Name:

1.	2.	3.	4.	5.	6.	7.	8.	$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij}$
6/	6/	6/	7/	6/	6/	6/	7/	50

Mathematics II. (BSc)—Extra1 Test 14th of May, 2014. 90 minutes

(You need reach at least 15 points to pass.)

1. (6 p.)

$$\underline{\underline{A}} = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$
a.) $\det \underline{\underline{A}} = ?$, b.) $\det \underline{\underline{A}}^3 = ?$, c.) $\det(3\underline{\underline{A}}^{-1}) = ?$

2. (6 p.) Solve this parametrical linear equation system. At which values of p will the system have infinetely many solutions? Give the solution sets in this cases.

$$x+y-z = 2$$

$$2x + 3y - 5z = 5$$

$$x + (p+1)y + (1-2p)z = 2p + 4$$

$$-x-y + (p^2-3)z = 2p + 2$$

3. (6 p.) Find the eigenvalues and eigenvectors of the matrix $\underline{\underline{C}}$.

$$\underline{\underline{C}} = \left(\begin{array}{ccc} 2 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{array} \right)$$

4. (7 p.)

a.)
$$\mathcal{L}(t \cosh 3t) = ?$$
, b.) $\mathcal{L}^{-1}\left(\frac{3s}{s^2 - 2s + 3}\right) = ?$,

c.) Solve the next differential equation using Laplace transform:

$$y'' - 6y' + 10y = 6e^{2x}, \quad y(0) = y'(0) = 1.$$

5. (6 p.) Find the value of the integral if it exist:

$$\int_{-1}^{\infty} \frac{1}{x^2 + 4x + 5} dx.$$

6. (5 p.) Is the following series convergent or divergent?

$$\sum_{n=1}^{\infty} \left(\frac{6n+3}{7n+4}\right)^{n^2-n}.$$

7. (6 p.) Given the function

$$f(x,y) = \frac{(y+1)\cos(2x)}{y-2}$$

and a point $P_o(\frac{\pi}{2}, 1)$.

- a.) Find the derivative of f at P_o in the direction of $\underline{v} = -3\underline{i} + 4\underline{j}$.
- b.) Find the direction in which f increases or decreases most rapidly at P_o . Then find the derivatives of f in these directions.
- c.) Find an equation for the tangent plane at the point P_o on the given surface.
- **8**. (7 p.) Solve the following differential equation:

$$y'' + y' - 2y = 3e^{-2x}.$$