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Chapter 1

Pattern Recognition

1.1 Bayes decision and its approximation for general
loss function

For the statistical pattern recognition, called also classification, a d-dimensional obser-
vation vector X is given, and based on X, the statistician has to make an inference
on a random label Y , which takes finitely many values, i.e., it takes values from the
set {1, 2, . . . ,M}. The label Y is called class, too. In fact, the inference is a decision
formulated by a decision function

g : Rd → {1, 2, . . . ,M}.

If g(X) 6= Y then the decision makes error.
In the formulation of the Bayes decision problem, introduce a cost function C(y, y′) ≥

0, which is the cost if the label Y = y and the decision g(X) = y′. For a decision function
g, the risk is the expectation of the cost:

R(g) = E{C(Y, g(X))}.

In Bayes decision problem, the aim is to minimize the risk, i.e., the goal is to find a
function

g∗ : Rd → {1, 2, . . . ,M}

such that
R(g∗) = min

g:Rd→{1,2,...,M}
R(g), (1.1)

where g∗ is called the Bayes decision function, and R∗ = R(g∗) is the Bayes risk.
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For the posteriori probabilities, introduce the notations:

Py(X) = P{Y = y | X}.
Let the decision function g∗ be defined by

g∗(X) = arg min
y′

M∑
y=1

C(y, y′)Py(X).

If arg min is not unique then choose the smallest y′, which minimizes∑M
y=1 C(y, y′)Py(X). This definition implies that for any decision function g,

M∑
y=1

C(y, g∗(X))Py(X) ≤
M∑
y=1

C(y, g(X))Py(X). (1.2)

Theorem 1.1. For any decision function g, we have that

R(g∗) ≤ R(g).

Proof. Let I denote the indicator function. For a decision function g, let’s calculate
the risk.

R(g) = E{C(Y, g(X))}
= E{E{C(Y, g(X)) | X}}

= E

{
M∑
y=1

M∑
y′=1

C(y, y′)P{Y = y, g(X) = y′ | X}

}

= E

{
M∑
y=1

M∑
y′=1

C(y, y′)I{g(X)=y′}P{Y = y | X}

}

= E

{
M∑
y=1

C(y, g(X))Py(X)

}
.

(1.2) implies that

R(g) = E

{
M∑
y=1

C(y, g(X))Py(X)

}

≥ E

{
M∑
y=1

C(y, g∗(X))Py(X)

}
= R(g∗).
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If the distribution of the observation vector X has density, then the Bayes decision
has an equivalent formulation. Introduce the notations for density f of X by

P{X ∈ B} =

∫
B

f(x)dx

and for the conditional densities by

P{X ∈ B | Y = y} =

∫
B

fy(x)dx

and for a priori probabilities
qy = P{Y = y},

then it is easy to check that

Py(X) = P{Y = y | X = x} =
qyfy(x)

f(x)

and therefore

g∗(x) = arg min
y′

M∑
y=1

C(y, y′)Py(x)

= arg min
y′

M∑
y=1

C(y, y′)
qyfy(x)

f(x)

= arg min
y′

M∑
y=1

C(y, y′)qyfy(x).

From the proof of Theorem 1.1 we may derive a formula for the optimal risk:

R(g∗) = E

{
min
y′

M∑
y=1

C(y, y′)Py(X)

}
.
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If X has density then

R(g∗) = E

{
min
y′

M∑
y=1

C(y, y′)
qyfy(X)

f(X)

}

=

∫
Rd

min
y′

M∑
y=1

C(y, y′)
qyfy(x)

f(x)
f(x)dx

=

∫
Rd

min
y′

M∑
y=1

C(y, y′)qyfy(x)dx.

In practice, the posteriori probabilities {Py(X)} are unknown. If we are given some
approximations {P̂y(X)}, from which one may derive some approximate decision

ĝ(X) = arg min
y′

M∑
y=1

C(y, y′)P̂y(X)

then the question is how well R(ĝ) approximates R(g∗).

Lemma 1.1. Put Cmax = maxy,y′ C(y, y′), then

0 ≤ R(ĝ)−R(g∗) ≤ 2Cmax

M∑
y=1

E
{
|Py(X)− P̂y(X)|

}
.

Proof. We have that

R(ĝ)−R(g∗) = E

{
M∑
y=1

C(y, ĝ(X))Py(X)

}
− E

{
M∑
y=1

C(y, g∗(X))Py(X)

}

= E

{
M∑
y=1

C(y, ĝ(X))Py(X)−
M∑
y=1

C(y, ĝ(X))P̂y(X)

}

+E

{
M∑
y=1

C(y, ĝ(X))P̂y(X)−
M∑
y=1

C(y, g∗(X))P̂y(X)

}

+E

{
M∑
y=1

C(y, g∗(X))P̂y(X)−
M∑
y=1

C(y, g∗(X))Py(X)

}
.
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The definition of ĝ implies that

M∑
y=1

C(y, ĝ(X))P̂y(X)−
M∑
y=1

C(y, g∗(X))P̂y(X) ≤ 0,

therefore

R(ĝ)−R(g∗) ≤ E

{
M∑
y=1

C(y, ĝ(X))|Py(X)− P̂y(X)|

}

+E

{
M∑
y=1

C(y, g∗(X))|P̂y(X)− Py(X)|

}

≤ 2Cmax

M∑
y=1

E
{
|Py(X)− P̂y(X)|

}
.

�

1.2 Bayes decision and its approximation for 0− 1 loss
Concerning the cost function, the most frequently studied example is the so called 0− 1
loss:

C(y, y′) =

{
1 if y 6= y′,
0 if y = y′.

For the 0− 1 loss, the corresponding risk is the error probability denoted by L:

L(g) = E{C(Y, g(X))} = E{I{Y 6=g(X)}} = P{Y 6= g(X)},

and the Bayes decision is of form

g∗(X) = arg min
y′

M∑
y=1

C(y, y′)Py(X) = arg min
y′

∑
y 6=y′

Py(X) = arg max
y′

Py′(X),

which is called maximum posteriori decision, too.
For the 0− 1 loss, we get that

L(g∗) = E
{

min
y′

(1− Py′(X))

}
,
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which has the form, for densities,

L(g∗) =

∫
Rd

min
y′

(f(x)− qy′fy′(x))dx = 1−
∫
Rd

max
y′

qy′fy′(x)dx.

Figure 1.1: Bayes decision.

For the binary classification, M = 2, and we have that

L(g∗) = E {min(P1(X), P2(X))} ,

and, for densities,

L(g∗) =

∫
Rd

min(q1f1(x), q2f2(x))dx.

Figure 1.1 illustrates the Bayes decision, while the red area in Figure 1.2 is equal to the
Bayes error probability.

In the special case of the approximate maximum posteriori decision the inequality in
Lemma 1.1 can be slightly improved such that the factor 2 is missing:

0 ≤ L(ĝ)− L(g∗) ≤
M∑
y=1

E
{
|Py(X)− P̂y(X)|

}
.

In the sequel, we study only the case of binary classification. Its extension to the
multi-class case is obvious. For the sake of simplicity assume that Y takes values ±1.
Put

D(X) = E{Y | X} = P1(X)− P−1(X).
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Figure 1.2: Bayes error probability.

Let sign(x) = 1 for x > 0 and sign(x) = −1 for x ≤ 0. Then the Bayes decision has the
form

g∗(X) = signD(X).

For an arbitrary function D̂, the corresponding plug-in decision g is defined by

g(X) = sign D̂(X).

Theorem 1.2. For any function D̂, we have that

L(g)− L(g∗) = E
{
I{sign D̂(X) 6=signD(X)}|D(X)|

}
(1.3)

≤ E
{
|D̂(X)−D(X)|

}
(1.4)

≤
√

E
{
|D̂(X)−D(X)|2

}
. (1.5)

Proof. The identities
P1(X) = (1 +D(X))/2

and
P−1(X) = (1−D(X))/2

imply that

L(g) = P{Y = 1, g(X) = −1}+ P{Y = −1, g(X) = 1}
= E{P1(X)Ig(X)=−1}+ E{P−1(X)Ig(X)=1}
= E{(1 +D(X))/2Ig(X)=−1}+ E{(1−D(X))/2Ig(X)=1}.
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Thus
L(g)− L(g∗) = (signD(X)− sign D̂(X))D(X)/2,

from which we get (1.3). (1.4) is obvious, while (1.5) is just the Cauchy-Schwartz in-
equality. �

Based on these relations, one can introduce efficient pattern recognition rules. Given
data

Dn = {(X1, Y1), . . . , (Xn, Yn)},

estimates Dn of the regression function D can be constructed. Then the corresponding
plug-in classifier is defined by

gn(x) = signDn(x). (1.6)

If the estimate Dn is close to the regression function D, then the error of the plug-in
classifier is close to the optimal error. In the next sections some examples are shown for
plug-in classifiers.

1.3 The regression problem

In regression analysis one considers a random vector (X, Y ), where X is Rd-valued and
Y is R-valued, and one is interested how the value of the so-called response variable Y
depends on the value of the observation vector X. This means that one wants to find
a function h : Rd → R, such that h(X) is a “good approximation of Y ,” that is, h(X)
should be close to Y in some sense, which is equivalent to making |h(X) − Y | “small.”
Since X and Y are random vectors, |h(X) − Y | is random as well, therefore it is not
clear what “small |h(X) − Y |” means. We can resolve this problem by introducing the
so-called L2 risk or mean squared error of h,

E|h(X)− Y |2,

and requiring it to be as small as possible.
So we are interested in a function m∗ : Rd → R such that

E|m∗(X)− Y |2 = min
h:Rd→R

E|h(X)− Y |2.

Such a function can be obtained explicitly as follows. Let

m(x) = E{Y |X = x}
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be the regression function. We will show that the regression function minimizes the L2

risk. Indeed, for an arbitrary h : Rd → R, one has

E|h(X)− Y |2 = E|h(X)−m(X) +m(X)− Y |2

= E|h(X)−m(X)|2 + E|m(X)− Y |2,

where we have used

E {(h(X)−m(X))(m(X)− Y )}
= E

{
E
{

(h(X)−m(X))(m(X)− Y )
∣∣X}}

= E {(h(X)−m(X))E{m(X)− Y |X}}
= E {(h(X)−m(X))(m(X)−m(X))}
= 0.

Hence,

E|h(X)− Y |2 =

∫
Rd
|h(x)−m(x)|2µ(dx) + E|m(X)− Y |2, (1.7)

where µ denotes the distribution of X. The first term is called the L2 error of h. It is
always nonnegative and is zero if h(x) = m(x). Therefore,

m∗(x) = m(x),

i.e., the optimal approximation (with respect to the L2 risk) of Y by a function of X is
given by m(X).

Denote by (X, Y ), (X1, Y1), (X2, Y2), . . . independent and identically distributed
(i.i.d.) random variables with EY 2 <∞. Let Dn be the set of data defined by

Dn = {(X1, Y1), . . . , (Xn, Yn)} .

In general, estimates will not be equal to the regression function. To compare dif-
ferent estimates, we need an error criterion which measures the difference between the
regression function and an arbitrary estimate mn. One of the key points we would
like to make is that the motivation for introducing the regression function leads natu-
rally to an L2 error criterion for measuring the performance of the regression function
estimate. Recall that the main goal was to find a function h such that the L2 risk
E|h(X) − Y |2 is small. The minimal value of this L2 risk is E|m(X) − Y |2, and it is

13
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Figure 1.3: Simulated data points.

achieved by the regression function m. Similarly to (1.7), one can show that the L2 risk
E{|mn(X)− Y |2|Dn} of an estimate mn satisfies

E
{
|mn(X)− Y |2|Dn

}
=

∫
Rd
|mn(x)−m(x)|2µ(dx) + E|m(X)− Y |2. (1.8)

Thus the L2 risk of an estimate mn is close to the optimal value if and only if the L2

error ∫
Rd
|mn(x)−m(x)|2µ(dx) (1.9)

is close to zero. Therefore we will use the L2 error (1.9) in order to measure the quality
of an estimate and we will study estimates for which this L2 error is small.

For univariate X = X one can often use a plot of the simulated data. These data will
be used throughout the chapter. They consist of n = 200 points such that X is standard
normal restricted to [−1, 1], i.e., the density of X is proportional to the standard normal
density on [−1, 1] and is zero elsewhere. The regression function is piecewise polynomial:

m(x) =


(x+ 2)2/2 if − 1 ≤ x < −0.5,
x/2 + 0.875 if − 0.5 ≤ x < 0,
−5(x− 0.2)2 + 1.075 if 0 < x ≤ 0.5,
x+ 0.125 if 0.5 ≤ x < 1.

GivenX, the conditional distribution of Y−m(X) is normal with mean zero and standard
deviation

σ(X) = 0.2− 0.1 cos(2πX).

14
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Figure 1.4: Data points and regression function.

Figure 1.3 shows the data points. In this example the human eye is not able to see from
the data points what the regression function looks like. In Figure 1.4 the data points are
shown together with the regression function.

1.4 The margin condition

Given the plug-in classification rule gn derived from the regression estimate Dn it follows

E{L(gn)} − L(g∗) ≤ E{|D(X)−Dn(X)|}

(cf. Theorem 1.2). Therefore we may get an upper bound on the rate of convergence
of the excess error probability E{L(gn)} − L(g∗) via the L1 rate of convergence of the
corresponding regression estimation.

However, according to Section 6.7 in Devroye, Györfi, Lugosi (1996), the classification
is easier than L1 regression function estimation, since the rate of convergence of the error
probability depends on the behavior of the functionD in the neighborhood of the decision
boundary

B0 = {x;D(x) = 0}. (1.10)

This phenomenon has been discovered by Mammen and Tsybakov (1999), Tsybakov
(2004), who formulated the (strong) margin condition:

15



• The strong margin condition. Assume that for all 0 < t ≤ 1,

P {|D(X)| ≤ t} ≤ ctα, (1.11)

where α > 0 and c > 0.

Kohler and Krzyżak (2007) introduced the weak margin condition:

• The weak margin condition. Assume that for all 0 < t ≤ 1,

E
{
I{|D(X)|≤t}|D(X)|

}
≤ ct1+α. (1.12)

Obviously, the strong margin condition implies the weak margin condition:

E
{
I{|D(X)|≤t}|D(X)|

}
≤ E

{
I{|D(X)|≤t}t

}
= tP {|D(X)| ≤ t} ≤ ct · tα.

The difference between the strong and weak margin condition is that, for the strong
margin condition, the event

{D(X) = 0}

counts. One can weaken the strong margin condition (1.11) such that we require

P {0 < |D(X)| ≤ t} ≤ ctα. (1.13)

Obviously, (1.13) implies (1.12). The margin conditions measure how fast the probability
of a t-neighborhood of the decision boundary increases with t. A large value of α corre-
sponds to a small probability of the neighborhood of the decision boundary, which means
that the probability for events far away of the decision boundary is high. Therefore, a
classifier can make the right decision more easily, hence one can expect smaller errors for
larger values of α.

Audibert and Tsybakov (2005) proved that if the plug-in classifier g has been derived
from the regression estimate D̃ and if D satisfies the strong margin condition, then

L(g)− L∗ ≤
(∫

(D̃(x)−D(x))2µ(dx)

) 1+α
2+α

. (1.14)

It is easy to see that (1.14) holds even under weak margin condition: (1.3) implies
that

L(g)− L∗ = E
{
I{g(X)6=g∗(X)}|D(X)|

}
. (1.15)
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For fixed tn > 0,

L(g)− L∗ = E
{
I{sign D̃(X)6=signD(X),|D(X)|≤tn}|D(X)|

}
+E

{
I{sign D̃(X) 6=signD(X),|D(X)|>tn}|D(X)|

}
≤ E

{
I{|D(X)|≤tn}|D(X)|

}
+E

{
I{sign D̃(X) 6=signD(X),|D̃(X)−D(X)|>tn}|D̃(X)−D(X)|

}
,

therefore the weak margin condition implies that

L(g)− L∗ ≤ ct1+α
n + tnE

{
I{|D̃(X)−D(X)|>tn}

|D̃(X)−D(X)|
tn

}

≤ ct1+α
n + tnE

{
|D̃(X)−D(X)|2

t2n

}
.

For the choice
tn =

(
E
{
|D̃(X)−D(X)|2

}) 1
2+α

we get (1.14).
For bounding the error probability, assume, for example, that D satisfies the Lipschitz

condition: for any x, z ∈ Rd

|D(x)−D(z)| ≤ C‖x− z‖.
If D is Lipschitz continuous and X is bounded then there are regression estimates such
that

E
∫

(Dn(x)−D(x))2µ(dx) ≤ c2
1n
− 2
d+2 ,

therefore (1.14) means that

EL(gn)− L∗ ≤
(
c2

1n
− 2
d+2

) 1+α
2+α

=
(
c1+α

1 n−
1+α
d+2

) 2
2+α

.

In the analysis one usually assumes some conditions on the density:

• The strong density condition means that for f(x) > 0,

f(x) ≥ fmin > 0.

• The weak density condition means that there exist cmin > 0 and δ > 0 such that
for r ≤ δ,

µ(Sx,r) ≥ cdminf(x)rd.
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Figure 1.5: Undersmoothing: h = 0.03, L2 error = 0.062433.

1.5 Partitioning classifier

Partitioning regression estimate

Let Pn = {An,1, An,2, . . .} be a partition of Rd and for each x ∈ Rd let An(x) denote the
cell of Pn containing x. The partitioning estimate (histogram) of the regression function
is defined as

mn(x) =

∑n
i=1 YiI{Xi∈An(x)}∑n
i=1 I{Xi∈An(x)}

with 0/0 = 0 by definition. This means that the partitioning estimate is a local averaging
estimate such for a given x we take the average of those Yi’s for which Xi belongs to the
same cell into which x falls.

The simplest version of this estimate is obtained for d = 1 and when the cells An,j are
intervals of size h = hn. Figures 1.5 – 1.7 show the estimates for various choices of h for
our simulated data. In the first figure h is too small (undersmoothing, large variance),
in the second choice it is about right, while in the third it is too large (oversmoothing,
large bias).

For d > 1 one can use, e.g., a cubic partition, where the cells An,j are cubes of
volume hdn, or a rectangle partition which consists of rectangles An,j with side lengths
hn1, . . . , hnd. For the sake of illustration we generated two-dimensional data when the
actual distribution is a correlated normal distribution. The partition in Figure 1.8 is
cubic, and the partition in Figure 1.9 is made of rectangles.

18
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Figure 1.6: Good choice: h = 0.1, L2 error = 0.003642.

Cubic and rectangle partitions are particularly attractive from the computational
point of view, because the set An(x) can be determined for each x in constant time,
provided that we use an appropriate data structure. In most cases, partitioning estimates
are computationally superior to the other nonparametric estimates, particularly if the
search for An(x) is organized using binary decision trees (cf. Friedman (1977)).

Another advantage of the partitioning estimate is that it can be represented or com-

-
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Figure 1.7: Oversmoothing: h = 0.5, L2 error = 0.013208.

19



Figure 1.8: Cubic partition.

pressed very efficiently. Instead of storing all data Dn, one should only know the estimate
for each nonempty cell, i.e., for cells An,j for which µn(An,j) > 0, where µn denotes the
empirical distribution. The number of nonempty cells is much smaller than n. (Cf.
Lugosi, Nobel (1996).)

Inequalities for independent random variables

Next we summarize some inequalities for the sum of independent random variables, which
are used in the analysis of classification error probabilities.

Figure 1.9: Rectangle partition.
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Lemma 1.2. (Chernoff (1952)). Let B be a binomial random variable with param-
eters n and p. Then, for 1 > ε > p > 0,

P{B > nε} ≤ e−n[ε log ε
p

+(1−ε) log 1−ε
1−p ] ≤ e−n[p−ε+ε log(ε/p)]

and, for 0 < ε < p < 1,

P{B < nε} ≤ e−n[ε log ε
p

+(1−ε) log 1−ε
1−p ] ≤ e−n[p−ε+ε log(ε/p)].

Proof. We proceed by Chernoff’s exponential bounding method. In particular, for
arbitrary s > 0,

P{B > nε} = P{sB > snε}
= P{esB > esnε}
≤ e−snεE{esB}

(by the Markov inequality)

= e−snε
n∑
k=0

esk
(
n

k

)
pk(1− p)n−k

= e−snε(esp+ 1− p)n

= [e−sε(esp+ 1− p)]n.

Next choose s such that
es =

ε

1− ε
1− p
p

.

With this value we get

e−sε(esp+ 1− p) = e−ε·log( ε
1−ε

1−p
p ) ·

(
ε

1− ε
1− p
p
· p+ 1− p

)
= e−ε·log( εp

1−p
1−ε ) ·

(
ε · 1− p

1− ε
+ 1− p

)
= e−ε·log ε

p
−ε·log 1−p

1−ε+log 1−p
1−ε

= e−ε·log ε
p

+(1−ε)·log 1−p
1−ε ,

which implies the first inequality.
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The second inequality follows from

(1− ε) log
1− ε
1− p

= −(1− ε) log
1− p
1− ε

= −(1− ε) log

(
1 +

ε− p
1− ε

)
≥ −(1− ε) · ε− p

1− ε
(by log(1 + x) ≤ x)

= p− ε.

To prove the second half of the lemma, observe that n−B is a binomial random variable
with parameters n and 1− p. Hence for ε < p the results of the first step imply that

P {B < nε} = P {n−B > n(1− ε)}

≤ e−n[(1−ε) log 1−ε
1−p+ε log ε

p ]

= e−n[ε log ε
p

+(1−ε) log 1−ε
1−p ]

≤ e−n[p−ε+ε log(ε/p)].

�

Lemma 1.3. (Bernstein (1946)). Let X1, . . . , Xn be independent real-valued random
variables, let a, b ∈ R with a < b, and assume that Xi ∈ [a, b] with probability one
(i = 1, . . . , n). Let

σ2 =
1

n

n∑
i=1

Var{Xi} > 0.

Then, for all ε > 0,

P

{∣∣∣∣∣ 1n
n∑
i=1

(Xi − E{Xi})

∣∣∣∣∣ > ε

}
≤ 2e

− nε2

2σ2+2ε(b−a)/3 .

Proof. Set Yi = Xi − E{Xi} (i = 1, . . . , n). Then we have, with probability one,

|Yi| ≤ b− a and E{Y 2
i } = Var{Xi} (i = 1, . . . , n).
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By Chernoff’s exponential bounding method we get, for arbitrary s > 0,

P

{
1

n

n∑
i=1

(Xi − E{Xi}) > ε

}
= P

{
1

n

n∑
i=1

Yi > ε

}

= P

{
s

n∑
i=1

Yi − snε > 0

}
≤ E

{
es
∑n
i=1 Yi−snε

}
= e−snε

n∏
i=1

E{esYi},

by the independence of Yi’s. Because of |Yi| ≤ b− a a.s.

esYi = 1 + sYi +
∞∑
j=2

(sYi)
j

j!

≤ 1 + sYi +
∞∑
j=2

sjY 2
i (b− a)j−2

2 · 3j−2

= 1 + sYi +
s2Y 2

i

2

∞∑
j=2

(
s (b− a)

3

)j−2

= 1 + sYi +
s2Y 2

i

2

1

1− s(b− a)/3

if |s(b− a)/3| < 1. This, together with E{Yi} = 0 (i = 1, . . . , n) and 1 + x ≤ ex (x ∈ R),
implies

P

{
1

n

n∑
i=1

(Xi − E{Xi}) > ε

}

≤ e−snε
n∏
i=1

(
1 +

s2 Var{Xi}
2

1

1− s(b− a)/3

)

≤ e−snε
n∏
i=1

exp

(
s2 Var{Xi}

2

1

1− s(b− a)/3

)
= exp

(
−snε+

s2nσ2

2(1− s(b− a)/3)

)
.
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Set
s =

ε

ε(b− a)/3 + σ2
.

Then ∣∣∣∣s(b− a)

3

∣∣∣∣ < 1

and

−snε+
s2nσ2

2(1− s(b− a)/3)

=
−nε2

ε(b− a)/3 + σ2
+

ε2

(ε(b− a)/3 + σ2)2
· nσ2

2
(

1− ε(b−a)/3
ε(b−a)/3+σ2

)
=

−nε2

ε(b− a)/3 + σ2
+

ε2

ε(b− a)/3 + σ2
· nσ2

2 (ε(b− a)/3 + σ2 − ε(b− a)/3)

=
−nε2

2ε(b− a)/3 + 2σ2
,

hence

P

{
1

n

n∑
i=1

(Xi − EXi) > ε

}
≤ exp

(
−nε2

2ε(b− a)/3 + 2σ2

)
.

Similarly,

P

{
1

n

n∑
i=1

(Xi − EXi) < −ε

}
= P

{
1

n

n∑
i=1

(−Xi − E{−Xi}) > ε

}

≤ exp

(
−nε2

2ε(b− a)/3 + 2σ2

)
,

which implies the assertion. �

Lemma 1.4. (Hoeffding (1963)). Let X1, . . . , Xn be independent real-valued random
variables, let a1, b1, . . . , an, bn ∈ R, and assume that Xi ∈ [ai, bi] with probability one
(i = 1, . . . , n). Then, for all ε > 0,

P

{∣∣∣∣∣ 1n
n∑
i=1

(Xi − E{Xi})

∣∣∣∣∣ > ε

}
≤ 2e

− 2nε2

1
n

∑n
i=1
|bi−ai|2 .
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Proof. Let s > 0 be arbitrary. Similarly to the proof of Lemma 1.3 we get

P

{
1

n

n∑
i=1

(Xi − EXi) > ε

}

≤ exp(−snε) ·
n∏
i=1

E {exp (s · (Xi − EXi))} .

We will show momentarily

E {exp (s · (Xi − EXi))} ≤ exp

(
s2(bi − ai)2

8

)
(i = 1, . . . , n), (1.16)

from which we can conclude

P

{
1

n

n∑
i=1

(Xi − EXi) > ε

}
≤ exp

(
−snε+

s2

8

n∑
i=1

(bi − ai)2

)
.

The right-hand side is minimal for

s =
4n ε∑n

i=1(bi − ai)2
.

With this value we get

P

{
1

n

n∑
i=1

(Xi − EXi) > ε

}

≤ exp

(
− 4nε2

1
n

∑n
i=1(bi − ai)2

+
2nε2

1
n

∑n
i=1(bi − ai)2

)
= exp

(
− 2nε2

1
n

∑n
i=1(bi − ai)2

)
.

This implies that

P

{∣∣∣∣∣ 1n
n∑
i=1

(Xi − EXi)

∣∣∣∣∣ > ε

}

= P

{
1

n

n∑
i=1

(Xi − EXi) > ε

}
+ P

{
1

n

n∑
i=1

(−Xi − E{−Xi}) > ε

}

≤ 2 exp

(
− 2nε2

1
n

∑n
i=1(bi − ai)2

)
.
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So it remains to show (1.16). Fix i ∈ {1, . . . , n} and set

Y = Xi − EXi.

Then Y ∈ [ai−EXi, bi−EXi] =: [a, b] with probability one, a− b = ai− bi, and EY = 0.
We have to show

E {exp(sY )} ≤ exp

(
s2(b− a)2

8

)
. (1.17)

Because of esx convex we have

esx ≤ x− a
b− a

esb +
b− x
b− a

esa for all a ≤ x ≤ b,

thus

E{exp(sY )} ≤ E{Y } − a
b− a

esb +
b− E{Y }
b− a

esa

= esa
(

1 +
a

b− a
− a

b− a
es(b−a)

)
(because of E{Y } = 0).

Setting
p = − a

b− a
we get

E{exp(sY )} ≤ (1− p+ p · es(b−a))e−s p (b−a) = eΦ(s(b−a)),

where
Φ(u) = ln

(
(1− p+ peu)e−pu

)
= ln (1− p+ peu)− pu.

Next we make a Taylor expansion of Φ. Because of

Φ(0) = 0,

Φ′(u) =
peu

1− p+ peu
− p, hence Φ′(0) = 0

and

Φ′′(u) =
(1− p+ peu)peu − peupeu

(1− p+ peu)2
=

(1− p)peu

(1− p+ peu)2

≤ (1− p)peu

4(1− p)peu
=

1

4

26



we get, for any u > 0,

Φ(u) = Φ(0) + Φ′(0)u+
1

2
Φ′′(η)u2 ≤ 1

8
u2

for some η ∈ [0, u]. We conclude

E{exp(sY )} ≤ eΦ(s(b−a)) ≤ exp

(
1

8
s2(b− a)2

)
,

which proves (1.17). �

The error probability of partitioning classifier

Let Pn = {An,j, j = 1, 2, . . . } be a cubic partition of Rd. Put

νn(A) =
1

n

n∑
i=1

I{Xi∈A}Yi

and
ν(A) = E{νn(A)}.

The partitioning classification rule gn is defined by

gn(x) = sign νn(A) if x ∈ A. (1.18)

Theorem 1.3. (Kohler and Krzyżak (2007) ). Assume that D satisfies the weak
margin condition with 0 < α ≤ 1 and the Lipschitz condition, and that the strong density
condition is fulfilled. Then

E{L(gn)} − L∗ = O(h1+α) +O(1/(nhdn)(α+1)/2).

Proof. For the notations

Dn(x) =
νn(A)

µ(A)
if x ∈ A

and

D̄n(x) =
ν(A)

µ(A)
if x ∈ A,
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we get

E{L(gn)} − L∗ =

∫
E
{
I{signDn(x)6=signD(x)}

}
|D(x)|µ(dx)

≤
∫

E
{
I{|Dn(x)−D(x)|≥|D(x)|}

}
|D(x)|µ(dx)

≤
∫

E
{
I{|Dn(x)−D̄n(x)|≥|D(x)|/2}

}
|D(x)|µ(dx)

+

∫
I{|D̄n(x)−D(x)|≥|D(x)|/2}|D(x)|µ(dx).

The Lipschitz condition and the margin condition imply that∫
I{|D̄n(x)−D(x)|≥|D(x)|/2}|D(x)|µ(dx)

=

∫
I{Chn≥|D̄n(x)−D(x)|≥|D(x)|/2}|D(x)|µ(dx)

≤
∫

I{Chn≥|D(x)|/2}|D(x)|µ(dx)

= O(h1+α
n ).

Dn(x)− D̄h(x) is an average of i.i.d. bounded random variables with bound

1/µ(An(x))

and with variance less than
1/µ(An(x)).

Thus, from the Bernstein inequality (Lemma 1.3) we get that∫
E
{
I{|Dn(x)−D̄n(x)|≥|D(x)|/2}

}
|D(x)|µ(dx)

=

∫
P
{
|Dn(x)− D̄n(x)| ≥ |D(x)|/2

}
|D(x)|µ(dx)

≤
∫
e−n|D(x)|2/(8(1+|D(x)|)/µ(An(x)))|D(x)|µ(dx),

and so ∫
E
{
I{|Dn(x)−D̄n(x)|≥|D(x)|/2}

}
|D(x)|µ(dx)

≤
∫
e−fminnh

d
n|D(x)|2/16|D(x)|µ(dx),
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where we applied the strong density condition. Let G be the distribution function of
|D(X)|. Put

H(s) = c∗sα.

Because of the margin condition, we have that

G(s) ≤ H(s).

Thus, by partial integration,∫
e−fmin(

√
nhdn|D(x)|)2/16|D(x)|µ(dx) =

∫ 1

0

e−fmin(
√
nhdns)

2/16sG(ds)

≤
∫ 1

0

e−fmin(
√
nhdns)

2/16sH ′(s)ds

= c∗α

∫ 1

0

e−fmin(
√
nhdns)

2/8ssα−1ds

≤ const

∫ ∞
0

e−uu(α−1)/2du/(nhdn)(1+α)/2

= O(1/(nhdn)(1+α)/2). (1.19)

�

1.6 Kernel classifier

Kernel regression estimate

-

6
K(x) = I{||x||≤1}

x
-

6K(x) = (1− x2)+

x
-

6K(x) = e−x
2

x

Figure 1.10: Examples for univariate kernels.

Kernel-based rules are derived from the kernel estimate in density estimation origi-
nally studied by Parzen (1962), Rosenblatt (1956), Akaike (1954), and Cacoullos (1965);
and in regression estimation, introduced by Nadaraya (1964; 1970), and Watson (1964).
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Figure 1.11: Kernel estimate for the naive kernel: h = 0.1, L2 error = 0.004066.

For particular choices of K, rules of this sort have been proposed by Fix and Hodges
(1951; 1952), Sebestyen (1962), Van Ryzin (1966), and Meisel (1969). Statistical analysis
of these rules and/or the corresponding regression function estimate can be found in
Nadaraya (1964; 1970), Rejtő and Révész (1973), Devroye and Wagner (1976; 1980a;
1980c), Greblicki (1974; 1978b; 1978a), Krzyżak and Pawlak (1984), and Devroye and

-

6

−1 −0.5 0.5 1

0.5

Figure 1.12: Undersmoothing for the Epanechnikov kernel: h = 0.03, L2 error =
0.031560.
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Figure 1.13: Kernel estimate for the Epanechnikov kernel: h = 0.1, L2 error = 0.003608.

Krzyżak (1989). Usage of Cauchy kernels in discrimination is investigated by Arkadjew
and Braverman (1966), Hand (1981), and Coomans and Broeckaert (1986).

-

6
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Figure 1.14: Oversmoothing for the Epanechnikov kernel: h = 0.5, L2 error = 0.012551.

31



The kernel estimate of a regression function takes the form

mn(x) =

∑n
i=1 YiK

(
x−Xi

hn

)
∑n

i=1K
(

x−Xi

hn

) ,

if the denominator is nonzero, and 0 otherwise. Here the bandwidth hn > 0 depends
only on the sample size n, and the function K : Rd → [0,∞) is called a kernel. (See
Figure 1.10 for some examples.) Usually K(x) is “large” if ‖x‖ is “small,” therefore the
kernel estimate again is a local averaging estimate.

Figures 1.11–1.14 show the kernel estimate for the naive kernel

K(x) = I{‖x‖≤1}

and for the Epanechnikov kernel

K(x) = (1− ‖x‖2)+

using various choices for hn for our simulated data.

The error probability of kernel classifier

We fix x ∈ Rd, and, for an h > 0, let the (naive) kernel estimate of D(x) be

Dn,h(x) =
1

n

n∑
i=1

YiI{Xi∈Sx,h}/µ(Sx,h),

where Sx,h denotes the sphere centered at x with radius h. Notice that Dn,h is not a
true estimate, because its denominator contains the unknown distribution µ. However,
the corresponding plug-in classification rule defined below depends only on the sign of
Dn,h(x), and so µ doesn’t count. The (naive) kernel classification rule is

gn,h(x) = sign Dn,h(x)

(cf. Devroye (1981b), Devroye and Wagner (1980b), Krzyżak (1986), Krzyżak and
Pawlak (1984)).

If D is Lipschitz continuous and X is bounded then, for the L1 error, one has that

E{|D(X)−Dn,h(X)|} ≤ c2h+
c3√
nhd

,
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(cf. Györfi et al. (2002)), so for the choice

h = n−
1
d+2 , (1.20)

the L1 upper bound implies that

E{L(gn,h)} − L∗ ≤ c4n
− 1
d+2 .

Theorem 1.4. (Kohler and Krzyżak (2007), Döring, Györfi and Walk (2015)
). Assume that D satisfies the weak margin condition with 0 < α ≤ 1 and the Lipschitz
condition, and the strong density assumption is fulfilled. Then

E{L(gn)} − L∗ = O(h1+α) +O(1/(nhdn)(α+1)/2),

and so for the choice (1.20), we get that

E{L(gn,h)} − L∗ ≤ c7n
− 1+α
d+2 .

Proof. Because of (1.15), we have that the excess error probability of any plug-in
classification rule has the following decomposition:

E{L(gn,h)} − L∗ = E

{∫
{signDn,h(x) 6=signD(x)}

|D(x)|µ(dx)

}

≤ E

{∫
{|Dn,h(x)−D(x)|≥|D(x)|}

|D(x)|µ(dx)

}
≤ In,h + Jn,h,

where
In,h =

∫
{|D̄h(x)−D(x)|≥|D(x)|/2}

|D(x)|µ(dx)

and

Jn,h = E

{∫
{|Dn,h(x)−D̄h(x)|≥|D(x)|/2}

|D(x)|µ(dx)

}
with D̄h(x) = E{Dn,h(x)}. In,h is called approximation error, while Jn,h is the estimation
error. For the approximation error, notice that

D̄h(x) = E{Dn,h(x)} =

∫
Sx,h

D(z)µ(dz)

µ(Sx,h)
.
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Therefore

D̄h(x)−D(x) =

∫
Sx,h

(D(z)−D(x))µ(dz)

µ(Sx,h)
.

By the Lipschitz condition and the margin condition

In,h ≤
∫
{|D(x)|≤Ch}

|D(x)|µ(dx) ≤ c(Ch)1+α.

Next we consider the estimation error. Dn,h(x)− D̄h(x) is an average of i.i.d. bounded
random variables with bound

1/µ(Sx,h)

and with variance less than
1/µ(Sx,h).

Thus, from the Bernstein inequality (Lemma 1.3) we get that

Jn,h =

∫
E
{
I{|Dn,h(x)−D̄n(x)|≥|D(x)|/2}

}
|D(x)|µ(dx)

=

∫
P
{
|Dn,h(x)− D̄n(x)| ≥ |D(x)|/2

}
|D(x)|µ(dx)

≤
∫
e−n|D(x)|2/(8(1+|D(x)|)/µ(Sx,h))|D(x)|µ(dx)

and so

Jn,h ≤
∫
e−fminnh

d
n|D(x)|2/16|D(x)|µ(dx)

= O(1/(nhdn)(1+α)/2),

where we applied the strong density and the margin conditions as in (1.19). �

1.7 Nearest neighbor classifier

Nearest neighbor regression estimate

We fix x ∈ Rd, and reorder the data (X1, Y1), . . . , (Xn, Yn) according to increasing values
of ‖Xi − x‖. The reordered data sequence is denoted by

(X(1,n)(x), Y(1,n)(x)), . . . , (X(n,n)(x), Y(n,n)(x))
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Figure 1.15: Undersmoothing: kn = 3, L2 error =0.011703.

or by

(X(1,n), Y(1,n)), . . . , (X(n,n), Y(n,n))

if no confusion is possible. X(k,n)(x) is called the kth nearest neighbor (k-NN) of x.

-
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Figure 1.16: Good choice: kn = 12, L2 error =0.004247.
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Figure 1.17: Oversmoothing: kn = 50, L2 error =0.009931.

The kn-NN regression function estimate is defined by

mn(x) =
1

kn

kn∑
i=1

Y(i,n)(x).

If Xi and Xj are equidistant from x, i.e., ‖Xi − x‖ = ‖Xj − x‖, then we have a tie.
There are several rules for tie breaking. For example, Xi might be declared “closer” if
i < j, i.e., the tie breaking is done by indices. In the sequel we shall assume that X has
a density, therefore, for each x the random variable ‖X − x‖2 is absolutely continuous,
and so ties occur with probability 0.

The k-nearest neighbor rule, since its conception in 1951 and 1952 (Fix and Hodges
(1951; 1952; 1991a; 1991b)), has attracted many followers and continues to be studied
by many researchers. For surveys of various aspects of the nearest neighbor or related
methods, see Biau and Devroye (2015), Cover and Hart (1967), Dasarathy (1991), Devi-
jver (1980), Devroye (1981a), Devroye and Györfi (1985), Devroye and Wagner (1982),
Györfi (1978) or Györfi and Györfi (1978).

Storing the n data pairs in an array and searching for the k nearest neighbors may
take time proportional to nkd if done in a naive manner—the “d” accounts for the cost
of one distance computation. This complexity may be reduced in terms of one or more
of the three factors involved. Typically, with k and d fixed, O(n1/d) worst-case time
(Papadimitriou and Bentley (1980)) and O(log n) expected time (Friedman, Bentley,
and Finkel (1977)) may be achieved. Multidimensional search trees that partition the
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space and guide the search are invaluable—for this approach, see Fukunaga and Narendra
(1975), Friedman, Bentley, and Finkel (1977), Niemann and Goppert (1988), Kim and
Park (1986), and Broder (1990). We refer to a survey in Dasarathy (1991) for more
references. Other approaches are described by Yunck (1976), Friedman, Baskett, and
Shustek (1975), Vidal (1986), Sethi (1981), and Faragó, Linder, and Lugosi (1993).
Generally, with preprocessing, one may considerably reduce the overall complexity in
terms of n and d.

Figures 1.15 – 1.17 show kn-NN estimates for various choices of kn for our simulated
data.

The error probability of nearest neighbor classifier

In the sequel our focus lies on the rate of convergence of the excess error probability
E{L(gn,k)} −L∗, where gn,k is the k-nearest neighbor rule defined as follows: Choose an
integer k less than n, then the k-nearest-neighbor estimate of D is

Dn,k(x) =
1

k

k∑
i=1

Y(n,i)(x), (1.21)

and the k-nearest-neighbor classification rule is

gn,k(x)) = signDn,k(x). (1.22)

Kohler and Krzyżak (2007) proved that under the weak margin condition, Lipschitz
condition and strong density assumption we get that

E{L(gn,k)} − L∗ ≤ c5(log n)
2(1+α)

d (k/n)(1+α)/d +
c6

k(1+α)/2
.

For choice
kn = c∗n2/(d+2), (1.23)

it implies that the order of the upper bound can be smaller than:

(log n)
2(1+α)

d n−
1+α
d+2 .

Gadat, Klein and Mateau (2016) extended this bound such that under the weak margin
condition, Lipschitz condition and the so called strong minimal mass assumption they
get that

E{L(gn,k)} − L∗ ≤ c5(k/n)(1+α)/d +
c6

k(1+α)/2
,
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which results in the order
n−

1+α
d+2 . (1.24)

Audibert and Tsybakov (2005) showed that (1.24) is the minimax optimal rate of con-
vergence for the class of Lipschitz continuous D, i.e., (1.24) can be the lower bound for
any classifier.

Hall, Park and Samworth (2008), and Samworth (2012) considered the case when the
conditional densities of X given Y are twice differentiable and the density f satisfies the
strong density assumption. Under some additional conditions on B0

E{L(gn,k)} − L∗ ≤ c7(k/n)4/d +
c8

k
,

which implies in the order
n−

4
d+4 . (1.25)

Audibert and Tsybakov (2005) showed that the order

n−
2(1+α)
d+4 (1.26)

is the minimax optimal rate of convergence for the class of regression functions D, which
are differentiable and the partial derivatives are Lipschitz continuous. The conditions in
(2008) and (2012) imply that the strong margin condition with α = 1, therefore (1.25)
is the minimax optimal rate of convergence for this class.

Theorem 1.5. Assume that X has a density, D satisfies the weak margin condition with
0 < α ≤ 1 and the modified Lipschitz condition. Then

E{L(gn,k)} − L∗ = O(1/k(1+α)/2) +O((k/n)(α+1)/d).

Proof. Because of (1.15), we have the following decomposition of the excess error
probability:

E{L(gn,k)} − L∗ = E

{∫
{signDn,k(x)6=signD(x)}

|D(x)|µ(dx)

}

= E

{∫
{|Dn,k(x)−D(x)|≥|D(x)|}

|D(x)|µ(dx)

}
≤ In,k + Jn,k,
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where

In,k = E

{∫
{|Dn,k(x)−D̄n,k(x)|≥|D(x)|/2}

|D(x)|µ(dx)

}
and

Jn,k = E

{∫
{|D̄n,k(x)−D(x)|≥|D(x)|/2}

|D(x)|µ(dx)

}
with

D̄n,k(x) = E{Dn,k(x) | X1, . . . ,Xn}. (1.27)
In,k is called approximation error, while Jn,k is the estimation error. Proposition 8.1 in
(2015) says the following: given X1, . . . ,Xn, the random pairs

(X(n,1)(x), Y(n,1)(x)), . . . , (X(n,k)(x), Y(n,k)(x))

are independent, and

E{Y(n,i)(x)−D(X(n,i)(x)) | X1, . . . ,Xn} = 0.

Therefore, the Hoeffding inequality (Lemma 1.4) implies that

P{|Dn,k(x)− D̄n,k(x)| ≥ |D(x)|/2 | X1, . . . ,Xn}

= P

{∣∣∣∣∣1k
k∑
i=1

(Y(n,i)(x)−D(X(n,i)(x)))

∣∣∣∣∣ ≥ |D(x)|/2 | X1, . . . ,Xn

}
≤ 2e−k|D(x)|2/32.

Then

Jn,k ≤ 2

∫
|D(x)|e−k|D(x)|2/32µ(dx).

The weak margin condition with α means that

G(t) := P{0 < |D(X)| ≤ t} ≤ c∗ · tα, 0 ≤ t ≤ 1.

This implies that∫
|D(x)|Φ

(
−
√
k|D(x)|/2

)
µ(dx) =

∫ 1

0

sΦ
(
−
√
ks/2

)
G(ds)

= sΦ
(
−
√
ks/2

)
G(s)

∣∣∣1
0
−
∫ 1

0

[
Φ
(
−
√
ks/2

)
− s
√
k

2
Φ′
(
−
√
ks/2

)]
G(s)ds

≤ Φ
(
−
√
k/2
)

+

∫ √k
0

u

2
Φ′ (−u/2) c∗uαduk−(α+1)/2 = O(k−(α+1)/2).
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For i.i.d. uniformly distributed U1, . . . , Un, let U(1,n), . . . , U(n,n) denote the corre-
sponding order statistic. From Section 1.2 in Biau and Devroye (2015) we have that

µ(Sx,‖x−X(n,k)(x)‖)
D
= U(k,n). (1.28)

Because of

|D(x)− D̄n,k(x)| =

∣∣∣∣∣D(x)− 1

k

k∑
i=1

D(X(n,i)(x))

∣∣∣∣∣
≤ 1

k

k∑
i=1

|D(x)−D(X(n,i)(x))|

the modified Lipschitz condition together with (1.28) implies that

P
{
|D(x)|/2 < |D(x)− D̄n,k(x)|

}
≤ P

{
|D(x)|/2 < C∗

1

k

k∑
i=1

µ(Sx,‖x−X(n,i)(x)‖)
1/d

}
≤ P

{
|D(x)|/2 < C∗µ(Sx,‖x−X(n,k)(x)‖)

1/d
}

= P
{
|D(x)|/2 < C∗U

1/d
(k,n)

}
= P

{
|D(x)|d/(2C∗)d < U(k,n)

}
. (1.29)

Without loss of generality, assume that C∗ ≥ 1/2. Then

P
{
|D(x)|/2 < |D(x)− D̄n,k(x)|

}
≤ P

{
n∑
i=1

I{Ui≤|D(x)|d/(2C∗)d} < k

}

≤ I{|D(x)|d/(2C∗)d≥2k/n}P

{
n∑
i=1

I{Ui≤|D(x)|d/(2C∗)d} <
n

2
|D(x)|d/(2C∗)d

}
+ I{|D(x)|d/(2C∗)d<2k/n}

≤ I{|D(x)|d/(2C∗)d≥2k/n}e
− 1−log 2

2
n|D(x)|d/(2C∗)d + I{|D(x)|d/(2C∗)d<2k/n}

≤ e−(1−log 2)k + I{|D(x)|d/(2C∗)d<2k/n}, (1.30)
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where the third inequality follows from Chernoff’s exponential inequality (Lemma 1.2).
Applying the weak margin condition, we get

In,k =

∫
|D(x)|P

{
|D(x)|/2 < |D(x)− D̄n,k(x)|

}
µ(dx)

≤ e−(1−log 2)k +O((k/n)(α+1)/d). (1.31)

�

1.8 Empirical error minimization

Selection of classifier

In this section we consider the selection of a classification function from a class G of
functions. If a class G of classifiers is given, then it is tempting to pick the one that
minimizes an estimate of the error probability over the class. A good method should
pick a classifier with an error probability that is close to the minimal error probability in
the class. Here we require much more than distribution-free performance bounds of the
error estimator for each of the classifiers in the class. Intuitively, if we can estimate the
error probability for the classifiers in G uniformly well, then the classification function
that minimizes the estimated error probability is likely to have an error probability that
is close to the best in the class. To certify this intuition, consider the following situation:
Let G be a class of classifiers, that is, a class of mappings of the form g : Rd → {−1, 1}.
Assume that the empirical error

L̂n(g) =
1

n

n∑
j=1

I{g(Xj)6=Yj}

is used to estimate the error probability

L(g) = P{g(X) 6= Y }

of each classifier g ∈ G. Denote by gn the classifier that minimizes the empirical error
over the class:

L̂n(gn) ≤ L̂n(g) for all g ∈ G.

Thus, gn is the classifier that, according to the data Dn, “looks best” among the classi-
fiers in G. This idea of minimizing the empirical risk in the construction of a rule was
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developed to great extent by Vapnik and Chervonenkis (1971; 1974c; 1974a; 1974b). In
practice, finding an empirically optimal classifier is often computationally very expensive.

Intuitively, the selected classifier gn should be good in the sense that its true error
probability L(gn) = P{gn(X) 6= Y | Dn} is expected to be close to the optimal error
probability within the class.

For the error probability

L(gn) = P {gn(X) 6= Y | Dn}

of the selected rule we have:

Lemma 1.5. (Vapnik and Chervonenkis (1974c); see also Devroye (1988)).

L(gn)− inf
g∈G

L(g) ≤ 2 sup
g∈G
|L̂n(g)− L(g)|,

|L̂n(gn)− L(gn)| ≤ sup
g∈G
|L̂n(g)− L(g)|.

Proof.

L(gn)− inf
g∈G

L(g) = L(gn)− L̂n(gn) + L̂n(gn)− inf
g∈G

L(g)

≤ L(gn)− L̂n(gn) + sup
g∈G
|L̂n(g)− L(g)|

≤ 2 sup
g∈G
|L̂n(g)− L(g)|.

The second inequality is trivially true. �
We see that upper bounds for supg∈G |L̂n(g) − L(g)| provide us with upper bounds

for two things simultaneously:

(1) An upper bound for the suboptimality of gn within G, that is, a bound for
L(gn)− infg∈G L(g).

(2) An upper bound for the error |L̂n(gn)− L(gn)| committed when L̂n(gn) is used to
estimate the probability of error L(gn) of the selected rule.

In other words, by bounding supg∈G |L̂n(g) − L(g)|, we kill two flies at once. It is
particularly useful to know that even though L̂n(gn) is usually optimistically biased, it is
within given bounds of the unknown probability of error with gn, and that no other test
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sample is needed to estimate this probability of error. Whenever our bounds indicate
that we are close to the optimum in G, we must at the same time have a good estimate
of the probability of error, and vice versa.

The difference
L(gn)− inf

g∈G
L(g)

is the quantity that primarily interests us in the sequel. This difference may be bounded
in a distribution-free manner, and a rate of convergence results that only depends on
the structure of G. While this is very exciting, we must add that L(gn) may be far away
from the Bayes error L∗. Note that

L(gn)− L∗ =

(
L(gn)− inf

g∈G
L(g)

)
+

(
inf
g∈G

L(g)− L∗
)
.

The size of G is a compromise: when G is large, infg∈G L(g) may be close to L∗, but the
estimation error

L(gn)− inf
g∈G

L(g)

is probably large as well. If G is too small, there is no hope to make the approximation
error

inf
g∈G

L(g)− L∗

small. For example, if G is the class of all decision functions, then we can always find a
classifier in G with zero empirical error, but it may have arbitrary values outside of the
points X1, . . . , Xn. For example, an empirically optimal classifier is

gn(x) =

{
Yi if x = Xi, i = 1, . . . , n
−1 otherwise.

This is clearly not what we are looking for. This phenomenon is called overfitting, as the
overly large class G overfits the data. We will give precise conditions on G that allow us
to avoid this anomaly. The choice of G such that infg∈G L(g) is close to L∗ has been the
subject of various chapters on consistency—just assume that G is allowed to grow with
n in some manner.

Finite class G
Here we take the point of view that G is fixed, and that we have to live with the functions
in G. The best we may then hope for is to minimize L(gn)− infg∈G L(g).

As a simple, but interesting application of Lemma 1.5 we consider the case when the
class G contains finitely many classifiers.
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Theorem 1.6. Assume that the cardinality of G is bounded by N . Then we have for all
ε > 0,

P
{

sup
g∈G
|L̂n(g)− L(g)| > ε

}
≤ 2Ne−2nε2 .

Proof.

P
{

sup
g∈G
|L̂n(g)− L(g)| > ε

}
≤

∑
g∈G

P
{
|L̂n(g)− L(g)| > ε

}
≤ 2Ne−2nε2 ,

where we used Hoeffding’s inequality, and the fact that the random variable nL̂n(g) is
binomially distributed with parameters n and L(g). �

Consider a finite collection G, and assume that one of the classifiers in G has zero
error probability, that is, ming∈G L(g) = 0. Then clearly, L̂n(gn) = 0 with probability
one. We then have the following performance bound:

Theorem 1.7. (Vapnik and Chervonenkis (1974c)). Assume that the cardinality
|G| of G is finite, and ming∈G L(g) = 0. Then for every n and ε > 0,

P{L(gn) > ε} ≤ |G|e−nε,

and
E{L(gn)} ≤ 1 + log |G|

n
.

Proof. Clearly,

P{L(gn) > ε} ≤ P

{
max

g∈G:L̂n(g)=0
L(g) > ε

}
= E

{
I{max

g∈G:L̂n(g)=0
L(g)>ε}

}
= E

{
max
g∈G

I{L̂n(g)=0}I{L(g)>ε}

}
≤

∑
g∈G:L(g)>ε

P
{
L̂n(g) = 0

}
≤ |G|(1− ε)n,
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since the probability that no (Xi, Yi) pair falls in the set {(x, y) : g(x) 6= y} is less than
(1 − ε)n if the probability of the set is larger than ε. The probability inequality of the
theorem follows from the simple inequality 1− x ≤ e−x.

To bound the expected error probability, note that for any u > 0,

E{L(gn)} =

∫ ∞
0

P{L(gn) > t}dt

≤ u+

∫ ∞
u

P{L(gn) > t}dt

≤ u+ |G|
∫ ∞
u

e−ntdt

= u+
|G|
n
e−nu.

Since u was arbitrary, we may choose it to minimize the obtained upper bound. The
optimal choice is u = log |G|/n, which yields the desired inequality. �

Theorem 1.7 shows that empirical selection works very well if the sample size n is
much larger than the logarithm of the size of the family G. Unfortunately, the assumption
on the distribution of (X, Y ), that is, that ming∈G L(g) = 0, is very restrictive. In the
sequel we drop this assumption, and deal with the distribution-free problem.

One of our main tools is taken from Lemma 1.5:

L(gn)− inf
g∈G

L(g) ≤ 2 sup
g∈G

∣∣∣L̂n(g)− L(g)
∣∣∣ .

This leads to the study of uniform deviations of relative frequencies from their proba-
bilities by the following simple observation: let ν be a probability measure of (X, Y ) on
Rd×{−1, 1}, and let νn be the empirical measure based upon Dn. That is, for any fixed
measurable set A ⊂ Rd × {−1, 1},

ν(A) = P{(X, Y ) ∈ A},

and

νn(A) =
1

n

n∑
i=1

I{(Xi,Yi)∈A}.

Then
L(g) = ν({(x, y) : g(x) 6= y})
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is just the ν-measure of the set of pairs (x, y) ∈ Rd×{−1, 1}, where g(x) 6= y. Formally,
L(g) is the ν-measure of the set

{{x : g(x) = 1} × {−1}}
⋃
{{x : g(x) = −1} × {1}} .

Similarly,
L̂n(g) = νn({(x, y) : g(x) 6= y}).

Thus,
sup
g∈G
|L̂n(g)− L(g)| = sup

A∈A
|νn(A)− ν(A)|,

where A is the collection of all sets

{{x : g(x) = 1} × {−1}}
⋃
{{x : g(x) = −1} × {1}} , g ∈ G.

For a fixed set A, for any probability measure ν, by the law of large numbers

νn(A)− ν(A)→ 0

almost surely as n→∞. Moreover, by Hoeffding’s inequality,

P{|νn(A)− ν(A)| > ε} ≤ 2e−2nε2 .

However, it is a much harder problem to obtain such results for supA∈A |νn(A)− ν(A)|.
If the class of sets A (or, analogously, in the pattern recognition context, G) is of finite
cardinality, then the union bound trivially gives

P
{

sup
A∈A
|νn(A)− ν(A)| > ε

}
≤ 2|A|e−2nε2 .

Infinite class G
If the class G is not finite, then we need uniform law of large numbers, which is part of
advanced probability theory. Therefore, in the sequel we omit the proofs. If A contains
infinitely many sets (as in many of the interesting cases) then the problem becomes non-
trivial, spawning a vast literature. The most powerful weapons to attack these problems
are distribution-free large deviation-type inequalities first proved by Vapnik and Cher-
vonenkis (1971) in their pioneering work. However, in some situations, we can handle
the problem in a much simpler way.
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Definition 1.1. Let A be a collection of measurable sets. For (z1, . . . , zn) ∈ {Rd}n, let
NA(z1, . . . , zn) be the number of different sets in

{{z1, . . . , zn} ∩ A;A ∈ A}.

The n-th shatter coefficient of A is

s(A, n) = max
(z1,...,zn)∈{Rd}n

NA(z1, . . . , zn).

That is, the shatter coefficient is the maximal number of different subsets of n points that
can be picked out by the class of sets A.

The shatter coefficients measure the richness of the class A. Clearly, s(A, n) ≤ 2n, as
there are 2n subsets of a set with n elements. If NA(z1, . . . , zn) = 2n for some (z1, . . . , zn),
then we say that A shatters {z1, . . . , zn}. If s(A, n) < 2n, then any set of n points has a
subset such that there is no set in A that contains exactly that subset of the n points.
Clearly, if s(A, k) < 2k for some integer k, then s(A, n) < 2n for all n > k. The first
time when this happens is important:

Definition 1.2. Let A be a collection of sets with |A| ≥ 2. The largest integer k ≥ 1 for
which s(A, k) = 2k is denoted by VA, and it is called the Vapnik-Chervonenkis dimension
(or vc dimension) of the class A. If s(A, n) = 2n for all n, then by definition, VA =∞.

Chapter 13 in Devroye, Györfi, Lugosi (1996) contains some examples on vc dimen-
sions. In the most interesting cases, the class G of decision functions g is derived from a
finite-dimensional vector space F of real functions f : Rd → R such that

g(x) := sign (f(x)).

Theorem 1.8. (Steele (1975), Dudley (1978)). Let F be a finite-dimensional
vector space of real functions on Rd. The class of sets

A = {{x : f(x) ≥ 0} : f ∈ F}

has vc dimension VA ≤ r, where r = dimension(F).

The distribution-free performance bound for finite vc dimension is formulated as
follows:

Theorem 1.9. (Vapnik and Chervonenkis (1971)). If the class G has finite vc
dimension VG > 2, then

E {L(gn)} − inf
g∈G

L(g) ≤ 16

√
VG log n+ 4

2n
.
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Linear and generalized linear discrimination

For linear discrimination, we split the space by a hyperplane and assign a different class
to each halfspace. Such rules offer tremendous advantages—they are easy to interpret
as each decision is based upon the sign of

d∑
i=1

aix
(i) + a0,

where x = (x(1), . . . , x(d)) and the ai’s are weights. Thus, the corresponding linear
discriminant function g is defined by

g(x) = sign

(
d∑
i=1

aix
(i) + a0

)
.

The weight vector determines the relative importance of the components. The decision
is also easily implemented—in a standard software solution, the time of a decision is
proportional to d—and the prospect that a small chip can be built to make a virtually
instantaneous decision is particularly exciting.

Rosenblatt (1962) realized the tremendous potential of such linear rules and called
them perceptrons. Changing one or more weights as new data arrive allows us to quickly
and easily adapt the weights to new situations. Training or learning patterned after the
human brain thus became a reality.

Theorem 1.10. Assume that X has a density. Let G be the class of linear discriminant
functions. If gn is found by empirical error minimization and n ≥ d, then

E {L(gn)} − inf
g∈G

L(g) ≤
√

2((d+ 1) log n+ (2d+ 2))

n
.

Theorem 1.10 is slightly better than the combination of Theorems 1.8 and 1.9.
The extension of linear classifier, called generalized linear classifier, have their roots

in the Fourier series estimate or other series estimates of an unknown density, potential
function methods. All these estimators can be put into the following form: classify x as

g(x) = sign

(
k∑
j=1

an,jψj(x)

)
,

where the ψj’s are fixed functions, forming a base for the series estimate, an,j is a fixed
function of the training data, and k controls the amount of smoothing. When the ψj’s are
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the usual trigonometric basis, then this leads to the Fourier series
classifier studied by Greblicki and Pawlak (1981; 1982). When the ψj’s form an or-
thonormal system based upon Hermite polynomials, we obtain the classifiers studied by
Greblicki (1981), and Greblicki and Pawlak (1983; 1985). When {ψj(x)} is the collection
of all products of components of x (such as 1, (x(i))k, (x(i))k(x(j))l, etcetera), we obtain
the polynomial method of Specht (1971).

Further properties of linear and generalized linear discrimination can be found in
Chapters 4 and 17 of Devroye, Györfi, Lugosi (1996).

Tree classifier and data dependent partitioning

Classification trees partition Rd into regions, often hyperrectangles parallel to the axes.
Among these, the most important are the binary classification trees, since they have just
two children per node and are thus easiest to manipulate and update. We recall the
simple terminology of books on data structures. The top of a binary tree is called the
root. Each node has either no child (in that case it is called a terminal node or leaf), a
left child, a right child, or a left child and a right child. Each node is the root of a tree
itself. The trees rooted at the children of a node are called the left and right subtrees of
that node. The depth of a node is the length of the path from the node to the root. The
height of a tree is the maximal depth of any node.

Trees with more than two children per node can be reduced to binary trees by a
simple device—just associate a left child with each node by selecting the oldest child in
the list of children. Call the right child of a node its next sibling. The new binary tree is
called the oldest-child/next-sibling binary tree (see, e.g., Cormen, Leiserson, and Rivest
(1990) for a general introduction). We only mention this particular mapping because it
enables us to only consider binary trees for simplicity.

In a classification tree, each node represents a set in the space Rd. Also, each node
has exactly two or zero children. If a node u represents the set A and its children u′, u′′
represent A′ and A′′, then we require that A = A′ ∪ A′′ and A′ ∩ A′′ = ∅. The root
represents Rd, and the leaves, taken together, form a partition of Rd.

Assume that we know x ∈ A. Then the question “is x ∈ A?” should be answered in a
computationally simple manner so as to conserve time. Therefore, if x = (x(1), . . . , x(d)),
we may just limit ourselves to questions of the following forms:

(i) Is x(i) ≤ α? This leads to ordinary binary classification trees with partitions into
hyperrectangles.

(ii) Is a1x
(1) + · · ·+ adx

(d) ≤ α? This leads to bsp trees (binary space partition trees).

49



Each decision is more time consuming, but the space is more flexibly cut up into
convex polyhedral cells.

(iii) Is ‖x−z‖ ≤ α? (Here z is a point of Rd, to be picked for each node.) This induces
a partition into pieces of spheres. Such trees are called sphere trees.

(iv) Is ψ(x) ≥ 0? Here, ψ is a nonlinear function, different for each node. Every
classifier can be thought of as being described in this format—decide class one if
ψ(x) ≥ 0. However, this misses the point, as tree classifiers should really be built
up from fundamental atomic operations and queries such as those listed in (i)–(iii).
We will not consider such trees any further.

We associate a class in some manner with each leaf in a classification tree. The tree
structure is usually data dependent, as well, and indeed, it is in the construction itself
where methods differ. If a leaf represents region A, then we say that the classifier g is
natural if

g(x) = sign

( ∑
i:Xi∈A

Yi

)
if x ∈ A.

That is, in every leaf region, we take a majority vote over all (Xi, Yi)’s with Xi in the
same region. In this set-up, natural tree classifiers are but special cases of data-dependent
partitioning rules.

Regular histograms can also be thought of as natural binary tree classifiers—the
construction and relationship is obvious. However, as n → ∞, histograms change size,
and usually, histogram partitions are not nested as n grows. Trees offer the exciting
perspective of fully dynamic classification—as data are added, we may update the tree
slightly, say, by splitting a leaf or so, to obtain an updated classifier.

The most compelling reason for using binary tree classifiers is to explain complicated
data and to have a classifier that is easy to analyze and understand. In fact, expert
system design is based nearly exclusively upon decisions obtained by going down a binary
classification tree. Some argue that binary classification trees are preferable over bsp
trees for this simple reason. As argued in Breiman, Friedman, Olshen, and Stone (1984),
trees allow mixing component variables that are heterogeneous—some components may
be of a nonnumerical nature, others may represent integers, and still others may be real
numbers.

In 1984, Breiman, Friedman, Olshen, and Stone presented their cart program for
constructing classification trees with perpendicular splits. One of the key ideas in their
approach is the notion that trees should be constructed from the bottom up, by combining
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small subtrees. The starting point is a tree with n+ 1 leaf regions defined by a partition
of the space based on the n data points. Such a tree is much too large and is pruned
by some methods that will not be explored here. When constructing a starting tree, a
certain splitting criterion is applied recursively. The criterion determines which rectangle
should be split, and where the cut should be made. To keep the classifier invariant under
monotone transformation of the coordinate axes, the criterion should only depend on the
coordinatewise ranks of the points, and their labels. Typically the criterion is a function
of the numbers of points labeled by −1 and 1 in the rectangles after the cut is made.

There are many examples for data dependent partitioning, for example, statistically
equivalent blocks, partitioning rules based on clustering, data-based scaling, classification
trees, etc., see Chapters 20 and 21 in Devroye, Györfi, Lugosi (1996).

Neural network

The linear discriminant or perceptron makes a decision

φ(x) = sign (ψ(x))

based upon a linear combination ψ(x) of the inputs,

ψ(x) = c0 +
d∑
i=1

cix
(i) = c0 + cTx, (1.32)

where the ci’s are weights, x = (x(1), . . . , x(d))T , and c = (c1, . . . , cd)
T . This is called a

neural network without hidden layers.
In a (feed-forward) neural network with one hidden layer, one takes

ψ(x) = c0 +
k∑
i=1

ciσ(ψi(x)), (1.33)

where the ci’s are as before, and each ψi is of the form given in (1.32):

ψi(x) = bi +
d∑
j=1

aijx
(j)

for some constants bi and aij. The function σ is called a sigmoid. We define sigmoids
to be nondecreasing functions with σ(x) → −1 as x ↓ −∞ and σ(x) → 1 as x ↑ ∞.
Examples include:
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(1) the threshold sigmoid
σ(x) = sign (x);

(2) the standard, or logistic, sigmoid

σ(x) =
1− e−x

1 + e−x
;

(3) the arctan sigmoid

σ(x) =
2

π
arctan(x);

(4) the gaussian sigmoid

σ(x) = 2

∫ x

−∞

1√
2π
e−u

2/2du− 1.

For early discussion of multilayer perceptrons, see Rosenblatt (1962), Barron (1975),
Nilsson (1965), and Minsky and Papert (1969). Surveys may be found in Barron and
Barron (1988), Ripley (1993; 1994), Hertz, Krogh, and Palmer (1991), and Weiss and
Kulikowski (1991).

In the perceptron with one hidden layer, we say that there are k hidden neurons—the
output of the i-th hidden neuron is ui = σ(ψi(x)). Thus, (1.33) may be rewritten as

ψ(x) = c0 +
k∑
i=1

ciui,

which is similar in form to (1.32). We may continue this process and create multilayer
feed-forward neural networks. For example, a two-hidden-layer perceptron uses

ψ(x) = c0 +
l∑

i=1

cizi,

where

zi = σ

(
di0 +

k∑
j=1

dijuj

)
, 1 ≤ i ≤ l,

and

uj = σ

(
bj +

d∑
i=1

ajix
(i)

)
, 1 ≤ j ≤ k,
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and the dij’s, bj’s, and aji’s are constants. The first hidden layer has k hidden neurons,
while the second hidden layer has l hidden neurons.

The step from perceptron to a one-hidden-layer neural network is nontrivial. We know
that linear discriminants cannot possibly lead to universally consistent rules. Fortunately,
one-hidden-layer neural networks yield universally consistent discriminants provided that
we allow k, the number of hidden neurons, to grow unboundedly with n. The interest
in neural networks is undoubtedly due to the possibility of implementing them directly
via processors and circuits. As the hardware is fixed beforehand, one does not have
the luxury to let k become a function of n, and thus, the claimed universal consistency
is a moot point. We will deal with both fixed architectures and variable-sized neural
networks. Because of the universal consistency of one-hidden-layer neural networks,
there is little theoretical gain in considering neural networks with more than one hidden
layer. There may, however, be an information-theoretic gain as the number of hidden
neurons needed to achieve the same performance may be substantially reduced. In fact,
we will make a case for two hidden layers, and show that after two hidden layers, little
is gained for classification.

For theoretical analysis, the neural networks are rooted in a classical theorem by
Kolmogorov (1957) and Lorentz (1976) which states that every continuous function f on
[0, 1]d can be written as

f(x) =
2d+1∑
i=1

Fi

(
d∑
j=1

Gij(x
(j))

)
,

where the Gij’s and the Fi’s are continuous functions whose form depends on f . One
can show that neural networks approximate any measurable function with arbitrary
precision, despite the fact that the form of the sigmoids is fixed beforehand.

Further properties of neural network can be found in Chapter 30 in Devroye, Györfi,
Lugosi (1996).

Support vector machine

We can start with the setup of generalized discrimination, where ψj, j = 1, 2, . . . are
linearly independent functions defined on Rd, and Gk is the class of decision functions g
of form

g(x) = sign

(
k∑
j=1

cjψj(x)

)
with weight vector c = (c1, . . . , ck). In this way L(gn) can approach infg∈Gk L(g) if n
is large enough. In order to achieve consistency, one has to increase k. Furthermore,
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even for fixed k, we can decrease infg∈Gk L(g) by appropriate choice of the functions
ψj, j = 1, 2, . . . , which is interpreted as nonlinear transformation of the feature vector
X:

(ψ1(X), . . . , ψk(X)).

Put

F = {f : f =
k∑
j=1

cjψj(x), c ∈ Rk, k = 1, 2, . . . }

and
G = {g : g(x) = sign f(x)}.

The main aim of support vector machine algorithms is to approximate infg∈G L(g).
The previously mentioned empirical error minimization principle cannot be applied,

because the class F is too large, its vc dimension is not finite. Assume that, for each
x, z ∈ Rd, the function

K(x, z) :=
∞∑
j=1

ψj(x)ψj(z)

is well defined and finite. The function K is called kernel function. The kernel function
uniquely generates the so called Reproducing Kernel Hilbert Space (RKHS) with the norm
‖ · ‖.

Furthermore, the 0− 1 loss is replaced by a continuous approximate loss `. The em-
pirical error minimization would result in a complete overfitting, therefore it is replaced
by complexity regularization:

fn = arg min
f∈F

(
1

n

n∑
j=1

`(f(Xj), Yj) + λn‖f‖

)

with λn ↓ 0, and the corresponding decision function is defined by

gn(x) = sign fn(x).

Concerning the detailed theory of support vector machines, we suggest to visit the
books Schölkopf and Smola (2002), Shawe-Taylor and Cristianini (2004), Steinwart and
Christmann (2008), Suykens et al. (2002), Vapnik (1995) and Vapnik and Kotz (2006).
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Chapter 2

Testing Simple Hypotheses

2.1 α-level tests
In this section we consider decision problems, where the consequences of the various
errors are very much different. For example, if in a diagnostic problem Y = 0 means
that the patient is OK, while Y = 1 means that the patient is ill, then for Y = 0 the
false decision is that the patient is ill, which implies some superfluous medical treatment,
while for Y = 1 the false decision means that the illness is not detected, and the patient’s
state may become worse. A similar situation happens for radar detection.

The event Y = 0 is called null hypothesis and is denoted by H0, and the event Y = 1
is called alternative hypothesis and is denoted byH1. The decision, the test is formulated
by a set A ⊂ Rd, called acceptance region such that accept H0 if X ∈ A, otherwise reject
H0, i.e., accept H1. The set Ac is called critical region.

Let P0 and P1 be the probability distributions of X under H0 and H1, respectively.
There are two types of errors:

• Error of the first kind, if under the null hypothesis H0 we reject H0. This error is
P0(Ac).

• Error of the second kind, if under the alternative hypothesis H1 we reject H1. This
error is P1(A).

Obviously, one decreases the error of the first kind P0(Ac) if the error of the second
kind P1(A) increases. We can formulate the optimization problem such that minimize
the error of the second kind under the condition that the error of the first kind is at most
0 < α < 1:

min
A:P0(Ac)≤α

P1(A). (2.1)
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In order to solve this problem the Neyman-Pearson Lemma plays an important role.

Theorem 2.1. (Neyman, Pearson (1933)) Assume that the distributions P0 and P1

have densities f0 and f1:

P0(B) =

∫
B

f0(x)dx and P1(B) =

∫
B

f1(x)dx.

For a γ > 0, put
Aγ = {x : f0(x) ≥ γf1(x)}.

If for any set A
P0(Ac) ≤ P0(Acγ)

then
P1(A) ≥ P1(Aγ).

Proof. Because of the condition of the theorem, we have the following chain of inequal-
ities:

P0(Ac) ≤ P0(Acγ)

P0(Ac ∩ Aγ) + P0(Ac ∩ Acγ) ≤ P0(A ∩ Acγ) + P0(Ac ∩ Acγ)∫
Ac∩Aγ

f0(x)dx ≤
∫
A∩Acγ

f0(x)dx.

The definition of Aγ implies that

γ

∫
Ac∩Aγ

f1(x)dx ≤
∫
Ac∩Aγ

f0(x)dx ≤
∫
A∩Acγ

f0(x)dx ≤ γ

∫
A∩Acγ

f1(x)dx,

therefore using the previous chain of derivations in a reverse order we get that

P1(Ac) ≤ P1(Acγ).

�
In Figure 2.1 the blue area illustrates the error of the first kind, while the red area is

the error of the second kind.
If for an 0 < α < 1 there is a γ = γ(α), which solves the equation

P0(Acγ) = α,
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Figure 2.1: Error of the first and second kind.

then the Neyman-Pearson Lemma implies that in order to solve the problem (2.1), it is
enough to search for set of form Aγ, i.e.,

min
A:P0(Ac)≤α

P1(A) = min
Aγ :P0(Acγ)≤α

P1(Aγ).

Then Aγ is called the most powerful α-level test.
Because of the Neyman-Pearson Lemma, we introduce the likelihood ratio statistic

T (X) =
f0(X)

f1(X)
,

and so the null hypothesis H0 is accepted if T (X) ≥ γ.

Example 1. As an illustration of the Neyman-Pearson Lemma, consider the example of
an experiment, where the null hypothesis is that the components of X are i.i.d. normal
with mean m = m0 > 0 and with variance σ2, while under the alternative hypothesis
the components of X are i.i.d. normal with mean m1 = 0 and with the same variance
σ2. Then

f0(x) = f0(x1, . . . , xd) =
d∏
i=1

(
1√
2πσ

e−
(xi−m)2

2σ2

)
and

f1(x) = f1(x1, . . . , xd) =
d∏
i=1

(
1√
2πσ

e−
x2
i

2σ2

)
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and
f0(X)

f1(X)
≥ γ

means that

−
d∑
i=1

(Xi −m)2

2σ2
+

d∑
i=1

X2
i

2σ2
≥ ln γ,

or equivalently,
d∑
i=1

(2Xim−m2) ≥ 2σ2 ln γ.

This test accepts the null hypothesis if

1

d

d∑
i=1

Xi ≥
2σ2 ln γ/d+m2

2m
=
σ2 ln γ

dm
+
m

2
=: γ′.

The test is based on the linear statistic
∑d

i=1Xi/d, and the question left is how to choose
the critical value γ′, for which it is an α-level test, i.e., the error of the first kind is α:

P0

{
1

d

d∑
i=1

Xi ≤ γ′

}
= α.

Under the null hypothesis, the distribution of 1
d

∑d
i=1 Xi is normal with mean m and

with variance σ2/d, therefore

P0

{
1

d

d∑
i=1

Xi ≤ γ′

}
= Φ

(
γ′ −m
σ/
√
d

)
,

where Φ denotes the standard normal distribution function, and so the critical value γ′
of an α-level test solves the equation

Φ

(
−m− γ

′

σ/
√
d

)
= α,

i.e.,
γ′ = m− Φ−1(1− α)σ/

√
d.
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Remark 1. In many situations, when d is large enough, one can refer to the central
limit theorem such that the log-likelihood ratio

ln
f0(X)

f1(X)

is asymptotically normal. The argument of Example 1 can be extended if under H0, the
log-likelihood ratio is approximately normal with mean m0 and with variance σ2

0. Let
the test be defined such that it accepts H0 if

ln
f0(X)

f1(X)
≥ γ′,

where
γ′ = m0 − Φ−1(1− α)σ0.

Then this test is approximately an α-level test.

2.2 φ-divergences
In the analysis of repeated observations the divergences between distribution play an
important role. Imre Csiszár (1967) introduced the concept of φ-divergences. Let φ :
(0,∞)→ R be a convex function, extended on [0,∞) by continuity such that φ(1) = 0.
For the probability distributions µ and ν, let λ be a σ-finite dominating measure of µ
and ν, for example, λ = µ+ ν. Introduce the notations

f =
dµ

dλ

and
g =

dν

dλ
.

Then the φ-divergence of µ and ν is defined by

Dφ(µ, ν) =

∫
Rd
φ

(
f(x)

g(x)

)
g(x)λ(dx). (2.2)

The Jensen inequality implies the most important property of the φ-divergences:

Dφ(µ, ν) =

∫
Rd
φ

(
f(x)

g(x)

)
g(x)λ(dx) ≥ φ

(∫
Rd

f(x)

g(x)
g(x)λ(dx)

)
= φ(1) = 0.

It means that Dφ(µ, ν) ≥ 0 and if µ = ν then Dφ(µ, ν) = 0. If, in addition, φ is strictly
convex at 1 then Dφ(µ, ν) = 0 iff µ = ν.

Next we show some examples.
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• For
φ1(t) = |t− 1|,

we get the L1 distance

Dφ1(µ, ν) =

∫
Rd
|f(x)− g(x)|λ(dx).

• For
φ2(t) = (

√
t− 1)2,

we get the squared Hellinger distance

Dφ2(µ, ν) =

∫
Rd

(√
f(x)−

√
g(x)

)2

λ(dx)

= 2

(
1−

∫
Rd

√
f(x)g(x)λ(dx)

)
.

• For
φ3(t) = − ln t,

we get the I-divergence (called also relative entropy or Kullback-Leibler divergence)

I(µ, ν) = Dφ3(µ, ν) =

∫
Rd

ln

(
g(x)

f(x)

)
g(x)λ(dx).

• For
φ4(t) = (t− 1)2,

we get the χ2-divergence

χ2(µ, ν) = Dφ4(µ, ν) =

∫
Rd

(f(x)− g(x))2

g(x)
λ(dx).

An equivalent definition of the φ-divergence is

Dφ(µ, ν) = sup
P

∑
j

φ

(
µ(Aj)

ν(Aj)

)
ν(Aj), (2.3)

where the supremum is taken over all finite Borel measurable partitions P = {Aj} of Rd.
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The main reasoning of this equivalence is that for any partition P = {Aj}, the Jensen
inequality implies that

Dφ(µ, ν) =

∫
Rd
φ

(
f(x)

g(x)

)
g(x)λ(dx)

=
∑
j

∫
Aj

φ

(
f(x)

g(x)

)
g(x)λ(dx)

=
∑
j

1

ν(Aj)

∫
Aj

φ

(
f(x)

g(x)

)
g(x)λ(dx)ν(Aj)

≥
∑
j

φ

(
1

ν(Aj)

∫
Aj

f(x)

g(x)
g(x)λ(dx)

)
ν(Aj)

=
∑
j

φ

(
µ(Aj)

ν(Aj)

)
ν(Aj). (2.4)

The sequence of partitions P1,P2, . . . is called nested if any cell A ∈ Pn+1 is a subset
of a cell A′ ∈ Pn. Next we show that for nested sequence of partitions

∑
A∈Pn

φ

(
µ(A)

ν(A)

)
ν(A) ↑ .

Again, this property is the consequence of the Jensen inequality:

∑
A′∈Pn+1

φ

(
µ(A′)

ν(A′)

)
ν(A′) =

∑
A∈Pn

 ∑
A′∈Pn+1,A′⊂A

φ

(
µ(A′)

ν(A′)

)
ν(A′)


=

∑
A∈Pn

 ∑
A′∈Pn+1,A′⊂A

φ

(
µ(A′)

ν(A′)

)
ν(A′)

ν(A)

 ν(A)

≥
∑
A∈Pn

φ

 ∑
A′∈Pn+1,A′⊂A

µ(A′)

ν(A′)

ν(A′)

ν(A)

 ν(A)

=
∑
A∈Pn

φ

(
µ(A)

ν(A)

)
ν(A).
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It implies that there is a nested sequence of partitions P1,P2, . . . such that∑
A∈Pn

φ

(
µ(A)

ν(A)

)
ν(A) ↑ sup

Pn

∑
A∈Pn

φ

(
µ(A)

ν(A)

)
ν(A).

The sequence of partitions P1,P2, . . . is called asymptotically fine if for any sphere
S centered at the origin

lim
n→∞

max
A∈Pn,A∩S 6=0

diam(A) = 0. (2.5)

One can show that if the nested sequence of partitions P1,P2, . . . is asymptotically fine
then ∑

A∈Pn

φ

(
µ(A)

ν(A)

)
ν(A) ↑

∫
Rd
φ

(
f(x)

g(x)

)
g(x)λ(dx).

This final step will be verified in the particular case of L1 distance, cf. (4.6). In general,
we may introduce a cell wise constant approximation of f(x)

g(x)
:

Fn(x) :=
µ(A)

ν(A)
if x ∈ A.

Thus, ∑
A∈Pn

φ

(
µ(A)

ν(A)

)
ν(A) =

∫
Rd
φ (Fn(x)) g(x)λ(dx)

and
Fn(x)→ f(x)

g(x)

for almost all x mod λ with g(x) > 0 such that∫
Rd
φ (Fn(x)) g(x)λ(dx)→

∫
Rd
φ

(
f(x)

g(x)

)
g(x)λ(dx).

2.3 Repeated observations
The error probabilities can be decreased if instead of an observation vector X, we are
given n vectors X1, . . . ,Xn such that under H0, X1, . . . ,Xn are independent and identi-
cally distributed (i.i.d.) with distribution P0, while under H1, X1, . . . ,Xn are i.i.d. with
distribution P1. In this case the likelihood ratio statistic is of form

T (X) =
f0(X1) · . . . · f0(Xn)

f1(X1) · . . . · f1(Xn)
.
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The Stein Lemma below says that there are tests, for which both the error of the first
kind αn and the error of the second kind βn tend to 0, if n→∞.

In order to formulate the Stein Lemma, we remember the I-divergence

I(P0, P1) = D(f0, f1) =

∫
Rd
f0(x) ln

f0(x)

f1(x)
dx. (2.6)

.

Theorem 2.2. (cf. Chernoff (1952)) For any 0 < δ < D(f0, f1), there is a test
such that the error of the first kind

αn → 0,

and for the error of the second kind

βn ≤ e−n(D(f0,f1)−δ) → 0.

Proof. Construct a test such that accept the null hypothesis H0 if

f0(X1) · . . . · f0(Xn)

f1(X1) · . . . · f1(Xn)
≥ en(D(f0,f1)−δ),

or equivalently

1

n

n∑
i=1

ln
f0(Xi)

f1(Xi)
≥ D(f0, f1)− δ.

Under H0, the strong law of large numbers implies that

1

n

n∑
i=1

ln
f0(Xi)

f1(Xi)
→ D(f0, f1)

almost surely (a.s.), therefore for the error of the first kind αn, we get that

αn = P0

{
1

n

n∑
i=1

ln
f0(Xi)

f1(Xi)
< D(f0, f1)− δ

}
→ 0.
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Concerning the error of the second kind βn we have the following simple bound:

βn

= P1

{
f0(X1) · . . . · f0(Xn)

f1(X1) · . . . · f1(Xn)
≥ en(D(f0,f1)−δ)

}
=

∫
{
f0(x1)· ... ·f0(xn)
f1(x1)· ... ·f1(xn)

≥en(D(f0,f1)−δ)
} f1(x1) · . . . · f1(xn)dx1, . . . , dxn

≤ e−n(D(f0,f1)−δ)
∫
{
f0(x1)· ... ·f0(xn)
f1(x1)· ... ·f1(xn)

≥en(D(f0,f1)−δ)
} f0(x1) · . . . · f0(xn)dx1, . . . , dxn

≤ e−n(D(f0,f1)−δ).

�

The critical value of the test in the proof of the Stein Lemma used the I-divergence
D(f0, f1). Without knowing D(f0, f1), the Chernoff Lemma below results in exponential
rate of convergence of the errors.

Theorem 2.3. (Chernoff (1952)). Construct a test such that accept the null hypoth-
esis H0 if

f0(X1) · . . . · f0(Xn)

f1(X1) · . . . · f1(Xn)
≥ 1,

or equivalently
n∑
i=1

ln
f0(Xi)

f1(Xi)
≥ 0.

(This test is called maximum likelihood test.) Then

αn ≤
(

inf
s>0

∫
Rd
f1(x)sf0(x)1−sdx

)n
and

βn ≤
(

inf
s>0

∫
Rd
f0(x)sf1(x)1−sdx

)n
.

Proof. Apply the Chernoff bounding technique such that for any s > 0 the Markov
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inequality implies that

αn = P0

{
n∑
i=1

ln
f0(Xi)

f1(Xi)
< 0

}

= P0

{
s

n∑
i=1

ln
f1(Xi)

f0(Xi)
> 0

}

= P0

{
e
s
∑n
i=1 ln

f1(Xi)

f0(Xi) > 1

}
≤ E0

{
e
s
∑n
i=1 ln

f1(Xi)

f0(Xi)

}
= E0

{
n∏
i=1

(
f1(Xi)

f0(Xi)

)s}
.

Under H0, X1, . . . ,Xn are i.i.d., therefore

αn ≤ E0

{
n∏
i=1

(
f1(Xi)

f0(Xi)

)s}

=
n∏
i=1

E0

{(
f1(Xi)

f0(Xi)

)s}
= E0

{(
f1(X1)

f0(X1)

)s}n
=

(∫
Rd

(
f1(x)

f0(x)

)s
f0(x)dx

)n
.

Since s > 0 is arbitrary, the first half of the lemma is proved, and the proof of the second
half is similar. �

Remark 2. The Chernoff Lemma results in exponential rate of convergence if

inf
s>0

∫
Rd
f1(x)sf0(x)1−sdx < 1

and
inf
s>0

∫
Rd
f0(x)sf1(x)1−sdx < 1.
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The Cauchy-Schwartz inequality implies that

inf
s>0

∫
Rd
f1(x)sf0(x)1−sdx ≤

∫
Rd
f1(x)1/2f0(x)1/2dx

≤

√∫
Rd
f1(x)dx

∫
Rd
f0(x)dx

= 1,

with equality in the second inequality if and only if f0 = f1. Morover, one can check
that the function

g(s) :=

∫
Rd
f1(x)sf0(x)1−sdx

is convex such that g(0) = 1 and g(1) = 1, therefore

inf
s>0

∫
Rd
f1(x)sf0(x)1−sdx = inf

1>s>0

∫
Rd
f1(x)sf0(x)1−sdx.

The quantity

He(f0, f1) =

∫
Rd
f1(x)1/2f0(x)1/2dx (2.7)

is called Hellinger integral. The previous derivations imply that

αn ≤ He(f0, f1)n

and
βn ≤ He(f0, f1)n.

The squared Hellinger distance Dφ2(µ, ν) was introduced in previous section. One can
check that

Dφ2(µ, ν) = 2 (1−He(f0, f1)) .
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Chapter 3

Detection

3.1 The detection problem
In this chapter we summarize the basic models, algorithms and results of detection
theory. Concerning the details we suggest to visit the books Haykin (1992), (1993),
Helstrom (1960), Kang (2008), Levy (2008), Papoulis (1984), Papoulis, Pillai (2002),
Skolnik (1980), Trees (1971).

The detection is a hypotheses testing problem with repeated observations such that
the null hypothesis H0 is that in the range of the radar there is no object at a given
distance, while the alternative hypothesis H1 is that there is one.

• The error of the first kind is called false alarm or false detection.

• The error of the second kind is called missed detection.

In the most simple setup the test is based on a single complex valued sample of
the reflected signal plus Gaussian noise. Under H0, the sample is from noise, i.e., it is
a complex random variable N1 + iN2, where N1 and N2 are independent, zero mean,
Gaussian random variables with variance σ2. In this case

E{|N1 + iN2|2} = E{|N1|2 + |N2|2} = 2σ2,

and

Var{|N1 + iN2|2} = E{(|N1|2 + |N2|2)2} − E{|N1|2 + |N2|2}2

= E{|N1|4}+ 2E{(|N1|2|N2|2}+ E{|N2|4} − (2σ2)2

= 3σ4 + 2σ4 + 3σ4 − 4σ4

= 4σ4,
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where we applied the fact

E{N4
1} = σ4E

{(
N1

σ

)4
}

= σ4 1√
2π

∫ ∞
−∞

x4e−
x2

2 dx

= σ4 1√
2π

∫ ∞
−∞

x3xe−
x2

2 dx

= σ4 1√
2π

(
−x3e−

x2

2 dx
∣∣∣∞
−∞

+ 3

∫ ∞
−∞

x2e−
x2

2 dx

)
= 3σ4

.
Under H1, the sample is from signal plus noise, i.e., it is a complex random variable

of form
N1 + A cosϑ+ i(N2 + A sinϑ),

where A is the amplitude and θ is the phase of the signal. Because of the symmetry of
the density of (N1, N2), the distribution of N1 +A cosϑ+ i(N2 +A sinϑ) does not depend
on ϑ, therefore we consider only the case ϑ = 0. Then

E{|N1 + A+ iN2|2} = E{|N1 + A|2 + |N2|2}
= 2σ2 + A2,

and

Var{|N1 + A+ iN2|2}
= E{(|N1 + A|2 + |N2|2)2} − E{|N1 + A|2 + |N2|2}2

= E{|N1 + A|4}+ 2E{(|N1 + A|2|N2|2}+ E{|N2|4} − (2σ2 + A2)2

= 3σ4 + 6σ2A2 + A4 + 2(σ2 + A2)σ2 + 3σ4 − 4σ4 − 4σ2A2 − A4

= 4σ4 + 4σ2A2.

Under H0, let’s calculate the density of the random variable

X =
√
N2

1 +N2
2 .
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The density of N1 and N2 has the form

1

σ
ϕ
(x
σ

)
,

where
ϕ(x) =

1√
2π
e−

x2

2

is the standard normal density. Then the distribution function of X is as follows:

P{X ≤ R} = P
{√

N2
1 +N2

2 ≤ R

}
=

∫ ∫
x2+y2≤R2

1√
2πσ

e−
x2

2σ2
1√
2πσ

e−
y2

2σ2 dxdy

=

∫ ∫
x2+y2≤R2

1

2πσ2
e−

x2+y2

2σ2 dxdy.

With polar coordinates, we have that

P{X ≤ R} =

∫
r≤R

1

2πσ2
e−

r2

2σ2 2πrdr,

which implies the density of X as

f0(x) =
x

σ2
e−

x2

2σ2 . (3.1)

f0(x) is called Rayleigh density.
Under H1, we the distribution function of

X =
√

(N1 + A)2 +N2
2

as follows:

P{X ≤ R} = P
{√

(N1 + A)2 +N2
2 ≤ R

}
=

∫ ∫
x2+y2≤R2

1

2πσ2
e−

(x−A)2+y2

2σ2 dxdy

=

∫ ∫
x2+y2≤R2

1

2πσ2
e−

x2+y2+A2−2xA

2σ2 dxdy.
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Using the polar coordinates (r, θ), we get that

P{X ≤ R} =

∫ R

0

(∫ 2π

0

1

2πσ2
e−

r2+A2−2rA cos θ

2σ2 dθ

)
rdr,

which implies the Rice density:

f1(x) =
x

σ2
e−

x2+A2

2σ2 I0

(
xA

σ2

)
, (3.2)

where

I0 (z) =
1

π

∫ π

0

ez cos θdθ =
1

2π

∫ 2π

0

ez cos θdθ

is the modified Bessel function of zero order. On p. 26 of Skolnik (1980) there is an
expansion saying, that for large z

I0 (z) =
ez√
2πz

(
1 +

1

8z
+ . . .

)
≈ ez√

2πz
.

We may get this approximation from the second order Taylor expansion of cos θ:

I0 (z) ≈ 1

π

∫ π/2

0

ez cos θdθ

= ez
1

π

∫ π/2

0

e−z(1−cos θ)dθ

≈ ez
1

π

∫ π/2

0

e−zθ
2/2dθ

≈ ez
1

π

1

2

∫ ∞
−∞

e−
θ2

2/z dθ

= ez
1

π

1

2

√
2π/z

=
ez√
2πz

.

(3.1) and (3.2) imply that the likelihood ratio has the form

f0(x)

f1(x)
=

e
A2

2σ2

I0

(
xA
σ2

) ≈ e
A2

2σ2−
xA
σ2

√
2π
xA

σ2
. (3.3)
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3.2 Two non-coherent detection algorithms

Assume that the radar repeats sending the signal n times, and after compressed filtering
the received signal is sampled such that the number of samples is denoted by N . The
samples of the k-th received signal are collected in a cluster vector

uTk =
(
yk,1 . . . yk,j0 . . . yk,N

)
,

(k = 0, 1, . . . , n− 1), while the set of cluster vectors forms the matrix

Y =


y0,1 . . . y0,j0 . . . y0,N

y1,1 . . . y1,j0 . . . y1,N
... . . .

... . . . ...
yn−1,1 . . . yn−1,j0 . . . yn−1,N

 . (3.4)

Algorithm 1. LetH0 be the hypothesis, that there no object at a distance corresponding
to the index j0. It means that the task of detection is combined with the distance
estimation. The test is based on

|y0,j0|2, |y1,j0|2, . . . , |yn−1,j0|2

such that from the matrix Y calculate

z2
j =

n−1∑
k=0

|yk,j|2,

(j = 1, . . . , N). Under H0, the central limit theorem (CLT) implies that z2
j0

is approx-
imately Gaussian distributed with mean n2σ2 and with variance n4σ4, while under H1

the mean is n(2σ2 + A2) and the variance is n(4σ4 + 4σ2A2).
We may choose a threshold

γ′ = 2σ2 + A2/2.

The amplitude A is unknown, it depens on many factors like the size, velocity and profile
of the object, meteorology, etc. Therefore γ′ cannot be chosen in this way. Instead a
value Amin is introduced as follows. Let

SNR :=
A2

σ2
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be the signal-to-noise ratio. Assume that we are given a minimum acceptable value of
signal-to-noise ratio SNRmin, for example,

SNRmin = 1.

Let’s estimate the variance σ2 by

2σ̂2 =
1

nN

n−1∑
k=0

N∑
j=1

|yk,j|2

Under H0, σ̂2 is an unbiased estimate of σ2, while under H1, σ̂2 overestimates σ2 such
that 2σ̂2 ≈ 2σ2 + A2/N . Put

Amin =
√
SNRminσ̂

and

γ′ = 2σ̂2 + A2
min/2.

Accept H0, if

1

n

n−1∑
k=0

|yk,j0|2 ≤ γ′,

reject otherwise.
Again, the CLT implies that the probability of false alarm is approximately

αn ≈ Φ

(
−nγ

′ − n2σ2

√
n4σ4

)
= Φ

(
−
√
n
γ′ − 2σ2

2
√
σ4

)
≈ Φ

(
−
√
n

(A2
min/2)/σ2

2

)
= Φ

(
−
√
n
SNRmin

4

)
,
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while the probability of missed detection is approximately

βn ≈ Φ

(
nγ′ − n(2σ2 + A2)√
n(4σ4 + 4σ2A2)

)

= Φ

(
−
√
n

2σ2 + A2 − γ′

2
√
σ4 + σ2A2

)
≈ Φ

(
−
√
n

(A2 − A2
min/2)/σ2

2
√

1 + A2/σ2

)

= Φ

(
−
√
n
SNR− SNRmin/2

2
√

1 + SNR

)
.

Evaluating both probabilities, it is useful to have the bounds

1√
2π

e−t
2/2

t

(
1− 1

t2

)
≤ Φ(−t) ≤ 1√

2π

e−t
2/2

t
,

(t > 0, cf. p. 179 in Feller (1968)). Because of Φ(−t) ≤ 1/2, the upper bound implies
that

Φ(−t) ≤ e−t
2/2.

Thus,

αn ≤ e−n
SNR2

min
8 ,

and
βn ≤ e−n

(SNR−SNRmin/2)2

4(1+SNR) .

Therefore both error probabilities tends to zero exponentially fast. We can illustrate the
upper bound by the case of n = 256 and SNRmin = 1:

αn ≤ 10−14.

Algorithm 2. Let H0 be as before. The test is based on

|y0,j0|, |y1,j0|, . . . , |yn−1,j0|.

Under H0, the density of |yk,j0| is according to (3.1), while under H1, the density of
|yk,j0| is given by (3.2). Therefore the maximum likelihood test accept H0,

n−1∑
k=0

ln
f0(|yk,j0 |)
f1(|yk,j0|)

≥ 0.
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Because of (3.3), the approximately maximum likelihood test accept H0, if

n−1∑
k=0

(
A2

2σ2
− |yk,j0|A

σ2

)
≥ 0,

or equivalently
n−1∑
k=0

(
A

2
− |yk,j0|

)
≥ 0.

If A is replaced by Amin, then we get the test, which accepts H0-t, if

n−1∑
k=0

(
Amin

2
− |yk,j0|

)
≥ 0,

or equivalently
1

n

n−1∑
k=0

|yk,j0 | ≤
Amin

2
.

The modified, approximately maximum likelihood test accepts H0, if

1

n

n−1∑
k=0

|yk,j0 | ≤
Amin

2
+ σ̂

√
π

2
,

and reject otherwise.
Let’s calculate the error probabilities. Put

uj0 =
n−1∑
k=0

|yk,j0 |.

From the formula of Rayleigh density one can derive, that under H0

E{|yk,j0 |} = σ

√
π

2

and
Var{|yk,j0|} = σ2

(
2− π

2

)
,
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because using the notation of (3.1) we get

E{|yk,j0 |} =

∫ ∞
0

xf0(x)dx

=

∫ ∞
0

x2

σ2
e−

x2

2σ2 dx

=
1

2

√
2π

σ

1√
2πσ

∫ ∞
−∞

x2e−
x2

2σ2 dx

= σ

√
π

2
,

and
Var{|yk,j0|} = E{|yk,j0|2} − E{|yk,j0|}2 = σ2

(
2− π

2

)
.

The CLT implies that the distribution of uj0 is approximately normal with mean
nσ
√
π/2 and with variance nσ2(2− π/2).

Then the false alarm probability is approximately equal to

αn ≈ Φ

(
−
nAmin/2 + nσ

√
π/2− nσ

√
π/2√

nσ2(2− π/2)

)

= Φ

(
−
√
n

Amin/2√
2− π/2σ

)

= Φ

(
−
√
n

√
SNRmin/2√

2− π/2

)

≤ e−n
(
√
SNRmin/2)2

2(2−π/2)

≤ e−nSNRmin/4.

Under H1, the Jensen inequality implies

A ≤ E{|yk,j0|},

while from
|yk,j0| =

√
(N1 + A)2 +N2

2 ≤ A+
√
N2

1 +N2
2

one gets

E{|yk,j0|} ≤ A+ σ

√
π

2
.
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Moreover,

Var(|yk,j0|) = E{|yk,j0|2} − E{|yk,j0 |}2 ≤ 2σ2 + A2 − A2 = 2σ2.

Therefore the CLT implies that the distribution function of uj0 can be lower bounded by
the normal distribution function with mean nA and with variance n2σ2.

In this way we have an approximate upper bound on the missed detection probability:

βn ≤ Φ

(
nAmin/2 + nσ

√
π/2− nA√

n2σ2

)

= Φ

(
−
√
n
A− Amin/2− σ

√
π/2√

2σ

)

= Φ

(
−
√
n

√
SNR−

√
SNRmin/2−

√
π/2√

2

)

≤ e−n
(
√
SNR−

√
SNRmin/2−

√
π/2)2

4 ,

provided, that
√
SNR−

√
SNRmin/2−

√
π/2 ≥ 0.

3.3 DFT based detection
Introduce the matrix

RV =


Y0,1 . . . Y0,j . . . Y0,N

Y1,1 . . . Y1,j . . . Y1,N
... . . .

... . . . ...
Yn−1,1 . . . Yn−1,j . . . Yn−1,N

 (3.5)

such that

Ym,j =
n−1∑
k=0

yk,je
−i2πm

n
·k.

Notice that the j-th column of RV is the DFT of the j-th column of Y, and the pair
(m, j) corresponds to a velocity, distance cell.

Algorithm 3. In contrast to the previous section, here the hypothesis H0 is, that there
is no object at a distance corresponding to the index j0, which moves with velocity
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corresponding to the index m0. It means that the task of detection is combined with the
distance and velocity estimation. The test is based on

|Ym0,j0|.

Under H0, Ym0,j0 is a sum of n independent, complex valued, Gaussian, zero mean
random variables with variance σ2. Therefore |Ym0,j0| has a Rayleigh density:

f0,n(x) =
x

nσ2
e−

x2

2nσ2 .

Earlier A denoted the amplitude, which depends of on the velocity because of Doppler
effect. Under H1, because of matched DFT the amplitude is almost independent of the
velocity. In the sequel, this amplitude is denoted by Ā. Under H1, |Ym0,j0| has Rice
density:

f1,n(x) =
x

nσ2
e−

x2+n2Ā2

2nσ2 I0

(
xnĀ

nσ2

)
.

Thus, the likelihood ratio is

f0,n(x)

f1,n(x)
=

e
nĀ2

2σ2

I0

(
xĀ
σ2

) ≈ e
nĀ2

2σ2 −
xĀ
σ2

√
2π
xĀ

σ2
≈ e

nĀ2

2σ2 −
xĀ
σ2 .

According to the approximately maximum likelihood test, we accept H0, if

nAmin/2 ≥ |Ym0,j0 |,

and reject otherwise.
Then the false alarm probability is

αn =

∫ ∞
nAmin/2

f0,n(x)dx

=

∫ ∞
nAmin/2

x

nσ2
e−

x2

2nσ2 dx

= e−
(nAmin/2)2

2nσ2

= e−n
SNRmin

8 ,

while we can upper bound the missed detection probability

βn =

∫ nAmin/2

0

f1,n(x)dx.

77



The density f1,n(x) is the density of the random variable
√

(
√
nN1 + nĀ)2 + (

√
nN2)2.

Thus,

βn = P{
√

(
√
nN1 + nĀ)2 + (

√
nN2)2 ≤ nAmin/2}

≤ P{|
√
nN1 + nĀ| ≤ nAmin/2}

≤ P{
√
nN1 + nĀ ≤ nAmin/2}

= Φ

(
n(Amin/2− Ā)√

nσ

)
= Φ

(
−
√
n
Ā− Amin/2

σ

)
≤ e−n

(Ā−Amin/2)2

2σ2

= e−n
(
√
SNR−

√
SNRmin/2)2

2 ,

where

SNR =
Ā2

σ2

is a larger signal-to-noise ratio than in the previous section.

3.4 Robust detection
In real life problems H0 and H1 are composit hypotheses, i.e., both consit of many
densities. For example, H0 consists of many Rayleigh densities, and H1 consits of many
Rice densities. Moreover, in practice the classical detection model is not appropriate,
which means that for the received signal, the noise is not Gaussian due to the background
or to fading. In the model of robust detection, let f0(x) and f1(x) be nominal densities,
by which we define the two hypotheses such that the true density of the observation
belongs to a neighborhood of the nominal densities.

If f(x) and g(x) are densities, then introduce their L1 distance:

‖f − g‖ =

∫
Rd
|f(x)− g(x)| dx.

The L1 distance is an important quantity, because it results in an upper bound on the
difference of probabilities, i.e., the Scheffé Theorem below shows that the total variation
is the half of the L1 distance of the corresponding densities.
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Theorem 3.1. (Scheffé (1947)) If µ and ν are absolutely continuous probability dis-
tributions with densities f and g, respectively, then∫

Rd
|f(x)− g(x)|dx = 2V (µ, ν).

(The quantity

L1(f, g) =

∫
Rd
|f(x)− g(x)|dx (3.6)

is called L1-distance.)

Proof. Note that

V (µ, ν) = sup
A
|µ(A)− ν(A)|

= sup
A

∣∣∣∣∫
A

f(x)dx−
∫
A

g(x)dx

∣∣∣∣
= sup

A

∣∣∣∣∫
A

(f(x)− g(x))dx

∣∣∣∣
=

∫
f(x)>g(x)

(f(x)− g(x))dx

=

∫
g(x)>f(x)

(g(x)− f(x))dx

=
1

2

∫
|f(x)− g(x)|dx.

�
The Scheffé theorem means that, for any set B, we have∣∣∣∣∫

B

f(x)dx−
∫
B

g(x)dx

∣∣∣∣ ≤ ∫
{x;f(x)−g(x)>0}

(f(x)− g(x))dx =
1

2
‖f − g‖.

Let the repeated observations X1,X2, . . . ,Xn be independent random vectors with
the common density f(x). Under Hj, the density f(x) is a distortion of the nominal
density fj(x), j = 0, 1. Formally,

H0 = {f(x) : ‖f − f0‖ < ∆} , (3.7)
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and
H1 = {f(x) : ‖f − f1‖ < ∆} , (3.8)

where
∆ := (1/2)‖f0 − f1‖.

Let B∗ be the acceptance set of the maximum likelihood test for the nominal densities:

B∗ = {x : f0(x) > f1(x)} .

Accept H0, if

µn(B∗) ≥
∫
B∗
f0(x)dx +

∫
B∗
f1(x)dx

2
, (3.9)

and reject otherwise, where

µn(B∗) =
1

n

n∑
j=1

I{Xj∈B∗} =
1

n

n∑
j=1

I{f0(Xj)>f1(Xj)}.

Notice that this test is based on a non-linear statistic, i.e., it is a majority voting test.

Theorem 3.2. (Devroye, Györfi, Lugosi (2002), Györfi, Walk (2014), Biglieri,
Györfi (2014).)

αn ≤ e−n(∆−‖f−f0‖)2/2

and
βn ≤ e−n(∆−‖f−f1‖)2/2.

Proof. Put
ε = ∆− ‖f − f0‖ > 0.

Under H0, the Scheffé theorem implies

2

(∫
B∗
f0(x)dx−

∫
B∗
f(x)dx

)
≤ ‖f − f0‖

= ∆− ε

=
1

2
‖f0 − f1‖ − ε

=

∫
B∗
f0(x)dx−

∫
B∗
f1(x)dx− ε,
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From which we get ∫
B∗
f(x)dx ≥

∫
B∗
f0(x)dx +

∫
B∗
f1(x)dx

2
+ ε/2. (3.10)

The Hoeffding inequality (Lemma 1.4) says, that for binary valued and i.i.d. random
variables Z1, . . . , Zn, one has for t > 0,

P

{
P{Z1 = 1} − 1

n

n∑
i=1

Zi ≥ t

}
≤ exp

(
−2nt2

)
.

(3.10) and the Hoeffding inequality imply, that

αn = P
{
µn(B∗) <

∫
B∗
f0(x)dx +

∫
B∗
f1(x)dx

2

}
≤ P

{∫
B∗
f(x)dx− µn(B∗) > ε/2

}
≤ P

{
P{f0(X1) > f1(X1)} − 1

n

n∑
j=1

I{f0(Xj)>f1(Xj)} > ε/2

}
≤ e−nε

2/2 .

The proof of the second half of the theorem is similar. �
Notice, that for the threshold in (3.9), in practice we usually one has∫

B∗
f0(x)dx +

∫
B∗
f1(x)dx =

∫
B∗
f0(x)dx + 1−

∫
B∗c

f1(x)dx ≈ 1

Thus, we a modification of (3.9) as

µn(B∗) ≥ 1

2
. (3.11)

Algorithm 4. Similarly to Algorithm 2, the test is based on

|y0,j0|, |y1,j0|, . . . , |yn−1,j0|.

However, here we have composite hypotheses, and a nonlinear test statistic is applied.
For 0 < ε < 1/2 and for the threshold Amin, put

H0 =

{
f(x) :

∫ Amin

0

f(x)dx− 1/2 ≥ ε

}
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and

H1 =

{
f(x) : 1/2−

∫ Amin

0

f(x)dx ≥ ε

}
.

The approximately robust detection accepts H0, if

1

n

n−1∑
k=0

I{Amin>|yk,j0 |} ≥
1

2
,

which means, that the ratio of sample’s absolute values is less than 1/2.
The Hoeffding inequality implies upper bounds for the error probabilities:

αn = P0

{
1

n

n−1∑
k=0

I{Amin>|yk,j0 |} < 1/2

}

= P0

{
1

n

n−1∑
k=0

I{Amin>|yk,j0 |} − P0{Amin > |y0,j0|} < 1/2− P0{Amin > |y0,j0|}

}

≤ P0

{
1

n

n−1∑
k=0

I{Amin>|yk,j0 |} − P0{Amin > |y0,j0|} < −ε

}
≤ e−2nε2

and

βn = P1

{
1

n

n−1∑
k=0

I{Amin>|yk,j0 |} ≥ 1/2

}

= P1

{
1

n

n−1∑
k=0

I{Amin>|yk,j0 |} − P1{Amin > |y0,j0 |} ≥ 1/2− P1{Amin > |y0,j0|}

}

≤ P1

{
1

n

n−1∑
k=0

I{Amin>|yk,j0 |} − P1{Amin > |y0,j0|} ≥ ε

}
≤ e−2nε2 .

Evaluate these results in the special case, when H0 is a set of Rayleigh densities,
while H1 consists of Rice densities. Define the hypotheses by

H0 =

{
x

σ2
e−

x2

2σ2 :

∫ Amin

0

x

σ2
e−

x2

2σ2 dx− 1/2 ≥ ε

}
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and

H1 =

{
x

σ2
e−

x2+A2

2σ2 I0

(
xA

σ2

)
: 1/2−

∫ Amin

0

x

σ2
e−

x2+A2

2σ2 I0

(
xA

σ2

)
dx ≥ ε

}
.

We have that

P0{Amin > |y0,j0|} = 1−
∫ ∞
Amin

x

σ2
e−

x2

2σ2 dx = 1− e−
A2
min
2σ2 .

For the hypothesis H0, we need

1/2− e−SNRmin/2 ≥ ε,

or equivalently SNRmin ≥ −2 ln(1/2− ε) ≈ 2 ln 2 ≈ 1.4. Denote by

x+ = max{x, 0}

positive part of x. Then

αn ≤ e
−n
(
[1−2e−SNRmin/2]

+
)2
/2
.

For the hypothesis H0, we have that

P1{Amin ≥ |y0,j0|} = P{
√

(N1 + A)2 + (N2)2 ≤ Amin}
≤ P{|N1 + A| ≤ Amin}
≤ P{N1 + A ≤ Amin}

= Φ

(
Amin − A

σ

)
= Φ

(
−A− Amin

σ

)
≤ e−

(A−Amin)2

2σ2

= e−
(
√
SNR−

√
SNRmin)2

2 .

Therefore we need

1/2−
∫ Amin

0

x

σ2
e−

x2+A2

2σ2 I0

(
xA

σ2

)
dx ≥ ε,

which is satisfied, if

1/2− e−
(
√
SNR−

√
SNRmin)2

2 ≥ ε,
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or equivalently
√
SNR ≥

√
SNRmin +

√
−2 ln(1/2− ε) ≈

√
SNRmin +

√
2 ln 2 ≈

√
SNRmin + 1.2

Thus,

βn ≤ e
−n

[1−2e−
(
√
SNR−

√
SNRmin)2

2

]+
2

/2

.

3.5 Comparison of the algorithms
For n = 256 and for e256 ≈ 10111, Table 3.1 shows the formulas of the algorithms. In
addition, we may choose SNRmin = 2 and SNR = SNR = 8. Then Table 3.2 contains
the error probabilities. The coherent signal-to-noise ratio SNR is much larger than the
non-coherent SNR, therefore Algorithm 3 is the best, while Algorithms 1 and 2 have
approximately the same good performance. Algorithm 4 is much weaker. However, it
works even in the case, when the additive Gaussian noise condition is not satisfied. One
can decrease its error probabilities from 10−4 to 10−8 by doubling n.

false alarm missed detection

Algorithm 1 10−14·SNR2
min 10−28

(SNR−SNRmin/2)2

1+SNR

Algorithm 2 10−28·SNRmin 10−28(
√
SNR−

√
SNRmin/2−

√
π/2)2

Algorithm 3 10−14·SNRmin 10−56(
√
SNR−

√
SNRmin/2)2

Algorithm 4 10
−56

(
[1−2e−SNRmin/2]

+
)2

10
−56

[1−2e−
(
√
SNR−

√
SNRmin)2

2

]+
2

Table 3.1: The formulas of the error probabilities.

false alarm missed detection
Algorithm 1 10−56 10−152

Algorithm 2 10−56 10−21

Algorithm 3 10−28 10−251

Algorithm 4 10−4 10−4

Table 3.2: The error probabilities of the algorithms.
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Chapter 4

Testing Simple versus Composite
Hypotheses

4.1 Total variation and I-divergence
If µ and ν are probability distributions on Rd (d ≥ 1), then the total variation distance
between µ and ν was defined by

V (µ, ν) = sup
A
|µ(A)− ν(A)|,

where the supremum is taken over all Borel sets A. According to the Scheffé Theorem
(Theorem 3.1), the total variation is the half of the L1 distance of the corresponding
densities.

The following inequality, called Pinsker’s inequality, gives an upper bound to the
total variation in terms of I-divergence:

Theorem 4.1. ( Csiszár (1967), Kullback (1967) and Kemperman (1969))

2{V (µ, ν)}2 ≤ I(µ, ν). (4.1)

Proof. Applying the notations of the proof of the Scheffé Theorem (Theorem 3.1), put

A∗ = {f > g},

then the Scheffé Theorem implies that

V (µ, ν) = µ(A∗)− ν(A∗).
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Moreover, from (2.4) we get that

I(µ, ν) ≥ µ(A∗) ln
µ(A∗)

ν(A∗)
+ (1− µ(A∗)) ln

1− µ(A∗)

1− ν(A∗)

Introduce the notations
q = ν(A∗) and p = µ(A∗) > q,

and
hp(q) = p ln

p

q
+ (1− p) ln

1− p
1− q

.

then we have to prove that
2(p− q)2 ≤ hp(q),

which follows from the facts on the derivative:

d

dq
(hp(q)− 2(p− q)2) = −p

q
+

1− p
1− q

+ 4(p− q)

= − p− q
q(1− q)

+ 4(p− q)

≤ 0.

�

4.2 Large deviation of L1 distance

Consider the sample of Rd-valued random vectors X1, . . . ,Xn with i.i.d. components
such that the common distribution is denoted by ν. For a fixed distribution µ, we
consider the problem of testing hypotheses

H0 : ν = µ versus H1 : ν 6= µ

by means of test statistics Tn = Tn(X1, . . . ,Xn).
For testing a simple hypothesis H0 that the distribution of the sample is µ, versus a

composite alternative, Györfi and van der Meulen (1990) introduced a related goodness
of fit test statistic Ln defined as

Ln =
mn∑
j=1

|µn(An,j)− µ(An,j)|,
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where µn denotes the empirical measure associated with the sample X1, . . . ,Xn, so that

µn(A) =
#{i : Xi ∈ A, i = 1, . . . , n}

n

for any Borel subset A, and Pn = {An,1, . . . , An,mn} is a finite partition of Rd.
Next we characterize the large deviation properties of Ln:

Theorem 4.2. (Beirlant, Devroye, Györfi and Vajda (2001)). Assume that

lim
n→∞

max
j
µ(An,j) = 0 (4.2)

and
lim
n→∞

mn lnn

n
= 0. (4.3)

Then for all 0 < ε < 2

lim
n→∞

1

n
lnP{Ln > ε} = −gL(ε), (4.4)

where

gL(ε) = inf
0<p<1−ε/2

(
p ln

p

p+ ε/2
+ (1− p) ln

1− p
1− p− ε/2

)
. (4.5)

Biau and Györfi (2005) provided an alternative derivation of gL(ε) and non-asymptotic
upper bound.

Theorem 4.3. (Biau and Györfi (2005)). For any ε > 0,

P{Ln > ε} ≤ 2mne−nε
2/2.

Proof. By Scheffé’s theorem for partitions

Ln =
∑
A∈Pn

|µn(A)− µ(A)| = 2 max
A∈σ(Pn)

(µn(A)− µ(A)) ,

where the class of sets σ(Pn) contains all sets obtained by unions of cells of Pn. Therefore,
for any s > 0, by the Markov inequality

P{Ln > ε} = P{Ln/2 > ε/2} = P{ensLn/2 > ensε/2} ≤ E{ensLn/2}
ensε/2

.
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Moreover,

E{esnLn/2} = E{ max
A∈σ(Pn)

esn(µn(A)−µ(A))}

≤
∑

A∈σ(Pn)

E{esn(µn(A)−µ(A))}

≤ 2mn max
A∈σ(Pn)

E{esn(µn(A)−µ(A))}

= 2mn max
A∈σ(Pn)

E{esnµn(A)}e−snµ(A).

For any fixed Borel set A,

E{esnµn(A)} = E{es
∑n
i=1 IXi∈A} =

n∏
i=1

E{esIXi∈A} = (esµ(A) + 1− µ(A))n .

Thus, for any s > 0, we have that

P{Ln > ε} ≤ 2mn
[

max
A∈σ(Pn)

e−s(µ(A)+ε/2) (esµ(A) + 1− µ(A))

]n
.

For fixed set A, choose

es =
µ(A) + ε/2

1− (µ(A) + ε/2)

1− µ(A)

µ(A)
,

then for this s,

e−s(µ(A)+ε/2) (esµ(A) + 1− µ(A)) = e−I((µ(A)+ε/2,1−µ(A)−ε/2),(µ(A),1−µ(A)))

≤ e−ε
2/2,

where the last step follows from the Pinsker inequality. Thus,

P{Ln > ε} ≤ 2mne−nε
2/2.

�

4.3 L1-distance-based strongly consistent test
Theorem 4.3 results in a strongly consistent test such that reject the null-hypothesis H0

if

Ln > c1

√
mn

n
,
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where
c1 >

√
2 ln 2 ≈ 1.177.

Moreover, assume that the sequence of partitions P1,P2, . . . is asymptotically fine. (Cf.
(2.5)). Then, under the null hypothesis H0 = {ν = µ}, the inequality in Theorem 4.3
implies an upper bound on the error of the first kind

P
{
Ln > c1

√
mn

n

}
≤ 2mne−nc

2
1mn/(2n) = e−mn(c21/2−ln 2) → 0

If mn/ lnn→∞ then
∞∑
n=1

P
{
Ln > c1

√
mn

n

}
<∞,

therefore the Borel-Cantelli lemma implies that the goodness of fit test based on the
statistic Ln is strongly consistent under the null hypothesis H0, independently of the
underlying distribution µ.

Under the alternative hypothesis H1 = {ν 6= µ}, the triangle inequality implies that

Ln =
mn∑
j=1

|µn(Anj)− µ(Anj)|

≥
mn∑
j=1

|µ(Anj)− ν(Anj)| −
mn∑
j=1

|µn(Anj)− ν(Anj)|.

Because of the argument above,
mn∑
j=1

|µn(Anj)− ν(Anj)| → 0,

a.s., while the condition (2.5) and {ν 6= µ} imply that

mn∑
j=1

|µ(Anj)− ν(Anj)| → 2 sup
B
|µ(B)− ν(B)| = 2V (µ, ν) > 0. (4.6)

therefore
lim inf
n→∞

Ln ≥ 2V (µ, ν) > 0 (4.7)

a.s., therefore Ln > c1

√
mn/n a.s. for n large enough, and so the goodness of fit test

based on Ln is strongly consistent under the alternative hypothesis H1, too.
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In order to show (4.6) we apply the technique from Barron, Györfi and van der
Meulen (1992). Choose a measure λ which dominates µ and ν, for example, λ = µ+ ν,
and denote by f the Radon-Nikodym derivative of µ − ν with respect to λ. Then, on
the one hand, ∑

A∈Pn

|µ(A)− ν(A)| =
∑
A∈Pn

∣∣∣∣∫
A

f dλ
∣∣∣∣

≤
∑
A∈Pn

∫
A

|f | dλ

=

∫
|f | dλ

= 2 sup
B
|µ(B)− ν(B)|.

On the other hand, for uniformly continuous f , using (2.5),∑
A∈Pn

∣∣∣∣∫
A

f dλ
∣∣∣∣→ ∫

|f | dλ.

If f is arbitrary then, for a given δ > 0, choose a uniformly continuous f̃ such that∫
|f − f̃ | dλ < δ.

Thus ∑
A∈Pn

∣∣∣∣∫
A

f dλ
∣∣∣∣ ≥ ∑

A∈Pn

∣∣∣∣∫
A

f̃ dλ
∣∣∣∣− ∑

A∈Pn

∣∣∣∣∫
A

(f − f̃) dλ
∣∣∣∣

≥
∑
A∈Pn

∣∣∣∣∫
A

f̃ dλ
∣∣∣∣− ∫ |f − f̃ | dλ

≥
∑
A∈Pn

∣∣∣∣∫
A

f̃ dλ
∣∣∣∣− δ

→
∫
|f̃ | dλ− δ

≥
∫
|f | dλ− 2δ

= 2 sup
B
|µ(B)− ν(B)| − 2δ.

The result follows since δ was arbitrary.
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4.4 L1-distance-based α-level test
Beirlant, Györfi and Lugosi (1994) proved, under conditions

lim
n→∞

mn =∞, lim
n→∞

mn

n
= 0,

and
lim
n→∞

max
j=1,...,mn

µ(Anj) = 0,

that √
n (Ln − E{Ln}) /σ

D→ N (0, 1),

where D→ indicates convergence in distribution and σ2 = 1− 2/π.
Let α ∈ (0, 1). Consider the test which rejects H0 when

Ln > c2

√
mn

n
+

σ√
n

Φ−1(1− α) ≈ c2

√
mn

n
,

where
c2 =

√
2/π ≈ 0.798.

Then the test is asymptotically an α-level test.
Comparing c2 above with c1 in the strong consistent test, both tests behave identically

with respect to
√
mn/n for large enough n, but c2 is smaller.

Under H0,
P{
√
n(Ln − E{Ln})/σ ≤ x} ≈ Φ(x),

therefore the error probability with threshold x is

α = 1− Φ(x).

Thus the asymptotically α-level test rejects the null hypothesis if

Ln > E{Ln}+
σ√
n

Φ−1(1− α).

Beirlant, Györfi and Lugosi (1994) proved an upper bound

E{Ln} ≤
√

2/π

√
mn

n
.
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Chapter 5

Testing Homogeneity

5.1 The testing problem

Consider two mutually independent samples of Rd-valued random vectors X1, . . . ,Xn

and X′1, . . . ,X
′
n with i.i.d. components distributed according to unknown probability

measures µ and µ′. We are interested in testing the null hypothesis that the two samples
are homogeneous, that is

H0 : µ = µ′.

Such tests have been extensively studied in the statistical literature for special parametrized
models, e.g. for linear or loglinear models. For example, the analysis of variance provides
standard tests of homogeneity when µ and µ′ belong to a normal family on the line. For
multinomial models these tests are discussed in common statistical textbooks, together
with the related problem of testing independence in contingency tables. For testing ho-
mogeneity in more general parametric models, we refer the reader to the monograph of
Greenwood and Nikulin (1996) and further references therein.

However, in many real life applications, the parametrized models are either unknown
or too complicated for obtaining asymptotically α-level homogeneity tests by the classical
methods. For d = 1, there are nonparametric procedures for testing homogeneity, for
example, the Cramer-Mises, Kolmogorov-Smirnov, Wilcoxon tests. The problem of d > 1
is much more complicated, but nonparametric tests based on finite partitions of Rd may
provide a welcome alternative. Such results are the extensions of Read and Cressie
(1988).

In the present chapter, we discuss a simple approach based on a L1 distance test
statistic. The advantage of our test procedure is that, besides being explicit and rela-
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tively easy to carry out, it requires very few assumptions on the partition sequence, and
it is consistent. Let us now describe our test statistic.

Denote by µn and µ′n the empirical measures associated with the samples X1, . . . ,Xn

and X′1, . . . ,X
′
n, respectively, so that

µn(A) =
#{i : Xi ∈ A, i = 1, . . . , n}

n
,

and, similarly,

µ′n(A) =
#{i : X′i ∈ A, i = 1, . . . , n}

n
.

Based on a finite partition Pn = {An,1, . . . , An,mn} of Rd (mn ∈ N∗), we let the test
statistic comparing µn and µ′n be defined as

Tn =
mn∑
j=1

|µn(An,j)− µ′n(An,j)|.

5.2 L1-distance-based strongly consistent test

The following theorem extends the results of Beirlant, Devroye, Györfi and Vajda (2001),
and Devroye and Györfi (2002) to the statistic Tn.

Theorem 5.1. (Biau, Györfi (2005).) Assume that conditions

lim
n→∞

mn =∞, lim
n→∞

mn

n
= 0, (5.1)

and
lim
n→∞

max
j=1,...,mn

µ(Anj) = 0, (5.2)

are satisfied. Then, under H0, for all 0 < ε < 2,

lim
n→∞

1

n
lnP{Tn > ε} = −gT (ε),

where
gT (ε) = (1 + ε/2) ln(1 + ε/2) + (1− ε/2) ln(1− ε/2).
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Proof. We prove only the upper bound

P{Tn > ε} ≤ 2mne−ngT (ε) ≤ 2mne−nε
2/4. (5.3)

For any s > 0, the Markov inequality implies that

P{Tn > ε} = P{esnTn > esnε} ≤ E{esnTn}
esnε

.

By Scheffé’s theorem for partitions

Tn =
∑
A∈Pn

|µn(A)− µ′n(A)| = 2 max
A∈σ(Pn)

(µn(A)− µ′n(A)) ,

where the class of sets σ(Pn) contains all sets obtained by unions of cells of Pn. Therefore

E{esnTn} = E{ max
A∈σ(Pn)

e2sn(µn(A)−µ′n(A))}

≤
∑

A∈σ(Pn)

E{e2sn(µn(A)−µ′n(A))}

≤ 2mn max
A∈σ(Pn)

E{e2sn(µn(A)−µ′n(A))}

= 2mn max
A∈σ(Pn)

E{e2snµn(A)}E{e−2snµ′n(A)}.

Clearly,

E{e2snµn(A)} =
n∑
k=0

e2sk

(
n

k

)
µ(A)k (1− µ(A))n−k

=
(
e2sµ(A) + 1− µ(A)

)n
,

and, similarly, under H0,

E{e−2snµ′n(A)} =
n∑
k=0

e−2sk

(
n

k

)
µ(A)k (1− µ(A))n−k

=
(
e−2sµ(A) + 1− µ(A)

)n
.
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The remainder of the proof is under the null hypothesis H0. From above, we deduce that

E{esnTn}
≤ 2mn max

A∈σ(Pn)

(
e2sµ(A) + 1− µ(A)

)n (
e−2sµ(A) + 1− µ(A)

)n
= 2mn max

A∈σ(Pn)

[(
e2sµ(A) + 1− µ(A)

) (
e−2sµ(A) + 1− µ(A)

)]n
= 2mn max

A∈σ(Pn)

[
1 + µ(A) (1− µ(A)) (e2s + e−2s − 2)

]n
≤ 2mn

[
1 + (e2s + e−2s − 2)/4

]n
= 2mn

[
1/2 + (e2s + e−2s)/4

]n
.

It implies that

P{Tn > ε} ≤ inf
s>0

E{esnTn}
esnε

≤ 2mn
[

inf
s>0

1/2 + (e2s + e−2s)/4

esε

]n
One can verify that the infimum is achieved at

e2s =
1 + ε/2

1− ε/2
,

and then
P{Tn > ε} ≤ 2mne−ngT (ε).

The Pinsker inequality implies that

gT (ε) ≥ ε2/4

therefore
P{Tn > ε} ≤ 2mne−nε

2/4.

�
The technique of Theorem 5.1 yields a distribution-free strong consistent test of

homogeneity, which rejects the null hypothesis if Tn becomes large. We insist on the fact
that the test presented in Corollary 5.1 is entirely distribution-free, i.e., the measures µ
and µ′ are completely arbitrary.

Corollary 5.1. (Biau, Györfi (2005).) Consider the test which rejects H0 when

Tn > c1

√
mn

n
,
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where
c1 > 2

√
ln 2 ≈ 1.6651.

Assume that condition (5.1) is satisfied and

lim
n→∞

mn

lnn
=∞.

Then, under H0, after a random sample size the test makes a.s. no error. Moreover, if

µ 6= µ′,

and the sequence of partitions P1,P2, . . . is asymptotically fine, (cf. (2.5)), then after a
random sample size the test makes a.s. no error.

Proof. Under H0, by (5.3),

P
{
Tn > c1

√
mn

n

}
≤ 2mne

−ngT
(
c1
√
mn/n

)

= 2mne−nc
2
1(mn/n)/4+n·o(mn/n)

= e−(c21/4−ln 2+o(1))mn ,

as n→∞. Therefore the condition mn/ lnn→∞ implies that

∞∑
n=1

P
{
Tn > c1

√
mn

n

}
<∞,

and by the Borel-Cantelli lemma we are ready with the first half of the corollary. Con-
cerning the second half, in the same way as for (4.6) we can show that by the additional
condition (2.5),

lim inf
n→∞

Tn ≥ 2 sup
B
|µ(B)− µ′(B)| > 0 (5.4)

a.s. �

5.3 L1-distance-based α-level test

Again, one can prove the following asymptotic normality:
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Theorem 5.2. (Biau, Györfi (2005).) Assume that conditions (5.1) and (5.2) are
satisfied. Then, under H0, there exists a centering sequence Cn = E{Tn} such that

√
n (Tn − Cn) /σ

D→ N (0, 1),

where σ2 = 2(1− 2/π).

Theorem 5.2 yields the asymptotic null distribution of a consistent homogeneity test,
which rejects the null hypothesis if Tn becomes large. In contrast to Corollary 5.1,
and because of condition (5.2), this new test is not distribution-free. In particular, the
measures µ and µ′ have to be nonatomic.

Corollary 5.2. (Biau, Györfi (2005).) Put α ∈ (0, 1), and let C∗ ≈ 0.7655 denote a
universal constant. Consider the test which rejects H0 when

Tn > c2

√
mn

n
+ C∗

mn

n
+

σ√
n

Φ−1(1− α) ≈ c2

√
mn

n
,

where
σ2 = 2(1− 2/π) and c2 =

2√
π
≈ 1.1284.

Then, under the conditions of Theorem 5.2, the test is an asymptotically α-level test.
Moreover, under the additional condition (2.5), the test is consistent.

Proof. According to Theorem 5.2, under H0,

P{
√
n(Tn − E{Tn})/σ ≤ x} ≈ Φ(x),

therefore the error probability with threshold x is

α = 1− Φ(x).

Thus the α-level test rejects the null hypothesis if

Tn > E{Tn}+
σ√
n

Φ−1(1− α).

However, E{Tn} depends on the unknown distribution, thus we apply an upper bound
on E{Tn}, and so decrease the error probability. The following inequality is valid:

E{Tn} ≤ c2

√
mn

n
+ C∗

mn

n
,
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(cf. Biau, Györfi (2005)). Thus

α ≈ P

{
Tn > E{Tn}+

σ√
n

Φ−1(1− α)

}
≥ P

{
Tn > c2

√
mn

n
+ C∗

mn

n
+

σ√
n

Φ−1(1− α)

}
.

This proves that the test has asymptotic error probability at most α.
Under µ 6= µ′, the consistency of the test follows from (5.4). �

99



100



Chapter 6

Testing Independence

6.1 The testing problem
Consider a sample of Rd×Rd′-valued random vectors (X1,Y1), . . . , (Xn,Yn) with inde-
pendent and identically distributed (i.i.d.) pairs. The distribution of (X,Y) is denoted
by ν, while µ1 and µ2 stand for the distributions of X and Y, respectively. We are
interested in testing the null hypothesis that X and Y are independent,

H0 : ν = µ1 × µ2, (6.1)

while making minimal assumptions regarding the distribution.
We obtain two kinds of tests for each statistic: first, we derive strong consistent tests

— meaning that both on H0 and on its complement the tests make a.s. no error after
a random sample size — based on large deviation bounds. While such tests are not
common in the classical statistics literature, they are well suited to data analysis from
streams, where we receive a sequence of observations rather than a sample of fixed size,
and must return the best possible decision at each time using only current and past
observations. Our strong consistent tests are distribution-free, meaning they require no
conditions on the distribution being tested; and universal, meaning the test threshold
holds independent of the distribution. Second, we obtain tests based on the asymptotic
distribution of the L1, which assume only that ν is nonatomic. Subject to this assump-
tion, the tests are consistent: for a given asymptotic error rate on H0, the probability of
error on H1 drops to zero as the sample size increases. Moreover, the thresholds for the
asymptotic tests are distribution-independent. We emphasize that our tests are explicit,
easy to carry out, and require very few assumptions on the partition sequences.

Additional independence testing approaches also exist in the statistics literature. For
d = d′ = 1, an early nonparametric test for independence, due to Hoeffding (1948),
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Blum et al. (1961), De Wet (1980) is based on the notion of differences between the joint
distribution function and the product of the marginals. The associated independence
test is consistent under appropriate assumptions. Two difficulties arise when using this
statistic in a test, however. First, quantiles of the null distribution are difficult to esti-
mate. Second, and more importantly, the quality of the empirical distribution function
estimates becomes poor as the dimensionality of the spaces Rd and Rd′ increases, which
limits the utility of the statistic in a multivariate setting.

Rosenblatt (1975) defined the statistic as the L2 distance between the joint density
estimate and the product of marginal density estimates. Let K and K ′ be density
functions (called kernels) defined on Rd and on Rd′ , respectively. For the bandwidth
h > 0, define

Kh(x) =
1

hd
K
(x
h

)
and K ′h(y) =

1

hd′
K ′
(y
h

)
.

The Rosenblatt-Parzen kernel density estimates of the density of (X,Y) and X are
respectively

fn(x,y) =
1

n

n∑
i=1

Kh(x−Xi)K
′
h(y −Yi) and fn,1(x) =

1

n

n∑
i=1

Kh(x−Xi), (6.2)

with fn,2(y) defined by analogy. Rosenblatt (1975) introduced the kernel-based indepen-
dence statistic

Tn =

∫
Rd×Rd′

(fn(x,y)− fn,1(x)fn,2(y))2dx dy. (6.3)

Further approaches to independence testing can be employed when particular assump-
tions are made on the form of the distributions, for instance that they should exhibit
symmetry. We do not address these approaches in the present study.

6.2 L1-distance-based strongly consistent test

Denote by νn, µn,1 and µn,2 the empirical measures associated with the samples
(X1,Y1), . . . , (Xn,Yn), X1, . . . ,Xn, and Y1, . . . ,Yn, respectively, so that

νn(A×B) = n−1#{i : (Xi,Yi) ∈ A×B, i = 1, . . . , n},
µn,1(A) = n−1#{i : Xi ∈ A, i = 1, . . . , n}, and

µn,2(B) = n−1#{i : Yi ∈ B, i = 1, . . . , n}.
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Given the finite partitions Pn = {An,1, . . . , An,mn} of Rd and Qn = {Bn,1, . . . , Bn,m′n} of
Rd′ , we define the L1 test statistic comparing νn and µn,1 × µn,2 as

Ln(νn, µn,1 × µn,2) =
∑
A∈Pn

∑
B∈Qn

|νn(A×B)− µn,1(A) · µn,2(B)|.

In the following two sections, we derive the large deviation and limit distribution prop-
erties of this L1 statistic, and the associated independence tests.

For testing a simple hypothesis versus a composite alternative, Györfi and van der
Meulen (1990) introduced a related goodness of fit test statistic Ln defined as

Ln(µn,1, µ1) =
∑
A∈Pn

|µn,1(A)− µ1(A)|.

Biau and Györfi (2005) proved that, for all 0 < ε,

P{Ln(µn,1, µ1) > ε} ≤ 2mne−nε
2/2, (6.4)

(cf. Theorem 4.3). We now describe a similar result for our L1 independence statistic.

Theorem 6.1. (Gretton, Györfi (2010).) Under H0, for all 0 < ε1, 0 < ε2 and
0 < ε3,

P{Ln(νn, µn,1 × µn,2) > ε1 + ε2 + ε3} ≤ 2mn·m
′
ne−nε

2
1/2 + 2mne−nε

2
2/2 + 2m

′
ne−nε

2
3/2.

Proof. We bound Ln(νn, µn,1 × µn,2) according to

Ln(νn, µn,1 × µn,2) =
∑
A∈Pn

∑
B∈Qn

|νn(A×B)− µn,1(A) · µn,2(B)|

≤
∑
A∈Pn

∑
B∈Qn

|νn(A×B)− ν(A×B)|

+
∑
A∈Pn

∑
B∈Qn

|ν(A×B)− µ1(A) · µ2(B)|

+
∑
A∈Pn

∑
B∈Qn

|µ1(A) · µ2(B)− µn,1(A) · µn,2(B)|.

Under the null hypothesis H0, we have that∑
A∈Pn

∑
B∈Qn

|ν(A×B)− µ1(A) · µ2(B)| = 0.
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Moreover ∑
A∈Pn

∑
B∈Qn

|µ1(A) · µ2(B)− µn,1(A) · µn,2(B)|

≤
∑
A∈Pn

∑
B∈Qn

|µ1(A) · µ2(B)− µ1(A) · µn,2(B)|

+
∑
A∈Pn

∑
B∈Qn

|µ1(A) · µn,2(B)− µn,1(A) · µn,2(B)|

=
∑
B∈Qn

|µ2(B)− µn,2(B)|+
∑
A∈Pn

|µ1(A)− µn,1(A)|

= Ln(µn,1, µ1) + Ln(µn,2, µ2).

Thus, (6.4) implies

P{Ln(νn, µn,1 × µn,2) > ε1 + ε2 + ε3}
≤ P {Ln(νn, ν) > ε1}+ P {Ln(µn,1, µ1) > ε2}+ P {Ln(µn,2, µ2) > ε3}

≤ 2mn·m
′
ne−nε

2
1/2 + 2mne−nε

2
2/2 + 2m

′
ne−nε

2
3/2.

�
Theorem 6.1 yields a strong consistent test of independence, which rejects the null

hypothesis if Ln(νn, µn,1 × µn,2) becomes large. The test is distribution-free, i.e., the
probability distributions ν, µ1 and µ2 are completely arbitrary; and the threshold is
universal, i.e., it does not depend on the distribution.

Corollary 6.1. (Gretton, Györfi (2010).) Consider the test which rejects H0 when

Ln(νn, µn,1 × µn,2) > c1

(√
mnm′n
n

+

√
mn

n
+

√
m′n
n

)
≈ c1

√
mnm′n
n

,

where
c1 >

√
2 ln 2 ≈ 1.177. (6.5)

Assume that conditions
lim
n→∞

mnm
′
n

n
= 0, (6.6)

and
lim
n→∞

mn

lnn
=∞, lim

n→∞

m′n
lnn

=∞, (6.7)
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are satisfied. Then under H0, the test makes a.s. no error after a random sample size.
Moreover, if

ν 6= µ1 × µ2,

and for any sphere S centered at the origin,

lim
n→∞

max
A∈Pn, A∩S 6=0

diam(A) = 0 (6.8)

and
lim
n→∞

max
B∈Qn, B∩S 6=0

diam(B) = 0, (6.9)

then after a random sample size the test makes a.s. no error.

Proof. Under H0, we obtain from Theorem 6.1 a non-asymptotic bound for the tail of
the distribution of Ln(νn, µn,1 × µn,2), namely

P

{
Ln(νn, µn,1 × µn,2) > c1

(√
mnm′n
n

+

√
mn

n
+

√
m′n
n

)}
≤ 2mnm

′
ne−c

2
1mnm

′
n/2 + 2mne−c

2
1mn/2 + 2m

′
ne−c

2
1m
′
n/2

≤ e−(c21/2−ln 2)mnm′n + e−(c21/2−ln 2)mn + e−(c21/2−ln 2)m′n

as n→∞. Therefore the condition (6.7) implies

∞∑
n=1

P

{
Ln(νn, µn,1 × µn,2) > c1

(√
mnm′n
n

+

√
mn

n
+

√
m′n
n

)}
<∞,

and the proof under the null hypothesis is completed by the Borel-Cantelli lemma. For
the result under the alternative hypothesis, we first apply the triangle inequality

Ln(νn, µn,1 × µn,2) ≥
∑
A∈Pn

∑
B∈Qn

|ν(A×B)− µ1(A) · µ2(B)|

−
∑
A∈Pn

∑
B∈Qn

|νn(A×B)− ν(A×B)|

−
∑
B∈Qn

|µ2(B)− µn,2(B)|

−
∑
A∈Pn

|µ1(A)− µn,1(A)|.
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The condition in (6.6) implies the three last terms of the right hand side tend to 0 a.s.
Moreover, using the technique for (4.6) we can prove that by conditions (6.8) and (6.9),∑

A∈Pn

∑
B∈Qn

|ν(A×B)− µ1(A) · µ2(B)| → 2 sup
C
|ν(C)− µ1 × µ2(C)| > 0

as n→∞, where the last supremum is taken over all Borel subsets C of Rd × Rd′ , and
therefore

lim inf
n→∞

Ln(νn, µn,1 × µn,2) ≥ 2 sup
C
|ν(C)− µ1 × µ2(C)| > 0 (6.10)

a.s. �

6.3 L1-distance-based α-level test
Again, one can prove the following asymptotic normality:

Theorem 6.2. (Gretton, Györfi (2010).) Assume that conditions (6.6) and

lim
n→∞

max
A∈Pn

µ1(A) = 0, lim
n→∞

max
B∈Qn

µ2(B) = 0, (6.11)

are satisfied. Then, under H0, there exists a centering sequence
Cn = E{Ln(νn, µn,1 × µn,2)} depending on ν such that

√
n (Ln(νn, µn,1 × µn,2)− Cn) /σ

D→ N (0, 1),

where σ2 = 1− 2/π.

Theorem 6.2 yields the asymptotic null distribution of a consistent independence
test, which rejects the null hypothesis if Ln(νn, µn,1 × µn,2) becomes large. In contrast
to Corollary 6.1, and because of condition (6.11), this new test is not distribution-free:
the measures µ1 and µ2 have to be nonatomic.

Corollary 6.2. (Gretton, Györfi (2010).) Let α ∈ (0, 1). Consider the test which
rejects H0 when

Ln(νn, µn,1 × µn,2) > c2

√
mnm′n
n

+
σ√
n

Φ−1(1− α)

≈ c2

√
mnm′n
n

,
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where
σ2 = 1− 2/π and c2 =

√
2/π ≈ 0.798.

Then, under the conditions of Theorem 6.2, the test is an asymptotically α-level test.
Moreover, under the additional conditions (6.8) and (6.9), the test is consistent.

Before proceeding to the proof, we examine how the above test differs from that in
Corollary 6.1. In particular, comparing c2 above with c1 in (6.5), both tests behave
identically with respect to

√
mnm′n/n for large enough n, but c2 is smaller.

Proof. According to Theorem 6.2, under H0,

P{
√
n(Ln(νn, µn,1 × µn,2)− Cn)/σ ≤ x} ≈ Φ(x),

therefore the error probability with threshold x is

α = 1− Φ(x).

Thus the α-level test rejects the null hypothesis if

Ln(νn, µn,1 × µn,2) > Cn +
σ√
n

Φ−1(1− α).

As Cn depends on the unknown distribution, we apply an upper bound

Cn = E{Ln(νn, µn,1 × µn,2)} ≤
√

2/π

√
mnm′n
n

(cf. Gretton, Györfi (2010)). �
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