6 + h)y; + 3y5>

+ 588 + 27h? + 252h — 6(14 + 3h)y5 + 3y5‘2} /8

= [712 + 280h + 100h? /3 — 2(64 + 11h)y; + 7y§2} /8

= [4984 + 1960 + 700h* /3 — (64 + 11h)*] /56
= (111 4 69h + 337h* /24) /7,

that is (term-wise) greater tha%? + 6.5h + % = D1(QY).
O
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