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1 Introduction

We denote the vertex set and the edge set of graph G by V (G) and E(G), respectively.
Graph pebbling is a game on graphs. It was suggested by Saks and Lagarias to solve a number

theoretic problem asked by Erdős, which was done by Chung in 1989 [12].
A pebble distribution P on a graph G is a function mapping the vertex set to nonnegative inte-

gers. We can imagine that each vertex v has P (v) pebbles. The size of a pebble distribution P is∑
v∈V (G) P (v) which we denote by |P |.
A pebbling move removes two pebbles from a vertex v and places one to an adjacent vertex u. A

pebbling move is allowed if and only if the vertex loosing pebbles has at least two pebbles. A sequence
of pebbling moves is called executable if for any i the ith move is allowed under the distribution obtained
by the application of the first i− 1 move.

We say that a vertex v is k-reachable under the distribution P if there is an executable pebbling
sequence σ, such that v has at least k pebbles after the execution of σ. If k = 1, we say simply that v is
reachable under P .

A pebbling distribution P on G is solvable if all vertices of G are reachable under P . A pebbling
distribution onG is optimal if it is solvable and its size is minimal among all of the solvable distributions
of G. The size of an optimal pebble distribution is called the optimal pebbling number and denoted by
πopt(G).

The optimal pebbling number was first mentioned in the paper of Patcher et al. [27] in 1995. Peb-
bling can be viewed as a transportation of resources problem. We can think of the pebbles as fuel
containers. Then the loss of the pebble during a move is the cost of transportation. In case of optimal
pebbling we are looking for an optimal assignment of fuel containers to the vertices such that any vertex
can receive a container in case of need.

The optimal pebbling number of several graph families are known. For example exact values were
given for paths and cycles [9, 17, 27], ladders [9], caterpillars [15] and m-ary trees [16]. There are also
some known bounds on the optimal pebbling number. One of the earliest is that πopt(G) ≤ 2diam(G)

[26]. Bunde et al. investigated the connection between the optimal pebbling number and the mini-
mum degree of the graph. They showed that πopt(G) ≤ 4n

δ+1 [9], where δ is the minimum degree of
G. They also presented a construction for an infinity family of graphs with optimal pebbling number
(2.4− 24

5δ+15 − o(
1
n)) n

δ+1 [9].
If a graph G, a pebble distribution P on G and a target vertex v is given, then deciding whether v is

reachable under P is NP-complete [24]. Deciding whether πopt(G) ≤ k is also NP-complete [24].
In [8] the authors invented a version of pebbling called rubbling. A strict rubbling move removes

two pebbles from two distinct vertices and places one pebble at a common neighbor. Thus a strict
rubbling move is allowed if it removes pebbles from vertices who share a neighbor and both of them has
a pebble. A rubbling move is either a pebbling move or a strict rubbling move. If we replace pebbling
moves with rubbling moves everywhere in the definition of the optimal pebbling number, then we obtain
the optimal rubbling number, which is denoted by ρopt(G). There are fewer results about rubbling than
pebbling, we know four papers in the field of optimal rubbling [3, 6, 8, 23].

Researchers have been investigating the so called (capacity) restricted optimal pebbling in the last
five years. A pebble distribution is called t-restricted if no vertex has more than t pebbles. The t-
restricted optimal pebbling number of a graph G, denoted by π∗t (G), is the size of the solvable t-
restricted distribution of G containing the least number of pebbles. This graph parameter is defined
in [11]. In that paper the authors showed that π∗2(Pn) = d2n/3e, where Pn is the n-vertex path, and
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they gave several upper bounds on π∗2(G) by using different domination parameters of G. In [29] Shiue
showed that π∗2(T ) = d2n/3e if T is an n-vertex tree.

We write G�H for the Cartesian product of graphs G and H . The vertex set of graph G�H is
V (G)×V (H) and vertices (g, h) and (g′, h′) are adjacent if and only if either g = g′ and {h, h′} ∈ E(H),
or h = h′ and {g, g′} ∈ E(G). We use G�d as an abbreviation for G�G� · · ·�G, where G appears
exactly d times.

2 Optimal pebbling and rubbling of graphs with given diameter

The distance between vertices u and v, denoted by d(u, v), is the number of edges contained in a shortest
path connecting u and v. The diameter of graph G is the biggest distance in G. We use diam(G) to
denote this parameter.

Placing 2diam(G) pebbles to a single vertex always creates a solvable distribution. This implies that
πopt(G) ≤ 2diam(G), but usually much fewer pebbles are enough to construct a solvable distribution.
It is natural to ask if there are graphs with arbitrarily large diameter where this amount of pebbles is
required for optimal pebbling?

This question was investigated in [26] for the first time. The authors claimed that the answer is
positive. However, their proof is incorrect. They gave an iterative construction of graphs, whose optimal
pebbling number was believed to be two to the diameter. They claimed in [26], that if G is a graph with
diameter d whose optimal pebbling number is 2d, then G�K2d+1 is a graph with diameter d + 1 and
optimal pebbling number 2d+1. It is easy to see that diam(G�K2d+1) = d + 1, however its optimal
pebbling number is not necessarily 2πopt(G).

Muntz et al. choose K3 as a starting graph in their construction. The third graph in the sequence is
K3�K3�K5. We have created a solvable pebble distribution on this graph whose size is only 6. This
is less than 8, what the authors claimed.

Herscovici et al. in [21] proved that πopt(K
�d
m ) = 2d ifm > 2d−1. In fact, a more general statement

is proved in [21], but this is enough for our purposes. The diameter of these graphs is d, therefore they
prove the sharpness of the diameter bound.

We can ask, what happens when we consider rubbling instead of pebbling? Unfortunately the proof
of Herscovici et al. rely on several phenomena true for pebbling but false for rubbling. We answer this
question and prove that ρopt(K

�d
m ) = 2d if m ≥ 2d. Since ρopt(G) ≤ πopt(G), this gives a short proof

for the pebbling case as well. To do this we find a lower bound on the optimal rubbling number by using
the distance k domination number, which we define in the next paragraph.

A distance k dominating set S of a graph G is a subset of the vertex set such that for each vertex v
there is an element s of S whose distance from v is at most k. The distance k domination number of
graph G, denoted by γk(G), is the size of the smallest distance k dominating set.

Theorem 2.2 (Győri, Katona, Papp [3]) Let G be a connected graph and k be an integer greater than
one. Then ρopt(G) ≥ min

(
γk−1(G), 2k

)
.

We are free to choose k. The best bound is obtained when γk−1 ≈ 2k. Let Σm,d be the following
graph: We choose an alphabet Σ of size m. The vertices of Σm,d are the words over Σ of length d. Two
vertices are adjacent if and only if the corresponding words differ only at one position, roughly speaking
their Hamming distance is one. It is well known that Σm,d ' K�d

m . We use this coding theory approach
because it is easy to determine the diameter and the distance k domination number of K�d

m this way.
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It is easy to see that diam(Σm,d) = d: We have to change all d characters of the word aa...a to
obtain bb...b. Each of the changes requires passing through an edge. We can obtain any word from
any other by changing each character at most once. Hence diam(Σm,d) = d.

The set containing all constant words over alphabet Σ with length d is a distance d− 1 dominating
set because it is enough to change at most d − 1 characters of a d long word to obtain a constant one.
The number of these words is m. If we consider only m − 1 words, then there is always a word which
differs from each of them at each position. Therefore γk−1(Σm,d) = m. Using this we obtain, that:

Theorem 2.6 (Győri, Katona, Papp [3]) Both the optimal pebbling and optimal rubbling number of
K�d
m is 2d if m ≥ 2d.

By using several properties of graph pebbling, we can improve Theorem 2.2 to give the following
better bound on the optimal pebbling number:

Theorem 2.9 (Győri, Katona, Papp [3]) For all k ≥ 3 and any connected graph G whose order is at
least two: πopt(G) ≥ min

(
2k, γk−1(G) + 2k−2 + 1, γk−2(G) + 1

)
.

We use Theorem 2.9 to determine the optimal pebbling number of K3�K3�K5 which is exactly 6.

3 Optimal pebbling of graphs with given minimum degree

In this chapter we study the optimal pebbling of graphs with fixed minimum degree δ and we improve
some results of [9]. We prove that there are infinitely many diameter two graphs whose optimal pebbling
number is close to the 4n

δ+1 upper bound. More precisely:

Theorem 3.3 (Czygrinow, Hurlbert, Katona, Papp [1]) For any ε > 0 there is a diameter two graph
G on n vertices with πopt(G) > (4−ε)n

δ+1 .

One may ask what happens if we consider larger diameter? In the second part of the chapter we
construct a family of graphs with arbitrary large diameter, fixed minimum degree, and high optimal
pebbling number. We determine the optimal pebbling number of the constructed graphs by using the
collapsing technique, which is invented in [9].

Theorem 3.14 (Czygrinow, Hurlbert, Katona, Papp [1]) For any ε > 0 and any integer d, there is a
graph G such that its diameter is greater than d and πopt(G) ≥ (8

3 − ε)
n
δ+1 .

In the case when the diameter is at least three we also prove a stronger upper bound on the optimal
pebbling number.

Theorem 3.15 (Czygrinow, Hurlbert, Katona, Papp [1]) Let G be a connected graph having diame-
ter at least 3 and with minimum degree δ. Then we have πopt(G) ≤ 15n

4(δ+1) .

We do this by showing the existance of a solvable pebble distribution whose size is not too big. We
use the following new definition during the proof:

Definition 3.17 A vertex v ∈ V (G) is strongly reachable under the pebble distribution D if v and all of
its neighbors are reachable under D.
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We give an algorithm to show that there is an initial distributionD0 whose size is at most 4(δ+1)/15
times the number of strongly reachable vertices. Then we show that we can extend D0 by adding more
pebbles and keeping this ratio not bigger than 4(δ + 1)/15, until the obtained distribution is solvable.
Note that all vertices are strongly reachable under a solvable distribution.

We use Theorem 3.15 to show the following:

Claim 3.31 (Czygrinow, Hurlbert, Katona, Papp [1]) There is no connected graph G such that
πopt(G) = 4n

δ+1 .

We can combine this claim with Theorem 3.3 to answer a question asked in [9], which was “How
large can πopt(G) be when we require minimum degree δ?”

Corollary 3.32 (Czygrinow, Hurlbert, Katona, Papp [1]) For any graph G we have πopt(G) < 4n
δ+1 ,

and this bound is sharp.

4 Staircase graphs

We denote the n by m square grid by SGn,m ∼= Pn�Pm. The optimal pebbling number of grids has
been investigated by many authors. Exact values were proved for Pn � P2 [9] and Pn � P3 [33]. The
question for bigger grids is still open. We gave a construction [2], which can be seen in Figure 1. This
construction gives the following theorem:4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4

4 4 4 4

Figure 1: Solvable distribution of the square grid.

Theorem 4.1 (Győri, Katona, Papp [2]) πopt(SGn,m) ≤ 2
7nm+O(n+m) ≈ 0.2857nm+O(n+m)

The distribution P which we have constructed takes groups of seven consecutive diagonals and
places pebbles on the middle one (see Figure 1). Using these pebbles, it is possible to reach any vertex
on any diagonal in the group.
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We conjecture that P is an optimal pebble distribution on the square grid graph, however we do
not know a proof for this. Can we at least show that the distributions induced by P on these induced
subgraphs containing seven consecutive diagonals are optimal? If this was not the case, it would refute
the conjecture. These considerations provide the main motivation for this chapter.

We investigate a family of graphs which we call staircase graphs. These graphs are connected
induced subgraphs of the square grid. The width seven instances correspond to the groups of seven
diagonals discussed above.

Let SG = P∞ � P∞ be the infinite square grid where P∞ is the doubly infinite path with vertex set
Z and edge set {{i, i+ 1} : i ∈ Z}.

Definition 4.2 For any k ∈ Z, we say that D+
k = {{i, j} ∈ V (SG) : i− j = k} is a positive diagonal

of SG. Similarly we define the negative diagonal: D−k = {{i, j} ∈ V (SG) : i+ j = k}.

A staircase graph will be defined in terms of the intersection of a set of consecutive positive diago-
nals in SG with a set of consecutive negative diagonals. When the number of diagonals taken in each
direction is odd, there will be two nonisomorphic graphs to consider. For examples see Figure 2.

Definition 4.3 For odd m, let S′m,n be the graph induced by the vertex set
(
∪mj=1D

−
j

)
∩
(
∪ni=1D

+
i

)
,

and let Sm,n be the graph induced by
(
∪mj=1D

−
j

)
∩
(
∪n−1
i=0 D

+
i

)
.

For even m, let Sm,n be the graph induced by the vertex set
(
∪mj=1D

−
j

)
∩
(
∪ni=1D

+
i

)
. In this case

we have only one isomorphism class.

Note that S′m,n ∼= Sm,n if n is even. We say thatm and n are the width and the length of the staircase
graph, respectively, and generally assume that n ≥ m. We will refer to the graphs Sm,n and S′m,n as
m-wide staircase graphs.

A 1-wide staircase graph is an edgeless graph, therefore its optimal pebbling number equal to its
order. A 2-wide staircase graph is a path, thus πopt(S2,n) = πopt(S

′
2,n) = πopt(Pn) =

⌈
2n
3

⌉
.

We use the collapsing technique [9] again with induction to prove our results for staircase graphs.
First we use it for narrow staircase graphs and extend it for wider ones.

Theorem 4.4 (Győri, Katona, Papp, Tompkins [5]) If 4k + r ≥ 2 where k ∈ Z and r ∈ {0, 1, 2, 3},
then

πopt(S3,4k+r) = 3k + r,

πopt(S
′
3,4k+r) =

{
3k + 2 if r = 3

3k + r otherwise.

Theorem 4.9 (Győri, Katona, Papp, Tompkins [5]) πopt(S4,4k+r) = 3k + r except for n ∈ {1, 2}.
πopt(S4,1) = 2, πopt(S4,2) = 3.

Theorem 4.10 (Győri, Katona, Papp, Tompkins [5]) πopt(S5,5k+r) = πopt(S
′
5,5k+r) = 4k + r,

except for n ∈ {1, 2, 3, 7}. πopt(S5,3) = πopt(S
′
5,3) = 4 and πopt(S

′
5,7) = 7.
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Figure 2: Optimal distributions of small S3,n and S′3,n graphs.

Theorem 4.13 (Győri, Katona, Papp, Tompkins [5]) πopt(S6,n) = n, except for n ∈ {1, 2, 3, 4, 8, 9}.
πopt(S6,3) = πopt(S6,4) = 5, πopt(S6,8) = 9 and πopt(S6,9) = 10.

Theorem 4.16 (Győri, Katona, Papp, Tompkins [5]) If S∗7,n is S7,n or S′7,n, then

n+ 1 ≤ πopt(S
∗
7,n) ≤ n+ 3.

The lower bound is sharp for graphs S7,5, S7,6, S7,7, S7,8 and every S′7,n where n ≡ 3 mod 4.

Unfortunately, we could not determine the exact value of πopt(S
∗
7,n). We cannot prove n + 2 as a

lower bound by the collapsing technique, but for some S∗7,n graphs we have not found a solvable pebble
distribution using n+ 1 pebbles.

A natural question that arises is: what is the optimal pebbling number of S8,n? We determined
the values when n ≤ 7, but we think that the general behavior of the eight-wide case differs from the
seven-wide case. We obtained πopt(S8,8) = 11 by solving an integer program. We used a computer for
this task. Unfortunately, even the n = 9 case requires more computational power than an average PC
has. We have found some solvable distributions which use approximately 5n/4 pebbles. We conjecture
that πopt(S8,n) = 5

4n+O(1).

5 A lower bound on the optimal pebbling number of the square grid

Instead of the square grid on the plane it is easier to work with the square grid on the torus. Note that the
m by n torus grid Tm,n is isomorphic to Cm�Cn, where Cn is the n-vertex cycle. As the plane grid is
a subgraph of this, any lower bound on the torus grid will give a lower bound on the plane grid as well.
It is well known that the torus grid is a vertex-transitive graph, i.e. given any two vertices v1 and v2 of
G, there is some automorphism f : V (G)→ V (G) such that f(v1) = v2.

In this chapter we present a new method giving a lower bound on the optimal pebbling number of
vertex-transitive graphs. The method is a bit complicated, it requires a lot of definitions. We use the
concept of excess, which was introduced in [33], but we need to introduce many new definitions as well.
The basic definition of excess is the following:

Definition 5.1 Let Reach(P, v) be the greatest integer k such that v is k-reachable under P . The excess
Exc(P, v) of v under P is Reach(P, v)− 1 if v is reachable and zero otherwise. Let TE(P ) denote the
total excess, so TE(P ) =

∑
v∈V (G) Exc(P, v)
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The distance-k open neighborhood of a vertex v, denoted Nk(v), consists of all vertices whose
distance from v is exactly k.

Definition 5.2 The effect of a pebble placed at v is ef(v) =
∑diam(G)

i=0

(
1
2

)i |N i(v)|.

If the graph is vertex-transitive, then ef(v) is the same for each vertex v. Herscovici et al. [20]
proved that ifG is a vertex-transitive graph, then |V (G)|/ ef(v) is a lower bound on the optimal pebbling
number of G. We improve this result:

Theorem 5.3 (Győri, Katona, Papp [4]) If P is a solvable distribution on G, then∑
v∈V (G)

ef(v)P (v) ≥ |V (G)|+ TE(P ).

It is easy to see that in an optimal distribution many vertices can have more than one pebble after
the execution of some pebbling moves. Therefore the total excess is high. Note that the distribution
containing one pebble at each vertex is solvable but it has 0 excess, on the other hand that distribution
usually contains much more pebbles than an optimal distribution. This shows that the tool called excess
itself is not enough to improve the lower bound. We invent several other notions but we omit most of
them from this outline. We define only those ones which are required to state Theorem 5.45.

Definition 5.6 The coverage of a distribution P is the set of vertices which are reachable under P . We
denote the size of this set with Cov(P ).

Definition 5.9 We say that a distribution U is a unit, if all the pebbles are on a single vertex.

Units are the building blocks of pebble distributions in the following sense: Any distribution P can
be written as

∑
u|P (u)>0 Pu, where Pu is a unit having P (u) pebbles at u. The set {Pu|P (u) > 0} is

called as the disjoint decomposition of P to unit distributions. Units have two main advantages over
other distributions. Their coverage and total excess can be easily calculated:

Claim 5.10 (Győri, Katona, Papp [4]) Let U be a unit distribution which places pebbles at vertex u.
Then we have that

Cov(U) =

blog2(U(u))c∑
i=0

|N i(u)|,

TE(U) =

blog2(U(u))c∑
i=0

|N i(u)|
(⌊

U(u)

2i

⌋
− 1

)
.

Now we can state our result which gives a lower bound on any vertex-transitive graph.

Corollary 5.45 (Győri, Katona, Papp [4]) If P is a solvable distribution on a vertex-transitive graph
G, v is a random vertex ofG, ∆ denotes the degree of v and {U1, U2, . . . , Ut} is a disjoint decomposition
of P to unit distributions, then

|P | ≥
∆−1
∆−2 |V (G)|+

∑t
i=1 TE(Ui)− 1

∆−2

∑t
i=1 Cov(Ui)

ef(v)
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It is easy to calculate that ef(v) < 9 in Tm,n. After calculating some bounds on TE(Ui) and
Cov(Ui) we can deduce the following result:

Theorem 5.49 (Győri, Katona, Papp [4]) The optimal pebbling number of Tm,n is at least 2
13nm,

when m,n ≥ 5.

We can obtain SGm,n from Tm,n by edge deletion, therefore πopt(SGm,n) ≥ Tm,n. This gives our
main result of the chapter:

Corollary 5.50 (Győri, Katona, Papp [4]) The optimal pebbling number of SGn,m is at least 2
13nm

when n,m ≥ 5.

We also get a new proof for πopt(Pn) = πopt(Cn) = d2n/3e as a byproduct of Theorem 5.45.

6 Restricted optimal pebbling

It is easy to see that π∗2(G) ≥ π∗t (G) ≥ π∗t+1(G) ≥ πopt(G). It is an interesting question: What graphs
2-restricted optimal pebbling number and optimal pebbling number are the same. Our first result in this
topic requires the definition of the lexicographic graph product.

Definition 6.2 G · H denotes the lexicographic product of graphs G and H . It is defined as follows:
V (G·H) = V (G)×V (H) and (g1, h1) and (g2, h2) are adjacent iff either {g1, g2} ∈ E(G) or g1 = g2

and {h1, h2} ∈ E(H).

Theorem 6.4 (Papp [7]) If G is a connected n-vertex graph, m ≥
⌈
n
3

⌉
and t ≥ 2, then

πopt(G) = πopt (G ·Km) = π∗t (G ·Km) .

We use this theorem to show that the calculation of t-restricted optimal pebbling numbers is com-
putationally hard. We consider two decision problems:

OPN:
Instance: a graph G and an integer k:
Question: is πopt(G) ≤ k?

ROPN:
Instance: a graph G and integers t ≥ 2, k:
Question: is π∗t (G) ≤ k?

Milans and Clark proved that OPN is NP-complete [24]. The previous theorem naturally gives us a
Karp reduction OPN≺ROPN. ROPN is in NP, therefore our main complexity result is:

Theorem 6.6 (Papp [7]) ROPN is NP-complete.

The authors of [11] asked for a characterization of graphs whose optimal pebbling number and
2-restricted optimal pebbling number is the same. We believe that such a characterization is elaborate.
Note that there are many graphs which belong to that class. For example paths, cycles and complete
graphs. We investigate the question of what value of the minimum degree guarantees that πopt(G) =
π∗2(G). We prove a sufficient condition:
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Claim 6.9 (Papp [7]) Let G be an n-vertex graph. If δ(G) ≥ 2
3n− 1, then π∗2(G) = πopt(G).

We also show that if the minimum degree is less than n/2− 2, then there are infinitely many graphs
for which these two parameters have different values.
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