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Abstract

In many real world (binary) classification prob-
lems it is easy to obtain unlabeled data, but
labeled data are very expensive or simply un-
available. In certain cases, however, such as in
the problem of detecting frauds in (computer)
games, or insider trading in stock markets, one
can assume that the unlabeled data contains very
few samples from one class (fraudulent plays or
insider trades), but it is possible to generate syn-
thetic data from this class. Training a naive clas-
sifier on the above data is particularly suited for
detecting frauds in Markov decision problems if
the feature vectors of the classifier are composed
of the frequency a player abates from the opti-
mal policy in each state and the associated excess
reward. Based on a synthetic example in black-
jack, we demonstrate that the above classification
method can perform quite well even in the case
the generated positive samples come from a dis-
tribution different to the real one. The method is
also applied to identify possibly fraudulent trades
in the stock market.

1. Introduction

Consider a situation when a casino would like to detect
automatically cheating poker players (or at least highlight
the suspicion of cheating). Since in electronic casinos all
aspects of the game are monitored constantly it is rather
easy to collect training data for an automated cheat detec-
tor (similar data collection is possible in real casinos, by,
e.g., cameras). Thus, when such a detector is ready, it is
easy to feed it with input data. However, the main problem
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is that the collected data is not labeled, and so devising a
general cheat detector is not straightforward.

A similar problem occurs in stock markets, where the use
of certain extra information for trading is illegal and hence
should be detected by market regulators. The detection of
such behavior, called insider trading is a hard problem, as
the social network spreading out the insider information is
not known in general. Therefore, detecting such fraudulent
trades must rely on recognizing unusual trading patterns of
individual investors or brokers. In case the trades made by
individual investors are available separately, one can eas-
ily check big returns for the investors, leading to a good
starting point for the detection of suspicious trades. How-
ever, if trades are aggregated by brokers, or by a few (sub-)
accounts of brokers, the problem becomes really compli-
cated, as position closing trades, and hence realizing big
returns, cannot be recognized for sure. Furthermore, bro-
kers may also gain on information of near future orders of
their customers. While usually a vast amount of trading
data is available, detected frauds are scarce, hence practi-
cally only unlabeled data is available.

Both of the above examples represent a classification prob-
lem where it is easy to collect unlabeled data but usually
no labeled data is available. On the other hand, one can
suspect that the vast majority of the unlabeled data falls in
one class (non-fraudulent data), and it is possible to gen-
erate synthetic data from the other class (fraudulent data).
In particular, one can simulate cheating players in a casino
(who are in the possession of some extra information, e.g.,
the value of some face-down card, or players who form a
coalition), or, in case of the stock market, one can easily
generate fraudulent trades in retrospect based on the future
price changes. This synthetic data can be used to trans-
form the unsupervised learning problem into one with pos-
itive and unlabeled data. Solutions to such problems have
been proposed in several works. Under the general semi-
supervised framework it is often assumed that the unlabeled
data has some nice (e.g., identifiable) mixture distribution,
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and after the components of these distributions are identi-
fied, a few labeled data is satisfactory to obtain the corre-
sponding labels (Castelli & Cover, 1995; Castelli & Cover,
1996; Zhu, 2007). The unlabeled and positive data case has
also been studied specifically (Ward et al., 2008; Elkan &
Noto, 2008); in these works it is usually assumed that either
the unlabeled and positive data come from the true underly-
ing distribution of the data and the positive data are labeled
with a certain probability, or that the unlabeled data come
from the true distribution, and the positive data follow the
true distribution, as well. In contrast, we cannot make such
assumptions as it would be too optimistic to assume that
real world data is drawn from identifiable distributions or
that we can generate synthetic samples from the true under-
lying positive distributions (in the case of detecting insider
trades the latter would require covering all possible cheat-
ing scenarios). In this paper we demonstrate that despite of
these facts, the above transformation of the problem may
yield reasonable results.

In Section 2 we give a formal description of the above clas-
sification problem and propose a naive solution. In Sec-
tion 3 we show how this solution can be applied for detect-
ing unusual player behavior in Markov decision problems
(MDPs) leading to extra rewards. The resulting algorithm
is applied to detect frauds in a synthetic example of black-
jack in Section 4, while in Section 5 we illustrate the ap-
plication of the method to detect fraudulent trades in stock
markets.

2. Learning from positive and unlabeled data

Let (X,Y ) be a pair of random variables taking
values in C × {0, 1}, where C is a compact sub-
set of the d-dimensional Euclidean spaceRd, and let
(X1, Y1), . . . , (Xn, Yn) be drawn independently from the
distribution of(X,Y ). From this sample we can observe
only U = (X1, . . . , Xn), called theunlabeled data, and
we need to construct a functionf(·) = f(·, U) to estimate
the class corresponding toX, that is, to minimize the error
probabilityP (Y 6= f(X)).

To facilitate this process, assume that we can generate an-
other sampleP = (X̂1, . . . , X̂m) drawn independently ac-
cording to the distribution of a random variablêX ∈ R

d

that is close to the conditional distribution ofX given
Y = 1. P is called thepositive data. Now our goal is to
construct another estimateg(·) = g(·, U, P ) to estimate the
classY for a givenX, that is, to minimizeP (Y 6= g(X)).

Assumingγ = P (Y = 1) ≪ 1, it is a natural approach
to label all samples fromU negative and all samples from
P positive, and approximateg by a consistent solution̂g of
the resulting classification problem.

Similar setups have been considered in the literature, such

as the case-control scenario of Ward et al. (2008) where
it is assumed thatP is drawn according to the true condi-
tional distribution ofX givenY = 1, while in the model of
Elkan and Noto (2008)(P,U) follows the true underlying
distribution withP selected completely random from the
positive examples. These papers concentrate on improving
ĝ, and the proposed methods basically reweight the sam-
ples based on the fact thatU is a mixture of positive and
negative data. This reweighting has no real effect in our sit-
uation as the proportion of positive samplesγ is assumed
to be very small in the unlabeled data setU . Moreover, in
Sections 4 and 5 we will use the RProp algorithm (Ried-
miller & Braun, 1993) to determinêg, and, as usual in sim-
ilar situations, we reweight the samples during the training
to ensure balanced estimation. Ward et al. (2008) also pro-
pose, beside reweighting, a theoretically well-founded tun-
ing of the threshold parameter using cross validation from
another sample, but this leads to similar threshold selection
as in our naive approach.

Under various conditions it is easy to show that any consis-
tent classifier̂g that is trained on(P,U) with the proposed
artificial labeling is also consistent on the original problem.
The next result is a simple example for such a case.

Proposition 1 If the distribution ofX̂ equals the condi-
tional distribution ofX givenY = 1, then ĝ converges
to the optimal classifier for(X,Y ) as m,n → ∞ if
lim infn→∞ m/n > γ.

3. Anomalous behavior in MDPs

MDPs are particularly suitable to describe many games and
other real world situations. In this framework an agent
moves in a state space and can perform different actions
in each state. When an action is performed, the state is
changed in some probabilistic way, and an occasional re-
ward is paid to the agent. A cheat would have some in-
sight in future state transitions or rewards that would not
be possible by playing within the rules of the game, and
will choose a sequence of actions that can exploit such an
additional information.

Formally, in an MDP framework an agent moves in a state
spaceS: starting from a states0, at each time instant
t = 0, 1, 2, . . . the agent chooses an actionat ∈ A (where
the setA is called the action space), and arrives to a new
statest+1 ∈ S according to the (given) conditional distri-
butionsp(st+1|st, at), and receives some random rewards
rt whose distribution may depend onst, st+1, andat. In
MDPs describing games usually there is a terminal state
ŝ indicating the end of the game, that is, no matter what
action the agent chooses, it stays in the same state and re-
ceives no reward. The goal of the agent is to maximize its
cumulative rewardR(s0) =

∑

∞

t=0
rt (note that under gen-
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eral conditions onp this sum contains almost surely only
finitely many elements).

The agent’s behavior is described by a possibly random
policy π : S → A meaning that if the agent is at states
then it will perform actionπ(s). An optimal policyπ∗ is
one maximizing the expected cumulative rewardER(s0).
It can be shown (see, e.g., Sutton & Barto, 1998) that un-
der general conditions on the MDP there exists an optimal
policyπ∗ that is deterministic and independent of the initial
states0.

In this setup we assume that we have a several game long
record of each player, and hence it is possible to collect
statistics about the behavior of each player at certain states
of the MDP. Thus, a data instance consists of a sequence of
(state, action, reward) triplets resulting from the sequence
of actions performed by an agent. When one wants to de-
cide whether a player cheats or not, it is intuitive to use as
features the frequency of abating from the optimal policy
in particular states, and the reward received following the
action biased by the expected reward of an optimal policy
associated to the particular state (or state-action). Morefor-
mally, each player is described as follows. Assume thatn
games are recorded for a given player. For each state-action
pair(s, a), let π̄(s, a) denote the frequency the player chose
actiona at states. Furthermore, for each states consider all
the games when the player was at states and chose a sub-
optimal action (i.e., different toπ∗(s)), and letR̄(s) denote
the average reward, computed over these games, collected
after the first time the agent visited states and chose a sub-
optimal action.

Then the features describing the player may be composed
of the frequency of making suboptimal decisions in each
state and the resulting extra reward:

{(

1− π̄(s, π∗(s)), R̄(s)− ER∗(s)
)

, s ∈ S
}

whereER∗ is the expected cumulative reward of the opti-
mal policyπ∗.

Obviously, in many MDPs it is very hard to find the opti-
mal policy π∗, but often it is possible to construct a rea-
sonable estimate. In these situations the approximate opti-
mal policy and the resulting achievable result may play the
role of the optimal quantities above. When there are more
then one optimal actions in a state (or the expected reward
of a suboptimal action is inferior by just a small margin
than that of the optimal action), the features describing the
player would include the frequencies of deviating from the
set of (almost) optimal actions, and the corresponding ex-
tra reward. In states where more than one optimal actions
are available, additional information not available to a fair
player may differentiate these actions. To detect such sit-
uations, it might be interesting to augment the features for
suboptimal actions with the frequencies of choosing differ-

ent optimal actions and the resulting extra rewards.

The above model concerns to games when the agent acts
solitary in its environment. However, in multi-player
games the MDP framework may also be a sufficiently good
model if the opponents usually play obliviously with re-
spect to specific players’ actions (this may be a sufficiently
good approximation in many practical situations and very
restrictive in others). In this case the above approach is
applicable to detect colluding players (various types of col-
lusions are described in, e.g., Smed et al., 2006). If two
(or more) players play fairly then their optimal strategy is
just the product of the optimal strategies derived from the
MDP model. On the other hand, if they collude, usually
higher rewards can be achieved for both of them, since in
a coalition when a player deviates from an optimal policy,
often another member of the coalition will benefit, or infor-
mation that enables a player a higher than expected reward
can be facilitated by the other player. Thus, following the
single-player model, the two players are described by the
frequencies they abate from the optimal product policy and
the resulting extra rewards. Naturally, if several playersare
in the game, all possible player groups have to be tried out
(in practice, however, only those who can be suspected to
collide), but this is not a serious impediment.

4. Blackjack

Blackjack is one of the most popular casino card games. In
essence, it is a game played against a dealer with the objec-
tive of getting a higher card total than the dealer, without
going over 21 (busting). At the beginning of each round,
the player and the dealer receive an initial hand of two cards
each. One of the dealer’s card is face up and the other is
face down (thehole card). Subsequently, the player can
choose tohit (i.e. request a further card) until he deems
too risky to ask for more cards (avoiding the possibility of
going over 21), at which point hestands. In general there
may be other actions available to the player, but these are
the most essential ones, and we deemed them sufficient for
the purpose of our experiments. If the player has not bust,
it is the dealer’s turn to request further cards, and she is do-
ing so according to a predetermined strategy that depends
solely on the value of her cards. For the dealer we adopted
thehit on softstrategy, that is, she asks for more cards if the
total value of her cards is less than 17 or 17 including an
ace. Further choices made regarding the possible variants
of the game include the 3:2 payoff for a player blackjack
(an ace plus a figure or a 10), and dealing from a 6 deck
shoe.

A ‘fair’ player bases his policy on the upcard of the dealer
and his current sum. In our setup we include players who
play optimally given this information, and also players that
deviate randomly from the optimal policy depending on



Fraud Detection by Generating Positive Samples for Classification from Unlabeled Data

how much worse the suboptimal action is (essentially, a
soft-max policy). We consider cheats that have knowledge
about either the next card to be dealt or the hole card. In
either case the cheats may attempt to disguise their strat-
egy by mixing it with the optimal fair strategy. While in
the tests we examine both types of cheating we add to the
training set only cheats using the next card (and cheating in
all occasions), considering the second type of cheating as
‘unexpected’.

Our data consists of 100,000 fair players (N ), two sets of
10,000 cheats relying on the next card (TN ) or the hole
card (TH), with various degrees of disguise, and a set of
1,000 cheats that are playing optimal knowing the next card
to be dealt (C). The description for each player is collected
from 1,000 games played by the player, and includes the
rate of non-optimal actions in each state (defined by the
current sum and the upcard of the dealer) and the payoff
obtained for each state (there are approximately 300 states).
In the training the fair players and a sample of 1,000 players
from TN are labeled as non-cheats, while the players from
C are labeled as cheats. We trained a neural network using
the RProp algorithm, and the performance of the classifica-
tion of the trained network on the two test setsTN andTH
are shown in Figure 1, top. We may observe that only sig-
nificantly disguised players avoid detection for the cheats
relying on the next card, while a large portion of the cheats
relying on the hole card are detected despite not having any
labeled sample for this type of cheating. The average pay-
off obtained by the players of the test sets in their respec-
tive 1,000 games are shown in Figure 1, bottom. We note
that there is a large overlap in the result of cheats and non-
cheats. This overlap excludes the possibility of detecting
cheats based mainly on their gain. One can assume that
cheats can access/utilize extra information in certain states
of the game, and therefore our approach seems more suit-
able for detecting cheats than naively comparing observed
gains with the optimal (expected) gain, without considering
player behavior at different states separately.

5. Fraudulent trades

We demonstrate our method on the problem of detecting
fraudulent trades on the Budapest Stock Exchange.1 In this
exchange market regulators see only aggregated data for
each broker desk; thus the initiator of the trades are un-
known, and so corresponding opening and closing trades
cannot be determined, further complicating the problem.
Also, there are very few known cases when proven insider
trading has occurred. Thus, to detect fraudulent trades,
only a large collection of unlabeled data is available (i.e.,

1By detecting fraudulent trades we mean identifying trades
with strong suspicion of being fraudulent. Usually such trades are
then further investigated by the regulators of the stock exchange.
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Figure 1.The frequency of rating a player suspect for cheats us-
ing the next card or the hole card (top), and the average payoff ob-
tained by the cheats (bottom). The cheats are shown with varying
level of disguise. Note that, in fact, players withdisguse = 1 are
not cheats. For the payoff the standard deviation over the players
is also shown.

with no indication of being fraudulent or not), and in the
current practice unsupervised anomaly detection methods
(e.g., unusual values of some simple statistics) are used
to detect frauds. For illustration purposes we selected
ECONET, a small stock that is often the target of specula-
tions. Therefore, from time to time, it is very volatile with
large variations in the stock price, while it is quite illiquid
in other periods with very few trades only. The source data
contains the sequence of orders for this stock for the period
2005–2006, and, for each order only the standard informa-
tion, such as type (market/limit), price, volume and time,
augmented with the identification number of the originat-
ing broker desk is recorded.

Based on the price sequence we have generated fraudulent
orders that utilize big price changes; this models a perfect
fraud situation where the insider traders are aware of the fu-
ture price changes. We have generated two types of fraudu-
lent orders. One type aims to achieve an at least 1% return
in a short period of at most 2 minutes, while the other type
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aims to win 7% within 2 days. The orders are inserted ran-
domly in the time period of length 300 and 500 seconds,
respectively, preceding the preselected cheating time. To
make the generated orders as similar to the real ones as pos-
sible, other characteristics of the orders are based on those
of the original ones in the preceding and following 3 days,
with volumes that can be 1.5 times bigger than observed.

In the resulting classification problem, each order is repre-
sented by a set of features that include the maximum poten-
tial gains for 1 minute, 3 hours and 1000 minutes (that is,
how much money could be earned by closing the position
at the optimal price in the given time period, calculated in
continuous trading time), the maximum potential loss in 1
hour, and a simple representation of the order book con-
taining the total volume and the average price of the or-
ders within 2, 5, and 8 percent of the mid-price of the book
from both the seller and buyer side. For the original or-
ders the original features were kept that were obtained by
simulating the real trading, while for the artificial fraudu-
lent orders, the features were generated by simulating the
sequence of the real and the artificially generated orders
(note that the effect of each inserted extra order vanishes
very fast).

Based on the training set obtained this way, the RProp algo-
rithm was used to rank the orders according to how suspi-
cious they seemed. Figure 2 shows the order book after the
arrival of the order ranked most suspicious by our method,
together with the graphs showing the evolution of the stock
price and traded volume slightly before and after the order
is placed (in the price and volume graphs the order arrives
at time 0). Although we cannot be certain of any fraud-
ulent activity, it can be noted that this order is a relatively
aggressive buy order, arriving to the strong side of the buyer
book (though it could have been more aggressive by imme-
diately executing with an existing sell order), when there
is a strong bias in the book favoring sell orders, and soon
after the order is filled the price increases a lot.

6. Conclusion

Fraud detection is a typical example of real world semi-
supervised learning problems: it is very easy to obtain a
vast amount of unlabeled data, but data corresponding to
declared frauds is very hard to collect. On the other hand,
unlike in many semi-supervised learning problems, it is of-
ten possible to automatically generate synthetic data cor-
responding to fraudulent behavior. While in the standard
classification problem from unlabeled and positive data it
is usually assumed that the positive data is generated ac-
cording to the real distribution, we cannot make such an as-
sumption here. We have demonstrated that if the unlabeled
data contains relatively few positive samples, the naive ap-
proach of solving a classification problem where all the
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Figure 2. Order book, price, and traded volume for the most sus-
picious order for ECONET.

unlabeled data are deemed to be negative, may yield rea-
sonable performance in certain cases. We described briefly
how the method can be applied to detect fraudulent behav-
ior in single- and multi-player games that can be modeled
by Markov decision processes. The resulting algorithm was
tested with encouraging results in a slightly simplified ver-
sion of blackjack with synthetic (fair and fraudulent) play-
ers, and for detecting fraudulent trades in real stock market
data.
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